BAB 3 BA501 Vector Dan Scalar

29
ENGINEERING MATHEMATICS 4 VECTOR BA501 CHAP 3 - Vector and Scalar Products Vector Quantities a quantity that has magnitude and direction Examples of vector quantities are displacement, velocity, direction, momentum, force, lift, weight and etc. Scalar Quantities a quantity that has magnitude only. Typical examples of scalar quantities are time, speed, temperature, and volume. A scalar quantity or parameter has no directional component, only magnitude. For example, the units for time (minutes, days, hours, etc.) represent an amount of time only and tell nothing of direction. Additional examples of scalar quantities are density, mass, and energy. Fundamental of vector i) Vector notation vector notation is how to present vector, such us : a) vect or is us ually g iven a b old le tter , such as A b) place a right-han ded arro w over t he lette r to denot e a vect or c) vector can be write in enginee ring no tation a nd matri x nota tion ii) Vector representation Vectors can be graphically represented by directed line segments example : vector  AB = a a  40 A B

Transcript of BAB 3 BA501 Vector Dan Scalar

7/22/2019 BAB 3 BA501 Vector Dan Scalar

http://slidepdf.com/reader/full/bab-3-ba501-vector-dan-scalar 1/29

ENGINEERING MATHEMATICS 4 VECTORBA501

CHAP 3 - Vector and Scalar Products

Vector Quantities

a quantity that has magnitude and direction

Examples of vector quantities are displacement, velocity, direction, momentum,

force, lift, weight and etc.

Scalar Quantities

a quantity that has magnitude only.

Typical examples of scalar quantities are time, speed, temperature, and volume. A

scalar quantity or parameter has no directional component, only magnitude. For 

example, the units for time (minutes, days, hours, etc.) represent an amount of time

only and tell nothing of direction. Additional examples of scalar quantities are

density, mass, and energy.

Fundamental of vector 

i) Vector notation

vector notation is how to present vector, such us :a) vector is usually given a bold letter, such as A

b) place a right-handed arrow over the letter to denote a vector 

c) vector can be write in engineering notation and matrix notation

ii) Vector representation

Vectors can be graphically represented by directed line segments

example : vector   AB = a

a

 

40

A

B

7/22/2019 BAB 3 BA501 Vector Dan Scalar

http://slidepdf.com/reader/full/bab-3-ba501-vector-dan-scalar 2/29

7/22/2019 BAB 3 BA501 Vector Dan Scalar

http://slidepdf.com/reader/full/bab-3-ba501-vector-dan-scalar 3/29

7/22/2019 BAB 3 BA501 Vector Dan Scalar

http://slidepdf.com/reader/full/bab-3-ba501-vector-dan-scalar 4/29

ENGINEERING MATHEMATICS 4 VECTORBA501

If two vectors are represented by two adjacent sides of a parallelogram, then the

diagonal of parallelogram through the common point represents the sum of the

two vectors in both magnitude and direction.

Q Q R 

O P O P

OP  + OQ = OR

Q Q R 

O P O P

  OP  + OQ = QP   Figure 2

iii) Method of component

Rules of vector components:

i) Components should be perpendicular is called the orthogonal

components.ii) The component s of the vector may be in any axis (x and y axis) we called

the horizontal or the vertical dimension.

iii) The direction of the components is look like head to tail, so that we canadd that vector.

iv) If we are adding those x and y vectors we can get the resultant vector.

The components of a vector are those vectors which, when added together,give the original vector.

N

 

43

7/22/2019 BAB 3 BA501 Vector Dan Scalar

http://slidepdf.com/reader/full/bab-3-ba501-vector-dan-scalar 5/29

ENGINEERING MATHEMATICS 4 VECTORBA501

E

The sum of the components of two vectors is equal to the sum of these two

vectors.

 A2 A

A = A1 + A2

 A1

 A2 A

 A1

 A1, the component in an easterly direction, will have a magnitude

 A1 = A cos .

 A2, the component in a northerly direction, will have a magnitude

 A2 = A sin

Substraction

Subtraction is considered an addition process with one modification that the secondvector (to be subtracted) is first reversed in direction and is then added to the firstvector.

B B

=

O A O A

  OA +  BA− = OB

 

44

7/22/2019 BAB 3 BA501 Vector Dan Scalar

http://slidepdf.com/reader/full/bab-3-ba501-vector-dan-scalar 6/29

A B C

a

ENGINEERING MATHEMATICS 4 VECTORBA501

Characteristic of additional vectors.

Characteristic Resultant

i. Commutative law a + b = b + a

ii. Associative law (a + b )+ c = a + (b + c )

iii. Identity law a + 0 = a

iv. Inversion law a + (-a ) = 0

Multiplication vector with scalar  Multiplication vector , a with scalar value , t produce vector t a where

magnitude |t|.

