AUTOMATIC TUNING AND ADAPTATION FOR PID CONTROLLERS - A SURVEY

download AUTOMATIC TUNING AND ADAPTATION FOR PID CONTROLLERS - A SURVEY

of 16

Transcript of AUTOMATIC TUNING AND ADAPTATION FOR PID CONTROLLERS - A SURVEY

  • 8/15/2019 AUTOMATIC TUNING AND ADAPTATION FOR PID CONTROLLERS - A SURVEY

    1/16

    ControlEng. Practice

    Vol. 1, No. 4, pp. 699-714, 1993 0967-0661/93 $6.00+ 0.00

    Printed in Crib.at Britain. All rights ~served. © 1993 Pergamon Press Led

    A U T O M A T I C T U N I N G A N D A D A P T A T I O N F O R P I D

    C O N T R O L L E R S - A S U R V E Y

    K.J. A, tr6m*, T. H/igglund*, C.C. Hang** and W.K . Ho**

    Department of A utomatic Control, Lurid Institute o f Technology, S-221 O0 Lurid, Swed en

    Department of Electrical En gineering, National U niversity of Singapore, Singapore

    A b s t r a c t . Adaptive techniques such as gain scheduling, automatic tuning and

    continuous adaptation have been used in industrial single-loop controllers for about ten

    years. This paper gives a survey of the different adaptive techniques, the underlying

    process models and control designs. An overview of industrial products is also

    presented, which includes a fairly detailed investigation of four different adaptive

    single-loop controllers.

    K e y w o r d s . Adaptive control, automatic tuning, gain scheduling, PID control.

    1. INTRODUCTION

    Single-loop controllers have been used in indus-

    try for a long time. For example, it was about

    fifty year s ago that derivative action was intro-

    duced in pn eumati c controllers by Taylor Instru-

    ments. Industrial single-loop controllers have

    gone through an interesting change in tech-

    nology, from pneumatic via analog electronics

    to microprocessor implementation. In spite of

    these changes in technology, the functional ity of

    the controllers has remained the same, namely

    essentially an implementation of the standard

    PID algorithm. The controllers are currently

    going through an interesting phase of devel-

    opment, where features like auto-tuning, gain

    scheduling and adaptation are added. There is

    hardly any new product announced that does

    not incorporate some of these features. The

    single-loop controller is therefore rapidly becom-

    ing a test bench for control theory. Since the

    controllers are made and used in large num-

    bers, much industrial experience of using so-

    phisticated control is also accumulating. One

    reason for this development is the advances in

    microelectronics which give cheap microproces-

    sors whose computational power is continuously

    increasing. Another reason is the pressure from

    users and applications, and a third is the grow-

    ing experience of using advanced control.

    It may be asked why a similar development is

    not taking place in distributed control systems.

    O n e r e a s o n i s t h a t t h e d i s tr i b u t e d c o n tr o l s y s -

    t e m s a r e q u i t e c o m p l i c a t e d a n d t h a t t h e i r d e v e l -

    o p m e n t c y c l e i s q u i t e l o n g . T h e r e f o r e i t t a k e s a

    l o n g t i m e f o r n e w f e a t u r e s t o b e i n t r o d u c e d i n

    s u c h s y s t e m s . T h e r e a r e h o w e v e r i n d ic a t i o n s

    t h a t t h e e x p e r i e n c e s f r o m s i n g l e - l oo p c o n t ro l l e rs

    a r e m i g r a t i n g i n t o l a r g e r s y s t e m s .

    I t i s t h e r e f o r e t i m e l y t o t a k e s t o c k o f t h e d e v e l -

    o p m e n t t o a s s e s s t h e c u r r e n t s t a t e o f t h e a r t

    a n d t o l o o k a t t h e f u t ur e . T o m a k e s u c h a n e v a l -

    u a t i o n i s t h e p u r p o s e o f t h i s p a p er . T h e p a p e r

    i s o r g a n i z e d a s f o l l o w s. A r e v i e w o f i n d u s t r i a l

    n e e d s i s g i v e n i n S e c ti o n 2 w h i c h a l s o p r e s e n t s

    s o m e a d a p t i v e t e c h n i q u e s a n d m a t c h e s t h e m t o

    t h e n ee d s . M o r e d e t ai l s o n t h e t e c h n i q u e s a r e

    g i v e n i n S e c ti o n s 3 a n d 4 t h a t d e a l w i t h m o d -

    e l i n g a n d c o n t r o l m e t h o d s . S e c t i o n 5 g i v e s a n

    o v e r v i e w o f s o m e e x i s t i n g i n d us t r i a l p r o d u c ts .

    I n S e c t io n 6 f o u r p r o d u c t s w i t h d i f fe r e n t a d a p -

    t i v e a p p r o a c h e s a r e d e s c r i b e d i n m o r e d e t ai l.

    2. ADAPTIVE TECHNIQUES

    The first general purpose adaptive controller

    for industrial process control was introduced

    around 1983. There are now many brands of

    adaptive controllers for industrial process con-

    trol and many loops being controlled by s u c h

    controllers, see ( D u m o n t e t a l . , 1 9 8 9 ; Kaya and

    Titus, 1988; Hess

    e t a l . ,

    1987; Hagglund and

    Astr6m, 1991). As a result of this there is

    a growing experience of using adaptive tech-

    699

  • 8/15/2019 AUTOMATIC TUNING AND ADAPTATION FOR PID CONTROLLERS - A SURVEY

    2/16

    700 K.J. ,~str6met al

    niques. Unf ortuna tely there is also some con-

    fusion in terminology. Therefore we will intro-

    duce an appropriate terminology at the same

    time as we describe some of the adaptive tech-

    niques that have been useful.

    A u t o m a t i c T u n i n g

    By automatic tuning (or auto-tuning) we mean

    a method where a controller is tuned automati-

    cally on demand from a user. Typically the u ser

    will either push a button or send a command to

    the controller. Industr ial experience has clearly

    indicated that this is a highly desirable and

    useful feature. Automatic tuning is sometimes

    called tuning on demand or one-shot tuning.

    Automatic tuning can also be performed using

    external equipment. These products are con-

    nected to the control loop only during the tun-

    ing phase. When the tuning experiment is fin-

    ished, the products suggest controller parame-

    ters. Since these products are supposed to work

    together with controllers from different manu-

    facturers, they must be provided with quite a lot

    of information about the controller structure in

    order to give an appropriate parame ter sugges-

    tion. Such information includes controller struc-

    ture (series or parallel form), sampling rate,

    filter time constants, and units of the differ-

    ent controller paramete rs (gain or proportional

    band, minu tes or seconds, time or repeats/time).

    G a i n S c h e d u l i n g

    By gain scheduling we mean a system where

    controller paramet ers are changed depending on

    measured operating conditions. The scheduling

    variable can, for instance, be the measurement

    signal, controller output or an external signal.

    For historical reasons the word gain scheduling

    is used even if other pa ramet ers like derivative

    time or integral time are changed. Gain schedul-

    ing is a very effective way of controlling systems

    whose dynamics change with the operating con-

    ditions. Gain scheduling has, however, not been

    used much because of the effort required to im-

    plement it. When combined with auto-tuning,

    gain scheduling is, however, very easy to use.

    A d a p t i v e Co n t r o l

    By adaptive control we mean a controller whose

    parameter s ar e continuously adjusted to accom-

    modate changes in process dynamics and distur-

    bances. Adaptation can be applied both to feed-

    back and feedforward control parameters. It ha s

    proven particularly useful for feedforward con-

    trol. The reason for this is tha t feedforward con-

    trol requires good models. Adaptation is there-

    fore almost a prerequisite for using feedforward

    control.

    J o n ~ a N u t

    unknown dyn mics

    I

    J o n s t a n t o n t ro l le r

    g ~ ~ ~ n m ~

    P r K l l c t ~ l e

    p a r m r c h an ge s

    npc~mb~

    J U n p m d c U ~ a l e

    p r meter

    c h a n g ~ J

    Fig. 1. When to use different adaptive

    techniques

    The notation

    a d a p t i v e t e c h n i q u e s

    will be used to

    cover auto-tuning, gain scheduling and adapta-

    tion. Although research on adaptive techniques

    has almost exclusively focused on adaptation,

    experience has shown that auto-tuning and gain

    scheduling have a much wider industrial inter-

    est. Figure 1 illustrates when it is appropriate

    to use the different techniques.

