AW Log Interpretation Charts

download AW Log Interpretation Charts

of 125

Transcript of AW Log Interpretation Charts

  • 8/11/2019 AW Log Interpretation Charts

    1/125

  • 8/11/2019 AW Log Interpretation Charts

    2/125

    ...when experience matters

    Table of Contents

    I

    Log Interpretation Charts

    1. General

    Borehole and Formation Parameters GEN-1Estimation of Formation Temperature with Depth GEN-2

    Estimation of Formation Temperature with Depth Imperial GEN-4

    Estimation of Formation Temperature with Depth Metric GEN-5

    Equivalent NaCl Concentration of Salts GEN-6

    Resistivity Salinity Temperature Conversions of NaCLl Solutions GEN-8

    Resistivity of NaCl Solutions at 75 F GEN-11

    Estimation of Rmf

    and Rmc

    from Rm

    GEN-12

    Formation Resistivity Factor versus Porosity GEN-15

    2. Spontaneous Potential

    SP Bed Thickness Correction SP-1

    Rwe

    Estimate from Static SP SP-3

    Rwe

    Estimate from Static SP - Imperical SP-5

    Rwe

    Estimate from Static SP - Metric SP-6

    Estimation of Rw

    from Rwe

    SP-7

    3. Induction Array

    Induction Array Tool - Invasion Correction Charts IAT-1

    Rt= 1 R

    xo> R

    tIA20/IA90 vs IA30/IA90 IAT-3

    Rt= 10 R

    xo> R

    tIA20/IA90 vs IA30/IA90 IAT-4

    Rt= 1 IA20/IA90 vs IA30/IA90 IAT-5

    Rt= 1 R

    xo> R

    tIA20/IA90 vs IA30/IA90 IAT-6

    Rt= 1 R

    xo< R

    tIA20/IA90 vs IA30/IA90 IAT-7

    Rt= 10 IA20/IA90 vs IA30/IA90 IAT-8

    Rt= 10 R

    xo> R

    tIA20/IA90 vs IA30/IA90 IAT-9

    Rt= 10 R

    xo< R

    tIA20/IA90 vs IA30/IA90 IAT-10

    Rt= 100 IA20/IA90 vs IA30/IA90 IAT-11

    Rt= 100 R

    xo> R

    tIA20/IA90 vs IA30/IA90 IAT-12

    Rt= 100 R

    xo< R

    tIA20/IA90 vs IA30/IA90 IAT-13

  • 8/11/2019 AW Log Interpretation Charts

    3/125

    ...when experience matters

    Table of Contents

    II

    4. Dual Laterolog

    Dual Laterlog Borehole Corrections DLL-1

    LLD Borehole Corrections Centralized DLL-2

    LLD Borehole Corrections Eccentralized at 1.5 inch Standoff DLL-3

    LLS Borehole Corrections Centralized DLL-4

    LLS Borehole Corrections Eccentralized at 1.5 inch Standoff DLL-5

    IAT versus DLL Selection DLL-6

    5. Micro-Spherically Focused Log

    Micro-Spherically Focused Log Mudcake Thickness Corrections MSFL-1

    Mudcake Thickness Corrections MSFL-2

    6. Spectral Gamma Ray

    Spectral Gamma Ray Borehole Corrections GR-1

    SGR Potassium (K) Borehole Corrections - Eccentralized GR-2

    SGR Uranium (U) Borehole Corrections - Eccentralized GR-3

    SGR Thorium (Th) Borehole Corrections - Eccentralized GR-4

    SGR Potassium (K) Borehole Corrections - Centralized GR-5

    SGR Uranium (U) Borehole Corrections - Centralized GR-6

    SGR Thorium (Th) Borehole Corrections - Centralized GR-7

    7. Compensated Neutron Log

    Compensated Neutron Log (CNL) CNL-1

    Open Hole Borehole Diameter CNL-5Open Hole Temperature CNL-6

    Open Hole Standoff CNL-7

    Open Hole Borehole Water Relative Density Eccentralized CNL-9

    Open Hole Borehole Water Relative Density Centralized CNL-11

    Open Hole Borehole Fluid Salinity Eccentralized CNL-13

    Open Hole Borehole Fluid Salinity Centralized CNL-15

    Open Hole Borehole Mud Density Corrections Eccentralized CNL-17

    Open Hole Borehole Barite Mud Density Eccentralized CNL-19

    Open Hole Mud Cake Thickness Eccentralized CNL-21

    Open Hole Lithology CNL-23

    Open Hole Formation Fluid Salinity CNL-24

  • 8/11/2019 AW Log Interpretation Charts

    4/125

  • 8/11/2019 AW Log Interpretation Charts

    5/125

    ...when experience matters

    General

    GEN-1

    Borehole and Formation Parameters

    Flushed

    Zone

    Uninvaded

    Zone

    Transition

    Zon

    e

    (Annulus)

    Mudcake

    Mud

    AdjacentBed

    hmc

    dh

    di

    dj

    h

    Rm

    Rmc

    Rxo Ri Rt

    Rs

    RwRmf

    SwSxo

    h bed thickness

    hmc mudcake thickness

    dh borehole diameter

    di diameter of flushed zone

    dj diameter of transition zone

    Rm mud resistivity

    Rmc mudcake resistivity

    Rmf mud filtrate resistivity

    Rxo flushed zone resistivity

    Rt true resistivity

    Rs adjacent bed resistivity

    Rw formation water resistivity

    Sxo flushed zone water saturation

    Sw water saturation

  • 8/11/2019 AW Log Interpretation Charts

    6/125

    ...when experience matters

    General

    GEN-2

    Estimation of Formation Temperature with Depth

    Purpose

    This chart may be used to estimate the temperature gradient for a well by entering the depth and a known

    temperature at that depth. The chart may also be used to determine a temperature at a given depth if atemperature at another depth is known and the geothermal gradient is assumed.

    Procedure

    To estimate the geothermal gradient for a well, enter the chart at a known depth on the vertical axis and then

    project horizontally until intersecting the known temperature from the horizontal axis. The temperature on

    the horizontal axis should correspond to the row with the Annual Mean Surface Temperature for the area in

    which the well is located. The intersection of the vertical and horizontal lines can be interpolated to a

    geothermal gradient if it falls between the printed temperature gradient lines.

    To determine the temperature at any depth from another depth with a known temperature enter the chart on

    the vertical axis point of the known depth and project horizontally until it intersects with the knowntemperature from the horizontal axis. From the intersecting point follow the gradient line until it intersects

    the desired depth projection on the vertical axis. Project the intersected point down to the horizontal axis and

    read the temperature from the appropriate row with the Annual Mean Surface Temperature.

    Example

    Given

    TD of 14000 feet

    Bottom hole temperature of 250 F

    Mean annual surface temperature of 60 F

    FindDetermine the temperature gradient for the well and the temperature at 9000 feet.

    Answer

    From the 14000 ft depth point on the vertical axis project horizontally across the chart. Since the mean annual

    surface temperature is 60 F use the third temperature row at the bottom of the chart. From the 250 F point

    project vertically into the chart until the two lines intersect. From this intersection point draw a line from to

    the upper left corner of the chart. This geothermal gradient line can be interpolated between the 1.2 F/100 ft

    and 1.4 F/100 ft gradient lines at approximately 1.37 F/100 ft.

    From the intersection of the 1.37 F/100 ft gradient line and the 9000 ft depth line project down and read the

    temperature from the third line at the bottom of the chart (corresponding to the 60 F mean surface

    temperature). The temperature at 9000 ft should be approximately 183 F.

  • 8/11/2019 AW Log Interpretation Charts

    7/125

    ...when experience matters

    General

    GEN-3

    Equations

    G = geothermal gradient

    TAMST= annual mean surface temperature

    Td1= Temperature at depth 1

    Td2= Temperature at depth 2d = depth

    d1= depth 1

    d2= depth 2

    Geothermal Gradient calculation

    G = 100T Td d

    Temperature at depth calculation

    T= T+ 0.01(G d)

    Conversion factors

    1 F/100 ft = 1.823 C/100 m

    1 C/100 m = 0.5486 F/100 ft

  • 8/11/2019 AW Log Interpretation Charts

    8/125

  • 8/11/2019 AW Log Interpretation Charts

    9/125

  • 8/11/2019 AW Log Interpretation Charts

    10/125

  • 8/11/2019 AW Log Interpretation Charts

    11/125

    ...when experience matters

    General

    GEN-7

    10 20 50 100 200 500 1000 2000 5000 10000 20000 50000 100000 300000

    -0.5

    0.0

    0.5

    1.0

    1.5

    2.0

    Multiplier

    Total Concentration (ppm)

    Equivalent NaCl Concentrations of Salts

    Na and Cl

    K

    HCO3

    SO4

    Mg

    Ca

    CO3

  • 8/11/2019 AW Log Interpretation Charts

    12/125

    ...when experience matters

    General

    GEN-8

    Resistivity Salinity Temperature Conversions of NaCl Solutions

    Purpose

    This chart may be used to estimate the resistivity value of an equivalent NaCl solution at a given temperature

    or to determine the resistivity at one temperature given the resistivity at another temperature.

    Procedure

    To estimate the resistivity of the solution, enter the chart on the horizontal axis at the given temperature.

    Project this line vertically until intersection with the given equivalent concentration line. Project this

    intersection point horizontally to determine the resistivity.

    For a solution with a known resistivity and temperature the resistivity at another temperature can be found.

    Enter the chart on the horizontal axis at the first temperature and on the vertical axis at the corresponding

    resistivity. Project both lines to find the intersection point. If the intersection point is between the ppm

    concentration lines interpolate between them to find a corresponding equivalent NaCl ppm concentration.

    Follow this line to the vertical projection of the temperature for the unknown resistivity. At the intersection ofthe ppm concentration and the temperature project horizontally to read the resistivity at that temperature.

    Example

    Given

    Water with an equivalent NaCl concentration of 30,000 ppm

    Temperature of 150 F

    Find

    Determine the resistivity of the solution.

    AnswerFrom the 150 F temperature point on the horizontal axis project vertically into the chart until the line

    intersects the 30 000 ppm line. At the intersection point project horizontally to read the resistivity from the

    vertical axis scale of 0.105 ohmm.

    Given

    Resistivity of a solution is 0.4 ohmm

    Temperature is 180 F

    Find

    Determine the resistivity of the solution at 70 F.

