Bab 2 Control Theory

18
1 Gene Franklin David Powell Abbas Emami-Naeini Addison-Wesley Feedback Control of Dynamic Systems Feedback Control of Dynamic Systems Feedback Control Chapter 1 Sheet 2 4 rd edition 2002 SR 1 € 60 Simple Feedback Systems Simple Feedback Systems Feedback Control Chapter 1 Sheet 4 thermostat house gas valve furnace heat loss desired temperature room temperature - more examples ? Simple Feedback Systems Simple Feedback Systems Feedback Control Chapter 1 Sheet 5 reference sensor position sensor ship disturbance reference position output control output + - Block diagram actuators

description

Merupakan teori pengontrolan

Transcript of Bab 2 Control Theory

Page 1: Bab 2 Control Theory

1

Gene Franklin

David Powell

Abbas Emami-Naeini

Addison-Wesley

Feedback Control of Dynamic SystemsFeedback Control of Dynamic Systems

Feedback Control

Chapter 1 Sheet 2

4 rd edition 2002

SR 1

€ 60

Simple Feedback SystemsSimple Feedback Systems

Feedback Control

Chapter 1 Sheet 4

thermostat housegas valve furnace

heat loss

desired

temperature

room

temperature

-

more examples ?

Simple Feedback SystemsSimple Feedback Systems

Feedback Control

Chapter 1 Sheet 5

reference

sensor

position

sensor

ship

disturbance

reference

position output

control

output+

-

Block diagram

actuators

Page 2: Bab 2 Control Theory

2

Feedback Control

Chapter 1 Sheet 11

History of controlHistory of control

Liquid level & flow control

supply

float

Feedback Control

Chapter 1 Sheet 12

Cornelis Drebbel : egg hatching control systemCornelis Drebbel : egg hatching control system

Feedback Control

Chapter 1

Fly-ball governerFly-ball governer

James Watt

REGULATOR

Sheet 13

Page 3: Bab 2 Control Theory

3

Feedback Control

Chapter 2 Sheet 2

Dynamics of Mechanical SystemsDynamics of Mechanical Systems

maF !Equations of motion

m u

x

x!!

xb !friction force

xmxbu !!! !"m

ux

m

bx !# !!!

m

uv

m

bv !#!

Cruise controlnewton

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t

stepresponsestepresponse

position

velocity

input

Chapter 2 Sheet 3

Feedback Control

Feedback Control

Chapter 2 Sheet 17

Room temperatureRoom temperature

q1

Ti

To

R1 R2

q2Ci

!TC R R

T Tii

o i! #FHG

IKJ "

1 1 1

1 2b g

To

Page 4: Bab 2 Control Theory

4

Feedback Control

Chapter 2 Sheet 18

Fluid flowFluid flow

h

p1

wout

win Mass balance

!m w win out! "

!hA

w win out! "1

$b g

A

m h.A.! $

Feedback Control

Chapter 2 Sheet 19

Tank system!h

Aw win out! "

1

$b g

Non linear equation

h

p1

wout

win

A

wR

pout !1

1

p p p1 0! # %%p small

p p pp

p0 00

1

2# & #% %

!hA

wAR

pAR p

pin! " "1 1 1

20

0$ $ $%

% %p g h! $

Feedback Control

Chapter 2 Sheet 20

LinearizationLinearization

x

y = f(x)y

y f x x x x

y y y

! ! #

! #

b g with 0

0

%

%

y f x x f x K x

Kf x

x

x

x

! # ! #

!

0 0

0

% %

%

%

b g b gb g % %y K xx!

x0

y0

Page 5: Bab 2 Control Theory

5

Feedback Control

Chapter 3 Sheet 1

Dynamic ResponseDynamic Response

Chapter 3Chapter 3

Feedback Control

Chapter 3 Sheet 2

LaplaceLaplace

Linear system:• superposition

• convolution

systemsystemu y

input output

u y

u y

u u y y

1 1

2 2

1 1 2 2 1 1 2 2

'

'

# ' #( ( ( (

Feedback Control

Chapter 3 Sheet 3

h(t,))h(t,))*(t) y(t)

impulse response

0 1 2 3 4 50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time

y(t)

f t f t db g b g b g! ""+

+

z ) * ) )Dirac pulse

Impulse response

Page 6: Bab 2 Control Theory

6

Feedback Control

Chapter 3 Sheet 4

h(t,))h(t,))u(t) y(t)

input response

y t u h t db g b g b g! ""+

+

z ) ) )

y t u t h db g b g b g! ""+

+

z ) ) )

convolution integral y h u! ,

input-output behaviour

impulse response

Feedback Control

Chapter 3 Sheet 5

h(t,))u(t) y(t)

input response

y t u h t db g b g b g! ""+

+

z ) ) )

H(s)H(s)U(s) Y(s)

Y s H s U sb g b g b g! .