    The first issue to consider is controller perfor-

    mance. If the requirements are modest, a con-

    troller with constant parameters and conserva-

    tive tuning can be used. With higher demands

    on performance other solutions should be con-

    sidered. If the process dynamics are constant, a

    controller with constant parameters should be

    used. The parameters of the controller can be

    obtained using auto-tuning. If the process dy-

    namics or the nature of the disturbances are

    changing it is useful to compensate for these

    changes by changing the controller. If the vari-

    ations can be predicted from measured signals,

    gain scheduling should be used as it is simpler

    and it gives superior and more robust perfor-

    mance than the continuous adaptation. Typi-

    cal examples are variations caused by nonlin-

    earities in the control loop. Auto-tuning can be

    used to build up the gain schedules. There are

    also cases where the variations in process dy-

    namics are not predictable. Typical examples

    are changes due to unm easur able variations in

    raw material, wear, fouling etc. These variations

    cannot be handled by gain scheduling but must

    be dealt with by adaptation. An auto-tuning

    procedure is often used to initialize the adap-

    tive controller. It is then sometimes called pre-

    tuning or initial tuning.

    Feedforward control deserves special mention-

    ing. It is a very powerful method for dealing

    with measurable disturbances. Use of feedfor-

    ward control requires however good models of

    process dynamics. It is difficult to tune feed-

    forward control loops auto matically on demand,

    since the operator often cannot manipul ate the

    disturbance used for the feedforward control.

  • 8/15/2019 AUTOMATIC TUNING AND ADAPTATION FOR PID CONTROLLERS - A SURVEY

    3/16

    Autom atic Tuning and P ID Controllers

    701

    ontroller

    des ign Model

    ° - , ' - - ' F -

    ~ . _ K p

    0.63 Kp

    ~ - y

    /

    B C

    L

    v

    F ig. 2. Bloc k diagram of indirect

    s y s t e m s

    T o t u n e t h e f e e d f o r w a r d c o n t r o l l e r i t i s t h e r e -

    f o re n e c e s s a r y t o w a i t f or a n a p p r o p r i a t e d i s t u r-

    b a n c e . A d a p t a t i o n i s t h e r e f o r e p a r t i c u l a r l y u s e -

    f u l f o r t h e f e e d f o r w a r d c o n t r o ll e r .

    T h e t e c h n i q u e s u s e d f o r a u t o - t u n i n g a n d a d a p -

    t a t i o n a r e v e r y s im i l a r. I n b r e a d t e r m s , o n e c a n

    d i s t i n g u i s h b e t w e e n d i r e c t a n d i n d i r e c t m e t h -

    o d s . I n a d i r e c t m e t h o d c o n t r o l l e r p a r a m e t e r s

    a r e a d j u s t e d d i r e c t l y f r o m d a t a i n c l o s e d - l o o p

    o p e r a t i o n . I n i n d i r e c t m e t h o d s a m o d e l o f t h e

    p r o c e s s i s f i r s t d e v e l o p e d f r o m o n - l i n e d a t a . T h e

    c o n t r o ll e r p a r a m e t e r s a r e th e n d e t e r m i n e d f r om

    t h i s m o d e l .

    T h e r e i s a la r g e n u m b e r o f m e t h o d s a v a i l a b l e

    b o t h f o r d i r e c t a n d i n d i r e c t m e t h o d s . T h e y c a n

    c o n v e n i e n t l y b e d e s c r i b e d in t e r m s o f t h e m e t h -

    o d s u s e d f o r m o d e l i n g a n d c o n t r o l d e s i g n .

    I n t h e d i r e c t m e t h o d s t h e k e y i s su e s a r e t o

    f i nd s u i t a b l e f e a t u r e s t h a t c h a r a c t e r i z e r e l e v a n t

    p r o p e r t i e s o f t h e c l os e d - lo o p s y s t e m a n d a p p r o-

    p r i a t e w a y s o f c h a n g i n g t h e c o n t r o ll e r p a r a m e -

    t e r s s o t h a t t h e d e s i r e d p r o p e r t i e s a r e o b t a i n e d .

    T h e i n d i r e c t s y s t e m s c a n a ll b e r e p r e s e n t e d b y

    t h e b l o c k d i a g r a m i n F i g u r e 2 . T h e r e is a p a r a m -

    e t e r e s t i m a t o r t h a t d e t e r m i n e s t h e p a r a m e t e r s

    o f t h e m o d e l b a s e d o n o b s e r v a t i o n s o f pr o c e s s

    i n p u t s a n d o u t p u t s . T h e r e i s a ls o a d e s ig n b l o c k

    t h a t c o m p u t e s c o n t r o l l e r p a r a m e t e r s f r o m t h e

    m o d e l p a r a m e t e r s . I f t h e s y s t e m i s o p e r a t e d a s

    a t u n e r t h e p r o c e s s i s e x c it e d b y a n i n p u t s ig -

    n a l. T h e p a r a m e t e r s c a n e i t h e r b e e s t i m a t e d r e -

    c u r s i v e l y o r i n b a t c h m o d e . C o n t r o l le r p a r a m e -

    t e r s a r e c o m p u t e d a n d t h e c o n t r o l le r i s c o m m i s -

    s io n e d . I f t h e s y s t e m i s o p e r a t e d a s a n a d a p -

    t i v e c o n tr o ll e r, p a r a m e t e r s a r e c o m p u t e d r e c u r-

    s i v e ly a n d c o n t r o ll e r p a r a m e t e r s a r e u p d a t e d

    w h e n n e w p a r a m e t e r v a l u e s a re o b t a in e d .

    3 . M O D E L I N G

    A m o d e l o f a s y s t e m c a n b e a n y t y p e o f a b s t r a c t

    d e s c r i p t i o n t h a t c a p t u r e s u s e f u l r e l e v a n t f e a -

    t u r e s o f a p r o c e ss . M o d e l i n g c a n m e a n m a n y d if -

    f e r e n t t h i n g s , f r o m t h e e x t r a c t i o n o f so m e s i m p l e

    Fi g . 3 . D e t e r m i n i ng a f ir s t o r de r p l us de a d- t ime mo d e l

    f r o m a s t e p r e s p o ns e . T i me c o ns t a n t T c a n be

    o b t a i n e d e it h e r a s t h e d i s t an c e A B o r t he d i s t a nc e

    AC

    f e a t u re s o f a t r a n si e n t r e s p o n s e t o t h e d e v e l o p-

    m e n t o f a t r a d it i o n a l c o n t r o l m o d e l i n t e r m s o f a

    t r a n s f e r f u n c t i o n o r a n i m p u l s e r e s p o n s e . S o m e

    m o d e l s t h a t a r e u s e d i n a d a p t i v e P I D c o nt r o l le r s

    w i ll n o w b e d e s c r ib e d .

    3 .1 T i m e - D o m a i n M o d e l s

    T y p i c a l t i m e - d o m a i n f e a t u r e s a r e s t a t i c g a i n ,

    d o m i n a n t t i m e c o n s t a n t

    a n d d o m i n a n t

    d e a d

    t im e . T h e y c a n a l l b e d e t e r m i n e d f r o m t h e s t e p

    r e s p o n s e o f t h e p r o c e s s , s e e F i g u r e 3 . S t a t i c g a i n

    Kp,

    d o m i n a n t t i m e c o n s t a n t T a n d d o m i n a n t

    d e a d t i m e L c a n b e u s e d t o o b t a i n a f i r st o rd e r

    p l u s d e a d - t i m e m o d e l f o r t h e p r o c e s s a s g iv e n i n

    E q u a t i o n ( 1 ) .

    Kp e_,L

    (1)

    G p s) = 1 + s T

    T h e c o n s t r u c t i o n s i n F i g u r e 3 a r e s e n s i t i v e

    b e c a u s e t h e y a r e b a s e d o n a f e w v a l u e s o f t h e

    s t e p r e s p o n s e o n l y .

    A n o t h e r m e t h o d , w h i c h i s b a s e d o n d e t e r m i n a -

    t io n o f a r e a s c a n b e u s e d , s e e F i g u r e 4 . I n t h i s

    m e t h o d , g a i n K p i s f i r s t d e t e r m i n e d f r om t h e

    s t e a d y- s t a t e v a l u e o f t h e s t e p r e s p o ns e . A r e a 4 o

    i s t h e n d e t e r m i n e d . T h e a v e r a g e r e s i d e n c e t i m e

    o f t h e s y s t e m i s t h e n

    L + T = A °

    o

    2 )

    g .

    i i i i i i i i i i i i i i i l i i i i i i A : : : i i i i i i i i i i i i i i i i ...