    Answer

    From the 180 F temperature point on the horizontal axis project vertically into the chart until the line

    intersects the 0.4 ohmm projected resistivity line. Follow the ppm concentration line to the projection of the

    70 F line. Interpolate the concentration line if necessary. Project the intersection point horizontally to read

    the new temperature of 0.99 at 70 F.

  • 8/11/2019 AW Log Interpretation Charts

    13/125

    ...when experience matters

    General

    GEN-9

    Equations

    R1= Resistivity of sample 1

    R1= Resistivity of sample 2

    T1= Temperature of sample 1

    T2= Temperature of sample 2

    Calculation with temperature in degrees Fahrenheit

    R= R T+ 6.77T+ 6.77

    Calculation with temperature in degrees Celcius

    R= R T+ 21.5T+ 21.5

  • 8/11/2019 AW Log Interpretation Charts

    14/125

    ...when experience matters

    General

    GEN-10

    0.006

    0.008

    0.01

    0.02

    0.03

    0.04

    0.06

    0.08

    0.1

    0.2

    0.3

    0.4

    0.6

    0.8

    1

    2

    3

    4

    6

    8

    10

    30 40 50 60 70 80 90 100 150 200 250 300 350 400

    0 2 4 6 8 10 15 20 30 40 50 60 70 80 90 100 150 200

    0.006

    0.008

    0.01

    0.02

    0.03

    0.04

    0.06

    0.08

    0.1

    0.2

    0.3

    0.4

    0.6

    0.8

    1

    2

    3

    4

    6

    8

    10

    ResistivityofSolution(ohmm

    )

    Temperature (F)

    Resistivity - Salinity - Temperature

    Conversions of NaCl Solutions

    Temperature (C)

  • 8/11/2019 AW Log Interpretation Charts

    15/125

    ...when experience matters

    General

    GEN-11

    0.01

    0.1

    1

    10

    100

    100 1000 10000 100000 1000000

    R

    esistivityat75F(ohmm)

    NaCl Salinity (ppm)

    Resistivity of NaCl Solutions at 75 F

  • 8/11/2019 AW Log Interpretation Charts

    16/125

    ...when experience matters

    General

    GEN-12

    Estimation of Rmfand Rmcfrom Rm

    PurposeThis chart may be used to estimate the mud filtrate and mudcake resistivities given the mud resistivity and

    drilling mud density.

    ProcedureTo estimate the mud filtrate resistivity (Rmf) or mudcake resistivity (Rmc) enter the chart on the horizontal axis

    at the appropriate Rm value. Project this line vertically until it intersects the drilling fluid density curve for

    either Rmf or Rmc. Project the intersection point horizontally to determine the resistivity of either the mud

    filtrate or mudcake.

    ExampleGiven

    Rmf= 3.0 ohmm

    Drilling fluid density = 12 lb/gal

    Find

    Estimate the resistivity of the mud filtrate and mud cake.

    Answer

    From the 3.0 ohmm point on the horizontal axis project vertically into the chart until the line intersects the

    solid 12 lb/gal curve and the dashed 12 lb/gal curve. At the intersection point from each of these curves

    project horizontally to read the resistivity for each of the mud filtrate, 1.1 ohmm and mudcake 4.4 ohmm.

    Equations

    Rm= mud resistivityRmf= mud filtrate resistivity

    Rmc= mudcake resistivity

    km= Coefficient of the mud

    Mud Density Coefficient of the mud

    lb/gal kg/m3 km

    10 1198 0.847

    11 1318 0.708

    12 1438 0.584

    13 1558 0.488

    14 1678 0.41216 1917 0.380

    18 2157 0.350

  • 8/11/2019 AW Log Interpretation Charts

    17/125

    ...when experience matters

    General

    GEN-13

    Rmfand Rmccan be calculated using the following equations and the values from the table above.

    R= k R.

    R= 0.69 R RR.

  • 8/11/2019 AW Log Interpretation Charts

    18/125

    ...when experience matters

    General

    GEN-14

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.08

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.8

    1

    2

    3

    4

    5

    6

    8

    10

    0.01 0.02 0.04 0.06 0.1 0.2 0.3 0.4 0.6 0.8 1 2 3 4 6 8 10

    ResistivityofMudFiltrate,

    Rmf

    (ohmm

    )

    Resistivity of Mud, Rm (ohmm)

    Estimation of Rmfand Rmc from Rm

    ResistivityofMudcake,

    Rmc

    (ohmm

    )

    Mud Density

    lb/gal kg/m3

    10 1198

    11 1318

    12 1438

    13 155814 1678

    16 1917

    18 2157

    Mud Density

    lb/gal kg/m3

    10 119811 1318

    12 1438

    13 1558

    14 1678

    16 1917

    18 2157

    Rmc

    Rmf

  • 8/11/2019 AW Log Interpretation Charts

    19/125

    ...when experience matters

    General

    GEN-15

    Formation Resistivity Factor versus Porosity

    Purpose

    This chart may be used to determine the formation resistivity factor for a given porosity.

    Procedure

    To estimate the formation resistivity factor (F) enter the chart on the vertical axis at the appropriate porosity

    value. Project this line horizontally until it intersects the desired cementation exponent curve (m) for the rock

    type. Project the intersection point vertically to determine the formation resistivity factor (F).

    Example

    Given

    a = 1.0

    m = 1.8

    = 10 %

    Find

    Estimate the formation resistivity factor (F).

    Answer

    From the 10 % point on the vertical axis project horizontally into the chart until the line intersects the m=1.8

    curve. At the intersection point project vertically to read the formation resistivity factor of 62 from the

    horizontal axis.

    Equations

    F = formation resistivity factor

    a = tortuosity factor

    m = cementation exponent = porosity

    General equation

    F =a

    For sandstones

    F =0.62

    . or F =

    0.81

    For carbonates

    F =1.0

  • 8/11/2019 AW Log Interpretation Charts

    20/125

  • 8/11/2019 AW Log Interpretation Charts

    21/125

    ...when experience matters

    Spontaneous Potential

    SP-1

    SP Bed Thickness Correction

    Purpose

    This chart may be used to correct the spontaneous potential (SP) log for the effects of bed thickness.

    Procedure

    To estimate the SP correction factor first determine the ratio between the true formation resistivity and the

    mud resistivity at the formation temperature. Enter the chart on the vertical axis at the estimated bed

    thickness. Units of feet are on the left side of the chart and meters are on the right side of the chart. Project

    the line horizontally until it intersects the curve closest to the R t/Rmvalue. Values between the curves can be

    interpolated. From the intersection point project vertically down to read the SP correction factor. Multiply

    the SP reading from the log by this correction factor to obtain a corrected SP log for bed thickness. Thicker

    beds should have less correction effects.

    Example

    Given

    SPLOG= -80 mV

    h = 7 feet

    Rt= 24 ohmm

    Rm= 1.2 ohmm

    Find

    Estimate the SP corrected for bed thickness.

    Answer

    Determine the Rt/Rmratio.

    R

    R=

    24 ohm m

    1.2 ohm m= 20

    Enter the chart on the left vertical axis at 7 feet and project horizontally until the line intersects the Rt/Rm=20

    curve. Project this intersection point vertically to the lower axis to obtain an SP correction factor of 1.34.

    Multiply the SP reading from the log by the correction factor to obtain a corrected SP reading of -107.2 mV.

    SPCORR= SPLOGSPCorreciton Factor

    SPCORR= -80 mV 1.34 = -107.2 mV

  • 8/11/2019 AW Log Interpretation Charts

    22/125

    ...when experience matters

    Spontaneous Potential

    SP-2

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    20

    25

    30

    1.0

    1.5

    2.0

    2.5

    3.0

    4.0

    5.0

    6.0

    7.0

    8.0

    9.0

    BedThickness(feet)

    BedThickness(meters)

    Rt

    Rm

    5 10 60 15010020 40 80 200

  • 8/11/2019 AW Log Interpretation Charts

    23/125

    ...when experience matters

    Spontaneous Potential

    SP-3

    RweEstimate from Static SP

    Purpose

    This chart may be used to determine the equivalent water resistivity from the static spontaneous potential

    (SSP).

    Procedure

    To estimate Rwe first enter the chart on the lower axis with the SSP in millivolts. Project this line vertically until

    intersecting the appropriate temperature line. Project the intersection of the SSP and temperature line

    horizontally to determine the Rmfe/Rweratio. Rwecan be determined by dividing the Rmfecalculated from the

    log by the Rmfe/Rweratio.

    Example

    Given

    Rmf= 1.4 ohmm @ 75 F

    SSP = -110 mV

    Temperature = 150 F

    Find

    Estimate the Rwe.

    Answer

    Determine the equivalent mud resisitivity. Since Rmf> 0.1 at 75 F we can use chart GEN 4b to determine the

    Rmfat the formation temperature of 150 F. From the chart the Rmfat 150 F is 0.7 ohmm.

    Rmfe= 0.85Rmf= 0.85 x 0.7 = 0.595 ohmm

    Enter the chart on the horizontal axis at SSP = -110 mV. Project this line vertically until it intersects the 150 F

    temperature line. Project this intersection point horizontally to the left to read the Rmfe/Rweratio of 23.

    R

    R= 23

    Input the value of 0.595 ohmm for Rmfeinto the equation and solve for Rweto get 0.0259 ohmm.

    R=0.595

    23= 0.0259 ohm m

  • 8/11/2019 AW Log Interpretation Charts

    24/125

    ...when experience matters

    Spontaneous Potential

    SP-4

    Equations

    If Rmfat 75 F is > 0.1 ohmm then correct Rmfto formation temperature using chart GEN 4band the

    equation: Rmfe= 0.85Rmf

    If Rmfat 75 F is < 0.1 ohmm then use chart SP 3to find Rmfeat the formation temperature.

