AXIAL PET - HPD --------------------
Embed Size (px)
description
Transcript of AXIAL PET - HPD --------------------

Tests WLS - Readout axial PET - Bari - Janvier 2007
AXIAL PET - HPD
--------------------
AXIAL COORDINATE RECONSTRUCTION WITH WLS STRIPS
--------------
1) Introduction
2) Experimental test set-up
3) Readout of the LYSO crystal bars
Performances : luminosity – Energy resolution
4) Readout of the WLS strips
Performances : pe statistic – σz resolution
5) Expected performances of a brain PET scanner
6) WLS readout with SiPM
J. Seguinot

Tests WLS - Readout axial PET - Bari - Janvier 2007
HPD2
HPD1
x
y
z
HPD2
HPD1
Original concept ;
N1
N2
Z = 0.5·(λeff.ln(N1/N2) + Lc)
σz =(λeff/√2No)sqrt{ ez/λeff + e(L-z)/λeff }
For Lc = 10 cm and λeff ~ 7 to 8 cm : σz ~4 mm.
N1 = (No/2)·e-z/λeff
N2 = (No/2)·e-(L-z)/λeff
Npe(z) = N1 + N2
No (nber of pe’s detected for λeff = ∞) characterizes the luminosity of the LYSO cristal matrix.
Energy resolution : The statistical term σE/E = ENF/sqrt( Npe) is limited by the value of λeff required to minimize σz.
New concept :
would allow a digital z reconstruction by mean of a transversal readout of each layer of the LYSO crystal bar matrix by mean of WLS strips (33 x 13 strips – L = 6 cm, w=3mm).
The principle is well known and largely used in calorimetry
For a WLS strip width w = 3 mm, σz ≤ w/√12 =.9 mm
As λeff ~ 400 mm for polished crystal bars, the energy resolution will also be significantly improved with respect to the original concept.
(was proposed by D.Schinzel)

Tests WLS - Readout axial PET - Bari - Janvier 2007
Transmisson coefficient (Fresnel corrected) ELJEN WLS (10x) sheets
00.10.20.30.40.50.60.70.80.9
1
200 300 400 500 600lambda (nm)
T
TR 0.7 FC
TR 1.0 FC
TR 1.5 FC
EJ-280 wavelength shifting plastics
Emission peak : 490 nm Absorption peak : 425 nm Quantum efficiency : 0.86 Decay time : 8.5 ns Density : 1.02 – ref. index : 1.58
LYSO emission peak
Absorption coefficient ~ 2.5 mm-1
Physical properties :
Using a reflector on the opposite side of the strip more than 80% of the light emitted by the LYSO crystals is absorbed in a WLS of 0.7 mm.

Tests WLS - Readout axial PET - Bari - Janvier 2007
Light attenuation length in the ELJEN EJ-280 WLS strips
The mean light intensity transmitted over 3 cm (6 cm is the max. length of the strips) is 78 to 88% for a thickness of 0.7 and 1 mm respectively.

Tests WLS - Readout axial PET - Bari - Janvier 2007
vacuum pump (turbo)P < 10-5 mbar
DAQReadout
card
Pulsed LED (blue)
MgF2
sapphire
mirror
Si sensor (300 m)208 pads (4×4 mm2)
VME
-UPC = 0 -20 kV
collimator
H2 self triggered U.V flash lampΔt ~ 10 nsf ~ 40 Hz
collimator
U.V light beam – Ф ~ 2 mm
Advantages :
1) The el. beam energy can be varied by adjusting the nber of pe’s emitted from the PC and the acceleration voltage up to 30 kV.
2) Possibility to scan a surface by moving the mirror.
PC
EXPERIMENTAL SET UP FOR HPD - TESTSThe principle is similar for the tests of the WLS strips : a narrow electron beam (Ф ~ 2mm – Δt ~ 10 ns) is generated from the photoemission of a CsI-PC. The light source is a self triggered UV flash lamp.
Inconvenient :
The set-up must be vacuum pumped to < 10-5 mbar.