    L+T

    Fi g . 4 . D e t e r m i n i ng a f i r s t o r de r p l us de a d- t i me mo de l

    from a step response

  • 8/15/2019 AUTOMATIC TUNING AND ADAPTATION FOR PID CONTROLLERS - A SURVEY

    4/16

    702 K.J./~.str6met al.

    Process

    P I I

    F i g 5 T h e r e l a y a u t o t u ne r I n th e t u n i n g m o d e t h e

    p r o c e s s i s c o n n e c t e d t o r e l a y f e e d b a c k

    Area A1, which is the area under the step

    response up to time L + T, is then determined

    and T is given by

    /

    N a )/G i )

    Im

    Re

    F i g . 6 . T h e n e g a t i v e i n v e r s e d e s c r i b i n g f u n c t io n o f a

    relay with hysteresis - 1I N a ) and a Nyquist

    c u r v e

    G iw)

    A 1 e l

    T = ~ (3)

    This method is less sensitive to high-frequency

    disturbances, because it is based on area deter-

    mination. More details can be found in (./kstr~m

    and H~igglund, 1988; Nishikawa

    e t a ] . ,

    1984).

    Highe r order models can also be obtained from a

    step response method, see, for instance, (Seborg

    e t a ] . ,

    1989).

    A d i s cr e t e t i m e m o d e l a s g i v e n i n E q u a t i o n 4 )

    c a n a l s o b e u s e d t o d e s c r i b e t h e p r o c es s .

    b o + b ] z + . . . + b n _ l z n -1

    Gp(z) = ao + alz +. . . + a . z

    ( 4 )

    There are m any methods available to determine

    the p aram eter s in Equation (4), for instance the

    recursive least squares method.

    3 .2 F r e q u e n c y - D o m a i n M o d e ls

    Typical frequency-domain characteristics are

    amplitude marg in, phase margin, Mp-value, ul-

    timate gain, and ultimate period. These quan-

    tities are all related to simple properties of the

    Nyquist curves of the open-loop transfer func-

    tion or of the loop transfer function.

    l

    R e l a y Exc i t a t i on

    Frequency-domain characteristics can be deter-

    mined from experiments with relay feedback in

    the following way. When the controller is to be

    tuned, a relay with hysteresis is introduced in

    the loop, and the PID controller is temporar-

    ily disconnected, see Figure 5. For large classes

    of processes, relay feedback gives an oscillation

    with period close to t he ult ima te f requency w~s0.

    The gain of the transfer function at this fre-

    quency is also easy to obtain from amplitude

    measu rements. Details and conditions are given

    in (~str~m and H/igglund, 1984; /~str6m and

    H a g g l u n d , 1 9 8 8 ; H a n g a n d A s t r 6 m , 1 9 8 8 ) . D e -

    s c r i b i n g f u n c t i o n a n a l y s i s c a n b e u s e d t o de t e r -

    m i n e t h e p r o c e s s c h a ra c te r i st i cs . h e d e s c r i b i n g

    f u n c t i o n o f a r e l a y w i t h h y s t e r e s i s i s

    where d is the relay amplitude, e the relay

    hysteresis and a is the amplitude of the input

    signal. The negative inverse of this describing

    function is a straight line parallel to the real

    axis, see Figure 6. The oscillation corresponds

    to the point where the negative inverse describ-

    ing function crosses the Nyquist curve of the

    process, i.e. where

    1

    G iw ) = - N a )

    Since

    N a )

    is known,

    G i w )

    can be determined

    from the amplitude a and the frequency w of the

    oscillation.

    Cor re la t i on M ethod

    In this method, a small pseudo random binary

    sequence (PRBS) test signal u t ) is injected and

    the resultant process output

    y t )

    is logged. The

    cross correlation, ~.y(V), between

    u t )

    and

    y t )

    is then used to compute the impulse response

    g v )

    of the process (Hang and Sin, 1991) as

    f o l l o w s

    hffi0

    where A is the amplitude of the PRBS signal,

    h is the sampling interval and

    N h

    is the pe-

    riod of the PRBS signal. The impulse response

    computed is then numerical ly transformed into

    its frequency response from which the ultimate

    gain, ultimate period, static gain and normal-

    ized dead time of the process can be determined.

  • 8/15/2019 AUTOMATIC TUNING AND ADAPTATION FOR PID CONTROLLERS - A SURVEY

    5/16

    AutomaticTuning and PID Controllers

    3 . 3 C o n v e r s i o n

    to Time- Domain Models

    The es timated frequency-domain model in terms

    of the full frequency response or at least two

    points on the Nyquist curve may be used to de-

    rive a corresponding time-domain model. This is

    useful if the controller design is done in the time

    domain (pole-placement design, Ziegler-Nichols

    step response design, IMC design, etc. to be dis-

    cussed in Section 4). The following formulas (Ho

    et a]. ,

    1992), for instance, may be used to derive

    useful models from knowledge of the ultimate

    gain (Ku), ultimate period (T.), and the static

    gain

    ( K p ) :

    Kp e_sL 1

    G p ( s ) = I + sT 1

    o r

    where

    Kp e_sL2

    Gp s)

    i + s T 2 ) 2

    Tu ~/ KuK p) 2 1

    ~= ~

    T . ( 2 z T z ~

    L I= ~ z - t an -1 - -~ - ]

    a n d

    T.

    T 2 = ~ z v / K ~ K p - 1

    T: ( 2zT2~Lz = ~ z- 2t an -z--~-- ]

    7 0 3

    o f t e n g i v e s e t - p o i n t e s p o n s e s t h a t a r e t o o os c il -

    l at or y. O n t h e o t h e r h a n d , t u n i n g t o g i v e g o o d

    s e t - p oi n t r e s p o n s e s o f t e n g i v e s s l u g g i s h l o a d -

    d i s t u r ba n c e s r e s po n s e . T h e f a c t o r f l w h e n s e t

    t o l e ss t h a n o n e c a n r e d u c e t h e s e t - po i n t r e-

    s p o n s e o v e r s h oo t f o r t u n i n g t h a t o p t i m i ze s t h e

    l o a d - d i s t u r b a n c e r e s p o n s e . I n s o m e l i te r at u re ,

    t h is f o r m o f t h e P I D c o n tr o l l a w i s k n o w n a s

    a t w o - d e g r e e - o f - f r e e d o m P I D c o n t r o l le r S h i g e -

    m a s a e t a ] . 1 9 8 7 ; T a k a t s u e t a l . 9 9 1 ) . S e v e r a l

    i n d u s t r i a l c o n t r o l l e r s a v e f l = 0 .

    T h e s e r ie s f o r m o f t h e P I D c o n t r ol l a w , w i t h o u t

    f il te r n t h e d e r i v a t i v e t e r m , i s g i v e n i n E q u a -

    t i o n 8 ) .

    G, (s) = K 1 + (1 + s T y ) (8)

    It is not possible to obtain complex zeros from

    this form of the controller. However, it is some-

    times claimed that the series form is easier to

    tune.

    This section describes some methods for deter-

    mining the param eters of a PID controller. They

    can be classified broadly into direct and indirect

    methods. The direct control design techniques

    are simply prescriptions that tell how the con-

    troller parameters should be changed in order

    to obtain the desired features. The indirect con-

    trol design methods give controller paramet ers

    in terms of model parameter s.

    4. CONTROL

    D E S I G N

    The PID control law can be implemented in ei-

    the r the parallel or the series form. The parallel

    form with derivat ive action on filtered measure-

    ment signal to avoid derivative kick is given

    b e l o w .

