Ball Bearings Mechanics-NASA Report

download Ball Bearings Mechanics-NASA Report

of 105

Transcript of Ball Bearings Mechanics-NASA Report

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    1/105

    ,/

    NASA Technical Memorandum 81691

    b

    Ball earing Mechanics

    N

    A

    L A .

    N A S A )

    1 6 5 ; dC; A ~ u / f i k A d 1

    Bernard J Hamrock

    ewis Research Center

    Clmland

    Ohio

    and

    Duncan

    Dowson

    The University

    o

    ccdr

    h d s England

    June 98

    3 CS

    C S C L

    3

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    2/105

    CH PTER

    B LL HE RING MECH NICS

    The loads ca r r i e d by b a l l bea r ings a re t ransm i t t ed th rough

    the ba l l s f rom one r i n g to the o the r . The magn itude o f th e l oad

    ca r r i ed by an i nd i v idu a l b a l l depends on the i n te rn a l geome try

    of t h e b e a r in g and t h e l o c a t i o n a f t h e b a l l a t any i n s t a n t .

    Having determfned how a bea ring c a r r i e s load we can determine

    how i t i s d i s t r i b u t e d among t h e b a l l s .

    To da this

    we

    must

    f i r s t d ev el op lo ad -d ef l e c t i o n r e a t i o n s h i p s f o r t h e b a l l - ra c e

    contact . These r e l a t i o n s h i p s a re de ve lo pe d i n S e c t i on 3.1 f o r

    any t y p e o f e l i p t i c a l c o nt a ct such as th os e f ou nd i n a b a l l

    bearing.

    The

    de fo r na t i on w i t h i n the co n ta c t i s among o t he r

    th lngs a fun c t i o n

    o f

    t he e l l i p t i c i t y param eter and t h e e l l i p t i c

    i n t eg ra l s o f the f i r s t and second k inds .

    Simp1 e d exp ress ions

    th a t a1 ow qu ick ca l cu la t i o ns o f the de fo rma t ion t o be made

    simply f rom a knowledge o f t he applSed load th e m at er ia l prop-

    e r t es and

    t h e

    geometry of the contact ing e lements are presen-

    t e d i n S e c tio n 3.2.

    taost b a l l bea r ing app l i ca t i an s i n vo l ve s teady -s la te ro ta -

    t i o n o f e i t h e r t i r e i n n e r o r o u t e r si\ g, o r bot h. However th e

    ro ta t i ona l speeds are u s u a l l y not so g re a t as t o cause cen t r i f r r -

    ga l fo rces or gyroscop ic moments o f s ig n i f i c a n t magni tude to ac t

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    3/105

    on the b a l l . Consequen tl y t hese e f f e c t s a re igno red i n ana ly -

    z i n g t he d i s t r i b u t i o n o f r a d i a l , t h r u s t , and com bined b a l l l o a ds

    i n Sect ion

    3.3.

    I n h igh-speed b a l l bea rings t he ce t i t ri f uga l f o r c e ac t ing on

    t h e i n d i v i d u a l b a l l s c an be s i g n i f i c a n t compared w i t h t h e

    app l ied f o rces ac t in g on t he bear ing . I n h igh-speed bearings

    b a l l gy ro sc op ic moments can a l s o be o f s i g ~ ~ i f i c a n tagnitude,

    depending on th e conta ct angles, such t h a t the inner-race

    con tac t ang les t end ~ inc rease and the outer - race con tac t

    a ng le s t e n d t o decrea se. I n b ea ri ng s i n w hic h d r y f r i c t i o n o r

    b ou nd ary l u b r i c a t i o n o cc u rs i n t h e c o n j u n c t i o n betw een t h e b a l l s

    and races, t h i s can cause a s h i f t of co n t r o l between races and,

    i n some cases, un sta ble be ar in g operat ion. Th is does n ot occur,

    however, i h e c o n j u n c t o n s e xp e ri en c e f u 11 elastohydrodynamic

    lub r i c a t ion . P rocedures f o r eva lu a t ing t he per fo tmance o f

    h igh-speed b a l l bea r ings a re deve loped i n Sec t ion

    3 4 .

    E las to -

    h yd ro dy na mic l u b r i c a t i o n o f b a l l - r a c e c o n t a c t s i s n o t c o n si de r ed

    i n t h i s c h ap te r b u t w l l be t rea ted i n Chapter 8.

    No r o l l

    i

    g-e lement bea r ing can g iv e u n l im i t ed 1 f e because

    o f t h e pr ob a bi

    l

    t y o f f a t igue . Any s t ru c t u r a l m a t e r ia l subjec -

    t e d

    t o an un l im i t ed suecession of repeated or reversed s t resses

    w l l u l t i m a t e l y f a i l . T he refo re a l l b a l l b ea rin gs e v e n t u a l l y

    succumb t o f a t ig u e , w h ic h i s ma n if es te d b y s u rf a c e d i s t r e s s i n

    t h e form o f f l a k i n g o f m e t a l l i c p a r tS c le s .

    I n marry cases f l a k -

    g may beg in as a crack below the su r f ace t h a t i s p ropaga ted t o

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    4/105

    th e surface, where

    i t

    even tua l

    l y

    fern is

    a y

    o r spa l 1. Fa t ig ue

    i s assumed t o have oc c u r re d when t h e f i r s t c ra ck o r s p a l i s

    observed on a load-carry ing sur face , A d es ig n c r i t e r i o n f o r t h e

    f a t i g u e l i f e of b a l l b e a ri ng s i s de ve lo pe d i n S ec t io n 3.5.

    B a l l b e a r i n g s c a n be l u b r i c a t e d s a t i s f a c t o r i l y w i t h a smal l

    amount o f l u b r i c a n t s up p li ed t o t h e r i g h t a re a w i t h i n t h e

    bearing,

    S ec t i o n 3.6 c o n s id e r s t h e s e l e c t i o n o f a s a t i s f a ct o ry

    lub r ic an t , as we11 as de scr ib i ng systems t h a t p rov ide a constan t

    f lo w o f l u b r i c a n t t o t h e c on ta ct .

    When an e l a s t i c s o l i d i s s u bj ec t ed t o a lo ad, s tr e ss e s ar e

    produced t h a t increas e as t i re load i s increased . These s t re sses

    a re assoc ia ted w i t h defo rma tions , wh ich a re de f i ne d by s t r a i n s ,

    U niq ue re l a t i o n s h i p s e x i s t be tw ee n s t re s s e s and t h e i r c o r re -

    sponding

    s t r a i n s .

    F o r e l a s t i c s o l i d s t h e s t re s se s a re

    l

    n e a r l y

    related t o t h e s t r a i n s , w i t h t h e co ns ta nt o f p r o p o r t i o n a l i t y

    b e in g an e l a s t i c c o ns ta nt t h a t a dop ts d i f f e r e n t v al ue s f o r d i f -

    f e r e n t m a t e ri a ls ,

    Thus

    a

    s i n ~ p l e e n s i l e l o a d a p p l ie d

    t o

    a ba r

    p roduces a s t ress

    u

    a n d a s t r a i n

    rl

    where

    1 =

    Load

    = St re ss i n a x i a l d i r e c t i o n

    Cross-sect io t ia l area

    3 1

    l lange

    n

    l ngth

    S t ra i n i n a x i a l d i r e c t i o n

    O r i g i n a l l e n g t h

    3 4

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    5/105

    and

    E = E l a s t i c c o ns t an t o r modulus o f e l a s t i c i t y

    C 3 . 3 )

    A1 h oug h no s t r e s s a c t s t r a ns v e r s e ly t o t h e a x i a l d i r e c t i o n

    t h e r e

    w

    11 never the less

    be

    d im e ns io na l changes i n t h a t d i r e c t i o n

    su ch t h a t a s a b a r e x te n d s a x i a l l y t c o n t r a c t s t r a ns v e r s e ly .

    T h e t r a n s v e r s e s t r a i n s c a re r e l a t ed t o t h e a x i a l s t r a i n s

    r l

    by

    P o i s s o n ~ s a t i o such t h a t

    w he re t h e n e g a t i v e s i g n means t h a t t h e t r a n s v e r s e s t r a i n

    w l l

    be

    of t h e o p p o s i t e s i g n t o t h e a x i a l s t r a i n The m od ulus o f e l a s -

    t i c i t y and P o i s s on l s r a t i o a r e tw o i m p or ta n t p ara me te rs u sed t o

    d es c ri be t h e m a t e r i a l i n t h e a n al y si s

    o f

    c o n t a c t i n g s o l i d s .

    As t h e st r e s s es i n c r e a s e w i t h i n t h e i n a t e r i a l e l a s t i c be-

    h a v io r i s r ep la c ed by p l a s t i c f lo w i n w hich t h e m a t e r i a l i s

    pemianent ly deformed.

    The s t r e s s s t a t e a t w h ic h t h e t r a n s i t i o n

    f r o m e l a s t i c t o p l a s t i c b eh a v io r o cc urs known as t h e y i e l d

    s t r e s s h as a d e f i n i t e v a lu e

    f o r

    a g iv e n m a t e r i a l a t

    a

    g i v e n

    temperature.

    I n t h i s b ook e l a s t i c b e ha v io r a lo n e i s c o ns id er ed .

    3.1.1 Surface Str ess es and De for n~ at i on

    When two e l a s t i c s o l i d s a re b rought toge t her under a load

    a

    con tac t a rea deve lops the shape and s i z e o f wh ich depend on

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    6/105

    t he app l i ed load, the e la s t i c p ro per t i es o f t he mate r i a l s , and

    the cur va ture s of th e surfaces. When th e two s o l i d s shown i n

    F i g u r e 2.18 have a nomlal load ap pl i ed t o them, th e shape o f th e

    c o n t a c t a r e a i s e l l i p t i c a l , w i t h a b e i ng t h e s em im ajo r and b

    the semiminor axis. I t has been c m o n t o r e f e r t o e l l l p t i c 6 1

    con tac ts as po in t con tac ts , bu t s i nce t h i s book dea l s ma in l y

    w i t h lo ad ed co n ta c ts , t h e t er m e l l i p t i c a l c o n t a c t i s a dopted.

    For the special case where

    r = r

    and

    rb

    rby

    aY

    t he r e s u l t i n g c o n ta c t i s a c j r c l e r a t h e r t ha n an e l l i p s e .

    Where r and r are b oth i n f i n i t e , t he i n i t i a l l i n e

    aY by

    con tac t develops i n t o a re c tang le when l oad i s app li ed.

    The c o nt a ct e l l i p s e s o b ta in e d w i t h e i t h e r a r a d i a l o r a

    t h ru s t l o ad f o r t he b a l l

    -

    i nner - race and b a l l ou te r - race

    c o nt ac ts i n a b a l l b e a ri n g a r e shown i n F i g u r e 3.1. T h i s

    book

    i s concerned w i t h the con junc t i ons between so l i d s - w i t h c o n ta c t

    a re as r a n g i ng fr o m c i r c u l a r t o r e c t a n g u l a r - and wi th the

    ana lys i s o f con ta c ts i n a b a l l bear ing . Inasmuch as t h e s i z e

    and shape of these contact areas are h i g h ly s i g n i f i c a n t t o t he

    successfu l operat io n o f b a l l bear ings ,

    i t

    i s i m po rta nt t o

    u n d e r s t a n d t h e i r c h a r a c t e r i s t i c s .