Tests WLS - Readout axial PET - Bari - Janvier 2007
WLS strips – ELJEN – 1 mm thick, 3 x 60 mm2
Polished LYSO bars – 3x3x100 mm3 - delivered by St Gobain (Fr)
10 mm PMT Hamamatsu R1650 (inside the enceinte)
PMT Photonis XP 3102 (outside the enceinte)Support of the PC (10 nm CsI
deposited on a CaF2 crystal)
Position adjustable U.V light spot beam (~2mm in diameter - Δt~ 10 ns) scanning normal to the WLS strips
Set-up is turbo-pumped at ~ 10 exp-6 mbar
- 25 kV Sapphire window (1mm)

Tests WLS - Readout axial PET - Bari - Janvier 2007
PMT – Hamamatsu R1650
LYSO – crystal bar 3.2x3.2x10 cm3
PMT – Photonis XP3102
Support CaF2 crystal coated with a transmittive CsI photocathode (10 nm thickness)
U.V light spot beam
2 mm diam.- Δt ~10 ns
- 25 kV
Anode at gnd potential with a mesh (T=.90) above the crystals
Set-up turbo-pumped at ~10 exp.(-6) mbar
The extremities opposite to the PMTs of the LYSO bars and of the WLS strips
are aluminized
All the components of the set-up have been produced by the workshop in Bari.
Sapphire window

Tests WLS - Readout axial PET - Bari - Janvier 2007

Tests WLS - Readout axial PET - Bari - Janvier 2007

Tests WLS - Readout axial PET - Bari - Janvier 2007
Gain PMT = 6. 106
Readout of the LYSO bars

Tests WLS - Readout axial PET - Bari - Janvier 2007
Gain PMT = 1.3.106
Readout of the WLS strips

Tests WLS - Readout axial PET - Bari - Janvier 2007
Crystal LYSO
Single photoelectron response
~45 photoelectrons from scintillation are detected without back scattering – Relative Light Output (RLO) = 0.8
X-HPD DEVELOPMENT
Aluminized cylindrical crystal : Ф=12 mm, h= 18 mm

Tests WLS - Readout axial PET - Bari - Janvier 2007
Typical pulses from the readout of the LYSO bars

Tests WLS - Readout axial PET - Bari - Janvier 2007
The dispersion reflects the statistic on the nber of pe’s emitted from the CsI-PC
850 pe’s
WLS test set-up
Response of the LYSO bars for Uacc=25 kV and UPMT= - 1 kV
( ADC counts )

Tests WLS - Readout axial PET - Bari - Janvier 2007
ESTIMATIONS OF THE PERFORMANCES OF THE LYSO BARS :
Photomultiplier Photonis XP 3102 : Gain G = 6·106 at – 1 kV
Attenuation signal = 18 db ( ~ factor 8)
ADC : sensitivity = 50 fC/ADC count
Electron beam : The number of primary pe’s emitted from the PC is determined by the relation,
Npe = (<μ>/σ)2 where <μ> is the mean value of the LYSO charge distribution of ecart type σ.
Uacc = acceleration voltage (kV)
RLO = Relative Light Output of the scintillation yield with the acceleration voltage (0.8 at 25 kV)
Npe(LYSO) = {8 x 50· <μ>· 10-15} / G x 1.6·10-19 = 2.5·106·<μ>/ G
= (No/2) · {e-z/λeff + R · e-(L – z)/λeff}
R = reflectivity at the end bar
Experimental conditions : z = 6 cm, L = 10 cm, λeff = 40 cm, R = 0.8 ?
The formula above, if correct, shows that the number of detected pe’s is~ independent of z. This is very good for the discrimination in energy needed for the trigger and, moreover, the resolution in energy is minimized.
At 511 keV equivalent energy,
No = 1794·<μ> / (Npe·G · Uacc·RLO)
with Uacc (kV) and G PMT = 6.10-6

Tests WLS - Readout axial PET - Bari - Janvier 2007
scanning across to the LYSO bars
0
200
400
600
800
1000
1200
1400
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
z (mm)
Ch
arg
e (A
DC
co
un
ts)
Series1
-U (pc) = 25 kV
U(PMT)=1. kV
On the plateau, 12 ± .4 primary pe’s from the PC are detected and the mean charge (1189 ± 24 ADC counts) corresponds to about 500 pe’s from the scintillation light in the LYSO crystal bars, i.e ~40 pe’s/ inc.pe, as expected from the previous tests for the X-HPD project.
Assuming an effective light attenuation length λeff of 40 cm for polished crystal bars and a reflectivity of 80% of the Al coating at the end of the bars opposite to the PMT, one can estimate No to ~1400.
LYSO
Data :12/9/2006
The shape is exactly what one expectsfor a total crystal width of 6.4 mm and
a beam spot of ~ 2mm in diameter