    1 i

    = K e + ~i e d t - T d

    e = y , - y (6 )

    d y f N

    d t = ~ ( y - y f )

    The controller output, process output and set

    point are u, y and y,, respectively. A weighting

    factor fl can be placed on the set point as shown

    in Equation (7).

    u = K ( f l y , - y ) + ~ e d t - T d d t }

    (7)

    The factor fl when set to less than one can

    reduce the set-point response overshoot with-

    out affecting the load-disturbance response. In

    a conventional PID controller with fl = 1, tun-

    ing to give good load-disturbance responses will

    4 .1 D i r e c t M e t h o d s

    A v a s t m a j o r i t y o f t h e P I D c o n t r o ll e r s i n t h e

    i n d u st r i e s a r e t u n e d m a n u a l l y b y c o n t r ol e n g i -

    n e e r s a n d o p er a to r s . T h e t u n i n g i s d o n e b a s e d

    o n p a s t e x p e r i e n c e s a n d h e u r i st i c s. y o b s e r v -

    i n g t h e p a t t e r n o f t h e c l o s e d - l o o p r e s p o n s e t o

    a s e t - p o i n t c h a n g e , t h e o p e r a t o r s u s e s h e u r i s -

    t ic s to d i r ec t l y a d j u s t t h e c o n t ro l l er p a r a m e -

    t er s. T h e h e u ri s t ic s a v e b e e n c a p t u r e d i n t u n -

    i n g c h a r ts t h a t s h o w t h e r e s p o n s es o f t h e s y s -

    t e m f or di f fe r e nt p a r a m e t e r v a l u e s . A c o n s id -

    e r a b l e i n s i g h t i n t o c o n t r ol l e r t u n i n g c a n b e

    d e v e l o pe d b y s t u d y i n g s u c h c h a r t s a n d p e r -

    f o r m i n g s i m u l a t io n s . T h e h e u r i s ti c r u l e s h a v e

    a l s o b e e n c a p t u r e d i n k n o w l e d g e b a s e s i n t h e

    f o r m o f r u l es , b o t h c r i s p a n d f u z z y, s e e A n -

    d e r s o n e t a ] . 1 9 8 8 ; B r i s t o l , 1 9 7 7 ; B r i s t o l , 9 8 6 ;

    H i g h a m , 1 9 8 5; K l e in e t a ] . 1 9 91 ; K r a u s a n d

    M y r o n , 1 9 8 4; M a r s i k a n d S tr ej c, 1 9 8 9; P a g a n o ,

    1 9 9 1; Y a m a m o t o , 1 9 9 1 ) . R u l e s o f t h i s t y p e a r e

    u s e d i n s e v er a l c o m m e r c i a l t u n e r s . M o s t p r o d -

    u c t s w i l l a i t f o r s e t - p oi n t h a n g e s o r m a j o r l o a d

    d i s t ur b a n ce s . W h e n t h e s e o cc u r , p r o p e rt i e s i k e

    d a m p i n g , o v e r s h oo t , p e r i o d o f o sc i ll at i on s n d

    s t at i c a i n s a r e e s t i m a t e d . B a s e d o n t h e s e p r o p -

    e rt ie s, u l e s f o r c h a n g i n g t h e c o n tr o l l e r a r a m e -

  • 8/15/2019 AUTOMATIC TUNING AND ADAPTATION FOR PID CONTROLLERS - A SURVEY

    6/16

    704 K.J. ~,str6m et al

    T a b l e

    1. Controller parameters o btained by the Ziegler-

    Nichols step response method.

    Controller K Ti Td Tp

    P 1 / a 4 L

    PI 0.9a 3L 5.7L

    PID

    1 2 / a 2 L L / 2

    3.4L

    ters to meet desired specifications are executed.

    An example will be described later in Section 6.

    4 .2 I n d i r e c t M e t h o d s

    Z i e g l e r . N i c h o l s S t e p R esp o n se M e t h o d

    This method is based on a registration of the

    open-loop step response of the system, which

    is characterized by two parameters. The point

    where the slope of the step response has its max-

    imum is first determined, and the tangent at

    this point is drawn. The intersections between

    this tangent and the coordinate axes give the

    two parameters a and L, see Figure 3. A sim-

    ple model of the process which can be derived

    from these parameters is given by the transfer

    function

    G p s ) = a - , Le . (9)

    Ziegler and Nichols have given PID parameters

    directly as functions of a and L, see (Ziegler

    and Nichols, 1942). These formulas are given

    in Table 1. An estimate of the period Tp of the

    dominant dynamics of the closed-loop system

    is also given in the table. The formulas will

    roughly give quarter amplitude damping ratio

    for load-disturbance response for processes that

    can be modeled by Equation (9). In practice

    some form of fine tuni ng has to be done.

    There are several design methods which are

    similar to the Ziegler-Nichols step response

    method in the sense that they are based on a

    step response experiment combined with a tab le

    that relates the controller parameters to the

    characteristics of the step response, see (Hang

    eta]., 1979; Hazebroek and van der Waerden,

    1950; Miller e t a L , 1967). The most common

    method is the Cohen-Coon method (Cohen and

    Coon, 1953) based on a first order plus dead-

    time model.

    O p t i m i z a t i o n Techn iques

    There are other tuning formulas derived to opti-

    mize certain criteria such as the integrated ab-

    solute error (IAE), the in tegrat ed time absolute

    error (ITAE), the integr ated square error (ISE),

    etc. They are mos tly done for the first-order plus

    dead-time model as given in Equation (1). A

    word of caution is in order: Formulas derived

    for the first-order plus dead-time model may not

    ° I

    .

    0

    rocess output and s t point

    Control signal

    ~ 2 ~ io l~

    Fig. 7. IAE criteria optimized for first order plus dead-

    t i m e process applied to a higher order process .

    K = 4.3, T~ = 2.0

    give good results for higher order systems. An

    example is given in Figure 7. A PI controller for

    a process with the tran sfer function

    e -o.3

    G p s )

    -

    s

    + 1) 2 i0)

    is determined by first finding parameters L

    and T by the maxi mum slope method and then

    applying Shinskey's closed-loop tun ing formula

    for minimum IAE, see (Shinskey, 1988). It is

    evident that the tuning performance as shown

    in Figure 7 is too oscillatory.

    P o l e

    P l a c e m e n t

    If the process is described by a low-order trans-

    fer function, a complete pole-placement design

    can be performed. Consider the process de-

    scribed by a second-order model in Equation

    (11).

    a s) = Kp i i )

    1 + sT1)(1 + s T 2 )

    This model has three parameters. By using a

    PID controller, which also has three paramete rs,

    it is possible to arbitrarily place the three poles

    of the closed-loop system. The t ran sfe r function

    of the PID controller on parallel form can be

    written as

    G o s ) =

    g(1 +

    s T i + s 2 T i T d )

    (12)

    s Z

    The characteristic equation of the closed-loop

    system becomes

    s 3 + s 2 1 1 K p K T d ~

    T II + ~22 + T 1 T 2 ] +

    ( 1 x . K = o .

    s \ T--~ + T1T2} + TiT1---- -~2

    1 3 )

    A s u i t a b l e c l o s e d - l o o p c h a r a c t e r i s t i c q u a t i o n o f

    a

    t h i r d - o r d e r s y s t e m i s

    (s + am)( s 2 + 2~'~os + 0)2) = 0 (14)

  • 8/15/2019 AUTOMATIC TUNING AND ADAPTATION FOR PID CONTROLLERS - A SURVEY

    7/16

    AutomaticTuning and PID Controllers

    w h i c h c o n t a i n s t w o d o m i n a n t p o l e s w i t h r e la t iv e

    d a m p i n g (~ ) n d f r e q u e n cy ( w ) , a n d a r e a l p o l e

    l o c a t e d i n - s e a . I d e n t i f y i n g t h e c o e f fi c i en t s n

    t h e s e t w o c h a r a ct e r i s t ic q u a t i o n s g i v e s

    1 1 K p K T d = w ( a + 2~')

    T-xl + T22 +

    T1----~2

    1 K p K

    - - + = w 2 (1 + 2 ~ a ) ( 15 )

    7 , 7 2 7 1 7 2

    K p K = a W 3

    Ti T 1T2

    These three equations

    rameters K, Ti and

    T d.

    K =

    =

    T d =

    d e t e r m i n e t he P I D p a -

    T h e s o l u t i o n s

    T1T2eo2(1 + 2~'a) - 1

    K p

    T 1 T 2 w 2 ( 1 +

    2~a) - 1

    16)

    T 1 T 2 a w 3

    T1T2oJ a + - 7 , -

    T 1 T 2 ( 1 +

    2~'a)co 2 - 1

    N o t i c e t h a t p u r e P I c o n t r o l i s o b t a i n e d f o r

    7'1+7 2

    W c = T1T2(~ + 2~') (17)

    Notice also tha t the choice of w may be critical.

    The derivative time is negative for w < o)c.