    H e r t z

    1881)

    cons idered the s t resse s and deformat ions i n

    two p e r f e c t l y smooth, e l l i p s o i d a l , c o n t a c ti n g e l a s t i c s o l i d s

    much l i k e those shown i n F igure 2.18.

    H i s a p p l i c a t i o n of t h e

    c l a s s i c a l t he or y o f e l a s t i c i t y t o t h i s pro ble m fo rm s th e b a s i s

    o f s t re ss ca l cu la t i o n f o r mach ine e lements such as b a l l and rol

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    7/105

    l e r bear ings, gears, sedls, and

    cants.

    The fo 1 o wing assumptions

    were made

    by

    H e r t z 1881)

    1)

    The

    ma ter i a l s a re homogeneous and t he y i e l d s t r ess i s

    not exceeded.

    (2 )

    No tangent ia l forces are induced between the s o l i d s .

    3 ) C on ta ct i s l i m i t e d t o a s ma ll p o r t i o n o f

    the

    surface,

    such t ha t t he d i mens i ons o f t he con tac t r eg i on a re sma l l cow

    pare d w i t h t h e r a d i i

    of the

    e l l i p s o i d s .

    ( 4 ) The s o l i d s a r e a t r e s t and i n e q u i l i b r i u m ( st e ad y

    s ta te )

    Making use o f these assumptigns, H er tz 1881) was ab l e t o

    o b t a i n t h e f o l l o w i n g e x p re ss io n f o r

    the

    p re ss ur e w i t h i n t h e e l -

    l i ps o i d a l con tac t shown i n F igure 3.2:

    I f t he p ressure i s i n t eg ra ted over t he con ta c t a rea,

    i t

    i s fo un d

    t h a t

    Equat ion (3.5 ) de tenn lnes t he d i s t r i b u t i o n

    o f

    pressure o r

    com-

    press ive s t ress on the cornor

    i z t r f

    3ce;

    i t

    i s c l e a r l y a maximum

    a t the cente r o f th e con tac t and decreases

    t o zero a t

    t h e p e r i -

    phery.

    The

    e l l i p t i c i t y param eter

    k

    can be w r i t t e n i n t er ms o f

    the

    remimajor and semiminor axes o f t h e con tac t e l 1 pse as

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    8/105

    Har r i s

    (1966)

    has shown tha t the e l l i p t j c i t y parameter can be

    used t o r e l a te th e curvature d i f ferenc e expressed i n equat ion

    (2.25)

    and the e l 1 p t c i n te g r a ls o f t he f t r s t and second

    kinds as

    where

    one-point i t e r a t i o n method th a t was adopted by Hamrock and

    Anderson (1973) can be used t o ob ta in the e l l i p t i c i t y parameter,

    where

    = J kn)

    3.11)

    The

    i t e r a t i o n process i s n orm ally co ntin ue d u n t i l kn+ d i f -

    fe rs f rom tn by less than 1x10-~. Note t h a t t he e l l i p t i c -

    i t y pa ra meter i s a f u n c t io n o f t h e r a d i i o f c u rv a tu re o f the

    so l i ds on ly :

    k

    =

    f(rax.rbx. ay. by)

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    9/105

    That

    i s

    as the

    l oad

    increases, th e semi~najorand semiminor axes

    of t h e co nt a c t e l l i p s e i nc rea se p ro p o r t i o n a t e l y t o each o th e r,

    so th e e l

    1

    i p t i c i t y pa rameter rema ins cons tan t.

    T h e e l l i p t i c i t y

    param eter and e l l i p t i c i n t e g r a l s o f

    th

    f i r s t and second k i ~ d s re shown i n F igu re

    3.3

    f o r

    a

    range o f

    t h e c u rv a tu re r a t i o R us ua l ly encountered i n concen-

    Y x

    t ra ted con tac ts.

    Whbn the e l l i p i c i t y parameter

    k, the normal app l ied load

    F,

    Po isson l s ra t i o

    V

    and the modulus o f e l a s t i c i t y

    E

    of the

    co nta cti ng s o l i d s are known, th e semimajor and semiminor axes o f

    t h e c o nt ac t e l 1 pse and t he maximum de fa m at io n a t the c en ter o f

    t h e co n ta c t ca n b e w r i t t e n f r o m t h e a n a l ys i s

    of

    Her tz 1881) as

    where

    I n these equat ions a and b a re p ro por t i ona l t o

    F~~~

    and

    213

    a

    i s p r op o rt io n a l t o

    F

    Knowing the deformat ion at the center of tne contact and

    the natu ra l geometr ica l separat ion between the so l ids, equat ion

    -

    ,~

    ,

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    10/105

    2.35), we can w r i te the de fonnr ti on a t any po in t w i t h i n the d ry

    Hc r tz ia n contac t as

    Th i s e q u at io n i s used i n l a t e r cha pte rs t o d e fi ne t h e

    i l m

    th ickness wi th in the con junct ion .

    3.1.2 Subsurface St resses

    Fa t igue cracks usua l l y s t a r t a t a ce r ta in depth below the

    su rface i n p lanes pa ra l l e l t o ,the d i re c t io n o f ro l l i n g . Because

    o f th i s , spec ia l a t ten t io n must be g i ven t o the shear s t re ss

    amp1 tu de oc cu rr in g i n t h i s plane. Furthermore a maximum shear

    st ress i s reached

    a t a

    c e rt a in depth below the sur face. The

    analysis used by Lundberg and Palmgren (1947) w i l l be used t o

    d e f i n e t h i s s tr ess .

    The stresse s are re fe rre d t o a rectangular co ordinate sys-

    tem w it h i t s o r i g i n a t th e ce nt er

    o f

    t he c on ta ct , i t s

    z

    a x i s

    co inc id ing w i th the in te r io r no rma l

    of

    the body considered, i t s

    a x is i n t he d i r e c t i o n o f r o l l i n g , and i t s y a x i s i n th e d i re c -

    t i o n pe rp e nd icu la r t o t h e r o l l i n g d ir e c t io n .

    I n the ana lys i s

    t h a t f o l l o w s t

    i s assumed th a t y

    = 0.

    From Lundberg and Palmgren (1947) the following equations

    can be wr i t ten:

    2

    3F cos 9 s i n 9 s i n

    Y

    T .

    (a2tan2v b2cos2 )

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    11/105

    z r tan

    y

    ns

    The maximum shear s tres s rmplttu de i s defined as

    The amplitude of the shear stress rj0

    i s

    obtained fmm

    or the point of

    max i n ~ um

    shear stress

    tan

    4 = La

    2

    t a n t -

    The posit ion of the maximum point i s determined by

    where

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    12/105

    furthermore the magni tude of

    the

    uxirmnshear s tr es s i s g fv e n by

    3.2 Simp1i e d S o lu t io n f o r

    Elliptical-Contact

    Deformation

    The c l as s i c a l H er tz ian so lu t i on p resen ted i n the p r ev i 4s

    s ec t ion requ ires t he c a l c u l a t i on o f t he e l l i p t i c i t y parameter

    k

    and t he c omple te e l l i p t i c i n t eg ra l s o f t he f i r s t and secand

    kinds nd 4 T h is e nt aS ls f i n d i n g a s o l u t io n t o a t rans-

    cendental equat ion relat ing, k , r nd

    t o

    the

    geometry o f

    the con tac t ing so l ids, as expressed i n equat ion

    3.8).

    T his i s

    us ua lly accompl ished by some i t e r a t i v e numerical procedure, as

    described By amrsck and Anderson 1973), o r w i t h t h e a i d o f

    char ts, as shown y Jones

    1946).

    Brewe

    and Hamrock

    1977)

    used a l inear regress ion

    by

    the

    method o f l eas t squa res t o ob ta i n s i mp l i f i ed equat ions f o r k

    nd 8 That

    i s ,

    f o r g i ven se ts o f p a i rs o f data, [kj,

    R~/R,)J], . 1 2. ...,

    a p o w e r f i t u s i n g a l in ea r

    regression by the method of leas t squares res u l te d i n the f o l -

    lowing

    equation:

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    13/105

    The asymptotic behavior of

    and was sug ges tive o f th e

    fu nc t io na l dependence th at and might ex hib i t . As a re -

    s u l t

    r

    l o g a r i hmic and an inverse curve i t were t r i e d f o r

    and

    ,

    res pe ct iv ely . The fo l l ow ing expressions f rom Brtwe and

    Hamrock

    (1977)

    prov ide an ex ce l len t approx imat ion t o the relr

    t ionships between I and

    Ry/R :

    0.5968

    J .0003 aTR (3.29)

    Y X

    Values o f

    ji,

    and re presented i n Tab le

    3.1

    and compared

    w i t h th e Hamrock and Anderson (1973) ~ i r m e r ic a l l y etermined va l -

    ues of k, 4 and

    S

    The agreement i s good.

    Us ing these s imp l i f i ed express ions fo r r and and

    equat ion (3.15) g iv es the deformat ion a t th e center o f th e con-

    t a c t

    where

    Note t h a t t he l o a d -d e f le c t i o n co ns t an t i s a f u n c t i o n o f t he

    ba l 1-race geometry and t he ma te ri a1 pr op er t es.

    The re s u lt s of comparing 7 w i t h 6 are also shown i n

    Table 3.1. The agreement i s again q u i t e good. Therefore the

    de format ion a t the cen te r o f the con tac t can be ob ta ined d i -

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    14/105

    rec t y f rom equat ions 3.28) t o 3.32). Th is valu able approxima-

    t i o n e l i m i n a t e s t h e need t o use c ur ve f i t t i n g , c ha rt s, o r n u m r-

    i c a l methods.

    F i g u r e 3.4 shgws th ree d i f f e re n t degrees o f b a l - con tac t

    conformi ty :

    a b a l l on b a l l , a b a l l on a p la ne , and a b a l l

    -

    ou te r r i n g con tact . Table 3.2 uses t h i s f i g u r e

    t o

    show how the

    degree o f con form i ty a f f ec ts the con tac t parameters. The ta b l e

    shows that

    k

    i s n o t e x a c t ly eq ual t o u n i t y f o r t he b all-o n-

    b a l l and b a l -on-p lane s i tu a t io n s because o f th e approximat on

    represented by equat ion

    3.28).

    The d ia m e te r o f t h e b a l l s i s

    t he same th roughout , and the ma te r i a l o f t he s o l i d s i s s tee l .

    The ba l l

    -

    s u t e r- r in g c o n ta c t i s re p r e s e nt a t iv e o f a

    209

    r a d i a l

    b a l l b e a ri ng .

    A 4.45-N l - l b f ) normal load has been cons idered

    f o r each s i t u a t i o n ,

    The maximum pr es su re decreases s i g n i f

    ca n t l y as the curva tu re o f th e mat ing sur face approaches th a t o f

    the ba l l . Tab le 3.2 shows th a t the curva tu re o f th e mat ing

    s urfa ce s i s v e ry i m p or ta n t i n r e l a t i o n t o t h e ma gn itu de o f

    th

    maximum pressure or surface stress produced. A b a l l and r i n g o f

    h i g h c o n f o r n i t y a r e t h us d e s i r a b l e f r o m t h e s t a n dp o in t o f

    min in i izs ing he s t ress.

    fab le

    3.2

    a l so shows th a t t he a rea o f

    th

    contact nab

    inc reases w i t h t he con fo rm i t y

    o f

    t h e c o n t a c t i n g s o l i d s .