    SSP = static spontaneous potential

    Td= Temperature at formation depth

    Rmfe= equivalent mud filtrate resistivity

    Rwe= equivalent water resistivity

    Static SP calculation with temperature in degrees Fahrenheit

    707 460 + T537 RR

    Static SP calculation with temperature in degrees Celcius

    707 273 + T298 RR

  • 8/11/2019 AW Log Interpretation Charts

    25/125

  • 8/11/2019 AW Log Interpretation Charts

    26/125

    ...when experience matters

    Spontaneous Potential

    SP-6

    0.1

    0.2

    0.5

    1

    2

    5

    10

    20

    50

    100

    -200.0-150.0-100.0-50.00.050.0100.0

    RmfeRwe

    Static SP (mV)

    Rwe Estimate from Static SP

    250

    225

    200

    175

    25 15012510075500CFormation Temperature

  • 8/11/2019 AW Log Interpretation Charts

    27/125

  • 8/11/2019 AW Log Interpretation Charts

    28/125

    ...when experience matters

    Spontaneous Potential

    SP-8

    0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10

    0.001

    0.002

    0.005

    0.01

    0.02

    0.05

    0.1

    0.2

    0.5

    1

    2

    5

    10

    R

    esistivityofWater,Rw(ohmm)

    Resistivity of Water Equivalent, R (ohmm)

    Estimation of Rw from Rwe

    500 F

    300 F250 F

    150 F

    400 F

    200 F

    100 F

    75 F

    75F

    300F

    250F

    200F

    150F

    100F

    500F

    400F

  • 8/11/2019 AW Log Interpretation Charts

    29/125

    ...when experience matters

    Induction Array

    IAT-1

    Induction Array Tool - Invasion Correction Charts

    Purpose

    These charts may be used to determine the true resistivity, flushed zone resistivity and the diameter of

    invasion from the IAT logs. Separate charts are presented for different formation resistivity values and using

    different shallow array curves from the IAT tool. The existing charts are all for thick beds with a step profile

    invasion.

    Procedure

    Enter the chart with the ratio of the curves IA30/IA90 on the horizontal axis and the ratio of the IA20/IA90

    curves on the vertical axis. The intersection of the two projections determines the diameter of invasion on the

    red dashed curves, Rxo/Rton the blue curves and Rt/IA90 on the black curves. If the intersection does not lie

    on existing curves then the value may be obtained by interpolating between the two bounding curve values.

    Example

    Given

    IA20 = 50 ohmm

    IA30 = 31 ohmm

    IA90 = 14 ohmm

    Rxo= ohmm

    Find

    Determine Rt, Rxoand diameter of invasion (Di).

    Answer

    Calculate the required ratios for the chart:

    IA20

    IA90=

    50 ohm m

    14 ohm m= 3.6

    IA30

    IA90=

    31 ohm m

    14 ohm m= 2.2

    Using the chart IAT 2, as the estimated Rt will be close to 10, enter the chart at 3.6 on the vertical IA20/IA90

    axis and project horizontally into the chart. Enter the chart at 2.2 on the horizontal IA30/IA90 axis and project

    vertically into the chart.

    Using the intersection point, interpolate between the solid black lines to determine the ratio Rt/IA90 = 0.825.

    Calculate Rtto be 11.6 ohmm.

    R

    IA90=

    R

    14 ohm m= 0.825 R= 11.6 ohm m

    Using the intersection point again, interpolate between the solid blue lines to determine the ratio Rxo/Rt= 9.0.

    Calculate Rxoto be 104.4 ohmm.

  • 8/11/2019 AW Log Interpretation Charts

    30/125

    ...when experience matters

    Induction Array

    IAT-2

    R

    R=

    R

    11.6 ohm m= 9.0 R= 104.4 ohm m

    Using the intersection point again, interpolate between the dashed red lines to determine the diameter of

    invasion to be 83 inches.

  • 8/11/2019 AW Log Interpretation Charts

    31/125

    ...when experience matters

    Induction Array

    IAT-3

    1

    2

    3

    4

    5

    6

    7

    8

    1 1.5 2 2.5 3 3.5

    IA20/IA90

    IA30/IA90

    Induction Array Tool - Invasion Corrections

    Rt = 1 ohmm Rxo > Rt

    Rxo/Rt

    50

    4

    2

    6

    8

    10

    12

    15

    20

    25

    30

    40

    Di = 100"

    20"

    30"

    40"

    50"

    60

    "

    70"

    80"

    90"

    Rt/IA90 = 0.75

    0.8

    1.0

    0.85

    0.95

    0.9

    0.975

  • 8/11/2019 AW Log Interpretation Charts

    32/125

    ...when experience matters

    Induction Array

    IAT-4

    1

    2

    3

    4

    5

    6

    7

    8

    1 1.5 2 2.5 3 3.5

    IA20/IA90

    IA30/IA90

    Induction Array Too - Invasion Corrections

    Rt = 10 ohmm Rxo > Rt

    2

    4

    15

    25

    20

    12

    30

    8

    10

    40

    Rxo/Rt

    6

    Di = 100"

    40"

    50"

    70"

    60"

    20"

    30"

    80"

    90"

    Rt/IA90 = 0.75

    0.8

    0.85

    0.9

    0.95

    0.975

    1.0

  • 8/11/2019 AW Log Interpretation Charts

    33/125

    ...when experience matters

    Induction Array

    IAT-5

    0.1

    1

    10

    100

    0 0.5 1 1.5 2 2.5 3 3.5

    IA10/IA90

    IA30/IA90

    Induction Array Tool - Invasion Corrections

    Rt= 1 ohmm

    Rxo/RtDi= 100"

    Rt/IA90 = 2

    50

    0.25

    2

    0.5

    1

    4

    6

    8

    10

    12

    15

    20

    30

    90"

    30"

    40"

    20"

    50"

    60"

    70"

    80"

    20"

    90"

    50"

    80"

    70"

    60"

    40" 30"

    100"

    0.750.8

    0.95

    0.9

    0.85

    0.975

    1

    1.5

    1.05

    1.21.1

  • 8/11/2019 AW Log Interpretation Charts

    34/125

    ...when experience matters

    Induction Array

    IAT-6

    1

    6

    11

    16

    21

    26

    31

    36

    1 1.5 2 2.5 3 3.5

    IA10/IA90

    IA30/IA90

    Induction Array Tool - Invasion Corrections

    Rt = 1 ohmm Rxo > Rt

    Rxo/RtDi = 100"

    Rt/IA9

    0 0.975

    50

    15

    20

    30

    90"

    30"

    20"

    40"

    50"

    60"

    70"

    80"

    0.95

    0.9

    0.85

    0.8

    0.75

  • 8/11/2019 AW Log Interpretation Charts

    35/125

    ...when experience matters

    Induction Array

    IAT-7

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    IA10/IA90

    IA30/IA90

    Induction Array Tool - Invasion Corrections

    Rt = 1 ohmm Rxo < Rt

    Rxo/Rt

    Di = 100"

    Rt/IA90 = 1.05

    0.5

    0.25

    90"

    20"70"

    60"

    40"30"50"

    80"

    1.2

    1.5

    1.1

    2

  • 8/11/2019 AW Log Interpretation Charts

    36/125

    ...when experience matters

    Induction Array

    IAT-8

    0.01

    0.1

    1

    10

    100

    0 0.5 1 1.5 2 2.5 3 3.5

    IA10/IA90

    IA30/IA90

    Induction Array Tool - Invasion Corrections

    Rt= 10 ohmm

    Rxo/Rt

    40

    30

    25

    1

    2

    8

    12

    15

    20

    4

    0.067

    0.1

    0.125

    0.25

    0.167

    0.5

    0.083

    0.05

    Di= 100"

    100"90"

    90"

    70"

    50"

    40"

    80"

    30"

    30"

    20"

    60"

    20"

    40"

    50"

    60"

    70"80"

    Rt/IA90 = 2

    0.750.8

    1

    0.975

    0.95

    0.9

    0.85

    0.975

    11.05

    0.95

    1.11.2

    1.5

  • 8/11/2019 AW Log Interpretation Charts

    37/125

  • 8/11/2019 AW Log Interpretation Charts

    38/125

    ...when experience matters

    Induction Array

    IAT-10

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    IA10/IA90

    IA30/IA90

    Induction Array Tool - Invasion Corrections

    Rt = 10 ohmm Rxo < Rt

    0.975 Rt/IA90 = 0.95

    Di = 100"

    Rxo/Rt

    0.5

    0.167

    0.1

    0.125

    0.067

    0.05

    0.25

    0.083

    90"

    70"

    20"

    80"

    30"40"

    50"

    60"

    1.2 11.05

    2

    1.5

    1.1

  • 8/11/2019 AW Log Interpretation Charts

    39/125

    ...when experience matters

    Induction Array

    IAT-11

    0.01

    0.1

    1

    10

    0 0.5 1 1.5 2 2.5

    IA10/IA90

    IA30/IA90

    Induction Array Tool - Invasion Corrections

    Rt= 100 ohmm

    Rxo/Rt

    0.25

    0.5

    0.05

    0.067

    0.083

    0.1

    0.125

    0.167

    1

    4

    2

    100"

    Rt/IA90 = 2

    90"

    20"

    30"

    40"

    50" 60" 70" 80"

    20"

    70"

    30"

    60"

    40"

    50"

    80"

    Di= 100"

    90"

    1.5

    0.975

    1

    1.1

    1.05

    1.2

    0.975

    0.95

    0.95

    0.9 0.85

  • 8/11/2019 AW Log Interpretation Charts

    40/125

    ...when experience matters

    Induction Array

    IAT-12

    1

    1.5

    2

    2.5

    3

    3.5

    4

    1 1.2 1.4 1.6 1.8 2 2.2

    IA10/IA90

    IA30/IA90

    Induction Array Tool - Invastion Corrections

    Rt = 100 ohmm Rxo > Rt

    Rxo/Rt4

    2

    Di = 100"

    90"

    20"

    30"

    40"

    50"

    60"70"

    80"

    Rt/IA90

    1

    0.975

    0.85

    0.9

    0.95

  • 8/11/2019 AW Log Interpretation Charts

    41/125

    ...when experience matters

    Induction Array

    IAT-13

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    IA10/IA90

    IA30/IA90

    Induction Array Tool - Invasion Corrections

    Rt = 100 ohmm Rxo < Rt

    Rxo/Rt

    0.25

    0.067

    0.167

    0.125

    0.1

    0.083

    0.05

    0.5

    Di = 100"

    Rt/IA90 = 0.95

    90"

    80"

    20"

    30"

    60"

    40"

    50"

    70"

    1.51.2 1.051.1 1 0.975

    2

  • 8/11/2019 AW Log Interpretation Charts

    42/125

    ...when experience matters

    Dual Laterolog

    DLL-1

    Dual Laterolog Borehole Corrections

    Purpose

    This chart may be used to correct the dual laterolog deep and shallow curves for the effect of borehole size.

    Procedure

    Choose the appropriate chart for the deep (LLD) or shallow (LLS) curve and whether the tool was centralized

    or decentralized with standoff. To estimate the correction for borehole size, calculate the ratio of the

    appropriate curve resistivity to the mud resistivity and enter the chart on the horizontal axis at this value.