    The frequency w~ thus gives a lower bound

    to the bandwidth. Also notice that the gain

    increases rapidly with co. The upper bound

    to the bandwidth is given by the validity of

    the simplified model. Automatic tuning of PID

    controllers based on pole placement design is

    discussed in (Gawthrop, 1986).

    C a n c e l l a t i o n o f P r o c e ss P o l e s

    The PID controller has two zeros. A popular

    design method is to choose these zeros so that

    they cancel the two dominant process poles.

    The method is popular since it is simple and

    gives good response to set-point changes, see

    (Haalman, 1965). The method will, however,

    often give poor response to load disturbances

    (/~,str~im and H~igglund, 1988). An exception to

    this is in the case of large dead time, in which

    case the settling time is already quite long

    relative to the time constant being cancelled (Ho

    e t a l . ,

    1992).

    When pole-zero cancellation is safe to apply,

    the simple IMC (Internal Model Control) based

    tuning formulas (Morari and Zafiriou, 1989;

    Seborg e t a] . , 1989) based on a first order plus

    dead-time model--as shown in Table 2--may be

    used.

    The controll er gain may be chosen to be aggres-

    sive or conservative by va rying the value of 2,

    which is equivalent to the desired closed-loop

    time constant.

    705

    T a bl e 2 .

    IMC based PID controller uning formulas.

    C o n tr o l le r K T i T d S u g g e s t e d

    1 2 T + L

    P I

    7 ~ , 2 - N Y - T + L / 2

    2 > 0 . 2 T

    ~t > 1.7L

    1 2T+L TL

    PID K~p 2-'l -E T + L /2 ~ Jt >

    0.2T

    >

    0.25L

    Z i e g l e r . N i c h o l s F r e q u e n c y R e s p o n ~ M e t h o d

    This method is based on a very simple charac-

    teriza tion of the process dynamics. The design is

    based on knowledge of the point on the Nyquist

    curve of the process tran sfer function G where

    the Nyquist curve intersects the negative real

    a x is . F o r h i s to r i ca l e a s o n s t h i s p o i n t is c h a r a c -

    t e r i z e d b y t h e p a r a m e t e r s K . a n d T u , w h i c h a r e

    c a l l e d t h e u l t i m a t e g a i n a n d t h e u l t i m a t e p e -

    r io d. T h e s e t w o q u a n t i ti e s c a n b e o b t a i n ed f o r

    m a n y s y s t e m s b y u s i n g p r o po r t io n a l f e e d b a ck

    a n d c h o o s i n g s u f f i ci e n tl y i g h g a i n u n t i l c o n -

    t i n u o u s c yc l i n g c c u rs . T h e u l t i m a te g a i n K , i s

    t h e n g i v e n b y t h e p r o p o rt i o n a l g a i n a n d t h e u l-

    t i m a t e p e r i o d T,. i s g i v e n b y t h e p e r i o d o f t h e

    o s ci l la t io n s. t i s, h o w e v e r , m o r e p r a c t i c a l o o b -

    t a i n t h e s e p a r a m e t e r s u s i n g t h e r e l a y f e e d b a ck

    e x p e r i m e n t o r t h e c o r re l a ti o n e t h o d p r e s e n t ed

    i n S e c t i o n 3.

    T h e Z i e g le r - N i ch o l s o r m u l a s a r e g i v e n i n T a -

    b l e 3 . A n e s t i m a te o f t h e p e r i o d T p o f t h e d o m i -

    n a n t d y n a m i c s o f t h e c l os e d- l o op y s t e m i s a l s o

    g i v e n i n t h e ta b le . h e s e f o r m u l a s w e r e d e r i v e d

    t o g i v e qu a r te r a m p l i t u d e d a m p i n g f or l o a d-

    d i s t u r b a n c e r e s p o n s e , s e e ( Z i e g l e r n d N i c h o l s ,

    1 9 4 2 ) . B o t h T p a n d t h e d a m p i n g o b t a i n e d w i t h

    t h e Z i e g l er - N i c ho l s t u n i n g r u l e c a n , h o w e v e r ,

    d i ff e r s i g n i f i ca n t l y f r o m t h e s e e x p e c t e d v a l -

    u e s . R e f i n e d Z i e g l e r - N i c h o l s o r m u l a s t o r e d u c e

    t h e s e d i s c r e pa n c e s a n d t o i m p r o v e t h e t u n i n g

    p e r f o r m a n c e a r e g i v e n i n C H a n g e t a ] . , 1 9 9 1 ) .

    P h a s e a n d A m p l i t u d e M a r g i n s

    Phase and amplitude margins design methods

    give a measur e of the robustness of the system.

    It is known from classical control that

    t h e

    damping of the system is related to the phase

    margin. The phase margin is given by

    ¢ m

    : z + a r g G p i w g ) G c i w g )

    ( 1 8 )

    T a b l e 3. C o n t r o l le r a r a m e t e r s b t a i n e d y t h e Z i eg l er -

    N i c h o ls r e q u e n c y e s p o n s e e t h o d .

    C o n t r o l l e r

    K T~ Ta Tp

    P 0 . S K . T ,

    PI OAK, 0.8T, 1.4T,

    PID

    0 . 6 K. 0 . 5T u 0 . 1 2T . 0 . 8 57 .

  • 8/15/2019 AUTOMATIC TUNING AND ADAPTATION FOR PID CONTROLLERS - A SURVEY

    8/16

    706 K.J. ,/kstr6m

    et al.

    w h e r e

    IGp(ico )Gc(iCag)l

    = 1 a n d w g i s t h e g a i n

    c r o ss - o v e r fr e qu e n cy . T h e a m p l i t u d e m a r g i n o r

    g a i n m a r g i n i s g i v e n b y

    1

    Am = iGp(iO)u)Vc(iO), ,) I

    (19)

    w h e r e o ), i s t h e u l t i m a t e f r e q u e n c y o r t h e p h a s e

    c ros s -ove r f r e que nc y .

    I f t h e u l t i m a t e g a i n ( K ,.) a n d u l t i m a t e p e r io d

    ( Tu ) a r e k n o w n , t h e f o ll o w i n g s i m p l e d e s i g n

    f o r m u l a ( / ~ s t r ~ m a n d H ~ i g g l u n d , 1 9 8 8 ) m a y b e

    u s e d t o a c h i e v e a p r e - s p e c if i ed p h a s e m a r g i n era:

    K = K , c osC m

    7 , , ( ~ /1 + t an 2 e r a ) ( 2 0 )

    ~ = ~

    t a n C m +

    T ~ = T d 4 .

    T h e a b o v e d e s i g n w o r k s w e l l fo r p r o c es s e s w i t h

    r e l a t i v e l y s m a l l d e a d t i m e . O t h e r w i s e , e s p e -

    c ia ll y w h e n t h e d e a d t i m e i s d o m i n a n t , th e a m -

    p l i t u d e m a r g i n m a y b e p o o r a l t h o u g h t h e p r e -

    s p e c if ie d p h a s e m a r g i n i s a c h i e v e d . I f a f i r s t o r-

    d e r p l u s d e a d - t i m e p r o c e s s m o d e l ( E q u a t i o n 1 )

    i s o b t a i n e d , t h e f o l l o w i n g d e s i g n f o r m u l a ( H o

    e t a / . , 1 9 9 2 ) m a y b e u s e d t o a c h i e v e a p r e s p e c i-

    f le d a m p l i t u d e m a r g i n Am:

    z T

    I : o -

    2 A m K p L (21)

    T I = T

    F o r t h i s m e t h o d , t h e p h a s e m a r g i n is c o n s i s te n t

    w i t h t h e a m p l i t u d e m a r g i n a s g i v e n b y t h e

    fo l l owi ng re l a t i o n (Ho e t M. , 1992):

    z ( 1 - 1 l A i n ) . (22)

    T h e a b o v e s i m p l i f i e d d e s i g n i s a c h i e v e d u s i n g

    p o l e- z e ro c a n c e l l a t io n f o r a f i r s t o r d e r p l u s d e a d -

    t i m e m o d e l . A c o r r e s p o n d i n g s e t o f f o r m u l a c a n

    a l s o b e o b t a i n e d f o r a s e c o n d - o r d e r p l u s d e a d -

    t i m e p r o c e s s m o d e l . T h e y w o r k w e l l w h e n t h e

    p r o c e s s d e a d t i m e i s s u b s t a n t i a l . F o r a l a g

    d o m i n a n t p r o c e s s , p o l e - z e r o c a n c e l l a t i o n i s n o t

    r e c o m m e n d e d a n d h e n c e s u i t a b l e m o d i fi c at io n s

    s h o u l d b e m a d e ( H o e t a l. , 1 9 9 2 ) .