    A l

    though t h i s e f f e c t m in im izes con tac t s t resses ,

    t

    can have an

    u nd es ir ab le e f f e c t on t h e f o r c e o f f r i c t i o n , s in ce f r i c t i o n

    fo rce i nc reases as t he con tac t a rea and he rce t he a rea o f t he

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    15/105

    sheared lu b ri ca nt crease

    r r

    a beartng operat g under

    elastohydrodynamic con ditio ns. The cur vatu res

    of

    the bear ing

    races are the refo re genera l

    ly

    compromises that take into

    cons iderat ion the s t ress , load capaci ty , and f r i c t i o n

    character4 s t i es

    o f

    the bearing.

    n

    equations 3.24) t o

    3.27)

    the locat ion and magnjtude of

    the maximum subsurface s k a r str es s are w r i t t e n as funct ions of

    t ap n aux

    i l i a ry

    paraneter . Fur t l leno re i n equat ion

    3.23)

    th e e l l i p t i c i t y param eter

    i s wrl t ten as

    a f unc t i on o f

    t .

    the range for

    l / k

    i s

    0 I l k

    1

    and the corresponding range

    f o r t i s 1- t

    1

    4

    A

    l inear regress ion by

    the method o f le a s t squares was used t o ob ta in

    a

    s i m p l i f i e d

    formula f o r tl i n t erm s o f k, t he e l l i p t i c i t y param eter.

    That is, f o r g iven s e t s o f p a i r s o f data [ I -

    I l k )

    J

    -1

    2,

    ..., n , a

    power

    f i t us ing a l i n e a r

    regression

    by

    the method of least squares resul ted i n the

    fa1 lowing equation:

    The agreement between t h i s approximate eq uat ion and t he e xac t

    s o lu t i o n i s w i t h i n 2 percent, The use of equation 3 , 3 3 )

    great ly s imp l t f ie s the determination

    o f t h e

    values f o r t he

    lo ca t on and magnitude o f the

    maxl num

    subsurf ace shear st re ss

    expressed i n equat ions 3 . 24 )

    t o

    3 . 2 7 ) ,

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    16/105

    3.3 S t a t i c Load D i s t r i bu t i o n

    Now that a s imp le a na ly t i c a l express ion f o r the de formation

    i n ter ns o f the load has been detenii ined, t i s pos s i b l e t o con-

    s ider how the bear ing load i s d is t r ib ut ed among the b a l l s w i t h in

    a b a l l bear ing. Most b a l l bear ing app l icat ion s in vo lv e s teady-

    s t a t e r o t a t i o n o f e i t h e r t h e in n e r o r o ut e r r i n g , o r both. I n

    analyz ing the l oad d i s t r i b u t i o n on th e b a l l s ,

    t

    i s u s u a l l y s a t-

    i s f a c to ry t o ignore t hese e f f e c t s i n most app l ic a ti ons. I n t h i s

    sec t i on the rad ia l , th rus t , and combined load d i s t r i b u t i o ns o f

    s ta t i c a l l y loaded b a l l bearings are i nves ti ga ted .

    Fo r a g i ven ba l l - r ac e c on tac t t he l oad de f l ec t i on re l a t i on -

    s h ip g i v en i n equat ion

    3.31) can be rswr i t ten as

    The t o t a l normal approach between two ra ces separated by a b a l l

    i s the sum of the de formations under loa d between the bat 1 and

    both races. There fore

    where

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    17/105

    S u b s t i t u t i n g e q ua t io n s

    (3.35)

    t o (3.37) i n t o equa t i on J.34) and

    s o l v i n g f o r K g i *

    R e c a l l t h a t Ki and KO aye de f ined by eq ua tio n (3.32) and

    th a t they a re a func t i on of ba l l - race geome try and ma te r ia l

    p rope r t i es a lone .

    The ana lys i s o f de fo rma t ion and l oad d i s t r i b u t i o n p resented

    i n the fo l l o w ing th ree sec t i ons i s based on the work o f Jones

    (

    1946).

    3.3.1 R ad ia l Load

    r a d i a l l y lo ad ed b a l l b e a r in g w i t h r a d i a l c l e ar a nc e

    Pd

    i s shown i n F ig ur e 3.5.

    I n t he c o n c e n tr i c p o s i t i o n shown i n

    F ig ure 3.5 (a ) a un i fo rm r a d ia l c learance between the b a l l s and

    t h e r i n g s o f P d/2 i s e v id e nt . l he a p p l i c a t i o n o f a s m a l l

    r a d i a l l o a d t o t he sh a f t causes the i nne r r i n g t o move a d i s -

    tance

    Pd 2

    befo re con tact i s made between a b a l l l o c a t e d on

    t he l oad l i n e and the i nne r and ou te r t racks .

    t

    any angle

    t h e r e w i l l s t i l l be a sma ll ra d ia l c l earance c tha t , i Pd

    i s sma l l compared w i t h th e ra d ius

    of

    the tra ck s, can be ex-

    pressed with adequate accuracy by

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    18/105

    On the load line, where

    r =

    0, the c learance i s zero,

    b u t

    when

    =

    90 t h e c le ar an ce r e t a i n s i t s i n i t i a l va lu e o f Pd/2.

    The

    app l i c a t i on of f u r t h e r l oad

    w i l l

    cause e ias t ic defoma-

    t i o n

    o f

    some of the b a l l s and the e l im ina t io n o f c learance

    around an arc

    2 . f

    he in te r fe rence o r to ta l e las t i c com-

    p res sion on t he l oad l i n e i s

    am

    the corresponding e las t ic

    compression

    ay

    a long a rad ius a t ang le t o t he l oad l i n e

    w i l l

    be

    g i v en

    by

    Pd

    6 1 =

    ( ax cos

    y -

    c )

    =

    ama,

    * +)

    cos

    -

    Now t i s c le ar from F igure 3 .5 (c) t h a t (a+ Pd / 2

    r ep resents t he t o t a l r ad ia l d is placement o f t he i nne r r i n g o r

    sha f t f rom the concent r i c pos i t ion

    a.

    Hence

    The relat ionship between load and the elast ic compression along

    the rad ius a t ang le

    t o t h e lo ad v e ct or i s g iv en

    y

    equat ion

    (3.34) as

    312

    Fy

    =

    K a *

    Sub s t i t u t ing equation (3.39) in to t h i s equation g ives

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    19/105

    For s ta t i c equ i l i b r i um the app l ied ra d i a l l oad must equa l

    t h e sum of th e components o f

    the

    b a l l lo ad s p a r a l l e l t o

    the

    d i r e c t i o n

    o f t he

    app l ied load

    r

    =

    q

    OS

    Theref ore

    The angular extent of the bearing arc

    2qk

    i n which t he b a l l s

    are

    loaded i s obtained by se t t i ng the ro o t exp ression i n 3.42)

    equal to zero and so lv in g f o r .

    The summation i n eq uat ion 3.42) app l ies on ly t o th e angu-

    l a r e xt en t

    o f

    the loaded region, This equa t ion can be w r i t te n

    i n i n teg ra l fo rm as

    The i n t eg ra l i n th i s equat ion can be reduced to a s tandard e l -

    l i p t i c i n te g ra l by the hypergeometr ic ser ies and the be ta func-

    t i on .

    f

    t h e i n t e g r a l i s n u me ri ca ll y e v al ua ted d i r e c t l y , t h e

    fo l lowing approx imate express ion

    i s

    der ived:

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    20/105

    (3.45)

    Th is approximate express ion f i t s the exact numer ica l so lu t ion t o

    w i t h i n *2 percent f o r s complete rnnge o f Pd/2 .

    The load ca r r ie d by the most he av i ly loaded b a l l i s ob-

    ta ined by su bs t i t u t i ng JI

    =

    0. i n eq uat ion (3.42) and dropp ing

    the sumnation sign.

    Di vid ing the maximum b a l l load (equa t ion

    3.46) )

    b y t h e t o t a l

    a p p li e d r a d i a l l oa d o f t h e b e ar ln g ( eq u at io n ( 3 4 4 re

    ar ra ng in g terms, and making use

    o f

    equa tion (3.45) giv e

    where

    When the diametral clearance

    d

    i s zero , the value o f

    be-

    comes 4.37. This i s the value der ived by Str ibeck (1901) f o r

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    21/105

    bearing s o f zer o d ia me tra l c learance. The approach used by

    S t ri b ec k was t o e v al u at e t h e f i n i t e s u m a t i o n c o r 5 / 2 0 f o r

    var ious numbers o f ba l ls . He then de r iv ed th e ce le bra ted S t r i

    beck eq u a t io n f o r s t a t i c l o a d -c a rr y in g c a p a c i t y by w r i t i n g t h e

    more conse rva t i ve va lue o f 5 f o r t h e t h e o r e t i c a l v a lu e o f

    4.37:

    I n us ing equa t ion 3 .49)

    t

    should be remembered t h a t i s

    cons ide red t o be

    a c o n st a nt and t h a t t h e e f f e c t s of c learance

    and a p p l i e d l o a d on l oa d d i s t r i b u t i o n a re n o t t a k en i n t o ac-

    coun t. These e f f e c t s a re , however, cons idered i n ob ta in in g

    equat ion 3.47). N ote a l s o t h a t t h e a n a l y t i c a l e xp r es s io n f o r

    i n e q ua t io n 3.48) e na bl es a s o l u t i o n t o b e o b t a i n e d w i t h o u t

    the a i d o f th e cha r ts used by Jones 1946 ) and H a r r i s 1966) .

    3.3.2 Thrust Load

    The s t a t i c t h ru s t - l o a d c a p a c i t y o f a b a l l b e a r in g may

    be

    def ined as the maximum th ru s t load th a t the b ear ing can endure

    before th e co nt ac t e l l i p s e approaches a rac e shoulder, as shown

    i n F ig ur e 3.6, o r t he load a t which t he a l lo wa ble mean compres-

    s i ve s t r es s i s reached, wh icheve r i s sma ll e r .

    B oth t h e l i m i t i n g

    shoulder h e ig ht and the mean compressive s tr es s must be ca lc u l a-

    t e d t o f i n d t h e s t a t i c t h ru s t- lo a d c a pa ci ty .

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    22/105

    T h e c on ta ct e l l p s e i n a bear ing race under a th rus t l o rd

    i s

    shown

    i n Figure 3.6, Each ba l l

    i s

    su bj ec te d t o a n i d e n t i ca l

    t hr us t c ~ n p ~ n e n t t/n , where Ft i s the t o t a l th ru st load.

    The i n i t i a l c o nt ac t a ng le b ef o re

    the

    a p p l i c a t i o n o f a t h r u s t

    load i s denoted by

    rt.

    Because o f th e appl ied thrus t . the

    contact angle becomes . The normal b a l l th ru st load Ft

    a c t s a t t h i s co nt a ct a n gle and i s w r i t t e n as

    F

    t

    n s i n t~

    cross sec t io n through an angular-contact bea ring under a thr us t

    l oad F t i s shown i n F igu re

    3.7.