    Project vertically until the projection intersects the appropriate borehole diameter line. Interpolate between

    the borehole size lines if necessary. At the intersection point project horizontally to read the ratio of the true

    resistivity to the dual laterolog resistivity. Multiply the value of this ratio by the dual laterolog resistivity to

    determine the borehole size corrected resistivity.

    Example

    Given

    LLD = 24 ohmm

    LLS = 22 ohmm

    Rm= 0.12 ohmm

    dh= 10.0 inches

    DLL tool was centralized

    Find

    Estimate the deep resistivity corrected for borehole size.

    Answer

    Determine the RLLDto Rmratio from the log parameters.

    R

    R

    =24

    0.12= 200

    Using the chart for a centralized deep dual laterolog tool (DLL1) enter the horizontal axis at 200 and project

    vertically into the chart to the 10 inch borehole size line. Project the intersection point horizontally to the

    axis to read 1.037.

    Multiply the LLD reading from the log by this correction factor to obtain the borehole corrected reading of

    24 ohm m 1.037 = 24.89 ohm m

  • 8/11/2019 AW Log Interpretation Charts

    43/125

    ...when experience matters

    Dual Laterolog

    DLL-2

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    1.4

    1.5

    1 10 100 1000 10000 100000

    Rt

    /RLLD

    RLLD/Rm

    Dual Laterolog Borehole CorrectionsLLD - Centralized

    6" Borehole

    8" Borehole

    10" Borehole

    12" Borehole

    14" Borehole

    16" Borehole

  • 8/11/2019 AW Log Interpretation Charts

    44/125

  • 8/11/2019 AW Log Interpretation Charts

    45/125

    ...when experience matters

    Dual Laterolog

    DLL-4

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    1.4

    1.5

    1 10 100 1000 10000 100000

    Rt

    /RLLd

    RLLD/Rm

    Dual Laterolog Borehole CorrectionsLLS - Centralized

    8" Borehole

    6" Borehole

    10" Borehole

    12" Borehole

    14" Borehole

    16" Borehole

  • 8/11/2019 AW Log Interpretation Charts

    46/125

    ...when experience matters

    Dual Laterolog

    DLL-5

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    1.4

    1.5

    1 10 100 1000 10000 100000

    Rt

    /RLLd

    RLLD/Rm

    Dual Laterolog Borehole CorrectionsLLS Eccentered at 1.5" Standoff

    6" Borehole

    10" Borehole

    12" Borehole

    14" Borehole

    16" Borehole

    8" Borehole

  • 8/11/2019 AW Log Interpretation Charts

    47/125

    ...when experience matters

    Dual Laterolog

    DLL-6

    0.2

    2

    20

    200

    2000

    0.01 0.1 1 10 100 1000 10000

    Rt

    (ohmm)

    Rt/Rm

    IAT verses DLL Selection

    IAT 4-ft limit

    IAT 2-ft limit

    IAT

    and/or

    DLL

    DLL

    DLL limit

    IAT

  • 8/11/2019 AW Log Interpretation Charts

    48/125

  • 8/11/2019 AW Log Interpretation Charts

    49/125

    ...when experience matters

    Micro-Spherical Focused Log

    MSFL-2

    0.1

    1

    10

    100

    1 10 100 1000

    Rmsfl_

    corr/

    Rmsfl

    Rmsfl/Rmc

    MSFL Mudcake Thickness Correction

    1/2"

    3/8"

    1/4"

    5/8"

    7/16"

    1/8"

    1/16"

  • 8/11/2019 AW Log Interpretation Charts

    50/125

    ...when experience matters

    Spectral Gamma Ray

    GR-1

    Spectral Gamma Ray Borehole Corrections

    Purpose

    These charts may be used to correct the Spectral Gamma Ray (SGR) outputs for the effect of mud weight and

    borehole diameter on the measurements.

    Procedure

    Use the gamma ray component (K, U, Th) chart for either a decentered or centralized tool. Using the borehole

    size on the horizontal axis, project vertically until the projection intersects the appropriate line for the mud

    weight in the borehole. Interpolate between the mud weight lines as necessary. At the intersection point,

    project horizontally to read the ratio of the corrected gamma ray component (K,U or Th) to the gamma ray

    component reading from the log. Multiply the value of this ratio by the SGR component reading from the log

    to determine the corrected component reading.

    Example

    Given

    dh= 12 inches

    Mud Weight = 10 lb/gal

    Klog= 3 %

    Eccentered Tool

    Find

    Estimate the corrected Potassium (K) reading corrected for mudweight and borehole size.

    Answer

    Use chart GR 1for an eccentered Potassium component from the SGR.

    Enter the horizontal axis at 8.75 inches and project vertically into the chart to the 10 lb/gal mud weight line.

    Project the intersection point horizontally to the

    axis to read 1.235.

    Multiply the potassium (K) reading from the log by this correction factor to obtain the corrected potassium

    reading of 3.7 %.

    K= 3 % 1.235 = 3.705 %

  • 8/11/2019 AW Log Interpretation Charts

    51/125

    ...when experience matters

    Spectral Gamma Ray

    GR-2

    0.7

    0.8

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    3 4 5 6 7 8 9 10 11 12 13 14 15 16

    Kcorr

    /Klog

    Borehole Diameter (inch)

    Spectral Gamma Ray Borehole Correction for PotassiumEccentered Tool

  • 8/11/2019 AW Log Interpretation Charts

    52/125

    ...when experience matters

    Spectral Gamma Ray

    GR-3

    0.7

    0.8

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    3 4 5 6 7 8 9 10 11 12 13 14 15 16

    Ucorr

    /Ulog

    Borehole Diameter (inch)

    Spectral Gamma Ray Borehole Correction for Uranium

    Eccentered Tool

  • 8/11/2019 AW Log Interpretation Charts

    53/125

    ...when experience matters

    Spectral Gamma Ray

    GR-4

    0.7

    0.8

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    3 4 5 6 7 8 9 10 11 12 13 14 15 16

    Th

    corr

    /Thlog

    Borehole Diameter (inch)

    Spectral Gamma Ray Borehole Correction for Thorium

    Eccentered Tool

  • 8/11/2019 AW Log Interpretation Charts

    54/125

    ...when experience matters

    Spectral Gamma Ray

    GR-5

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    3 4 5 6 7 8 9 10 11 12 13 14 15 16

    Kcorr

    /Klog

    Borehole Diameter (inch)

    Spectral Gamma Ray Borehole Correction for Potassium

    Centered Tool

  • 8/11/2019 AW Log Interpretation Charts

    55/125

    ...when experience matters

    Spectral Gamma Ray

    GR-6

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    3 4 5 6 7 8 9 10 11 12 13 14 15 16

    Ucorr

    /Ulog

    Borehole Diameter (inch)

    Spectral Gamma Ray Borehole Correction for Uranium

    Centered Tool

  • 8/11/2019 AW Log Interpretation Charts

    56/125

    ...when experience matters

    Spectral Gamma Ray

    GR-7

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    3 4 5 6 7 8 9 10 11 12 13 14 15 16

    Th

    corr

    /Thlog

    Borehole Diameter (inch)

    Spectral Gamma Ray Borehole Correction for Thorium

    Centered Tool

  • 8/11/2019 AW Log Interpretation Charts

    57/125

    ...when experience matters

    Compensated Neutron Log

    CNL-1

    Compensated Neutron Log (CNL)

    Purpose

    The Compensated Neutron Log (CNL) response is affected by environmental parameters. These parameters

    are related to the tool string configuration, the borehole environment and the formation. The CNL tool

    records the raw short space and long space detector counts from which the ratio of these detector counts is

    used to calculate the apparent neutron porosity of the formation. Environmental correction factors are then

    applied to this uncorrected porosity to produce accurate corrected neutron porosity.

    In the Warrior logging software the curve NPHI is the uncorrected neutron porosity. The curve NPHC is

    neutron porosity that is corrected for borehole size only.

    The Warrior software also produces fully corrected curves for each of the three common formation matrices.

    The logging parameters/variables that are input into the Warrior software are the inputs to the corrections

    that are applied while logging. These corrected curves are:

    NPHL Neutron Porosity Limestone matrix

    NPHS Neutron Porosity Sandstone matrix

    NPHD Neutron Porosity Dolomite matrix

    Using the correction charts the environmental corrections can be applied manually to the uncorrected

    porosity. The corrections can also be backed out of the corrected CNL porosity value using the same

    correction charts.

    The correction charts are specific to the logging environment and the type of neutron source used for logging.

    Charts are available for both Americium-241/Beryllium and Californium-252 neutron sources as well as for

    Open Hole and Cased Hole wells.

    Procedure

    The neutron corrections are referenced to the standard conditions indicated by the solid red line on each

    chart. The standard conditions for Open Hole are:

    Formation Formation Well Temperature Hole Tool

    Fluid Fluid Diameter Position

    Eccentralized

    Limestone Pure Water Pure Water 20 C 8.0" Source

    to Wall

  • 8/11/2019 AW Log Interpretation Charts

    58/125

  • 8/11/2019 AW Log Interpretation Charts

    59/125

    ...when experience matters

    Compensated Neutron Log

    CNL-3

    e. Borehole Water Relative Density

    f. Borehole Fluid Salinity

    g. Formation Fluid Salinity

    4. Correct the porosity from step 3 for lithology depending on eccentralized or centralized tool.

    Example

    Given

    Open hole well

    Californium-252 neutron source

    Uncorrected neutron porosity = 31.5%

    8.5 inch borehole

    100,000 ppm borehole salinity

    100,000 ppm formation salinity

    100 C borehole temperature

    standoff between tool and borehole wallMud density of 1.17 g/cm

    3

    Mud cake thickness of 0.25 inches

    Find

    Determine the corrected neutron porosity in both limestone matrix and sandstone matrix from the

    parameters given.

    Answer

    Using chart CNL 1 enter the vertical axis on the Borehole Diameter Correction chart at 8.5 inches. Project the

    line horizontally until it intersects the 31.5 % porosity line. Interpolate between the blue curves on either side

    of the intersection and follow the general trend back to the red baseline at 31% porosity.

    Using the porosity obtained in the step above (31%), enter each of the following charts and record the change

    in porosity. Sum the individual porosity changes.

    a) Temperature Correction Chart (CNL 2) +2.2 %

    b) Stand Off Correction Chart Eccentralized (CNL 3) -0.4 %

    c) Borehole Water Relative Density Correction (CNL 5) 0 %

    d) Borehole Fluid Salinity Correction Eccentralized (CNL 9) -0.2 %

    e) Mud Density Correction (CNL 13) Eccentralized (CNL 13) +0.3 %

    f) Mud Cake Thickness Correction Eccentralized (CNL 17) +0.2 %

    Sum of Corrections = +2.1 %

    Add the sum of the porosities to the Borehole diameter corrected porosity to obtain a porosity to enter into

    the next charts.