    5 . O V E R V I E W O F I N D U S T R I A L

    P R O D U C T S

    C o m m e r c i a l P I D c o n t r o l l e r s w i t h a d a p t i v e t e c h -

    n i q u e s h a v e b e e n a v a i l a b l e s i n ce t h e b e g i n n i n g

    o f t h e e i g h t i e s . I n t h i s s e c ti o n , t h e s e p r o d u c t s

    wi l l be c l a s s i f i e d wi t h r e spe c t t o t he i r a pp l i c a -

    t i o n s a n d a d a p t i v e t e c h n i q u e s u se d . I n t h e n e x t

    s e c t io n , s o m e o f th e p r o d u c t s w i ll b e d e s c r i b e d

    i n m o r e d e t a i l .

    I n t h e f o l l ow i n g w e w i l l d i s t i n gu i s h b e t w e e n

    t e m p e r a t u r e c o n t r o l l e r s a n d p r o c e s s c o n t ro l l e rs

    T e m p e r a t u r e c o nt r ol l er s r e p r i m a ri l y de s i g n e d

    f or t e m p e r a t u r e c o n t r ol w h e r e a s p r o c e s s c o n -

    t ro ll er s a r e s u p p o s e d t o w o r k i n n o t o n l y t e m -

    p e r a t u r e c o n t r o l l o o p s b u t a l s o i n o t h e r l o o p s

    i n t h e p r o c e s s i n d u s t r y s u c h a s f lo w p r e s s u r e

    l e v el a n d p H c o n t r o l l o op s .

    T e m p e r a t u r e C o n t r o l l e r s

    A l a r g e n u m b e r o f P I D c o n t r o ll e rs a r e d e -

    s i g n e d s p e c if i ca l ly f or t e m p e r a t u r e c o n t r o l a p p li -

    c a t io n s . T h e s e c o n t r o l l e r s a r e n o r m a l l y c h e a p e r

    t h a n p r o c es s c o n t r ol le r s . A u t o m a t i c t u n i n g a n d

    a d a p t a t i o n i s e a s i e r to i m p l e m e n t in t e m p e r -

    a t u r e c o n t ro l le r s , s in c e m o s t t e m p e r a t u r e c o n -

    t r o l l o o p s h a v e s e v e r a l c o m m o n f e a tu r e s . T h i s

    i s t h e m a i n r e a s o n w h y a u t o m a t i c t u n i n g h a s

    b e e n i n t r o d u c e d m o r e r a p i d l y i n t e m p e r a t u r e

    c on t ro l l e r s .

    I n t e m p e r a t u r e c o n t r o l l o o p s , a s e r i o u s n o n l i n -

    e a r i t y m a y r e s u l t i f t h e h e a t i n g a n d c o o li n g d y -

    n a m i c s a r e d i f f e r en t . T h i s n o n l i n e a r i t y s h o u l d

    b e t r e a t e d b y g a i n s c h e d u l i n g . T h e t e m p e r a t u r e

    c o n t r o l l e rs h a v e s o m e t i m e s a f a c i l it y to s h i f t b e -

    t w e e n d i f fe r e n t c o n t r o ll e r p a r a m e t e r s w h e n t h e

    c o n t r o l a c t i o n s h i f t s b e t w e e n h e a t i n g a n d c o o l -

    ing.

    P r o c e s s

    C o n t r o l l e r s

    S i n c e t h e p r o c e s s e s t h a t a r e c o n t r o l l e d w i t h

    p r o c e s s c o n t r o l le r s m a y h a v e l a r g e d i f fe r e n c e s i n

    t h e i r d y n a m i c s , t u n i n g a n d a d a p t a t i o n b e c o m e s

    m o r e d i f fi cu l t c o m p a r e d t o t h e p u r e t e m p e r a t u r e

    c o n t r o l l o o ps . O n e o f t h e f i r s t a d a p t i v e p r o c e s s

    c o n t r o l le r s w a s r e l e a s e d f r o m L e e d s & N o r t h r u p

    C o i n 1982 , s e e (Ha wk, 1983) .

    I f a t e m p e r a t u r e c o n t r o l l e r i s a p p l i e d t o , f o r

    i n s t a n c e , a p r e s s u r e l o o p , t h e b u i l t - i n t u n i n g

    p r o c e d u r e m a y b e v e r y p o o r , s i n c e p r e s s u r e

    c o n t r o l l o o p s n o r m a l l y a r e m u c h f a s t e r a n d

    m o r e s e n s i ti v e t h a n t e m p e r a t u r e c o n tr o l l oo p s.

    T h e f o l lo w i n g p r e s e n t a t i o n w i ll f o c u s o n p r o c e ss

    c on t ro l l e r s .

    I n s e c t i o n 2 , d i ff e r e n t a d a p t i v e t e c h n i q u e s w e r e

    d i s cu s s e d . T h e t e c h n i q u e s a r e : A u t o m a t i c t u n -

    i n g , g a in s c h e d u l i n g a n d a d a p t i v e f e e db a c k a n d

    fe e dforw a rd c on t ro l . In T a b l e 4 , a c o l l e c t i on o f

    p r o c e s s c o n t r o l l e rs i s p r e s e n t e d ~ t o g e t h e r w i t h

    i n f o r m a t i o n a b o u t t h e i r a d a p t i v e t e c h n i q u e s .

    A u t o m a t i c tu n i n g i s t h e m o s t c o m m o n a d a p t i v e

    t e c h n i q u e i n i n d u s t r i a l p r o d u c t s . T h e u s e fu l -

    n e s s o f t h i s t e c h n i q u e is a l s o o b v i o u s f ro m F i g -

    u r e I . T h e a u t o - t u n i n g p r o c e d u r e s a r e n e c e s s a r y

    t o o b t a i n a r e a s o n a b l y c o m f o r t a b l e o p e r a t i o n o f

    t h e o th e r a d a p t i v e t e c h n i qu e s . o s t a u t o - t un i n g

    p r o c e d u r e s a r e b a s e d o n s t e p r e s p o n s e a n a ly s i s .

  • 8/15/2019 AUTOMATIC TUNING AND ADAPTATION FOR PID CONTROLLERS - A SURVEY

    9/16

    Au t o m a t i c Tu n i n g a n d P I D Co n t r o l l e rs

    T a b l e 4 . E x a m p l e s o f i n d u s t r i a l a d a p t i v e p r o c e s s c o n t r o ll e r s .

    707

    M a n u f a c t u r e r C o n t r o l l e r A u t o m a t i c G a i n

    t u n i n g s c h e d u l i n g

    A d a p t i v e A d a p t i v e

    f e e d b a c k f e e d f o r wa r d

    Ba i l e y Co n t r o l s CLC0 4 S t e p Y e s

    C o n t r o l T e c h n i q u e s E x p e r t c o n t r o l le r R a m p s -

    F i s h e r C o n t r o l s D P R g 0 0 R e l a y Y e s

    DPR9 1 0 Re l a y Y e s

    F o x b o r o E x a c t S t e p -

    F u j i CC-S : PN A 3 S t e p s Y e s

    H a r t m a n n & B r a u n P r o t r o n ic P S t e p -

    Di g i t r i c P S t e p -

    Ho n e y we l l UDC 6 0 0 0 S t e p Y e s

    Sa t t C o n t r o l ECA4 0 Re l a y Y e s

    ECA 4 0 0 Re l a y Y e s

    S i e m e n s S I P A R T D R 2 2 S t e p Y e s

    To s h i b a TOSD I C-2 1 5 D PRBS Y e s

    EC3 0 0 PRBS Y e s

    T u r n b u l l C o n t r o l S y s t e m s T C S 6 3 5 5 S t e p s -

    Y o k o g a wa SLPC-1 7 1 ,2 7 1 S t e p Y e s

    SLPC-1 8 1 ,2 8 1 S t e p Y e s

    M o d e l b a s e d

    M o d e l b a s e d

    M o d e l b a s e d M o d e l b a s e d

    R u l e b a s e d

    R u l e b a s e d

    M o d e l b a s e d M o d e l b a s e d

    M o d e l b a s e d

    M o d e l b a s e d

    M o d e l b a s e d

    R u l e b a s e d

    M o d e l b a s e d

    Gain scheduling is often not available in the

    controllers. This is surprising, since gain sched-

    uling is found to be more useful than continuous

    adaptation in most situations. Furthermore, the

    technique is much simpler to implement than

    automatic tuning or adaptation.