    B oth r ac e r a re a s s w d t o be

    r i g id l y mounted, th a t i s , i ncapab le o f ra d i a l

    defamation

    From

    th i s f i g u r e the con tac t ang le a f t e r the th ru s t l oad has been

    appl ied can be w r i t t e n as

    The

    i n i t i a l con tac t ang le was g iven

    i n

    equat ion

    2.9).

    Using

    that equat ion and rearranging terms

    i n

    equat ion

    3.51)

    g ive

    From equa tion

    3.34)

    we can w r i t e

    where

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    23/105

    rn fi I

    and re give n y equr t l ons

    3.2U). 3.2Y), dnd

    (3.30). respect ively.

    From equation s (3.50) and (3.53)

    Eq uat ion (3.55) can be solved numerically by the Newton-Raphson

    method. The i t e ra t i v e e q u at io n t o be sa t i s f i e d i s

    Th i s e q u at io n i s sa t i s f i e d when

    l

    -

    6

    i s e s s e n t i a l l y zero.

    When a th r us t l oad i s app li ed , the shou lde r he igh t i s l i m i

    t e d t o t h e d i st an c e

    y

    which the pressure-contact e l l i p s e can

    approach th e shou lder. As long as the fo l lo wi ng ine qu al i ty i s

    s a t i s i f e d , t h e p re ssure-co nt ac t e l l i p s e

    w i

    11 not exceed the

    shoulder height 1 m i t :

    e

    > s i n

    I G)

    From Fig ur e 2.17 and equation (2.15) t he angle used t o de f i ne

    the shou lder he ight e can be wr i t ten as

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    24/105

    From Figu re

    3.7

    th e a x i a l d e f l e c t i o n

    at

    corresponding

    t o a t h r us t load can be w r i t t e n as

    6 t

    m

    0 6 ) s i n a - D s i n

    i

    3. 9)

    Su bs t i t u t i ng equat ion 3 .52) i n t o equat ion 3.59) g iv es

    D

    s i n @-

    c f )

    t

    COS 6

    Having determined 6 i n equat ion 3.56) and 6f i n e qu at io n

    2.9). we can ea s i l y eva lua te the re la t io ns h i p f o r

    at.

    3.3.3 Combined Load

    For a combined r a d ia l and ax ia l load on a b a l l bea r ing we

    cons ider the r e la t i v e d isp lacements

    of

    the inner and ou ter

    r ings. We assume t h a t ne g l i g i b l e misal ignment of the bear i ng

    can occur.

    The

    d isp lacements a re there fo re l i m i t ed to an ax ia l

    displacement a t and a radia l d isp lacement

    6

    The races

    a re the re fo re cons t ra ined t o re la t i v e movement i n para1 e l

    planes,

    The end re s u l t o f t h i s combined load ing i s shown i n

    F igure 3 8 Note the d i f fe rence be tween th is f igure and F igure

    3.7, wh ich re pr es en ts a x i a l lo ad in g alone. As was found when

    d e a l i ng w i t h a p u r e l y r a d ia l load, t h e r a d i a l d is pla ce me nt i s a

    f u n c t i o n o f t h e b a l l p o s i t io f t r e l a t f v e t o t h e a p p li e d load.

    From Figure 3.8

    2

    D

    6 )2

    =

    D cos

    ef

    a cos 1 ( D s i n

    ef

    at)

    3.61)

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    25/105

    Su b s t i t u t i n g t h i s e q u at io n i n t o e qu at io n 3.34) g i ve s

    3.63)

    where

    K

    i s efine i n e qu at io n 3.54). Also from Figure 3.8

    t

    s i n

    fit

    s i n

    6

    = 3.64)

    r

    r f

    cos

    r

    cos 0os

    i

    cos

    0

    = 112 3.65)

    The normal b a l l load F, which acts a t the contact ang le

    0

    (a long the 0 a

    l i n e i n F ig ure

    3.81

    can

    be

    r eso lved i n t o two

    components. One i s the th ru st fo rc e Ft p a ra l l e l

    t o

    t h e

    bear ing axis, and th e other

    is

    t he r a d i a l f o r c e

    Fr.

    The

    thrust component Ft can be w r i t t e n as

    F t = s i n

    0

    3

    b6)

    ly

    using equrtions 3.63) and

    3.64)

    th ls mla t fonshfp becaw

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    26/105

    The r r d f r l component of load crlr be wrft ten as

    r F cos ot

    r

    3.68)

    From equat ions 3.63 ) and

    3.65)

    t h is expression can be

    wr

    t t e n

    as

    For the bearing to be n equilibrium after displacement,

    the following conditions

    must

    be sat is f ied:

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    27/105

    The extent of the load zone

    1

    i s ob ta ined by s e t t i n g the

    numera to r i n these equa t ions t o zero o r

    Under c e r t a i n c o n d i t i o n s o f a x i a l p r e lo a d and r a d i a l d i sp l a ce -

    ment the va lu e o f cos li as determined y equat ion 3.72) w l l

    be less than

    1.

    T h i s ind ica tes tha t the loaded zone ex tends

    c o mpl ete ly aro un d t h e p i t c h c i r c l e . I n such c as es t h e l i m i t i n g

    va lue

    J R

    i s t a ke n as W

    Eq ua tio ns 3.71) and

    3.72)

    can

    be

    genera l ized t o i n c l u d e

    any number o f ba l l s

    by

    the fo l l ow ing :

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    28/105

    Note tha t t hese in teg ra ls a re func t ions o f t he th ree pa ramete rs

    B t 6t/D,

    and

    sr /D

    T h e se i n t e g r a l s a r e h yp e r e l l i p t i c

    in te gr a l s th a t cannot be reduced t o s tandard fo rm t o pe nn i t so-

    l u t i o n i n t erm s

    o f

    e l l i p t i c f u n c t i o n s and must th e r e f o r e be

    eva lua ted num er ica l ly on a d i g i t a l computer.

    Having detennined

    at/D and

    a /D

    from eq ua tio ns S.73) and 3.74). we ca n

    ob ta in the norma l ba l l l oad and ope ra t ing con tac t ang le a t any

    b a l l p o s i t i o n JI f rom equat ions

    3.63)

    and

    3.64)

    ._

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    29/105

    Fo r b a l l b e a ri ng s t k t o p n r a t e a t

    modest

    speeds, as

    csn

    s i d e re d i n t h e p r ec e dj ng se c ti on , t h e c e n t r i f u g a l f o r c e o n th e

    b a l l i s so n e g l i g i b l e t h a t t h e o n l y f or ce s t h a t keep t he b a l l i n

    e q u i 1 b r i u m a r e t h e t wo c o n t a c t f o r c e s r e s u l t i n g f ro m t h e e x t e r -

    n a l l y a p p l i e d l oa d. F o r such c o n d i t i o n s t h e c o n t a c t f o r c e s a r e

    equ al and opp osi te, and the in ne r- and outer-race co nt ac t angles

    ar e approx imate ly equal . The present se c t i on dea ls w i t h

    h i gh-speed bear ings , where th e cen t r i fu ga l fo rc e developed on

    the b a l l s becomes s ig n i f i c a n t and the i nner - and ou te r - race

    con tac t ang les are no longe r equal . An angular -contac t be ar in g

    i s ana lyzed s ince t he equa t i ons developed can be ap p l i e d t o

    o t h e r t y p es o f b a l l b e ar in g s. combined r a d i a l nd a x i a l l o a d

    i s c on sid er ed , b u t n ~ is a l ig n m e n t f t h e i n n e r and o u t e r r i n g s i s

    exc luded . The n la te r i a l i n t h i s sec t i on was f i r s t developed by

    Jones (

    1956).

    When a b a l l bea r ing operates a t h ig h speed, th e body for ce s

    re su l t i n g from the b a l l s mot i on become s ig n i f i ca n t and mus t be

    cons idered i n any a na l ys i s .

    F igu re 3.9 shows the forces and

    moments acting on

    a

    b a l l i n a hig h-s pe ed b a l l b e a r in g . The op-

    e r a t i n g c o n ta c t a n gle a t t h e o u t er c o n ta c t i s l e s s t h an t h a t a t

    the i nner con tac t because o f apprec iab le cen t r i f uga l f o rce and

    gyroscopic moment.

    I n t h i s fi gu r e, as w i t h t h e r e s t o f t h e

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    30/105

    book su bscr ip t re fer s t o the inner race

    arid

    subsc r i p t o

    t o t he ou te r race .

    An exaggerated view i n Fig ure

    3.10

    shows the

    b a l l

    f i x e d i n

    the p lane o f the paper and ro ta t i n g about i t s own center w i t h an

    angu la r ve loc i t y o d i rec te d a t an angle t o the beari ng

    cen ter l in e. The inne r and ou ter races r o ta te about the bearing

    a x l s w i t h t angu la r ve loc i t i es oi and o0 r e l a t i ve t o

    thq separato t . Fo r the l i ne ar ve loc i t y o f the races t o be equal

    t o t he b a l l v e l o c i t y a t th e c on ta ct t h e f o l l o w i n g re -

    l a t i o nsh ips must be sa t i s f i e d :

    a -....-.

    I f

    t he o u t e r ra ce i s s t at io n a ry t he b a l l w i l l o r b i t the bear ing

    ax i s w i th an angu la r ve loc i t y

    uc

    where

    Then the abso lu te angula r ve loc i t y o f the i nner race i s

    nip

    where

    There fo re fo r a s ta t i onary ou te r race and a ro ta t i ng i nner race

    the fo l l ow ing can be wr i t ten :

    =,F;;

    4

    ]

    -

    d COS i

    COS Bo

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    31/105

    S i m i l a r l y f o r a s t a t i o n a r y i n n e r ra ce and a r o t a t i n g o u t e r r a ce

    n o

    - d

    cos pi

    r d COS

    B

    For s imu l taneous ro ta t i on

    o f

    th e ou ter and in ner races

    F or a n a r b i t r a r y c h oi ce of t h e b a l l

    w i l l

    s p in r e l a t i v e

    t o

    the ra ce about th e normal a t t he center o f the contac t a rea .

    t

    i s c l e a r f ro m t h i s a n a ly s is t h a t t h e s p i n o f t h e

    b a l l

    may be d i f f e re n t r e l a t i v e t o each race , and t h i s p romp ted Jones

    1 95 6) t o i n t r o d u c e t h e c o nc ep t o f r a c e c o n t r o l . f Coulomb

    f r i c t i o n o r b ou nd ary l u b r i c a t i o n p re v ai 1s i n t h e c o n ju n ct io n s

    between the b a l l and the i nne r and ou te r races , t he con junc t i on

    s u b je c te d t o t h e l e a s t t o r q ue

    w i l l

    be prevented f rom spinning

    y

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    32/105

    f r i c t i o n w hi le the o t he r con junc t ion experiences sp in . The con-

    t a c t a t whic h no s p i n occ urs i s c a l l ed t he c o n t ro l l i n g race .

    f a l u b r i c a t i n g

    i l m

    ex is ts between the ba l l and each of

    th e races, each o f th e conjunct ions can experience spin, and th e

    r e l a t i v e n ~ o to n between the b a l l and the races i s detenn ined by

    the eq u i l i b r i um o f t h e t orques r es u l t i n g f rom vi sc ous t r a c t i o ns

    w i t h i n th e l u b r i c a n t .