Characteristic Resultant

i. Commutative law ma = amexp: 2a = a 2

ii. Associative law m(na ) = (mn)a  exp : 2x(3a ) = (2x3) a = 6a

iii. Distributive law (m+n)a = ma + na

exp : (2 + 3) a = 2a + 3a = 5a

iv. Distributive law m(a + b ) = ma + mb

exp : 2 ( a + b ) = 2a + 2b

Definition 1 :

Given 3 point A, B, and C. Point A, B and C is collinear if  AC t  AB = , t is scalar non zero

  t a

 

45

7/22/2019 BAB 3 BA501 Vector Dan Scalar

http://slidepdf.com/reader/full/bab-3-ba501-vector-dan-scalar 7/29

ENGINEERING MATHEMATICS 4 VECTORBA501

example 1 : Find the scalar value λ , for equation below :λ OC  = OA6 +  BC 12 +  AO4 +  AB2 + OB10  

46

7/22/2019 BAB 3 BA501 Vector Dan Scalar

http://slidepdf.com/reader/full/bab-3-ba501-vector-dan-scalar 8/29

7/22/2019 BAB 3 BA501 Vector Dan Scalar

http://slidepdf.com/reader/full/bab-3-ba501-vector-dan-scalar 9/29

ENGINEERING MATHEMATICS 4 VECTORBA501

a)  MD b )  DL c)  LM 

4. Given position vector point A, B and C respectively are 4 a + 2b , 8a - 4b

, and 16a - 16b . Show that point A, B and C are collinear and find

ratio of   AB :  BC  .

 

48

7/22/2019 BAB 3 BA501 Vector Dan Scalar

http://slidepdf.com/reader/full/bab-3-ba501-vector-dan-scalar 10/29

7/22/2019 BAB 3 BA501 Vector Dan Scalar

http://slidepdf.com/reader/full/bab-3-ba501-vector-dan-scalar 11/29

7/22/2019 BAB 3 BA501 Vector Dan Scalar

http://slidepdf.com/reader/full/bab-3-ba501-vector-dan-scalar 12/29

ENGINEERING MATHEMATICS 4 VECTORBA501

If a~ = b~

hence a~  • a~ = aa

~~ =2~

a = a2 ; ∴ a~  • a~ = a2

Refer to fig 2,a~and b~ are parallel but in the opposite direction,

hence θ = 180°;

  ∴ , ba~~ = kosba

~~ 180° = ba~~ (-1) = - ba

~~

3. Perpendicular vector 

If a~ and b~ are perpendicular, hence θ = 90°.

  ∴ a~  •  b~ = ba~~ cos 90° = ba

~~ 0 = 0

∴ a~  • b~ = 0

4. Angle between two vector.

Theorem;

; a~  • b~ = kosba~

~θ ⇒  kos θ =

ba

ba

~~

~•~

 

51

b

~

a~

7/22/2019 BAB 3 BA501 Vector Dan Scalar

http://slidepdf.com/reader/full/bab-3-ba501-vector-dan-scalar 13/29

ENGINEERING MATHEMATICS 4 VECTORBA501

4 :Given vector a~and b~ respectively a~ = 4 , b

~

=3 and a~  • b~= 7. Find

the magnitude of (a~+ b~ ) and the angle between a

~ and b~ .

 

52

7/22/2019 BAB 3 BA501 Vector Dan Scalar

http://slidepdf.com/reader/full/bab-3-ba501-vector-dan-scalar 14/29

ENGINEERING MATHEMATICS 4 VECTORBA501

5 : Calculate the work done F · s given |F|, |s| and θ (the angle between the

force F and the displacement s) when

|F| = 4 N, |s| = 2 m, θ= 27o

 

53

Exercise : Calculate a~  •  b~ if given | a~ | = 3 , | b~ | = 5 and angle between a

~

and  b~ is 60o

ans =1

7

7/22/2019 BAB 3 BA501 Vector Dan Scalar

http://slidepdf.com/reader/full/bab-3-ba501-vector-dan-scalar 15/29

ENGINEERING MATHEMATICS 4 VECTORBA501

Vector in a Cartesian plane

Example

Fig 3

 

54

In a Cartesian plane, if point C is (x,y), hence position vector for C can

expressed in the form ;

 

C(x, y)

xi

 yj

xO

OC  = Xi + Y j or (Y

X) .