Y s y e dsb g b g!"+

+"z ) ))Laplace

Feedback Control

Chapter 3 Sheet 6

H(s)H(s)U(s) Y(s)

Laplace transformLaplace transform X s x e dsb g b g!+

"z% ) ))

0

!y t ky t u tb g b g b g# !Dynamic system

H sk s

b g !#1

sY s kY s U sb g b g b g# !

Transfer function

Page 7: Bab 2 Control Theory

7

Feedback Control

Chapter 3 Sheet 7

Laplace transformLaplace transform X s x e dsb g b g!+

"z% ) ))

0

time function s-function

Dirac pulse

Unit step 11

s

Ramp

Exponential

Sinusoid

-

*

--

-

t

ts

es a

ts

at

b g 1

1

1

2

2 2

#

#sin

Feedback Control

Chapter 3 Sheet 11

. /. /. /. /. /s 2 s 4

Y ss s 1 s 3

# #!

# #

. / 31 2 CC CY s

s s 1 s 3! # #

# #

Partial fraction expansion real polesPartial fraction expansion real poles

1

2

3

8C

3

3C

2

1C

6

!

! "

! "

example

. / t 3t8 3 1y t e e

3 2 6

" "! " "with

Feedback Control

Chapter 3 Sheet 12

Partial fraction expansion with complex rootsPartial fraction expansion with complex roots

Example: Y ss s s

b ge j

!# #

1

12

Y sC

s

C s C

s sb g ! #

#

# #1 2 3

2 1

. /. /

1 12 2

2 2 3142

s1 s 1 1Y s

s ss s 1 s

# ##! " ! "

# # # #

y t e t e tt tb g ! " "

FHG

IKJ

" "1 3 3 3

12

121

213

12

cos sin

Page 8: Bab 2 Control Theory

8

Feedback Control

Chapter 3 Sheet 22

Negative feedbackNegative feedback

U (s)R(s)

G1(s)G1(s)

G2(s)G2(s)

Y1 (s)

+

Y2 (s)

. / . / . /

. / . / . / . /

. / . / . /

2

2 2 1

1 1

U s R s Y s

Y s G s G s U s

Y s G s U s

! "

!

!

Y sG s

G s G sR s1

1

1 21b g b g

b g b g b g!#

Forward gain divided by 1 plus loop gain

Feedback Control

Chapter 3 Sheet 29

Response versus pole locationResponse versus pole location

H sb s

a sb g b gb g!

b s zeros

a s poles

b gb g

! '

! '

0

0

Transfer function

H ss

h t e tb g b g!#

' ! "1

00

STABLE: poles < 0

time constant: )0

!1

example:

Feedback Control

Chapter 3 Sheet 30

0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

time 1) !

0

1

e

t ! )

First-order system responseFirst-order system response

Natural response = impulse response

response

te"0

Page 9: Bab 2 Control Theory

9

Feedback Control

Chapter 3 Sheet 32

Pole locations in the s-planePole locations in the s-plane

Im

Re

0 1 2 3 4 5-15

-10

-5

0

5

Time (secs)

Am

plit

ude

0 1 2 3 4 5-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (secs)

Am

plit

ude

0 1 2 3 4 5-1

-0.5

0

0.5

1

Time (secs)

Am

plit

ud

e

0 1 2 3 4 50

0.5

1

1.5

2

2.5

3

Time (secs)

Am

plit

ud

e

0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

Time (secs)

Am

plit

ude

0 1 2 3 4 5-1

-0.5

0

0.5

1

Time (secs)

Am

plit

ud

e

0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

Time (secs)

Am

plit

ude

0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

Time (secs)

Am

plit

ude

0 1 2 3 4 50

2

4

6

8

10

12

14

Time (secs)

Am

plit

ude

Feedback Control

Chapter 3 Sheet 33

Complex polesComplex poles

s j d! " #0 -

Complex pairs s j s j s sd d n n# " # # ! # #0 - 0 - 1- -b gb g 2 22

H ss s

n

n n

b g !# #

-

1- -

2

2 22

0

-d

Re

Im2

-n 0 1-

- - 1

2 1

!