    The prob lem of pred ic t ing v iscous t rac-

    t i o ns i n e lastohy drody namic f i l m s s t i l l r equ i res f u r t he r work,

    but the recent deve lopment o f the unders tand ing o f lubr icant

    rheo logy i n

    EHL

    conjun c t ions out1 ned I n Chapter 10, together

    w i t h the a b i l i t y t o p r e d ic t

    i l m

    t hic kn e ss o u t l i n e d i n t h i s

    te x t , i nd i ca tes th a t a comp le te so lu t i o n to the p roblem may no t

    be f a r away.

    Spin i n the con junc t ions between a b a l l and the races o f a

    bear ing i s impor tant f rom the po in t o f v iew o f energy losses and

    hea t genera t ion . For t h i s reason the race-con t ro l theory o r i g i -

    nated by Jones w i 11 be ou t l i n ed here, a l thoug h i t must be re-

    c a l l e d t h a t i t was developed fo r dry f r i c t i o n o r boundary lub r i -

    ca t on cond i t i ons be fo re so lu t i ons t o the e lastohydrodynamic

    lu b r ic a ti o n problem became av ai la ble . The elastohydrodynamic

    l u b r i c a t i o n o f b a l l b e ar in gs

    w i

    1.1 be co ns ide red i n Chap ter 8,

    Sec t ion

    8.9.

    From F i gu re 3.10 t he ba l l s p i n ro t a t i on a l v e l o c i t i e s a t t he

    inner and outer races can be wri t ten as

    o

    s i n f i is

    uB

    s in g i

    -

    5

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    33/105

    = -

    w s i n 6

    o s in (eo - c

    SO

    0

    The race-control concept of Jones

    1956)

    assumes th a t a1 1 the

    sp in occurs at one conta ct and none a t the other. the conta ct

    a t w hich no sp in o ccurs i s ca l l e d t he co n t r o l l i n g r ace. L i g h t l y

    loaded bearing s may depart somewhat from t h i s si tu at io n.

    f uSi

    ahd

    us

    are made zero

    i n

    equations

    3.87)

    and 3.88). respec t ive ly . t he fo l lo w in g w i 11 resu l t :

    I nne r - race con t ro l

    d s i n

    ei

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    34/105

    where

    v

    =

    c oe ff ic ie n t o f s l i d i n g f r i c t i o n

    F =

    c o n t a c t l o a d

    a

    =

    semimajo r a x i s o f con tac t e l l i p s e ob ta ined f rom equa t ion

    3 . 1 3 )

    s

    e l l i p t i c i n t e g r a l o f second k i n d o b t a in e d f ro m e q ua t io n

    3.29)

    Equat ion

    3.92)

    can be w r i t t en f o r b o th the ou te r- and i nne r -

    race con tacts . Outer -race co n t ro l w i l l e x i s t i f

    Mso

    Msi.

    I nne r - r ace con t ro l w i l l e x i s t i f

    MSU < MSi.

    n a g iv e n b a l l

    bear ing t h a t opera tes under a g ive n speed and load, r o l l i n g

    w i

    t a k e p l a c e a t one r ac e and s pi n n in g a t t h e o t he r. R o l l i n g w i l l

    the re fo re take p lace where MS i s g r e a t e r because o f t h e

    g r e at e r g r i p p i n g a c t i o n .

    The p o s i t i o n s o f t h e b a l l c e n t e r a nd t h e r a c e c u r v a t u r e

    c e n t er s a t a n gu la r p o s i t i o n a r e shown i n F i g u re 3.11 w i t h

    and w i t ho u t an app l i e d combined l oad . I n t h i s f i g u r e the ou te r -

    race curv a tu re i s f i x ed . When speeds a re h igh and th e ce n t r i fu -

    ga l fo r c e i s app rec iable , the i nne r and ou te r- r ace con tac t ang les

    become d i ss im i l a r . Th i s r es u l t s i n the ou te r- r ace c on tac t ang le

    B

    b ein g l e s s th an t h e i n i t i a l c on t a c t an gle

    ef

    as shown

    i n F ig ur e 3.11.

    I n a c c o r d a n c e w i t h t h e r e l a t i v e a x i a l d i s p l a c e m e n t o f t h e

    inne r and ou te r r i ngs

    at

    t h e a x i a l d i s t a n c e b e t w e e n t h e l o c i

    o f inner - and ou te r - race curva tu re cen te rs i s

    L1

    D

    s i n

    f + d t

    (3.93)

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    35/105

    Furthermore i n accordance w i t h a r e la t i ve ra d i a l d isplacement o f

    t h e r i n g c e n te rs

    6

    t he r a d ia l di sp lacement between th e l o c i

    o f t he r ac e c u r v a t u r e c en te r a t each b a l l l o c a t i o n i s

    L2

    = D cos + dr cos

    3.94)

    where

    J l

    2 r ( j

    -

    1)

    J

    =

    ls2,me.Sfl

    n

    (3.95)

    and n i s the number o f ba l ls . From F ig ure 3.11 th e fo l lo wi ng

    equat ions can be wr i t ten:

    s i n B~

    =

    L1

    - L3

    ( f i

    0.5

    6 i

    The fo l lowing re la t ionships can thus be w r i t t e n w i t h r ef er en ce

    t o F ig u re 3 11:

    2

    2

    L4

    + L3 - [ d ( f o

    -

    0.5)

    * do]*

    = 0

    (3.100)

    2

    ( 0 cos

    pf +

    a cos

    L4) +

    ( 0 s i n

    ~ + a t L3)

    2

    The

    fo rc es and moments ac t i ng on th e b a l l a re shown i n F ig -

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    36/105

    ur e 3.9. The norma l fo rc es shown i n t h i s f i g u re can be w r i t t e n

    from

    eq ua t io n (3.34) as

    E q u i l i b r iu m o f f o r c e s i n t h e h o r i z o n t a l and v e r t i c a l d i r e c t i o n s

    r e q u i r e s t h a t

    M

    F, s i o f1 -

    F~

    s i n si cos so - ( 1 - r lcos f l i ] = o

    M

    Fo cos

    0 -

    F . cos B~ s i n f1 - (1 sin fliJ - Fc = O

    1

    where

    A - 1 f o r o u te r- ra ce c o n t r o l

    A

    =

    0 f o r in n er -r ac e c o n t r o l

    The ce n t r i f u g a l f o rce i n equa t i on (3.105) can

    be

    w r i t t e n a s

    1

    Fc = md u

    e c

    (3.106)

    where

    d = d

    2L4

    - 2 d f

    - 0.5)cas flf

    e e

    o

    (3.107)

    and m i s t he mass o f t he ba l l . A j so th e gy roscop ic moment i n

    equa t ions (3.104) and (3.105) can be w r i t t e n as

    C Mg =

    p ~ s u c

    i n 5 (3.108)

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    37/105

    where

    1

    i s mass momerrt

    o inert

    i a o f Ltle b i ~I

    F ~ * ~ I I I

    ttese

    P

    r e l a t i o n s h i p s , e q u a t i o n s 3.104) and (J.105) can be wr i t t en as

    312

    Ko6

    L3 -

    ~ ~ 6 3 ( 0 i n fif + 6,

    -

    L3)

    O

    d f o -

    0 g

    a0

    d ( f i

    - 0.5 + ai

    1

    -

    A) O cos 0f

    +

    a

    cos

    J

    -

    d(f i

    -

    0.5 ) + ai

    (3.109)

    2 1 u ~

    i n c 1

    -

    r ) D

    cos

    sf

    +

    a t

    -

    a

    P B C

    -

    d ( f

    -

    0 . 5 )

    di

    Equ ations 3.100), 3.101). 3.109), and 3.110) can be so lve d

    s i ~ u l t a n e o u s l ~o r L j

    L4

    aO

    and ai a t each b a l l

    l o c a t i on once the va lues o f at and

    6

    a re assumed. The

    Newton-Raphson method i s ge ne ra l ly used t o so lve these s imul-

    taneous nonl near equat ions.

    To f i n d how good th e i n i t i a l guess o f t h e v a lu e s o f

    a

    and at i s, a c o n d i t i o n o f e q u i l i b r iu m a p p l i e d t o t h e e n t i r e

    b e a r i n g i s u sed

    n

    - s i n t l i j -

    2 1

    - A A ) M

    t

    d

    cos

    sij]

    =

    3.111)

    j = l . . .

    2 1 - A ~ M

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    38/105

    q s i n

    j

    os j

    o

    j=l

    .

    Having computed values f o r L3,

    L 4 ,

    ci, and

    do

    a t each b a l l

    p o s i t io n and knowing Ft and Fr as in p u t con di t io ns, we can

    o b t a i n t h e v a lu e s o f at and a fro m equ atio ns 3.111) and

    3 . 1 1 2 ) A f t e r o b t a in i n g th es e v alu es f o r

    st

    and ar i t i s

    ne ce ssa ry t o r e p e a t t h e c a l c u l a t i o n s f o r

    L3 L4

    and

    6o

    a t each b a l l p o s i t i o n u n t i l t h e assumed v al ue s o f at and

    r

    agree w i t h these values found f rom equ at lons 3.111) and

    3.112).

    3.5 ~ a t i ~ u ei f e

    B a l l bear ings can f a i l f rom numerous causes, i nc lud ing

    f a u l t y h a n d l i n g and f i t t i n g , wear a s s o ci a te d w i t h d i r t , damage

    t o th races o r separators, and fat igu e,

    However,

    i

    they sur -

    v i v e a1 1 th e o t h e r h az ard s, b a l l b e a r in g s e ve n tu a l l y f a i l be-

    ca use o f f a t i g u e o f t h e b e a r in g m a t e r i a l . F o r t h i s re as on t h e

    s u b j e ct of f a t i g u e c a l l s f o r s p ec i a l c o n si d er a t i on . F a ti gu e i s

    caused by th e repeated s t resses developed i n the c ont ac t areas

    between the b a l l and the , races and man i fes ts i t s e l f as a fa t i gu e

    c r ac k s t a r t i n g a t o r b e lo w t h e s u rf ac e .

    The fa t i g u e crack pro-

    p a g a t e s u n t i l a p i e c e o f the r ac e o r b a l l m a t e r i a l s p a l l s o u t

    and produces the fa i lu re . t y p i ca l fa t ig ue spa11 i s shown i n

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    39/105

    Figure 2.24. On a micr osca le we can surmise t h a t th er e

    w i l l

    be

    a w ide d ispers ion i n ma te r ia l s t rength o r res is tance t o f a-

    t igue because o f Inhomogeneit ies

    i n

    th e m at er ial . Bearing ma-

    t e r i a l s are complex a1 oy s and are thu s n ei th e r homogeneous nor

    e q u a ll y r e s i s t a n t t o f a i l u r e a t a l l p o in t s. T he re fo re t h e f a -

    t i gu e process can be expected t o be one i n which a group o f ap-

    parent

    l y

    i d e n t i c a l b a l l b ea rin g s s ub je c te d t o i d e n t i c a l lo ads

    speeds lu br ic at io n and environmental co nd i t io ns e xh ib i t wide

    v a r i a t i o n s i n f a i l u r e t im es. For t h i s re aso n t h e f a t i g u e p ro -

    cess m ust be t r e a t e d s t a t i s t i c a l l y . Tha t i s t h e f a t ig u e l i f e

    of a b ea rin g i s n o rm a lly d ef in ed i n term s o f i t s s t a t i s t i c a l

    a b i l i t y t o s urv iv e f o r a ce r t a i n pe r iod o f t ime .