    31 % + 2.1 % = 33.1 %

  • 8/11/2019 AW Log Interpretation Charts

    60/125

    ...when experience matters

    Compensated Neutron Log

    CNL-4

    Using the corrected porosity of 33.1 % enter the Lithology Correction chart on CNL 19. For the Limestone

    matrix, follow the blue line straight down to obtain a porosity of 33.1 %. For the Sandstone matrix, follow the

    yellow line to obtain a matrix corrected porosity of 38 %.

    Using the lithology matrix corrected porosities enter the Formation Fluid Salinity correction chart for theappropriate matrix on page CNL 20.

    The corrected neutron porosity on a limestone matrix would be 29.2 % and on a sandstone matrix it would be

    33.7 %.

  • 8/11/2019 AW Log Interpretation Charts

    61/125

    ...when experience matters

    Compensated Neutron Log

    CNL-5

    U-FLT CNL009 Californium 252Open Hole Borehole Diameter Correction

    6

    8

    10

    12

    14

    16

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    BoreholeDiameter[inch]

    Porosity [p.u.]

    Borehole Diameter Correction

  • 8/11/2019 AW Log Interpretation Charts

    62/125

    ...when experience matters

    Compensated Neutron Log

    CNL-6

    U-FLT CNL009 Californium 252Open Hole Temperature Correction

    0

    50

    100

    150

    200

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    ToolTemperature[C]

    Porosity [p.u.]

    Tool Temperature Correction

  • 8/11/2019 AW Log Interpretation Charts

    63/125

    ...when experience matters

    Compensated Neutron Log

    CNL-7

    U-FLT CNL009 Californium 252Open Hole Standoff Corrections

    0

    0.5

    1

    1.5

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    ToolStandoff[inch]

    Porosity [p.u.]

    6.0" Borehole Tool Standoff Correction

    0

    0.5

    1

    1.5

    2

    2.5

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    To

    olStandoff[inch]

    Porosity [p.u.]

    8.0" Borehole Tool Standoff Correction

    0

    1

    2

    3

    4

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    ToolStandof

    f[inch]

    Porosity [p.u.]

    10.0" Borehole Tool Standoff Correction

  • 8/11/2019 AW Log Interpretation Charts

    64/125

    ...when experience matters

    Compensated Neutron Log

    CNL-8

    U-FLT CNL009 Californium 252Open Hole Standoff Corrections

    0

    1

    2

    3

    4

    5

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    ToolStandoff[inch]

    Porosity [p.u.]

    12.0" Borehole Tool Standoff Correction

    0

    1

    2

    3

    4

    5

    6

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    ToolStandoff[inch]

    Porosity [p.u.]

    14.0" Borehole Tool Standoff Correction

    0

    1

    2

    3

    4

    5

    6

    7

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    ToolStandoff[inch]

    Porosity [p.u.]

    16.0" Borehole Tool Standoff Correction

  • 8/11/2019 AW Log Interpretation Charts

    65/125

    ...when experience matters

    Compensated Neutron Log

    CNL-9

    U-FLT CNL009 Californium 252Open Hole Borehole Water Relative Density Corrections Eccentralized Tool

    0.92

    0.94

    0.96

    0.98

    1.00

    1.02

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeWaterRelativeDensity[g/cm]

    Porosity [p.u.]

    6.0" Borehole Water Relative Density Correction

    0.92

    0.94

    0.96

    0.98

    1.00

    1.02

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeW

    aterRelativeDensity[g/cm]

    Porosity [p.u.]

    8.0" Borehole Water Relative Density Correction

    0.92

    0.94

    0.96

    0.98

    1.00

    1.02

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeWaterRelativeDensity[g/cm]

    Porosity [p.u.]

    10.0" Borehole Water Relative Density Correction

  • 8/11/2019 AW Log Interpretation Charts

    66/125

    ...when experience matters

    Compensated Neutron Log

    CNL-10

    U-FLT CNL009 Californium 252Open Hole Borehole Water Relative Density Corrections Eccentralized Tool

    0.92

    0.94

    0.96

    0.98

    1.00

    1.02

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeWaterRelativeDensity[g/cm]

    Porosity [p.u.]

    12.0" Borehole Water Relative Density Correction

    0.92

    0.94

    0.96

    0.98

    1.00

    1.02

    -5 0 5 10 15 20 25 30 35 40 45 50 55Borehole

    WaterRelativeDensity[g/cm]

    Porosity [p.u.]

    14.0" Borehole Water Relative Density Correction

    0.92

    0.94

    0.96

    0.98

    1.00

    1.02

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeWaterRelativeDensity[g/cm]

    Porosity [p.u.]

    16.0" Borehole Water Relative Density Correction

  • 8/11/2019 AW Log Interpretation Charts

    67/125

    ...when experience matters

    Compensated Neutron Log

    CNL-11

    U-FLT CNL009 Californium 252Open Hole Borehole Water Relative Density Corrections Centralized Tool

    0.92

    0.94

    0.96

    0.98

    1.00

    1.02

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeWaterRelativeDensity[g/cm]

    Porosity [p.u.]

    6.0" Borehole Water Relative Density Correction

    0.92

    0.94

    0.96

    0.98

    1.00

    1.02

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeW

    aterRelativeDensity[g/cm]

    Porosity [p.u.]

    8.0" Borehole Water Relative Density Correction

    0.92

    0.94

    0.96

    0.98

    1.00

    1.02

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeWaterRelative

    Density[g/cm]

    Porosity [p.u.]

    10.0" Borehole Water Relative Density Correction

  • 8/11/2019 AW Log Interpretation Charts

    68/125

    ...when experience matters

    Compensated Neutron Log

    CNL-12

    U-FLT CNL009 Californium 252Open Hole Borehole Water Relative Density Corrections Centralized Tool

    0.92

    0.94

    0.96

    0.98

    1.00

    1.02

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeWaterRelativeDensity[g/cm]

    Porosity [p.u.]

    12.0" Borehole Water Relative Density Correction

    0.92

    0.94

    0.96

    0.98

    1.00

    1.02

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeWaterRelativeDensity[g/cm]

    Porosity [p.u.]

    14.0" Borehole Water Relative Density Correction

    0.92

    0.94

    0.96

    0.98

    1.00

    1.02

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeWaterRelativeD

    ensity[g/cm]

    Porosity [p.u.]

    16.0" Borehole Water Relative Density Correction

  • 8/11/2019 AW Log Interpretation Charts

    69/125

    ...when experience matters

    Compensated Neutron Log

    CNL-13

    U-FLT CNL009 Californium 252Open Hole Borehole Fluid Salinity Corrections Eccentralized Tool

    0

    50

    100

    150

    200

    250

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeFluidSalinity[kppm]

    Porosity [p.u.]

    6.0" Borehole Fluid Salinity Correction

    0

    50

    100

    150

    200

    250

    -5 0 5 10 15 20 25 30 35 40 45 50 55Boreho

    leFluidSalinity[kppm]

    Porosity [p.u.]

    8.0" Borehole Fluid Salinity Correction

    0

    50

    100

    150

    200

    250

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeFluidSa

    linity[kppm]

    Porosity [p.u.]

    10.0" Borehole Fluid Salinity Correction

  • 8/11/2019 AW Log Interpretation Charts

    70/125

  • 8/11/2019 AW Log Interpretation Charts

    71/125

    ...when experience matters

    Compensated Neutron Log

    CNL-15

    U-FLT CNL009 Californium 252Open Hole Borehole Fluid Salinity Corrections Centralized Tool

    0

    50

    100

    150

    200

    250

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeFluidSalinity[kppm]

    Porosity [p.u.]

    6.0" Borehole Fluid Salinity Correction

    0

    50

    100

    150

    200

    250

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeFluidSalinity[kppm]

    Porosity [p.u.]

    8.0" Borehole Fluid Salinity Correction

    0

    50

    100

    150

    200

    250

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeFluidSal

    inity[kppm]

    Porosity [p.u.]

    10.0" Borehole Fluid Salinity Correction

  • 8/11/2019 AW Log Interpretation Charts

    72/125

    ...when experience matters

    Compensated Neutron Log

    CNL-16

    U-FLT CNL009 Californium 252Open Hole Borehole Fluid Salinity Corrections Centralized Tool

    0

    50

    100

    150

    200

    250

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeFluidSalinity[kppm]

    Porosity [p.u.]

    12.0" Borehole Fluid Salinity Correction

    0

    50

    100

    150

    200

    250

    -5 0 5 10 15 20 25 30 35 40 45 50 55Boreho

    leFluidSalinity[kppm]

    Porosity [p.u.]

    14.0" Borehole Fluid Salinity Correction

    0

    50

    100

    150

    200

    250

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeFluidSalinity[kppm]

    Porosity [p.u.]

    16.0" Borehole Fluid Salinity Correction

  • 8/11/2019 AW Log Interpretation Charts

    73/125

    ...when experience matters

    Compensated Neutron Log

    CNL-17

    U-FLT CNL009 Californium 252Open Hole Borehole Mud Density Corrections Eccentralized Tool

    1

    1.1

    1.2

    1.3

    1.4

    1.5

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    BoreholeMudDensity[g/cc]

    Porosity [p.u.]

    6.0" Borehole Mud Density Correction

    1

    1.1

    1.2

    1.3

    1.4

    1.5

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    BoreholeMudDensity[g/cc]

    Porosity [p.u.]

    8.0" Borehole Mud Density Correction

    1

    1.1

    1.2

    1.3

    1.4

    1.5

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    BoreholeMudDe

    nsity[g/cc]

    Porosity [p.u.]

    10.0" Borehole Mud Density Correction

  • 8/11/2019 AW Log Interpretation Charts

    74/125

    ...when experience matters

    Compensated Neutron Log

    CNL-18

    U-FLT CNL009 Californium 252Open Hole Borehole Mud Density Corrections Eccentralized Tool

    1

    1.1

    1.2

    1.3

    1.4

    1.5

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    BoreholeMudDensity[g/cc]

    Porosity [p.u.]

    12.0" Borehole Mud Density Correction

    1

    1.1

    1.2

    1.3

    1.4

    1.5

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    BoreholeMudDensity[g/cc]

    Porosity [p.u.]