! "

! "

n

d n 1 2

1sin

Feedback Control

Chapter 3 Sheet 34

Response of system with complex polesResponse of system with complex poles

H ss s

n

n n

b g !# #

-

1- -

2

2 22

H ss

n

n n

b gb g e j

!# # "

-

1- - 1

2

2 2 21

. / td d

2h t 1 e cos t sin t

1

"03 415 6! " - # -5 6" 17 8

Transfer function

step response

Page 10: Bab 2 Control Theory

10

Feedback Control

Chapter 3 Sheet 35

Step response of second order system with complex polesStep response of second order system with complex poles

0 2 4 6 8 100

0.5

1

1.5

2

time

19! 0.0

0.1

0.2

0.3

0.4

0.5

0.7

1.0

-n=1

Feedback Control

Chapter 3 Sheet 36

Pole location damping ratioPole location damping ratio

ReReRe

Im Im Im

45:

30:17 5. :

1 ! 0 707. 1 ! 0 5. 1 ! 0 3.

Feedback Control

Chapter 3 Sheet 37

Oscillatory time responsesOscillatory time responses

0 5 10 15 20-1

-0.5

0

0.5

1

time

h(t)

e t"0

" "e t0

Page 11: Bab 2 Control Theory

11

Feedback Control

Chapter 3 Sheet 39

Time domain specificationsTime domain specifications

0

0.2

0.4

0.6

0.8

1

1.2

1.4

time

y(t)

tr

;1%

ts

Mp

tp

tr rise time

ts settling time

tp peak-time

Mp overshoot

90%

10%

Feedback Control

Chapter 3 Sheet 40

SpecificationsSpecifications

For second order systems:

t

t

t

M e

rn

p

n

sn

p

!

!"

! ;

!

""

18

1

4 61%

2

1 2

.

.

-

<

- 1

1-<1

1

for

Feedback Control

Chapter 3 Sheet 41

Overshoot versus damping ratio 1Overshoot versus damping ratio 1

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

1

Mp

1 !1

2

1 !1

22

1 ! 1

Page 12: Bab 2 Control Theory

12

Feedback Control

Chapter 3 Sheet 42

SpecificationsSpecifications

t t Mr s p

-

1 1

0

nr

p

s

t

M

t

=

=

=

1 8

4 6

.

.

d i

-n Re ReRe

Im ImIm2

0

Feedback Control

Chapter 3 Sheet 43

Specifications in the s-planeSpecifications in the s-plane-

1 1

0

nr

p

s

t

M

t

=

=

=

1 8

4 6

.

.

d i

Re

Im

example:

t s

M

t s

r

p

s

>

>

>

0 6

10

3

. .

%

.

-5 -4 -3 -2 -1 0 1

3

2

1

0

-1

-2

-3

-

1

0

n rad s=

=

=

2 8

0 6

15

. .

.

.

Feedback Control

Chapter 3 Sheet 54

Routh’s stability criterionRouth’s stability criterion

Characteristic equation:

. / n1n2n

21n

1n asasasassa #####! "

"""

Routh 1874 Hurwitz 1895

Routh array:

all elements in first column positive

system stable

Routh array:

all elements in first column positive

system stable

Page 13: Bab 2 Control Theory

13

Feedback Control

Chapter 4 Sheet 55

Routh’s stability criterionRouth’s stability criterion

. / n1n2n

21n

1n asasasassa #####! "

"""

Routh array: n2 4

n 11 3 5

n 21 2 3

n 31 2 3

2

1

0

s 1 a a

s a a a

s b b b

s c c c

s * *

s *

s *

"

"

"

!

!

!

!

" " " "

Feedback Control

Chapter 3 Sheet 56

Routh arrayRouth array

*s

*s

**s

cccs

bbbs

aaas

aa1s

0

1

2

3213n

3212n

5311n

42n

####

"

"

"

"

"

"

"

1

2131

21

31

11

1

541

51

4

12

1

321

31

2

11

b

baab

bb

aa

b

1c

a

aaa

aa

a1

a

1b

a

aaa

aa

a1

a

1b

"!"!

"!"!

"!"!

#

number of sign changes

=

number of poles in Right Half Plane

Feedback Control

Chapter 3 Sheet 57

exampleexample . / 4s4ss2s3s4ssa 23456 ######!

Routh array

4s

0s

43s

02s

40s

0424s

4131s

05761

25

123254

5

6

"

"

2 RHP poles-4 -3 -2 -1 0 1

-2

-1

0

1

2im

re

Page 14: Bab 2 Control Theory

14

Feedback Control

Chapter 3 Sheet 60

ApplicationsApplications

KK . /. /5s1ss

1

##

Stability ?

characteristic equation: . /. / 0K5s1ss !###

Ks

s

K6s

51s

06

K301

2

3

"30K ?