    3.5.1 Load Factor

    The predominant factor i n d et erm in in g t he f a t i g u e l i f e o f a

    b a l l bear ing i s t he load f ac to r. The re la t ion sh ip between l i f e

    and load developed here i s based on

    a

    we l l - l ub r ic at ed system and

    a

    bearing made o f a ir -m e lt e d m ate rials . To p re d ic t how lon g a

    p a r t i c u l a r b e a r i n g w l l run under a spe c i f i c load two esse n t ia l

    p ieces o f in format ion are requ i red:

    1) An accurate w a n t a t ve es tima te o f t he 1 f e

    d i spers ion or scat ter

    (2 ) An express ion f o r the dynamic load capa c i ty o r

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    40/105

    abt 1 y o the bear ing t o endure g iven load

    f o r a s t iyu la ted number o f s t ress cyc les or

    r e v o l u t i o n s

    t y p i c a l

    distribution

    o f t he fa t i gu e l i f e o f i d e n t i c a l

    b a l l b e a ri ng s op e r at in g un der n o m in a ll y i d e n t i c a l c o n d it i o n s i s

    p resented i n F igu re 3-12 Th is f i g u re shows th a t the number o f

    revo lu t ions that a bear ing can comple te w i th 1 percent

    proba-

    b i l i t y o f s urv iv al .

    Ca i s

    zero. A l te rn at iv e l y th e proba-

    b i l l t y o f ny b e a ri n g i n t h e p o p u la t io n h a vi ng i n f i n i t e endur-

    a

    ance i s zero. F ai lu re i s normal ly assumed t o have occurred when

    t h e f i r s t s p a l l i s observed on a load-carry ing sur face.

    Bearing manufacturers

    have

    chosen

    t o

    use one or two points

    n

    the

    curve i n Figure 3.12 t o descr ibe bear in g endurance:

    1) The f a t ig u e l i f e t h a t 90 percent o f the bear ing

    papu la t ion w i l l endure (LO)

    ( 2 )

    The median l i fe , that is ,

    t he

    l i f e t h a t 50 p er ce nt

    o f t h e p o p u l a t i o n

    w i l l

    endure LS0)

    Bearing manufacturers lmost u n i v e rs a l ly r e f e r t o a N r a t i n g

    1 i f e w as a measure of t he fat igue endurance of a given bear ing

    opera t ing under g i v e n l o a d c on dit io ns . T h is r a t i n g l i f e i s

    the e st {mated L10 fa t ig ue 1 f e

    of

    a l a rg e popu la t ion o f such

    bearings operat g under the speci f ied loadi

    ng

    Fat igue 1 Xe i s genera l

    y

    s ta te d i n

    rni

    l ion s o f revo lu-

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    41/105

    t ions. As an a l t er na t ive

    i t

    may be and f requ ent l y i s g iven i n

    hours of successful operat ion a t a given speed.

    Weibu ll ( 1949) has pos tu la ted th a t the fa t i g ue l i v e s o f a

    homogeneous group o f b a l l bearing s are d i spersed accord g t o

    th e f o l l o ~ i n g e l a t i o n :

    where

    i f e , m i l l i o n s o f r e v o lu t io n s

    e

    disp ersio n exponent (s lo pe of W eibul l p l o t ) o r measure of

    s c a t te r i n b ea rin g l i v e s

    ons tant, such t ha t e I n i s ve r t i ca l i n t e r cep t on

    Weibul l plot when

    =

    1

    The f a t ig u e l i f e

    L

    i n equat ion (3.113) i s the L10 l i fe ,

    b u t i t i s s imply ref er re d t o here and throughout t h e remainder

    o f t he book as f a t i g ue l i f e L.

    The so-cal led Weibu ll d i s t r i b u t i o n g i ven i n equation

    (3.113) re su l t s f rom a s ta t i s t i ca l theory o f s t rength based on

    th e theory of pr ob ab il i ty , where th e dependence f strength on

    volume i s expla ined by the d ispers ion i n ma ter ia l s t rength.

    This i s the weakest l i n k M heory . Equat ion (3.113) i s used f o r

    p l o t t i n g f a t i g u e f a i l u r e s t o d e te rm in e t h e L1 l i ves .

    t y p i c a l U e i b u l l p l o t of b e ar in g f a ti g u e f a i l u r e s i s g iv e n i n

    F igure 3.13. The ex pe r i i i n ta l res u l ts shown as c i r cu la r po in ts

    i n t h i s f l g u r e c on fi rm t h a t b ea ri ng l i v e s conform w e l l w i t h t h e

    W e ib u ll d i s t r i b u t i o n and t h a t t h e b e a r in g f a t i g u e d a t a w l l p l o t

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    42/105

    as a s t r a i g h t l i n e .

    W it h a te ch ni qu e f o r t r e a t i n g l i f e d i s p e r s i o n now a v a i l -

    able , an exp ress ion f o r the dynamic load cap ac i t y t h a t

    a

    b e a r i n g

    can ca r r y fo r a g i ven number o f s t ress cyc les w i th a g i ven p rob -

    a b i l i t y o f s u r v i v a l m ust be d e ri ve d .

    From the weakest- l ink

    theo ry we ge t the r e l a t i o ns h i p be tween the l i f e o f an assemb ly

    the bea r ing ) and i t s components th e inne r and ou t e r r i n gs ) :

    F o r b a l l b e a r i n g s

    e

    =

    1019. The fo l l o w in g expres s ion can be

    w r i t t e n f o r th e fa t i g u e l i f e o f e l l i p t i c a l con tac ts

    where

    F = s t a t i c l o ad c a p a c it y

    dynamic load cap ac i ty

    U sin g t h i s e q ud t io n and ch ang in g t h e f a t i g u e l i f e f ro m m i l l i o n s

    o f r e v o l u t i o n s t o h ou rs of s u cc e ss ful o p e r a t i o n a t a g i v e n

    speed, we can w r i t e equat ion 3 .114) as

    The

    s ta t i c loads Fi and

    Fo

    can be ob ta ined f rom e i th e r

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    43/105

    Sec t ion

    3.3

    or 3.4

    or

    ' the appropriate load and speed condi-

    t io n . I n equat ion (3 .116) N i s e xpre ssed i n r e vo lu t i o n s p e r

    minute, and the fa t igue l i f e i s expressed i n hours of successfu l

    opera t ion a t the g iven speed

    N

    From Lundberg and Palmgren

    (1947)

    the dynamic load ca pac ity

    o f t h e in ne r r i n g can be wr i t ten as

    where

    f maximum orthogonal subsurface shear stress

    ai =

    r a t i o

    of depth

    of

    maximum shear stress

    o f

    in ne r r i n g t o

    semiminor ax is o f con tact e l l pse,

    zO b

    ( k.1

    ui number o f st re ss cy cl es p e r r e v o l u t i o n o f i nn er r i n g

    With proper changing of subscr ipts f rom

    t o

    o, equation

    (3.117) can represent t he dynamic load cap acity o f the o uter

    r i n g

    Co

    The number

    o f

    s t ress cyc les pe r revo lu t ion

    denotes

    t he

    number of bal ls that pass

    a

    given point (under load)

    on

    the race

    of one piny whi le the other r ing I tas turned through one complete

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    44/105

    revo lu t i on .

    t he i n n e r r i n g p er u n i t o f t tm e i s

    -

    (d d cos

    i

    I n e qu at io n

    (3,117)

    the dianleters

    o f

    the

    inner and outer

    races are wr i t ten as

    i

    =

    d -

    d

    CQS ei

    (3.120)

    do

    = d cos B0

    (3.121)

    Hamrock and Anderson (1973) f ound tha t fo r mos t ba l l bear -

    i n g

    onfigorhtions the

    v a r i a t i o n o f T and

    @

    i s such

    th t

    the

    following approximation can be made:

    Table

    3.3

    presents corresponding values for

    l / k ,

    T

    and

    @

    as

    we1

    1

    as va lues o f ( T ~ I T ) ~ ~ ( @ I @ ~ ) ~ * ~or corresPondin9

    values of I l k , From these values the fol lowing simple formula

    can

    be

    w r i t t e n :

    Table

    3.3 a

    so

    shows the

    good accuracy

    o f t t l i s

    apyrox imale

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    45/105

    formula.

    I n equ at io n 3.117) th e curvatu re sum R can be obta ined

    from equa t i on 2.24), and the e l l i p t i c i n te g r a l o f t he second

    k i n d and t h e e l l i p t i c i t y param eter

    k

    can be obta ined f rom

    equat ions 3.29) and 3.28). re sp ec t iv ely . y mak ing use o f the

    s t a t i c l o a d s

    Fi

    and Fo obta ined f rom ei th e r Se ct ion 3.3

    or

    3.4

    and equa t ions 3 .117 ) t o 3 .123 ), t he fa t i gue l i f e i n

    ope ra t i ng hou rs o f t he b ea r i ng can be ob ta i ned from equa t i on

    3.116).

    The dynamic lo ad ca pa ci ty C j u s t deve loped can be used t o

    d e te n ni ne th e r e l a t i v e im porta nce o f c e n t r i f u g a l e f f e ct s i n b a l l

    bea ri ngs o f d i f f e re n t s izes . This

    was

    done by Hamrock and

    Anderson 1973) y co mp arin g t h e r a t i o o f

    d 3 ~ ? t o t h e dy-

    namic load capac i ty

    C

    I n t he p revious chap te r

    t

    was noted

    t h a t

    db

    i s t h e b o r e d ia m ete r i n m i l l i m e t e r s and N i s t h e

    r o t a t i o n a l s peed

    i n

    re vo lu t io ns per minute. The fa c to r d3N2

    i s pro po r t ion a l t o the ce nt r i f ug a l fo rce , and the dynamic capa-

    c i t y i s a measure o f t he l oad capac i t y o f t h e bear ing . Fo r

    e x t r a - l i g h t s e r ie s a ng ula r- co nt ac t b a l l b a r f ngs ope ra t i ng a t a

    va lue of d,~

    of

    3

    m i l l i o n , T a b l e

    3.4

    shows the ts a t io .o f d N

    t o dynamic

    capaci ty C

    f o r fou r bore d iameters db. Ce ntr i -

    f ug a l e f f ec t s a re shown to be re l a t i v e l y more seve re i n sma l l

    be arin gs when d ~ s kep t constant .

    The e f f e c t o f r a ce c o n f o r m i t y r a t i o

    on f a t ig u e l i f e a t

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    46/105

    h i gh o pera t ing speeds i s shown i n Fig ure 3.14. Th is f ig u r e was

    obta ined f rom Winn, e t a l . (1974) f o r a 20-mn-bore b a l l bea r ing

    o pe ra ti ng a t 120,000 rpm.