    14.0" Borehole Mud Density Correction

    1

    1.1

    1.2

    1.3

    1.4

    1.5

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    BoreholeMudDe

    nsity[g/cc]

    Porosity [p.u.]

    16.0" Borehole Mud Density Correction

  • 8/11/2019 AW Log Interpretation Charts

    75/125

    ...when experience matters

    Compensated Neutron Log

    CNL-19

    U-FLT CNL009 Californium 252Open Hole Borehole Barite Mud Density Corrections Eccentralized Tool

    1

    1.2

    1.4

    1.6

    1.8

    2

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    BoreholeMudDensity[g/cc]

    Porosity [p.u.]

    6.0" Borehole Barite Mud Density Correction

    1

    1.2

    1.4

    1.6

    1.8

    2

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    BoreholeMudDensity[g/cc]

    Porosity [p.u.]

    8.0" Borehole Barite Mud Density Correction

    1

    1.2

    1.4

    1.6

    1.8

    2

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    BoreholeMudDe

    nsity[g/cc]

    Porosity [p.u.]

    10.0" Borehole Barite Mud Density Correction

  • 8/11/2019 AW Log Interpretation Charts

    76/125

    ...when experience matters

    Compensated Neutron Log

    CNL-20

    U-FLT CNL009 Californium 252Open Hole Borehole Barite Mud Density Corrections Eccentralized Tool

    1

    1.2

    1.4

    1.6

    1.8

    2

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    BoreholeMudDensity[g/cc]

    Porosity [p.u.]

    12.0" Borehole Barite Mud Density Correction

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    BoreholeMudDensity[g/cc]

    Porosity [p.u.]

    14.0" Borehole Barite Mud Density Correction

    1

    1.2

    1.4

    1.6

    1.8

    2

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    BoreholeMudDe

    nsity[g/cc]

    Porosity [p.u.]

    16.0" Borehole Barite Mud Density Correction

  • 8/11/2019 AW Log Interpretation Charts

    77/125

    ...when experience matters

    Compensated Neutron Log

    CNL-21

    U-FLT CNL009 Californium 252Open Hole Borehole Mud Cake Thickness Corrections Eccentralized Tool

    0

    5

    10

    15

    20

    25

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    MudcakeThickness[mm]

    Porosity [p.u.]

    6.0" Borehole Mudcake Thickness Correction

    0

    5

    10

    15

    20

    25

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    Mudc

    akeThickness[mm]

    Porosity [p.u.]

    8.0" Borehole Mudcake Thickness Correction

    0

    5

    10

    15

    20

    25

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    MudcakeThick

    ness[mm]

    Porosity [p.u.]

    10.0" Borehole Mudcake Thickness Correction

  • 8/11/2019 AW Log Interpretation Charts

    78/125

    ...when experience matters

    Compensated Neutron Log

    CNL-22

    U-FLT CNL009 Californium 252Open Hole Borehole Mud Cake Thickness Corrections Eccentralized Tool

    0

    5

    10

    15

    20

    25

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    MudcakeThickness[mm]

    Porosity [p.u.]

    12.0" Borehole Mudcake Thickness Correction

    0

    5

    10

    15

    20

    25

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    MudcakeThickness[mm]

    Porosity [p.u.]

    14.0" Borehole Mudcake Thickness Correction

    0

    5

    10

    15

    20

    25

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    MudcakeThick

    ness[mm]

    Porosity [p.u.]

    16.0" Borehole Mudcake Thickness Correction

  • 8/11/2019 AW Log Interpretation Charts

    79/125

    ...when experience matters

    Compensated Neutron Log

    CNL-23

    U-FLT CNL009 Californium 252Open Hole Lithology Correction

    0

    50

    100

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    FormationComposition[%]

    Porosity [p.u.]

    Lithology Correction

    Limestone

    SandstoneDolomite

  • 8/11/2019 AW Log Interpretation Charts

    80/125

    ...when experience matters

    Compensated Neutron Log

    CNL-24

    U-FLT CNL009 Californium 252Open Hole Formation Fluid Salinity Corrections

    0

    50

    100

    150

    200

    250

    300

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    FormationFluidSalinity[kppm]

    Porosity [p.u.]

    Limestone Formation Fluid Salinity Correction

    0

    50

    100

    150

    200

    250

    300

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    Format

    ionFluidSalinity[kppm]

    Porosity [p.u.]

    Sandstone Formation Fluid Salinity Correction

    0

    50

    100

    150

    200

    250

    300

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    FormationFluidSa

    linity[kppm]

    Porosity [p.u.]

    Dolomite Formation Fluid Salinity Correction

  • 8/11/2019 AW Log Interpretation Charts

    81/125

    ...when experience matters

    Compensated Neutron Log

    CNL-25

    U-FLT CNL009 Californium 252

    Cased Hole Corrections - General

    0

    1

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    OH

    =0;CH

    =1

    Porosity [p.u.]

    Open Hole to Cased Hole Correction

    4

    6

    8

    10

    12

    14

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    C

    asingOD

    [inch]

    Porosity [p.u.]

    Eccentralized Tool Casing OD Correction

    4

    6

    8

    10

    12

    14

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    CasingOD

    [inch]

    Porosity [p.u.]

    Centralized Tool Casing OD Correction

  • 8/11/2019 AW Log Interpretation Charts

    82/125

    ...when experience matters

    Compensated Neutron Log

    CNL-26

    U-FLT CNL009 Californium 252

    Cased Hole Corrections General

    0

    50

    100

    150

    200

    -5 0 5 10 15 20 25 30 35 40 45 50

    ToolTemperature[C]

    Porosity [p.u.]

    Tool Temperature Correction

    0

    50

    100

    -5 0 5 10 15 20 25 30 35 40 45 50 55ToolP

    osition[Eccentr.=0]

    Porosity [p.u.]

    Tool Position Correction (Tool Eccentralized/Centralized in Borehole)

  • 8/11/2019 AW Log Interpretation Charts

    83/125

    ...when experience matters

    Compensated Neutron Log

    CNL-27

    U-FLT CNL009 Californium 252Cased Hole Corrections Casing Thickness Eccentralized

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0.5

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    Casing

    Thickness[inch]

    Porosity [p.u.]

    4.5" Casing OD - Casing Thickness Correction

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0.5

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    Casi

    ngThickness[inch]

    Porosity [p.u.]

    5.5" Casing OD - Casing Thickness Correction

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0.5

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    Casing

    Thickness[inch]

    Porosity [p.u.]

    7.0" Casing OD - Casing Thickness Correction

  • 8/11/2019 AW Log Interpretation Charts

    84/125

    ...when experience matters

    Compensated Neutron Log

    CNL-28

    U-FLT CNL009 Californium 252Cased Hole Corrections Casing Thickness - Eccentralized

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0.5

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    CasingThickness[inch]

    Porosity [p.u.]

    9.625" Casing OD - Casing Thickness Correction

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0.5

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    Cas

    ing

    Thickness[inch]

    Porosity [p.u.]

    10.75" Casing OD - Casing Thickness Correction

  • 8/11/2019 AW Log Interpretation Charts

    85/125

    ...when experience matters

    Compensated Neutron Log

    CNL-29

    U-FLT CNL009 Californium 252

    Cased Hole Corrections Cement Thickness - Eccentralized

    0.1875

    0.6875

    1.1875

    1.6875

    2.1875

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    CementThickness[inch]

    Porosity [p.u.]

    4.5" Casing OD - Cement Thickness Correction

    0.1875

    0.6875

    1.1875

    1.6875

    2.1875

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    CementThickness[inch]

    Porosity [p.u.]

    5.5" Casing OD - Cement Thickness Correction

    0.1875

    0.6875

    1.1875

    1.6875

    2.1875

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    CementThickn

    ess[inch]

    Porosity [p.u.]

    7.0" Casing OD - Cement Thickness Correction

  • 8/11/2019 AW Log Interpretation Charts

    86/125

    ...when experience matters

    Compensated Neutron Log

    CNL-30

    U-FLT CNL009 Californium 252

    Cased Hole Corrections Cement Thickness - Eccentralized

    0.1875

    0.6875

    1.1875

    1.6875

    2.1875

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    CementThickness[inch]

    Porosity [p.u.]

    9.625" Casing OD - Cement Thickness Correction

    0.1875

    0.6875

    1.1875

    1.6875

    2.1875

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    CementThickness[inch]

    Porosity [p.u.]

    10.75" Casing OD - Cement Thickness Correction

  • 8/11/2019 AW Log Interpretation Charts

    87/125

    ...when experience matters

    Compensated Neutron Log

    CNL-31

    U-FLT CNL009 Californium 252Cased Hole Corrections Borehole Water Relative Density - Eccentralized

    0.92

    0.94

    0.96

    0.98

    1.00

    1.02

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeWaterRelativeDensity[g/cm]

    Porosity [p.u.]

    4.5" Casing OD - Borehole Water Relative Density Correction

    0.92

    0.94

    0.96

    0.98

    1.00

    1.02

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeW

    aterRelativeDensity[g/cm]

    Porosity [p.u.]

    5.5" Casing OD - Borehole Water Relative Density Correction

    0.92

    0.94

    0.96

    0.98

    1.00

    1.02

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeWaterRelative

    Density[g/cm]

    Porosity [p.u.]

    7.0" Casing OD - Borehole Water Relative Density Correction

  • 8/11/2019 AW Log Interpretation Charts

    88/125

  • 8/11/2019 AW Log Interpretation Charts

    89/125

    ...when experience matters

    Compensated Neutron Log

    CNL-33

    U-FLT CNL009 Californium 252Cased Hole Corrections Borehole Fluid Salinity Eccentralized

    0

    50

    100

    150

    200

    250

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeFluidSalinity[kppm]

    Porosity [p.u.]

    4.5" Casing OD - Borehole Fluid Salinity Correction

    0

    50

    100

    150

    200

    250

    -5 0 5 10 15 20 25 30 35 40 45 50 55Borehole

    FluidSalinity[kppm]

    Porosity [p.u.]

    5.5" Casing OD - Borehole Fluid Salinity Correction

    0

    50

    100

    150

    200

    250

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeFluidSalinity[kppm]

    Porosity [p.u.]

    7.0" Casing OD - Borehole Fluid Salinity Correction

  • 8/11/2019 AW Log Interpretation Charts

    90/125

    ...when experience matters

    Compensated Neutron Log

    CNL-34

    U-FLT CNL009 Californium 252Cased Hole Corrections Borehole Fluid Salinity Eccentralized

    0

    50

    100

    150

    200

    250

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeFluidSalinity[kppm]

    Porosity [p.u.]