Tests WLS - Readout axial PET - Bari - Janvier 2007
Npe(LYSO) vs Uacc
0
100
200
300
400
500
600
700
800
900
1000
5 10 15 20 25 30 35
Uacc (kV)
Np
e (L
YS
O)
Npe inc. = 17.3 ± 0.7 for 10≤ Uacc ≤ 27.5
LSF : -113.1 + 36.51 x U(kV)
Cut-off : 3.1 kV
120 keV350 keV
Data : 1/3/2007

Tests WLS - Readout axial PET - Bari - Janvier 2007
No x RLO vs Uacc
800
900
1000
1100
1200
1300
1400
1500
1600
5 10 15 20 25 30
Uacc (kV)
No
x R
LO
LSF
Data
RLO (Relative Light Output)
RLO = 0.8
RLO = 0.7
LUMINOSITY LYSO : No ~ 1600
Data : 1/3/2007
In our publication (Il Nuovo Cimento Vol.29 C, N. 4) we have quoted 1525 for LSO assuming a QE of 30%

Tests WLS - Readout axial PET - Bari - Janvier 2007
Typical readout pulses from the WLS strips
Sum of channels 1 and 2

Tests WLS - Readout axial PET - Bari - Janvier 2007
Charge distribution : sum of the two WLS strips response.
40 pe’s
Uacc = 25 kV
(ADC counts)

Tests WLS - Readout axial PET - Bari - Janvier 2007
PERFORMANCES OF THE WLS STRIPS :
Photomultipliers : Hamamatsu R1650 at 1.2 kV
Gain PM = 1.3 106
ADC sensitivity 50 fC/ADC count
<QWLS> : mean charge in ADC count
(Npe)WLS = 0.24 · <QWLS>
At 511 keV equivalent energy :
(Npe)WLS = 122.6 · <QWLS> / (Npe·Uacc·RLO)
The ratio :
R = (Npe)WLS/ (Npe)LYSO = 0.58 · <QWLS>/<μLYSO>
(PMT (LYSO) at -1 kV and the PMT(LYSO) at -1.2 kV).
is a rough estimation of the ratio of the detected photon yields
assuming :
QE PMT(LYSO) at 425 nm = .30 QE PMT(WLS) at 500 nm = .15

Tests WLS - Readout axial PET - Bari - Janvier 2007
Scanning across the WLS strips
0
10
20
30
40
50
60
70
80
90
50 55 60 65 70 75 80 85
z (mm)
Ch
arg
e A
DC
co
un
ts
Series1
Series2
Strip # 1 Strip # 2
At z = 64 mm (centre of strip #1) ) about 60 % of the total charge is detected, i.e ~ 40 pe’s at 511 keV and 40% on strip#2 i.e ~20 pe’s.
3 mm
Data 12/19/2006
<Npe inc.> = 7.3 ± 1.3
WLS
As both strips are hit when scanning over the total width covered by the strips, a precise digital z reconstruction cannot be obtained unless to apply a high discrimination level proportional to the level of light detected.
Indeed, the aperture of the light cone at the input of the WLS is large (~400) and the spot size is still increased because the scintillation light in these tests is generated on the opposite side of the strips since the range of electrons of 25 keV in the crystals is very small.

Tests WLS - Readout axial PET - Bari - Janvier 2007
Scanning normal to the WLS strips
0
2
4
6
8
10
12
14
16
18
20
50 55 60 65 70 75 80
z (m m )
Q(A
DC
co
un
ts)/
ph
oto
elec
tro
n
Series1
6 mm WLS strips
At z = 66 mm,
Q(WLS)/inc. pe = 16 – 4 (bkg subst.) ADC counts
For a PM gain = 1.3.106 :
Npe(WLS)/20 keV inc. pe = 2.9
i.e, ~ 70 pe’s at 511 keV for a 1 mm WLS strip and a photon detector quantum efficiency of ~15%.
Data : 12/19/2006
Uacc = 25 kV
The tail is a bkg due to photons which escape from the lateral surface of the LYSO bars.
Q = Q2 + Q31 mm WLS strips