    Note th a t an i nc rease i n ou te r - race

    c u r va t u re b r i n g s a bo ut a s u b s t a n t i a l d ec re ase i n f a t i g u e l i f e .

    On the o ther hand an inc rease i n inner - race curv a ture does no t

    a f fec t the 1 f e t o any apprec iab le degree. The reason f o r t h i s

    i s

    t h a t a t h i g h speeds t h e c e n t r i f u g a l f o r c e a c t s a g a i n s t t h e

    outer race.

    I t i s t hu s im po rt an t i n o p ti m iz i ng t h e b ea ri ng l i f e

    n h igh-speed appl i c a t ons th a t t he ou te r- race con fo r l n i t y r a t i o

    sho uld remain as low as po ssi ble . Confo rmity expressed by a

    c ur va tu re r a t i o o f

    0.515

    t o 0.520 represen ts the lowes t

    th res ho ld o f p resent manuf ac tu r i ng p rac t i ce s .

    The con ta c t ang le i n ba i

    l

    bear ings i s ex t reme ly import ant

    inasmuch as i t c r i t i c a l l y a f f e c t s t h e b e ar in g s t i f f n e s s and

    1 f e . T yp ic al v a r i a t i o n s o f f a t ig u e 1 f e w i t h i n i t i a l c or lta ct

    ang le

    Bf

    f o r a med ium-size bear ing opera t ing a t a va lue o f dbN

    o f 1 .5 m i l l i o n are shown i n F ig ure 3.15. The contac t -ang le range

    sugges ted i n F i gu re 3.15 i s t y p i c a l of b ea ri ng s o pe r a ti n g a t h i g h

    speed s.

    I n r ec e n t y e ar s b e t t e r u n d e rs ta n di ng o f b a l l b e a r in g de-

    s ign , m ater ia ls , p rocess ing , and lu b r i ca t i o n has pe rm i t te d an

    improvement i n be ar in g performance.

    T hi s r e f l e c t e d i n e i t h e r

    h i ghe r bea r i ng

    re

    i a b i

    l

    t y o r l o n ge r e x pe cte d

    1

    ves than those

    obta ined f rom equat ion (3.116) o r b a l l bear ing ca ta logs . s a

    r e s u l t Bamberger, e t a l . (1971) a r r i v e d a t an e x p re s s io n f o r t ir e

    a d ju s te d be a r in g f a t i g u e 1 f e

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    47/105

    .. .---

    La EFGL

    where

    m a t e r i a i f a c t o r

    E

    p ro ce s s in g f a c t o r

    = l u b r i c a t i o n f a c t o r

    G ,= ha rdness fac to r

    The nex t th ree sec t i ons dea l wi th t hese fac to rs .

    3.5.2

    L u b r i c a t i o n F a c t o r

    I f

    a b a l l b ea rin g i s adequate ly des igned and lu b r ic a te d ,

    t h e r o l l i n g su r f a c e s c an be se p arat ed b y a l u b r i c a n t

    f i l m

    En-

    durance te s t i n g o f bea rings , as repo r ted by T a l l an , e t a l

    1965). has demonstra ted th a t when the lu b r ic an t

    f i

    m i s t h i c k

    enough t o s e p ar a te t h e t wo c o n t a c ti n g b od ie s, f a t i g u e l i f e o f

    the ~e a r i n g s g r ea t l y extended . Converse ly , when the

    f i l m

    i s

    n o t t h i c k enough t o p ro v i d e f u l l s e p a ra t io n b etw een t n e a s p e ri -

    t i e s i n t he c o nt a ct zone, t he l i f e of t h e b e a ri n g i s ad ve rs ely

    a f f e c t e d by t h e h i g h sh ea r r e s u l t i n g f r o m d i r e c t m e ta l- to -me ta l

    con ta c t . An exp ress ion f o r the f i m t hi ck n es s i n b a l l b e ar in g s

    i s d ev elo pe d l a t e r ,

    b u t i t i s conven ien t t o i l l u s t r a t e i t s

    e f f e c t on fa t i gu e l i f e i n t h i s s ec t io n.

    o e s t a b l i s h tihe e f f e c t o f finl th ickness on the lift f

    any g i ven bea ri ng , we f i r s t ca l cu l a te t he f i l m paramete r A

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    48/105

    The re l a t i on sh ip between h and the

    f i l m

    th i ckness

    h

    i s

    where

    f r

    =

    rms s u r f ace f i n i s h o f r ac e

    f

    rms s u rf ac e f i n i s h o f b a l l

    A m ore d e t a i l e d d is c u ss i o n o f s ur fa ce to po gr ap hy i s g iv e n i n

    Sec t i on 4.1, and the rms i s de f ine d by equ at ion 4.2).

    With the f i l m parameter A known, Figure 3.16 can be used

    t o d ete rm in e t h e l u b r i c a t i o n f a c t o r

    r.

    N o t e f r o m t h i s f i g u r e

    t h a t w h e i t h e f i l m parameter va lues f a l l be low approx imate ly

    1.2, t he b e a r in g f a t i g u e l i f e i s a dv er se ly a f f e c t e d s in c e i s

    l ess than

    1

    Conversely, when th e v.sllres o f ar e between 1.2

    and 3, b e a r i n g f a t i g u e l i f e i s , a p p r e c i a b l y exten de d. F i l m pa-

    rame ters h i ghe r t han

    3

    do n o t y i e l d a ny f u r t h e r im provem ent i n

    t h e l u b r i c a t i o n f a c t o r m a i n ly because a t t he se v al ue s o f

    A

    t h e l u b r i c a n t

    f i l m

    i s t h i ck enough t o separa te the ext reme peaks

    o f t h e i n t e r a c t i n g s ur fa ce s.

    3.5.3 M at er ia l Fac tor

    Bamberger, e t a l. 1971) have shown th a t be ar ing ma te r ia ls

    c a n s i g n i f i c a n t l y a f f e c t t h e u l t i m a t e pe rf or ma nc e o f a b e ar in g .

    A s ment ioned i n Chapter 2 th e most f reque nt Py used

    st l

    f o r

    b a l l b e ar in g s i s l S l

    52100.

    The dynamic loa d cap acity , as ca l-

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    49/105

    cu la ted f rom equat ion 3.117) o r any be ar ing manu fac turerss ca t -

    a log, i s based on a i r -me l ted 52100 st e e l t h a t has been hardened

    t o 58 Rockwel l

    C R,).

    Because o f improvements i n th e q u a l i t y

    g a i r -m e l ted s tee ls , Bamberger, e t a l . 1971) suggested the

    v a lu e o f t h e m a t e r i a l f a c t o r shown i n T a bl e

    3.5.

    Fac to rs

    ta k i ng i n t o account vacuum remel t ing, hardness, and ot he r pro-

    cess ing va r ia bl es are considered separa te ly . Many o f the mater-

    i a l s i n t h i s t a b l e were d isc usse d i n S e ct io n 2.4, and the chemi-

    c a l compos it ions o f many o f t hese s t ee l s a re g i ven i n Tah le 2.1.

    3.5.4 Proc essing Fa ct or s

    Improvements i n processing tec hnique s have als o extended

    fa t i gu e l i f e . The va r ious me l t i ng p rac t i ces have been d i s -

    cu sse d i n S e c t io n

    2 4 1

    Zare tsky, e t a l 1969) found tha t

    consuma ble-electrode vacuum re m el tin g CVM) gave up t o 13 t imes

    longer l i f e than a i r me l t ing . Hgwever, Bamberger, e t a l . 1971)

    recommended that a processing factor f

    o f 3 be used f o r

    a l l

    CVM

    bea ring stee ls. This valu e may be somewhat con serv at ive ,

    bu t t he con fi dence fac to r f o r ach ievi ng th i s l e ve i o f improve -

    ment i s h igh .

    A no th er p r o c es s in g f a c t o r t h a t s e r i o u s l y a f f e c t s b e a ri ng

    fa t i g u e 1 f e i s m a te ri a l hardness. The minimum recomnended

    hardness f o r b a l l b e a r ln g s t e e l s i s 8 RE A drop i n ha rdness

    from t ha t va lue because o f e i t h e r poo r heat t rea tnwn t o r h i gh

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    50/105

    operat ing temperatures w i apprec iab l y sho r ten the bea r i ng fa -

    t i g u e 1 i f e , as po in ted ou t by Bamberger, e t a l e 1971). To

    enable an est im ate t o be made o f th e e f f e c ts o f hardness change

    on bea r i ng l i f e , a hardness fa c t o r

    i s d e f i n ed as

    where

    Rc

    i s t he ope ra t i ona l hardness o f t h e bea r i ng mate r-

    i a l , N ote t h a t t h e r e l a t i o n s h i p p re se nt ed y equa t i on 3.126)

    i n d ic a t es t h a t b ea ri ng l i f e i s h i g h l y s e n s i t i v e t o changes i n

    hardness. Thus, f o r example,

    a

    two-po in t d rop i n hardness t o

    56

    R

    w i l l cause a

    32

    p e rc e nt d r op i n b e ar in g f a t i g u e l i f e .

    Once the va r i ous fac to rs i n equa t i on 3.124) have

    been

    de-

    f in e d , t h e ad j u st e d f a t i g u e l i f e L a c an be c a l c u l a t e d f r o m

    t h a t e qu a ti on . T h i s e qu a t io n e n ab le s t h e d e si gn e r t o a r r i v e a t

    a more r e a l i s t i c e s t i m a t e o f b e a r i n g f a t i g u e 1 f e .

    3.6 Bear i ng Lub r i ca t i on

    Wi thou t adequa te l u b r i c a t i o n o f t h e ba l l - race con junc t ion ,

    various degrees of damage w i l l r e s u l t t o t h e r o l l i n g ele rre nts

    r

    the races, o r both. These inc lud e th e development o f scuf f ing ,

    p l a s t i c f lo w , a nd p i t t i n g . The f a t i g u e

    l i f e

    o f t n e b a l l - r a c e

    con tac t t he re fo re depends on t h i s con junc t ion hav ing

    an

    adequate

    l u b r i c a n t f i l m as p o i n t e d o u t i n t h e p r e v i ou s s e ct io n ,

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    51/105

    For many years the op in ion preva i ed that th maximum con-

    t a c t pr es s ur e i n t h e b a l l - r a c e c o n t a c t pr ec lu d ed

    t he

    poss ib f l i t y

    o f a l u b r i c a n t

    f i l m

    e x i s t in g i n t he con junc t ion , However,

    t

    i s

    now gen era l l y accepted no t on l y t h a t a lub r i c an t

    f i l m

    i s pre-

    s en t, b u t a l s o t h a t t h e n a t u r e of t h e l u b r i c a n t

    f i l m

    has

    an

    im-

    p o r t a n t i n f l u e n c e on t h e f a t i g u e l i f e o f t h e b e ar in g . B esid es

    p r o v i d i n g a f i l m t h e l u b r i c a n t i n a b a l l b e a r in g m ust p r o v id e

    cor ros ion p ro t ec t io n and ac t as a coo lan t .