    It is interesting to see that many industrial

    adaptive controllers are rule-based instead of

    model-based. The research on adaptive control

    at universities has been almost exclusively fo-

    cused on model-based adaptive control.

    Adaptive feedforward control is seldom provided

    in the industrial controllers. This is surprising,

    since adaptive feedforward control is known

    to be of great value. Furthermore, it is easier

    to develop robust adaptive feedforward control

    than adaptive feedback control.

    6 . S O M E P I D C O N T R O L L E R S W IT H

    ADAPTIVE TECHNIQUES

    In this section, some industrial adaptive PID

    controllers will be presented. The controllers

    presented are the Foxboro EXACT (760/761),

    which uses step response analysis for automatic

    tuning and pattern recognition technique and

    heuristic rules for its adaptation; the SattCon-

    trol ECA400 controller, which uses relay auto-

    tuning and model based adaptation; the Hon-

    eywell UDC 6000 controller, which uses step

    response analysis for automatic tuning and a

    rule base for adaptation, and finally the Yoko-

    gawa SLPC-181 and 281, which use step re-

    s p o n s e a n a l y s i s f o r a u t o t u n i n g a n d a m o d e l

    b a s e d a d a p t a t i o n .

    6.1 Fox bor o EXACT

    The single-loop adaptive controller EXACT was

    announced by Foxboro in October 1984. The

    reported application experience in using this

    controller has been favorable, see, for instance,

    (Callaghan

    e ta] .

    1986). The adaptive features

    are now also available in their DCS products.

    Process M ode l ing

    The Foxboro system is based on the determi-

    nation of dynamic characteristics from a tran-

    sient, which resul ts in a sufficiently large error.

    If the controller parameters are reasonable, a

    transient error response of the type shown in

    Figure 8 is obtained. Heuristic logic is used to

    detect that a proper disturbance has occurred

    and to detect peaks el, e2, e3, and oscillation pe-

    riod T p

    Contro l Des ign

    The idea behind the tuning method is pattern

    recognition as described in (Bristol, 1977). The

    user specifications are given in terms of maxi-

    mum overshoot and maximum damping. They

    are defined as

    damping

    = e3 - e2

    e l - - e 2

    l e 2 1

    overshoot =

    2 3 )

  • 8/15/2019 AUTOMATIC TUNING AND ADAPTATION FOR PID CONTROLLERS - A SURVEY

    10/16

    708 K.J. Astr6m et a l

    Error

    T

    e

    Error

    e I

    I e 2 I

    ~ m V l

    P

    t

    F i g . 8 . R e s p o n s e t o a s t e p c h a n g e o f s e t p o i n t u p p e r

    c u r v e ) a n d l o a d t o w e r c u r v e )

    f o r s e t - p o in t c h a n g e s a s w e l l a s l o a d d i s tu r -

    b a n c e s . N o t e t h a t th e d ef i ni t io n f d a m p i n g h e r e

    i s d i ff e re n t f r o m t h e d a m p i n g f a c t o r a s s o c i at e d

    w i t h a s t a n d a r d s e c o n d - o rd e r s y s t e m.

    T h e c o n t r o l l e r s t r u c t u r e i s o f t h e s e r i e s f o r m .

    F r o m t h e r e s p o n s e t o a s e t- p oi n t c h a n g e o r l o a d

    d i s t u r b an c e , t h e a c t u al d a m p i n g a n d o v e r s h o o t

    p a t t e r n o f t h e e r r o r s i g n a l i s r e c o g n i z e d a n d t h e

    p e r i o d o f o s c i ll a t i o n

    T p

    m e a s u r e d . T h i s i n fo r m a -

    t i o n is u s e d b y t h e h e u r i s t i c r u l e s t o d i r e c t l y a d -

    j u s t t h e c o n t r o l l e r p a r a m e t e r s t o g i v e t h e s p e ci -

    f i ed d a m p i n g a n d o v e r s h oo t . It i s t h e r e fo r e a d i-

    r e c t m e t h o d . E x a m p l e s o f h e u ri s t ic s a r e d e c r e a s-

    i n g p r o p o r t io n a l b a n d

    P B ,

    i n t e g ra l t i m e T i a n d

    d e r i va t i v e t i m e

    T d

    i f d i s t i nc t p e a k s a r e n o t d e -

    t e ct ed . I f d i st i nc t p e a k s h a v e o c c u r r e d a n d b o t h

    d a m p i n g a n d o v e r s h o ot a r e l e s s t h a n t h e m a x i -

    m u m v a l u es ,

    P B

    i s d e c r e a s e d .

    P r i o r I n f o r m a t i o n a n d

    P r e t u n i n g

    T h e c o n t r o l le r h a s a s e t o f r e q u i r e d p a r a m e t e r s

    t h a t h a v e t o b e s e t e i t h e r b y t h e u s e r f ro m p r i o r

    k n o w l e d g e o f th e l o o p o r e s t i m a t e d u s i n g t h e

    p r e t u n e f u n c t i o n . ( P r e t u n e is F o x b o r o s ' n o t a t i o n

    f or a u t o - t u n i n g ) . T h e r e q u i r e d p a r a m e t e r s a r e

    ( i) I n i t i a l v a l u e s o f

    P B , T i

    a n d

    Td.

    ( i i ) N o i s e b a n d

    N B ) . T h e

    c o n t r o l l e r s t a r t s

    a d a p t a t i o n w h e n e v e r t h e e r r o r s i g n al e x -

    c e e d s tw o t i m e s

    N B .

    ( ii i) M a x i m u m w a i t t i m e ( W m ~x ). T h e c o n t r o l l e r

    w a i t s f o r a t i m e o f W m ax f o r t h e o c c u r r e n c e

    o f t h e s e c o n d p e a k .

    I f t h e u s e r i s u n a b l e t o p r o v i d e t h e s e t o f r e -

    q u i r e d p a r a m e t e r s a p r e t u n e f u n c t i o n c a n b e a c-

    t i v a t e d t o e s t i m a t e t h e s e q u a n t i ti e s . T o a c t i v a t e

    t h e p r e t u n e f u n c t i o n , t h e c o n t r o l l e r m u s t f ir st

    b e p u t i n m a n u a l . W h e n t h e p r e t u n e f u n ct i o n i s

    a c ti v at e d, a s t e p i n p u t i s g e n e r a t e d a n d f r o m a

    s i m p l e a n a l y s i s o f t h e p r o c e s s r e a c t i o n c u r v e a s

    s h o w n i n F i g u r e 3 , v a l u e s f or t h e P I D p a r a m e -

    t e r s a r e c a l c u l a t e d u s i n g a Z i e g le r - N ic h o l s- l i k e

    f o r m u l a :

    P B = 1 2 0 K p L / T

    Ti = 1.5L (24)

    T d = T d 6 .

    M a x i m u m w a i t t i m e , W m a~ i s a ls o d e t e r m i n e d

    f r o m t h e s t e p r e s p o n s e :

    Wm~= = 5L

    T h e n o i s e b a n d i s d e t e r m i n e d d u r i n g t h e l a st

    p h a s e o f t h e p r e t u n e m o d e . T h e c o n tr o l s i g na l

    i s f i r st r e t u r n e d t o t h e l e v e l b e f o r e t h e s t e p

    c h a n g e . W i t h t h e c o nt r o ll e r st ill n m a n u a l a n d

    t h e c o n t r o l s i g n a l h e l d c o n s t a n t , t h e o u t p u t i s

    p a s s e d t h r o u g h a h i g h - p a s s f il te r w i t h a c u t -

    o ff f r e q u e n cy h i g h e r t h a n t h e c u t -o f f r e q u e n c y

    o f t h e c l o s e d - l o o p s y s t e m . T h e n o i s e b a n d i s

    c a l c u l a te d a s a n e s t i m a t e o f t h e p e a k - t o - p e a k

    a m p l i t u d e o f t h e o u t p u t f r o m t h e h i g h - p a s s

    filter.