0K @30K0 ??

Feedback Control

Chapter 3 Sheet 61

KK . /. /5s1ss

1

##

0 5 10 15 200

0.5

1

1.5

2

t

y 1

5

10

25

K

3 23 2 1 0

0 1 2 3

1 2 0 3

a s a s a s a 0

a ,a ,a ,a 0

a a a a 0

# # # !

@

" @

4 3 24 3 2 1 0

0 1 2 3 4

2 21 2 3 4 1 0 3

a s a s a s a s a 0

a ,a ,a ,a ,a 0

a a a a a a a 0

# # # # !

@

" " @

Feedback Control

Chapter 3 Sheet 66

Summary of Routh’s criterionSummary of Routh’s criterion

! first-order system

! second-order system

! third-order system

! fourth-order system

1 0

1 0

a s a 0

a ,a 0

# !

@

22 1 0

0 1 2

a s a s a 0

a ,a ,a 0

# # !

@

Page 15: Bab 2 Control Theory

15

Feedback Control

Chapter 4 Sheet 1

Chapter 4Chapter 4

Basic properties of feedback

controllercontroller processprocess

sensorsensor

+

-

reference output

Feedback Control

Chapter 4 Sheet 2

Feedback control systemFeedback control system

controllercontroller processprocess

sensorsensor

+

-

control

input

output

Open loop control systemOpen loop control system

controllercontroller processprocessoutput

reference

input

reference

input

control

input

Feedback Control

Chapter 4 Sheet 3

Open loop speed controlOpen loop speed control

controllercontroller motormotoroutput

reference

speed

loadload

++

var y

A

Bload motor . /. /1s1s

A

21 #)#)controller K

ryA

1Kfor ss !'!

w

Page 16: Bab 2 Control Theory

16

Feedback Control

Chapter 4 Sheet 4

Feedback control systemFeedback control system

controllercontrollerprocessprocess

11

+

-

reference

speed

sensor

A

B

+

+va y

r

. /yrKva "!control action

rAK1

AKyss #

!

Feedback Control

Chapter 4 Sheet 6

Feedback control systemFeedback control system

KK processprocess

11

+

-

A

B

+

+va yr

. /yrKva "! rAK1

AKyss #

!

. /. /1s1s

A

21 #)#)

w

w1AK

By

#!*w

1AK

Br

1AK

AKyss #

##

!

Feedback Control

Chapter 4 Sheet 11

ExampleExample

w

D(s)D(s) G(s)G(s)+

- +

+u

y

r

. /. / . /

1G s

s 1 10s 1!

# #

setpoint stepsetpoint step disturbace stepdisturbace step

Page 17: Bab 2 Control Theory

17

Feedback Control

Chapter 4 Sheet 13

Propoprtional plus Integral ControlPropoprtional plus Integral Control

. / . / . /0

t

p i

t

u t K e t K e d! # ) )A

PI

. / . /. /

ip

U s KD s K

E s s! ! #

. /i

1D s K 1

T s

3 4! #5 6

7 8

KpKp

iK

s

+

+e(t) u(t)

t t

Feedback Control

Chapter 4 Sheet 14

Proportional plus Derivative FeedbackProportional plus Derivative Feedback

. / . / . /p d

de tu t K e t K

dt! #

. / . /. / p d

U sD s K K s

E s! ! #

PD

KpKp

dK s+

+e(t) u(t)

t t

. / . /dD s K 1 T s! #

Feedback Control

Chapter 4 Sheet 15

Proportional-Integral-Derivative FeedbackProportional-Integral-Derivative Feedback

PID

. / . / . / . /

0

t

p i d

t

de tu t K e t K e d K

dt! # ) ) #A

KpKp

iK

s +

+e(t)u(t)

dK s

+

. / . /di

1D s K 1 1 T s

T s

3 4! # #5 6

7 8

Page 18: Bab 2 Control Theory

18

Feedback Control

Chapter 4 Sheet 16

Proportional control onlyProportional control only

set point disturbance

Feedback Control

Chapter 4 Sheet 17

Proportional Integral controlProportional Integral control

disturbance

K = 25K = 25

setpoint

PIPI

Feedback Control

Chapter 4 Sheet 18

Proportional Integral Derivative controlProportional Integral Derivative control

y

set point

K=25

Ti=10 s.

disturbance