    Not o n l y t he b a l l - ra c e c o n ta c t b u t a l s o a l l t h e i n t e rf a c e s

    between moving elements must be pr op er ly l ub r ic at ed . The ba l l -

    separator arid race-separator con tacts expe r ience m os t ly impact

    load ing and t he re fo re have g rea te r po s s i b i l i t i e s o f me ta l -t o -

    metal co nta ct, even when the b ea ring has an adequate supply o f

    l u b r ic a n t . For t h i

    s

    reason th e separator su r f aces are genera l l y

    coa ted w i t h

    a

    l o w - f r i c t i o n m a t e r i a l .

    The ba l l - r ac e con tac t s i n b a l l bear ings can gen era l l y be

    s a t i s f a c t o r i y l u b r i c a t e d w i t h a s ma ll amount of a p p r op r ia t e

    l u b r i c a n t s u p p l i e d t o t h e r i g h t a re a w i t h i n t h e b e a ri ng . The

    m a jo r c o n s i d e ra t i o n s i n pr o pe r b a l l b e a r i n g l u b r i c a t i o n a re

    1)

    S e l ec t io n o f a s u i t a b l e l u b r i c a n t

    2 ) S e l e c t i o n o f a s ystem t h a t w i l l provide an adequate

    and co n st an t f l o w o f t h i s l u b r i c a n t t o t h e c o n ta c t

    These two t op ics a re cons idered i n t he f o l l o w i ng sec tions.

    3.6.1 L u b r i c a n t s

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    52/105

    Bo th o i l s and greases a re ex tens i ve l y used as l ub r i c an ts

    f o r a l l t yp e s of b a l l b ea ri ng s o ve r a wide range of speeds and

    opera t ing tempera tures. The cho ice i s f r eq ue nt ly de termined by

    cons ide ra t i on s o t he r than l ub r i ca t i on requ iremen ts a lone .

    Because of i t s f l u i d i t y

    o i l

    has a number o f advantages over

    grease:

    I t

    c an e n t e r

    tilt

    o ad ed c o n ju n c t i o r i m os t r e a d i l y t o

    f l u s h away contaminants such s wate r and d i r t and pa r t i c u -

    l a r l y t o t r a n s f er heat rom heav i ly loaded bear ings.

    I t i s a l s o

    f re que n t l y ddvan tageous t o l u b r i c a t e bea rings from t c e n t ra l o i 1

    system used fo r o t he r machine par ts.

    Grease however

    i extensive ly used because i t p e rm i t s

    simp1i e d des igns

    of

    housings

    and

    bear ing enc losures wh ich

    re qu ir e le s s maintenance and because i t

    i s

    more e f f e c t i v e i n

    sea l i n g aga ins t d i r t and contam inan ts . I t a lso reauces poss ib le

    damage t o the p rocess o r p roduct f rom o i l leakage.

    i

    1 L u b r i c a t i o n

    E x c e p t f o r

    a

    few s pec ia l requ iremen ts pe t ro leum o i l s sa t -

    i s f y mos t ope ra t i ng cond i t i ons . H igh -qua l i t y p roduc ts f r ee

    f rom adu l te ran ts tha t can have an abras ive o r lapp ing act ion

    are recomnended. Anima l a r vege tab le o i l s o r pe t ro leun i o i l s o f

    p oo r q u a l i t y te n d t o o x i d i z e t o d ev el op a ci ds and t o f o rm

    s lu dg e o r r e s i n l i k e d e p os i t s on the be ar ing surfaces. They thus

    pena e bea ring performance o r endurance.

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    53/105

    composite o f reconmended lub r i ca n t v i s co s i t i es a t 38 C

    (100

    F)

    i s shown as Figu re

    3.17.

    I n

    many b a l l bearSng applica-

    6 2

    t i o n s an o i l e q ui va le nt t o an

    SAE-10

    m otor o i l

    (40x10

    m /s , or

    40

    cS, a t 38 C (300 F ) ) o r a l i g h t t u r b i n e o i l i s t he most

    frequent choice.

    For a number o f m i l i t a r y app l ica t ion s where th e opera-

    t i o n a l r e q u i r e ~ n e n t sspan the temperature range -54 t o

    204

    C

    (-65

    t o 400

    F),

    syn t h e t i c o i l s a r e used. Es t e r l u b r i ca n t s a re

    most f reque nt ly employed i n t h i s temperature range.

    I n a pp li ca -

    tions where temperatures exceed 260

    C

    (500

    F),

    most syn the t ics

    w i l l

    qu ic k l y b reak down, and e i t h e r a so l i d l ub r i ca n t (e.g.,

    nos2) o r a po lypheny l e the r i s recanmnded. more de ta i l ed

    d iscus s ion of sy n th e t i c lu br i ca n ts can be found i n B isson and

    Anderson (

    1964).

    Grease Lu br ica t io n

    The s imple st method o f l u b r i c a t i n g a b e a r in g i s t o a p p l y

    grease, because o f i t s r e l a t i v e l y n o n f l u i d ch a r a c t e r i s t i c s .

    Danger o f leakage i s reduced, and th e housing and enclos ure de-

    s ign can be s imp le r and l ess c os t l y t han those used w i t h o i 1.

    Grease can be packed i n t o bear ings and re ta in ed wi th inexpensive

    closures, b u t packing should no t be excessive and

    the

    manufac-

    t u r e r ' s rocommendat ions should be closely adhered to.

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    54/105

    The m a jo r l i m i t a t i o n o f g rease l u b r i c a t i o n i s t h a t i t i s

    n o t p a r t i c u l a r l y u s ef u l

    i n

    high-speed appl icat ions.

    I n

    general

    i t i s n o t employed f o r speed f a c t o r s ( d b ~ ,b ore i n

    m i

    1 i m t e r s

    t imes speed i n rev o lu t io ns pe r m inu te ) over 200,000 al though

    sel ect ed greases have been used su cc es sf ul ly f o r h ig he r speed

    f a c t o r s w i t h s p e c i a l l y d esig ne d b a l l b e ar in gs .

    Greases vary widely i n propert ies, depending on the type

    and grade o r cons i s tency

    .

    Fo r t h i s re as on w spec i f i c recom-

    mendat ions can be made. Greases used f o r most bear ing op er at ing

    c o n d i t i o n s c nn s i s t o f p et ro le um , d i e s t e r , p o l y e s te r , o r s i i c o n e

    o i l s t h i ckened w i t h sodium o r l i t h iu m soaps o r w i t h more recen t-

    l y deve loped nonsoap th ickeners , Genera l ch ar ac te r i s t ic s of

    greases are as fo l lows:

    1)

    Petroleum o i 1 greases are be st f o r general-purpose op-

    e r a t i o n f r o m

    -34

    t o

    149'

    C

    (-,30

    o

    300

    F) .

    ( 2 ) Die s te r o i l g reases are designed fo r low-- temperature

    ser v ice down t o -54

    (-65'

    F .

    (3)

    E ste r-b ase d g re as es a r e s i m i l a r t o d i e s t e r o i l g re ase s

    b u t h a v e b e t t e r h igh-temperature cha rac ter i s t cs , cover in g a

    range from -73' t o 177' (-100 t o 350

    F .

    ( 4 ) S i l i c on e o i 1 greases a re used f o r b ot h high- and low-

    temperature operat ion, over the widest temperature range o f a11

    greases

    (-73'

    t o 232'

    C -100*

    t o

    450'

    F), b u t have t he d isad-

    van t ige o f 1ow 1aad-carry in g c apacity.

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    55/105

    ( 5 ) F lu o r o s i1 cone

    4

    1 greases have a11 t he des i rab le fea -

    t u r e s

    o f

    s i cone 05 1 g reases p l us good load-car ry ing capa c i ty

    and resis tance t o fuels, so lvents, and co rro si ve substances.

    They have a very low v o l a t i l i t y i n vacuums down to

    log

    t o r r ,

    which mzkises them u se fu l i n aerospace y p l c a t ons.

    (6 ) Perf 1u o ri na te d o i 1 greases have a h ig h degree of chemi-

    c a l ine rt ne ss and ar e completf ly nonflamnable. They have good

    load-carry ing ca pa ci ty and can operate a t temperatures as h ig h

    as

    288' C

    (550 F )

    f o r l on g periods, ~ h i c h~ak es hem usefu l

    i n

    the chemical process and aerospace indu str i es, where h i gh re l i a -

    b i l t y j u s t i f i e s th e ad d it io n a l c os t.

    Grease consistency i s important s i nc e grease w i 11 slump

    bad ly and churn excess ive ly when too s o f t and f a i l t o lub r i c a te

    when to o hard. E i t he r co nd it io n causes improper lubr ic at i on ,

    excessive temperature r is e, and poor performance and can shor ten

    bear ing i fe .

    A v al ua bl e g ui de t o t h e e s t i m a t io n o f t h e u s e fu l l i f e o f

    grease i n ro l l ing-e leme nt bear ings has been publ ished by the

    Engineering Sciences Data Unit (1978).

    t has been demonstrated recently by Aihara and Dowson

    (1979)

    and by Wilson (1979) that the

    f i l m

    th ickness i n g rease-

    lu br ic at ed components can be cal cu la ted w i t h adequate accuracy

    by us ing the v is co s i t y o f t he base o i l i n t he e lastohyd rodynamic

    equa t ions see Chapter 8). Ai ha ra and Dowson compared m

    thickness measurements made by capacitance techniques

    on a

  • 7/26/2019 Ball Bearings Mechanics-NASA Report

    56/105

    grease- lubr icated, two-d i sc machine w i t h the p r e d i c t i o n s of

    e lastohydrodynamic theory.

    i

    son repor ted an ex tens ive and

    impress ive range o f experSments on a g rease- lub r ica ted r o l e r

    bear ing.

    This work enables th e e lastohydrodynamic the ory de-

    veloped

    i n

    t h i s t e x t t o be a p p l i e d w i t h c o nf id e n ce t o g rease-

    l u b r i c a t e d b a l l b ea rin gs ,

    3.6.2 L u b r ic a t io n Systems

    The q u a n t i t y o f l u b r i c a n t r e q u i r e d t o m a i n t a i n ad eq ua te

    l u b r i c a t i o n o f b a l l b e a ri ng s i s s m al l. D ata p re s en te d by

    i cock and Booser

    1957)

    show t h a t f o r me dium-si ze, deep-groove

    b a l l bea ri ngs ope ra t i ng a t modera te l oads and speeds 2 . 1 6 ~ 1 0 ~

    d b ~ ) , h e q u a n ti ty o f o i l r eq ui r ed i s a bout

    0.5

    rnglhr. The

    o i 1 re qu ir em en t i s d et ermin ed by t h e s e v e r i t y o f t h e o p e ra ti n g

    cond i t i ons .

    Some

    o f

    t h e t e c hn iq u es m ost f r e q u e n t l y used t o l u b r i c a t e a

    b a l l b e a r i n g a re a e s c r i bed i n t n e f o l l o w i ng p ara gra ph s.

    Fo rced Lub r i ca t i on

    A lt ho ug h th e q u a n t i t y o f o i1 r e q u i r e d t o p ro v i d e a de qua te

    l u b r f c a t i o n i s s ma ll,

    i t

    i s f r e q u en t ly d e s i r a b le i n h e a v i ly

    loaded h igh-speed bea r ings t o use the o i l t o t