    9.625" Casing OD - Borehole Fluid Salinity Correction

    0

    50

    100

    150

    200

    250

    -5 0 5 10 15 20 25 30 35 40 45 50 55Borehol

    eFluidSalinity[kppm]

    Porosity [p.u.]

    10.75" Casing OD - Borehole Fluid Salinity Correction

  • 8/11/2019 AW Log Interpretation Charts

    91/125

  • 8/11/2019 AW Log Interpretation Charts

    92/125

    ...when experience matters

    Compensated Neutron Log

    CNL-36

    U-FLT CNL009 Californium 252Cased Hole Corrections Formation Fluid Salinity Eccentralized

    0

    50

    100

    150

    200

    250

    -5 0 5 10 15 20 25 30 35 40 45 50 55FormationFluidSalinity[kppm]

    Porosity [p.u.]

    9.625" Casing OD - Formation Fluid Salinity Correction

    0

    50

    100

    150

    200

    250

    -5 0 5 10 15 20 25 30 35 40 45 50 55Formatio

    nFluidSalinity[kppm]

    Porosity [p.u.]

    10.75" Casing OD - Formation Fluid Salinity Correction

  • 8/11/2019 AW Log Interpretation Charts

    93/125

    ...when experience matters

    Compensated Neutron Log

    CNL-37

    U-FLT CNL009 Californium 252Cased Hole Corrections Casing Thickness - Centralized

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0.5

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    CasingThickness[inch]

    Porosity [p.u.]

    4.5" Casing OD - Casing Thickness Correction

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0.5

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    Casing

    Thickness[inch]

    Porosity [p.u.]

    5.5" Casing OD - Casing Thickness Correction

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0.5

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    Casing

    Thickn

    ess[inch]

    Porosity [p.u.]

    7.0" Casing OD - Casing Thickness Correction

  • 8/11/2019 AW Log Interpretation Charts

    94/125

    ...when experience matters

    Compensated Neutron Log

    CNL-38

    U-FLT CNL009 Californium 252Cased Hole Corrections Casing Thickness - Centralized

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0.5

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    CasingThickness[inch]

    Porosity [p.u.]

    9.625" Casing OD - Casing Thickness Correction

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0.5

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    Casing

    Thickness[inch]

    Porosity [p.u.]

    10.75" Casing OD - Casing Thickness Correction

  • 8/11/2019 AW Log Interpretation Charts

    95/125

  • 8/11/2019 AW Log Interpretation Charts

    96/125

    ...when experience matters

    Compensated Neutron Log

    CNL-40

    U-FLT CNL009 Californium 252

    Cased Hole Corrections Cement Thickness Centralized

    0.1875

    0.6875

    1.1875

    1.6875

    2.1875

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    CementThickness[inch]

    Porosity [p.u.]

    9.625" Casing OD - Cement Thickness Correction

    0.1875

    0.6875

    1.1875

    1.6875

    2.1875

    -5 0 5 10 15 20 25 30 35 40 45 50 55

    CementThickness[inch]

    Porosity [p.u.]

    10.75" Casing OD - Cement Thickness Correction

  • 8/11/2019 AW Log Interpretation Charts

    97/125

    ...when experience matters

    Compensated Neutron Log

    CNL-41

    U-FLT CNL009 Californium 252Cased Hole Corrections Borehole Water Relative Density - Centralized

    0.92

    0.94

    0.96

    0.98

    1.00

    1.02

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeWaterRelativeDensity[g/cm]

    Porosity [p.u.]

    4.5" Casing OD - Borehole Water Relative Density Correction

    0.92

    0.94

    0.96

    0.98

    1.00

    1.02

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeW

    aterRelativeDensity[g/cm]

    Porosity [p.u.]

    5.5" Casing OD - Borehole Water Relative Density Correction

    0.92

    0.94

    0.96

    0.98

    1.00

    1.02

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeWaterRelative

    Density[g/cm]

    Porosity [p.u.]

    7.0" Casing OD - Borehole Water Relative Density Correction

  • 8/11/2019 AW Log Interpretation Charts

    98/125

    ...when experience matters

    Compensated Neutron Log

    CNL-42

    U-FLT CNL009 Californium 252Cased Hole Corrections Borehole Water Relative Density - Centralized

    0.92

    0.94

    0.96

    0.98

    1.00

    1.02

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeWaterRelativeDensity[g/cm]

    Porosity [p.u.]

    9.625" Casing OD - Borehole Water Relative Density Correction

    0.92

    0.94

    0.96

    0.98

    1.00

    1.02

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeW

    aterRelativeDensity[g/cm]

    Porosity [p.u.]

    10.75" Casing OD - Borehole Water Relative Density Correction

  • 8/11/2019 AW Log Interpretation Charts

    99/125

    ...when experience matters

    Compensated Neutron Log

    CNL-43

    U-FLT CNL009 Californium 252Cased Hole Corrections Borehole Fluid Salinity Centralized

    0

    50

    100

    150

    200

    250

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeFluidSalinity[kppm]

    Porosity [p.u.]

    4.5" Casing OD - Borehole Fluid Salinity Correction

    0

    50

    100

    150

    200

    250

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeFluidSalinity[kppm]

    Porosity [p.u.]

    5.5" Casing OD - Borehole Fluid Salinity Correction

    0

    50

    100

    150

    200

    250

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeFluidSalinity[kppm]

    Porosity [p.u.]

    7.0" Casing OD - Borehole Fluid Salinity Correction

  • 8/11/2019 AW Log Interpretation Charts

    100/125

    ...when experience matters

    Compensated Neutron Log

    CNL-44

    U-FLT CNL009 Californium 252Cased Hole Corrections Borehole Fluid Salinity Centralized

    0

    50

    100

    150

    200

    250

    -5 0 5 10 15 20 25 30 35 40 45 50 55BoreholeFluidSalinity[kppm]

    Porosity [p.u.]

    9.625" Casing OD - Borehole Fluid Salinity Correction

    0

    50

    100

    150

    200

    250

    -5 0 5 10 15 20 25 30 35 40 45 50 55Borehole

    FluidSalinity[kppm]

    Porosity [p.u.]

    10.75" Casing OD - Borehole Fluid Salinity Correction

  • 8/11/2019 AW Log Interpretation Charts

    101/125

  • 8/11/2019 AW Log Interpretation Charts

    102/125

  • 8/11/2019 AW Log Interpretation Charts

    103/125

    ...when experience matters

    Compensated Neutron Log

    CNL-47

    U-FLT CNL009 Californium 252Cased Hole Lithology Corrections

    0

    50

    100

    -5 0 5 10 15 20 25 30 35 40 45 50 55FormationComposition[%]

    Porosity [p.u.]

    Eccentralized Tool Lithology Correction

    Limestone

    SandstoneDolomite

    0

    50

    100

    -5 0 5 10 15 20 25 30 35 40 45 50 55Forma

    tionComposition[%]

    Porosity [p.u.]

    Centralized Tool Lithology CorrectionLimestone

    Sandstone

    Dolomite

  • 8/11/2019 AW Log Interpretation Charts

    104/125

    ...when experience matters

    Porosity

    POR-1

    Determination of Density Porosity from Bulk Density

    Purpose

    This chart may be used to estimate the density porosity given the bulk log density, formation fluid density and

    the formation matrix.

    Procedure

    To estimate the density porosity (D) enter the chart on the horizontal axis at the appropriate bulk density

    (B) value as read from the log. Project this line vertically until it intersects the desired matrix curve. Project

    the intersection point horizontally to determine the density porosity from the vertical axis.

    Example

    Given

    B= 6.2 g/cm3

    f= 1.0 g/cm3

    Find

    Estimate the density porosity on a limestone matrix.

    Answer

    From the 6.2 g/cm3 point on the horizontal axis project vertically into the chart until the line intersects the

    limestone matrix curve (2.710 g/cm3). At the intersection point project horizontally to read the density

    porosity on a limestone matrix of 5 p.u.

    Equations

    B= log bulk density

    f= fluid density in formation

    ma= matrix density

    D = density porosity

    The density porosity can be calculated using the following equation. The result will be in porosity units.

    = 100

  • 8/11/2019 AW Log Interpretation Charts

    105/125

    ...when experience matters

    Porosity

    POR-2

    -10

    -5

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9

    DensityPorosity,

    D

    (p.u.)

    Log Density, B (g/cm3)

    Density Porosity from Bulk Density

    f = 1.0 g/cm3

  • 8/11/2019 AW Log Interpretation Charts

    106/125

    ...when experience matters

    Porosity

    POR-3

    Determination of Density Porosity and Lithology from LDT Log

    Purpose

    This chart may be used to estimate the density porosity and the lithology of a formation from the Litho-

    Density Tool (LDT). There are separate charts for both fresh water (f=1.0) and salt water (f=1.1)

    Procedure

    Choose the appropriate chart for either fresh (POR 2) or salt water (POR 3) formations. To estimate the

    density porosity (D) and lithology enter the chart on the vertical axis at the appropriate bulk density (B)

    value as read from the log. Enter the chart on the horizontal axis at the Pe value as read from the log and

    project vertically. At the intersection of the two projections read the porosity and lithology.

    Example

    Given

    B= 2.72 g/cm3

    Pe = 3.05

    f= 1.0 g/cm3

    Find

    Estimate the density porosity and lithology.

    Answer

    From the Pe = 3.05 point on the horizontal axis project vertically into the chart until the line intersects the

    horizontal projection of the bulk density B = 2.72. At the intersection point read the density porosity and

    lithology in this instance to be a Dolomite with a porosity of 8.3 %.

    Equations

    B= log bulk density

    f= fluid density in formation

    ma= matrix density

    D = density porosity

    Pe = photoelectric factor

    Uf= fluid volumetric photoelectric factor

    The bulk density can be calculated using the following equation.

    = + (1 )

    The Pe is calculated using the following equation.