Tests WLS - Readout axial PET - Bari - Janvier 2007
Q wls(ADC counts) vs Uacc
40
60
80
100
120
140
160
180
200
5 10 15 20 25 30
Uacc (kV)
Qw
ls (A
DC
cou
nts)
Data : 1/3/2007
Z mir = 67 mm

Tests WLS - Readout axial PET - Bari - Janvier 2007
Npe (WLS) vs Uacc
0
5
10
15
20
25
30
35
40
45
50
5 10 15 20 25 30
Uacc (kV)
Np
e (
WL
S)
LSF : -4.5 + 1.676 x Uacc(kV)
<Npe> inc.=17.3 ± 0.7
E=120 keV E=350 keV
Data : 1/3/2007
Cut-off : 2.7 kV
Z mir = 67 mm
At 511 keV : Npe (WLS) ~ 60
1 mm WLS strips

Tests WLS - Readout axial PET - Bari - Janvier 2007
Z RECONSTRUCTION
52
54
56
58
60
62
64
66
59 61 63 65 67 69 71 73 75
z mirror (mm)
z re
con
stru
cted
(m
m)
Q2 Q3
WLS
ZREC = 60 + (Q2 – Q3) / (Q2 + Q3)
Q2 = 0
Q3 = 0
LSF : m = 0.9
The slope m = 0.9 instead of 1 expected is due to the different detection efficiency of the WLS strips.
Data - 12/22/2006
ANALOGUE Z RECONSTRUCTION

Tests WLS - Readout axial PET - Bari - Janvier 2007
Z (mm)
Uacc = 25 kV
As the z reconstruction is, “de facto”, analogue, the resolution σZ varies as 1/√Npe(WLS) or 1/√E, and is estimated to ~ 1mm for 511 keV gamma from the extrapolation of the next measurement.
( E = 350 keV )

Tests WLS - Readout axial PET - Bari - Janvier 2007
Resolution z
0
0.5
1
1.5
2
2.5
3
0.1 0.15 0.2 0.25 0.3 0.35 0.4
1 / sqrt Npe(WLS)
Sig
ma
z (m
m)
LSF : σz = -0.21 + 9.785/√Npe
10 kV
27.5 kV
Data : 1/3/2007
350 keV
120 keV

Tests WLS - Readout axial PET - Bari - Janvier 2007
From our publication in Il Nuovo Cimento Vol. 29 C,N. 4
HPD – PET LYSO 1.85 2.35 2.1 ~ 9 mm3 (Digital z reconstruction) FWHM values
Expected
This is ~ physical limit

Tests WLS - Readout axial PET - Bari - Janvier 2007
PET-HPD with LYSO and digital z reconstruction
ΔE/E (511 keV) = 9 %
ΔV (mm3) = 9
ΔE/E . ΔV (%.mm3) = 81
FoM ~ 3

Tests WLS - Readout axial PET - Bari - Janvier 2007
x
y
z
The concept would allow a better azimuthal coverage with a single HPD.

Tests WLS - Readout axial PET - Bari - Janvier 2007
READOUT OF THE WLS STRIPS BY MEAN OF SiPM’s
We need a specific SiPM design :
• Active area : 3 x 1 mm2 (cross section of the WLS strip 3 x 0.7 mm2)
• Nber of pixels : 600 – i.e 200 / mm2 (dynamic range is sufficient)
• Pixel size : 70 x 70 μm2
• Sensitivity to single photons (R quenching ~ 250 k)
Advantages:
By increasing the pixel size :
1) One increases the active area. Consequently the quantum efficiency could, hopefully, be better than 30% at 500 nm ( ? ) instead of ~15% for a bi-alkali PC, a large gain, especially for the detection of Compton events.
2) The capacitance per pixel being higher, the gain would be increased.

Tests WLS - Readout axial PET - Bari - Janvier 2007
SLIDES FOR COMPLEMENT OF INFORMATION

Tests WLS - Readout axial PET - Bari - Janvier 2007
0
20
40
60
80
100
120
140
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
Q2+Q3
Q2-zero_scaled
Q3-zero
Z (mm)
Ch
arg
e (
AD
C c
ou
nts
)

Tests WLS - Readout axial PET - Bari - Janvier 2007
Charge ( V.s.)
Gain PMT = 3.10 exp.6