Magnitude for  OC  , OC  = 22+ yx

Unit vector in the positive direction of OC  = 22+

+

yx

yjxi

N

A(8, 6)

8

6

 y

xO

From fig 3;

ON = 8 , NA = 6,

Hence ON = 8i and NA = 6 j 

7/22/2019 BAB 3 BA501 Vector Dan Scalar

http://slidepdf.com/reader/full/bab-3-ba501-vector-dan-scalar 16/29

7/22/2019 BAB 3 BA501 Vector Dan Scalar

http://slidepdf.com/reader/full/bab-3-ba501-vector-dan-scalar 17/29

ENGINEERING MATHEMATICS 4 VECTORBA501

Operational Vector in Cartesian Plane

Fig 4

Addition and Subtraction of position vectors

Given OP = 1

~r = X1 i + Y1  j  or (

1

1

Y

X

) ;

OQ = 2

~r = X2 i + Y2  j or (

2

2

Y

X

)

Hence 1

~r + 2

~r = X1 i + Y1 j + X2 i + Y2  j  

= (X1 + X2) i + (Y1 + Y2) j   ( assemble i and j )

1

~r – 2

~r = X1 i + Y1 j - X2 i - Y2  j  

= (X1 - X2) i + (Y1 - Y2) j  

Orin column vector,

1

~r + 2

~r = (

1

1

Y

X

) + (2

2

Y

X

) =    

  

 +

+

21

21

Y Y 

 X  X 

1

~r – 2

~r = (

1

1

Y

X

) - (2

2

Y

X

) =    

  

 −−

21

21

Y Y 

 X  X 

 

56

Q(X2, Y

2)

1

~r

 y

xO

P(X1, Y

1)

2

~r

In fig 4, P(X1,Y

1) and Q(X

2,Y

2) are

two point in Cartesian Plane

and O is origin.

7/22/2019 BAB 3 BA501 Vector Dan Scalar

http://slidepdf.com/reader/full/bab-3-ba501-vector-dan-scalar 18/29

ENGINEERING MATHEMATICS 4 VECTORBA501

Example

6 : Given a~ = 5i + 2 j  and b

~ = 2i – 5 j , find;

a) a~ + b

~ b) a~ - 2 b

~

Then find magnitude for each vector.

 

57

7/22/2019 BAB 3 BA501 Vector Dan Scalar

http://slidepdf.com/reader/full/bab-3-ba501-vector-dan-scalar 19/29

ENGINEERING MATHEMATICS 4 VECTORBA501

7: Given that position vector A is a~= 2i + 3 j and Position vector B is

b~= i – 5 j  . Find :

a) angle between vector   AB and    A

 

58

Exercise: 1. Given 2 vector  a~ = 2i + 3 j  and b~ = i + 2 j . If a~ perpendicular to a

~+ λb~ ,Find th

scalar value of  λ (ans, : λ =813− )

2.Given a~ =    

  

 −4

3and b

~=    

  

 −

1

1

a) Find a~+ b

~ (    

  

 −3

2)

b) Calculate |a~ | ( 5 unit)

c) If a~= cb ~2~

3 + , Express c~ as column vector (   

 

 

 

 −

2

13

3

)

7/22/2019 BAB 3 BA501 Vector Dan Scalar

http://slidepdf.com/reader/full/bab-3-ba501-vector-dan-scalar 20/29

y

qq

r  S

y

x

γ 

βS

α

ENGINEERING MATHEMATICS 4 VECTORBA501

Vector in Three Dimension in Cartesian Plane

59

O

z

x

p[

O

zDirection Cosines

If  OS  makes angle of α, β and γ with the coordinat

axes i, j, and k respectively, then

The direction cosines for OS  vector are:

cos α, = OS 

 x

, cos β = OS 

 y

, cos γ = OS 

 z 

{Magnitude OS = a~ = 222 z  y x ++ }

α = angle between vector S and x - axes

β = angle between vector S and y - axes

γ = angle between vector S and z - axes

α, β and γ known as direction angle.

Coordinate S (p, q, r).

Position vector for S.

OS = a~ = xi + yj + zk =   

 

 

 

 

 z 

 y

 x

= pi + q j + r k =   

 

 

 

 

q

 p

7/22/2019 BAB 3 BA501 Vector Dan Scalar

http://slidepdf.com/reader/full/bab-3-ba501-vector-dan-scalar 21/29

ENGINEERING MATHEMATICS 4 VECTORBA501

Example

8: If position vector of point A, B and C are a~= 2i + j + 2k, b~  = 4i + 5j + 3k and

c~  = i - 3j + 2k respectively, find

a) vector   AB

b) direction cosines of   AB

c) unit vector in direction of  a~+ b~+ c~

 

60

7/22/2019 BAB 3 BA501 Vector Dan Scalar

http://slidepdf.com/reader/full/bab-3-ba501-vector-dan-scalar 22/29

7/22/2019 BAB 3 BA501 Vector Dan Scalar

http://slidepdf.com/reader/full/bab-3-ba501-vector-dan-scalar 23/29

ENGINEERING MATHEMATICS 4 VECTORBA501

The Scalar Product of 3 Dimension

(produce scalar value)