    Where:

    Uf= 0.398 barns/cm3for fresh water

    Uf= 1.36 barns/cm3for salt water

    Pe = ( U) + (1 )(Pe )

  • 8/11/2019 AW Log Interpretation Charts

    107/125

    ...when experience matters

    Porosity

    POR-4

    1.9

    2.0

    2.1

    2.2

    2.3

    2.4

    2.5

    2.6

    2.7

    2.8

    2.9

    3.0

    0 1 2 3 4 5 6

    LogDensity,B

    (g/cm3)

    Photoelectric Factor, Pe (barns/electron)

    Porosity and Lithology from LDT Log

    f = 1.0 g/cm3

    45

    45

    45

    35

    40

    40

    40

    30

    35

    3525

    30

    30

    20

    25

    25

    0

    5

    15

    20

    20

    10

    15

    15

    5

    10

    10

    10

    5

    50

    0

    0

    0

    5

  • 8/11/2019 AW Log Interpretation Charts

    108/125

  • 8/11/2019 AW Log Interpretation Charts

    109/125

    ...when experience matters

    Porosity

    POR-6

    Mineral Identification Plot (maavs Umaa)

    Purpose

    This chart may be used to identify formation mineralogy from the apparent matrix density and the apparent

    matrix volumetric photoelectric factor.

    Procedure

    To estimate the mineral type, enter the chart on the vertical axis at the apparent matrix density ( maa) value.

    Enter the chart on the horizontal axis at the apparent matrix volumetric photoelectric factor (Umaa) and project

    vertically. At the intersection of the two projections determine the percentage of the component minerals.

    Note

    The effect of gas and barite is to shift the intersection point in the direction shown by the arrows.

    A proportionality triangle may be constructed from any three minerals.

    Example

    Given

    maa= 2.73 g/cm3

    Umaa= 7.4

    Find

    Estimate the mineral composition of the formation.

    Answer

    From the Umaa= 7.4 point on the horizontal axis project vertically into the chart until the line intersects the

    horizontal projection of the maa= 2.73. From the intersection point within the triangular area we can see that

    the formation is mainly a mixture of sandstone and dolomite.

    To obtain more accurate values of the three mineral compositions we can project the intersection point

    parallel to the individual mineral component lines to intersect the outer boundaries of the mineral triangle.

    The percentage of the individual components is read from the scale on the outer lines. The formation is this

    example is approximately 53% sandstone, 33% dolomite and 14% limestone.

  • 8/11/2019 AW Log Interpretation Charts

    110/125

    ...when experience matters

    Porosity

    POR-7

    Equations

    log= log bulk density

    f= fluid density in formation

    f= 1.0 g/cm3for fresh water

    f= 1.1 g/cm3for salt water

    maa= apparent matrix density

    = apparent formation porosity

    Pe = photoelectric factor

    Uf= fluid volumetric photoelectric factor

    Uf= 0.398 barns/cm3for fresh water

    Uf= 1.36 barns/cm3for salt water

    The apparent matrix density can be calculated using the equation:

    = ( ( )(1 )

    The apparent volumetric photoelectric factor can be calculated using the equation:

    U = (Pe ) ( U)(1 )

  • 8/11/2019 AW Log Interpretation Charts

    111/125

    ...when experience matters

    Porosity

    POR-8

    2.3

    2.4

    2.5

    2.6

    2.7

    2.8

    2.9

    3.0

    4 5 6 7 8 9 10 11 12 13 14 15 16 17

    ApparentMatrixDensity,maa

    (g/cm3)

    Apparent Matrix Volumetric Photoelectric Factor, Umaa

    Mineral Identification Plot (maavs Umaa

    )

    Dolomite

    Limestone

    Sandstone

    Gypsum

    Anhydrite

    2.0

    2.1

    9 10 11 12

    Orthoclase

    Illite

    Glauconite

    Muscovite Barite

    Gas

  • 8/11/2019 AW Log Interpretation Charts

    112/125

  • 8/11/2019 AW Log Interpretation Charts

    113/125

    ...when experience matters

    Porosity

    POR-10

    140 150 160 170 180 190 200 210 220

    2.3

    2.4

    2.5

    2.6

    2.7

    2.8

    2.9

    3.0

    40 45 50 55 60 65 70

    ApparentMatrixDensity,maa

    (g/cm3)

    Apparent Matrix Interval Transit Time, tmaa (sec/ft)

    Mineral Identification Plot (maavs tmaa

    )

    Dolomite

    Limestone

    Sandstone

    Gypsum

    Anhydrite

    Orthoclase

    Muscovite

    65 70

    2.1

    2.0

    65 70

    2.1

    2.0

    Apparent Matrix Interval Transit Time, tmaa (sec/m)

    65 70

    2.1

    2.0

    65 70

    2.1

    2.0

    65 70

    2.1

    2.0

    65 70

    2.1

    2.0

    65 70

    2.1

    2.0

    65 70

    2.1

    2.0

  • 8/11/2019 AW Log Interpretation Charts

    114/125

    ...when experience matters

    Acoustic

    CBL-1

  • 8/11/2019 AW Log Interpretation Charts

    115/125

    ...when experience matters

    Crossplot

    XPL-1

    Porosity and Lithology Determination

    Compensated Neutron and Litho-Density Tool

    PurposeThese charts may be used to determine the crossplot porosity and lithology mixture of a formation using the

    compensated neutron and litho-density logs. Separate charts are presented for both the bulk density and the

    density porosity verses the neutron porosity.

    Charts for fresh water (f=0, Cf= 0 ppm) and saline fluids (f=1.19, Cf=250 kppm) are available.

    Procedure

    Enter the chart on the horizontal axis at the apparent limestone neutron porosity and project vertically to

    intersect the projection of the bulk density from the vertical axis. The intersection of the two projections

    determines the crossplot porosity and lithology mix.

    The crossplot porosity is read by drawing a line between matching porosity scales on each of the two lithology

    curves.

    If the intersection point is between two of the lithology curves then the formation is a mixture of those two

    lithologies. The position of the point between the two mineral curves relates the composition percentage of

    each mineral by proportioning the composition based on how close the plotted point is to each line. If the line

    is closer to one mineral line then there is a greater percentage of that mineral in the composition.

    This chart works for formations with up to two mineral compositions. Possible mineral compositions may be:

    quartz calcite

    quartz dolomite

    dolomite calcite

    Example

    Given

    f= 1.0 g/cm3

    Cf= 0 ppm

    N= 16 % on a limestone matrix

    B= 2.36 g/cm3

    Find

    Determine the crossplot porosity and the lithology mix.

    Answer

    On the XPL 1 chart project vertically from 16 % porosity on the horizontal axis to intersect the 2.38 g/cm3

    projection from the vertical bulk density axis.

  • 8/11/2019 AW Log Interpretation Charts

    116/125

    ...when experience matters

    Crossplot

    XPL-2

    The intersection point lies between the sandstone and limestone curves on the chart as well as between the

    sandstone and dolostone curves. The lithology could then be either sandstone and limestone or sandstone

    and dolomite.

    To determine the crossplot porosity and lithology mix requires that a line be drawn between the sameporosity on the sandstone and limestone curves if the minerals are quartz and calcite (shown by a dashed line)

    or between the sandstone and dolostone curves if the minerals are quartz and dolomite (shown by a dotted

    line).

    If the mineral composition is sandstone and limestone then the crossplot porosity for this example would be

    18.5 % with a lithology mix of approximately 63 percent quartz and 37 percent calcite.

    If the mineral composition is sandstone and dolostone then the crossplot porosity would be 19 % with a

    lithology mix of approximately 84 percent quartz and 16 percent dolomite.

    Note

    Formation salinity is the total salinity not only the chlorides (typically entered on a mud report).

    For NaCl: Total salinity = Chlorides x 1.657

  • 8/11/2019 AW Log Interpretation Charts

    117/125

    ...when experience matters

    Crossplot

    XPL-3

    Anhydrite

    Salt

    1.8

    1.9

    2.0

    2.1

    2.2

    2.3

    2.4

    2.5

    2.6

    2.7

    2.8

    2.9

    3.0

    -5 0 5 10 15 20 25 30 35 40 45 50

    Logdensity,

    rB

    (g/cm3)

    CNL Apparent Limestone Porosity,FN (p.u.)

    Bulk Density Log and Compensated Neutron Porosity

    50

    50

    45

    45

    40

    40

    40

    35

    35

    35

    25

    30

    30

    30

    25

    25

    20

    10

    20

    20

    15

    15

    15

    10

    10

    5

    0 5

    5

    0

    50

    50

    45

    45

    40

    40

    40

    35

    35

    35

    25

    30

    30

    30

    25

    25

    20

    10

    20

    20

    15

    15

    15

    10

    10

    5

    0 5

    5

    0

    50

    50

    45

    45

    40

    40

    40

    35

    35

    35

    25

    30

    30

    30

    25

    25

    20

    10

    20

    20

    15

    15

    15

    10

    10

    5

    0 5

    5

    0

    50

    50

    45

    45

    40

    40

    40

    35

    35

    35

    25

    30

    30

    30

    25

    25

    20

    10

    20

    20

    15

    15

    15

    10

    10

    5

    0 5

    5

    0

    50

    50

    45

    45

    40

    40

    40

    35

    35

    35

    25

    30

    30

    30

    25

    25

    20

    10

    20

    20

    15

    15

    15

    10

    10

    5

    0 5

    5

    0

    50

    50

    45

    45

    40

    40

    40

    35

    35

    35

    25

    30

    30

    30

    25

    25

    20

    10

    20

    20

    15

    15

    15

    10

    10

    5

    0 5

    5

    0

    50

    50

    45

    45

    40

    40

    40

    35

    35

    35

    25

    30

    30

    30

    25

    25

    20

    10

    20

    20

    15

    15

    15

    10

    10

    5

    0 5

    5

    0

    50

    50

    45

    45

    45

    40

    40

    40

    35

    35

    35

    25

    30

    30

    30

    25

    25

    20

    10

    20

    20

    15

    15

    15

    10

    10

    5

    0 5

    0

    5

    0

    rf = 1.0 g/cm3

    Cf = 0 kppm

  • 8/11/2019 AW Log Interpretation Charts

    118/125

    ...when experience matters

    Crossplot

    XPL-4

    Anhydrite

    Salt

    -20

    -15

    -10

    -5

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    -5 0 5 10 15 20 25 30 35 40 45 50

    Den

    sityPorosityinLimestoneUnits,FD(

    p.u.)

    CNL Apparent Limestone Porosity,FN (p.u.)

    Litho-Density Porosity and Compensated Neutron Porosity

    rf = 1.0 g/cm3

    Cf = 0 kppm

    0

    20

    5

    5

    5

    0

    0

    50

    45

    40

    35

    30

    25

    20

    15

    10

    10

    15

    20

    25

    30

    35

    40

    45

    45

    40

    35

    30

    25

    15

    10

  • 8/11/2019 AW Log Interpretation Charts

    119/125

    ...when expe