Let  A = a1i + b1 j + c1k 

and  B = a2i + b2 j + c2k 

 B A • = (a1i + b1 j + c1k ) • (a2i + b2 j + c2k )

= a1a2i ⋅i +a1b2i ⋅ j +a1c2i ⋅k + b1a2 j ⋅i + b1b2 j ⋅ j + b1c2 j ⋅k + c1a2k ⋅i  

+ c1b2k ⋅ j + c1c2k 

⋅k 

However , i ⋅i  = i ⋅i kos 00 = 1

  ⇒  i ⋅I  =  j ⋅ j  = k ⋅k = 1

and, i ⋅ j  = i ⋅ j kos 900 = 0

  ⇒ i ⋅ j  =  j ⋅k = k ⋅I = 0

∴  

62

 B A • = a1a2 + b1b2 + c1c2

 Angle between vector A and B

cos θ =  B A

 B A~~

~~•

7/22/2019 BAB 3 BA501 Vector Dan Scalar

http://slidepdf.com/reader/full/bab-3-ba501-vector-dan-scalar 24/29

ENGINEERING MATHEMATICS 4 VECTORBA501

The Vector Product of 3 Dimension

(produce vector value)

the vector product can be written in determinant forms as :

Let, A = a1i + b1 j + c1k 

and B = a2i + b2 j + c2k 

 B A× =222

111

cba

cba

k   ji

Unit vector perpendicular to  B A×

u =  B x A

 B x A~~

~~

Area of parallelogram to vector   A and  B where  A and  B are side by side

 

63

 B A× = k baba jcacaicbcb )()()( 122112211221 −+−−−

 Angle between vector A and B

Sin θ = B A

 B x A

~~

~~

7/22/2019 BAB 3 BA501 Vector Dan Scalar

http://slidepdf.com/reader/full/bab-3-ba501-vector-dan-scalar 25/29

 A

 B

ENGINEERING MATHEMATICS 4 VECTORBA501

Area of parallelogram,  B A× =  B A~~

 sin θ

Volume of Parallelepiped

a parallelepiped is a three-dimensional figure formed by six parallelograms

 An alternative method defines the vectors a = (a1, a2, a3), b = (b1, b2, b3) and

c = (c 1, c 2, c 3) to represent three edges that meet at one vertex. The volume

of the parallelepiped then equals the absolute value of the scalar triple

product a · (b × c ):

Volume of Parallelepiped is:

64

t

Ө

|)(| cbaV  ו= = |)(| acb ו = |)(| bac ו

7/22/2019 BAB 3 BA501 Vector Dan Scalar

http://slidepdf.com/reader/full/bab-3-ba501-vector-dan-scalar 26/29

ENGINEERING MATHEMATICS 4 VECTORBA501

Example10 : Find the angle between vector  a~and b

~usinga) scalar productb) vector product

  Given :a~= 2i + 3 j +k b~= i – 2 j – 6k 

 

65

7/22/2019 BAB 3 BA501 Vector Dan Scalar

http://slidepdf.com/reader/full/bab-3-ba501-vector-dan-scalar 27/29

ENGINEERING MATHEMATICS 4 VECTORBA501

11: Unit vector perpendicular to  P and Q respectively are 3i – 2 j + 4k and2i + 3 j – k 

 

66

7/22/2019 BAB 3 BA501 Vector Dan Scalar

http://slidepdf.com/reader/full/bab-3-ba501-vector-dan-scalar 28/29

ENGINEERING MATHEMATICS 4 VECTORBA501

12. Find the volume of the parallelepiped with adjacent edges  PQ ,  PR and

 PS   where P (3, 0, 1), Q(−1, 2, 5), R (5, 1,−1), S(0, 4, 2)

 

67

7/22/2019 BAB 3 BA501 Vector Dan Scalar

http://slidepdf.com/reader/full/bab-3-ba501-vector-dan-scalar 29/29

ENGINEERING MATHEMATICS 4 VECTORBA501

Exercise : 1. Angle between two vector  a~= i + λ j +2k and b~= 2i + 3 j + k  is cos-1

84

1. Find the value of λ. (ans λ = -1)

2. If   A~ = 5i – 2 j + 3k .  B~ = 3i + j – 2k andC ~

= i – 3j +4k . Find

a) A~

• (  B~

x C ~

) (ans-12)

 b) A~

x (  B~

x C ~

) (ans 62i + 44 j -74k )

3. If    p = 4i – 3 j + 5k . and q = 3i – 5 j – 2k . Find :

i. q  p 32 ×

ii. )4(2 pq p +•