    T h e e s ti m at e d n o i s e b a n d

    N B )

    i s u s e d t o

    i n it i al i ze h e d e r i v a t i v e t e r m . D e r i v a t i v e a c t i o n

    s h o u l d b e d e c re a s e d w h e n t h e n o i s e l e v e l i s

    h i g h t o a v o i d l a r g e f l u c t u a t i o n s i n t h e c o n t r ol

    s i g na l . T h e d e r i v a t i v e t e r m i s i n i ti a l iz e d s i n g

    t h e f o l l o w i n g l og ic :

    C a l c u l a t e a q u a n t i t y Z = 3 . 0

    2 N B ) / 2 . 5 ;

    i f Z > 1 t h e n s e t

    T d = T J 6 ;

    i f Z < 0 t h e n s e t T d = 0 ;

    i f 0 < Z < l t h e n s e t T d = Z . T d 6 .

    A p a r t f r o m t h e s et o f r e q u i r e d p a r a m et e r s , t h e r e

    i s a l s o a s e t o f o p t i o n a l p a r a m e t e r s . I f t h e s e a r e

    n o t s u p p l i e d b y t h e u s e r t h e n t h e d e f a u l t v a l u e s

    w il l b e u s e d . T h e o p t i o n a l p a r a m e t e r s a r e a s

    f o l l o w s d e f a u l t v a l u e s i n p a r e n t h e s i s ) :

    (i)

    ( i i)

    (iii)

    M a x i m u m a l l o w e d d a m p i n g 0 . 3 )

    M a x i m u m a l l ow e d o v e rs h o ot 0 .5 )

    D e r i v a t i v e f a c t o r ( 1 ). T h e d e r i v a t i v e t e r m i s

    m u l t i p l i e d b y t h e d e r i v a t i v e f a c to r . T h i s a l-

    l o w s t h e d e r i v a t i v e i n f l u e n c e to b e a d j u s t e d

    b y t h e u s e r . S e t t i n g t h e d e r i v a t i v e f a c to r to

    z e r o r e s u l t s i n P I c o n t r o l .

  • 8/15/2019 AUTOMATIC TUNING AND ADAPTATION FOR PID CONTROLLERS - A SURVEY

    11/16

    AutomaticTuning and PID Controllers

    709

    (iv) Change Limit (10). This factor limits the

    controller parameters to a certain range.

    Thus the controller will not set the P B ,

    7 / and

    Td

    values higher or lower than ten

    times the ir initial values if the default of 10

    is used for the change limit.

    6 .2 S a t t C o n t r o l E C A 4 0 0

    This controller was announced by SattControl in

    1988. It has t he adaptive functions of automatic

    tuning, gain scheduling and adaptive control.

    r - -

    r

    V

    P FILTER

    T

    P FILTER

    T

    Automat ic Tuning

    The auto-tuning is performed using the relay

    method in the following way, see (H~igglund and

    ./~str6m, 1991). The process is brought to a de-

    sired operating point, either by the operator in

    manua l mode or by a previously tuned controller

    in automatic mode. When the loop is station-

    ary, the operator presses a tuning button. Af-

    ter a short period, when the noise level is mea-

    sured automatically, a relay with hysteresis is

    introduced in the loop, and the PID controller

    is temporarily disconnected, see Figure 5. The

    hysteresis of the relay is determined automat-

    ically from the noise level. During the oscilla-

    tion, the relay amplitude is adjusted so that a

    desired level of the oscillation amplitude is ob-

    tained. When an oscillation with constant am-

    plitude and period is obtained, the relay exper-

    iment is interrupted and Gp io)o), i.e. the value

    of the transfer function at oscillation frequency

    Wo, is calculated using the describing function

    analysis.

    Contr ol Design

    The PID algorithm in the ECA400 controller

    is of series form. The identification procedure

    provides a process model in terms of one point

    Gp iWo)

    on the Nyquist curve. By introducing

    the PID controller

    Gc io))

    in the control loop,

    it is possible to give the Nyquist curve of the

    compensa ted sys tem Gp Gc a des ired location at

    the frequency COo. For most purposes, the PID

    param eters ar e chosen so that

    Gp iwo)

    is moved

    to the point where

    Gp iO)o)Gc icoo) = 0.5e i135~/180 (25)

    This design method can be viewed as a combi-

    nation of phase- and amplitude-margin specifi-

    cation. Since there are thr ee adjustable parame-

    ters, K, T: and

    Td,

    and the design criterion (25)

    can be obtained with only two parameters, it is

    furthermore required th at

    Ti = 4Td

    (26)

    For some simple control problems, where the

    process is approximately a first-order system,

    Fig. 9. The adaptive control procedure in ECA400

    the D-part is switched off and only a PI con-

    troller is used. This kind of processes is auto-

    matically detected. For this PI controller, the

    following design is used:

    K

    0 . 5 / I G p i e o o ) l

    (27)

    Ti = 4/Wo.

    There is also another situation when it is de-

    mrable to switch off the derivative part, namel y

    for processes with long dead time. If the oper-

    ator tells the controller that the process has a

    long dead time, a PI controller with the follow-

    ing design will replace the PID controller.

    K = 0.25/IGp iO)o)l

    (28)

    Ti = 1.6/O)o.

    Gain S c h e d u l i n g

    The ECA400 controller also has gain schedul-

    ing. Three sets of controller paramet ers can be

    stored. The parameters are obtained by using

    the auto-tu ner three times, once at every oper-

    ating condition. The actual va lue of the schedul-

    ing variable, which can be the controller output,

    the measurement signal or an external signal,

    determines which parameter set to use.

    A d a p t i v e F eedback

    The ECA400 controller uses the information

    from the relay feedback experiment to initialize

    the adaptive controller. Figure 9 shows

    t h e

    principle of the adaptive controller. The main

    idea is to track the point on the Nyquist curve

    obtained by the re lay autotuner. I t is performed

    in the following way. The control signal u and

    the measurement signal y are filtered through

    narrow band-pass filters at the frequency wo,

    which is the frequency obtained from the relay

    experiment. These signals are then analyzed

    in a least-squares es timato r which provides an

    estimate of the point

    G ieoo) . The

    method is

    described in more detail in the paper (Htigglund

    and Astr6m, 1991).

  • 8/15/2019 AUTOMATIC TUNING AND ADAPTATION FOR PID CONTROLLERS - A SURVEY

    12/16

    710 K.J. ~strtim et al.

    A d a p t i v e F e e d f o r w a r d Co n t r o l

    A n o t h e r f e a t u r e i s a n a d a p t i v e f e e d - f o r w a r d

    a l g o r i t h m . T h e a d a p t i v e f e e d f o r w a r d c o n t r o l

    p r o c e d u r e i s in i t ia l i z e d b y t h e r e l a y a u t o t u n e r .

    A l e a s t s q u a r e s a l g o r i t h m i s u s e d t o id e n t i f y

    p a r a m e t e r s a a n d b i n t h e m o d e l

    y t ) = a u t - 4 h ) + b v t - 4 h ) ( 2 9 )

    w h e r e y is th e m e a s u r e m e n t s i g na l , u i s t h e

    c o n t r o l s i g n a l a n d v i s t h e d i s t u r b a n c e s i g n a l

    t h a t s h o u l d b e f e d f o r w a r d. T h e s a m p l i n g i n te r -

    v a l h i s d e t e r m i n e d f r o m t h e r e l a y e x p e r i m e n t :

    h = T 0 / 8 , w h e r e T o i s t h e o s c i l l a t io n p e r io d . T h e

    f e e d f o r w a r d c o m p e n s a t o r h a s t h e s i m p l e s t r u c -

    t u r e

    A u f f t ) = k f f t ) A v t ) (30)

    w h e r e t h e f e e d f o r w a r d g a i n k f f i s c a l c u l a t e d

    f ro m t h e e s t i m a t e d p r o c e s s p a r a m e t e r s

    /~(t) (31)

    k f f t ) = - 0 . 8 a ( t ) '

    T h e d e t a i l s a r e g i v e n i n ( H ~ i g g lu n d a n d A s t r ~ m ,

    1 9 9 1 ) .

    O p e r a t o r I n t e r f a c e

    T h e i n i t i a l r e l a y a m p l i t u d e i s g i v e n a d e f a u l t

    v a l u e w h i c h i s s u i t a b l e f o r m o s t p r o c e s s c o n t r o l

    a p p l i c a t i o n s . T h i s p a r a m e t e r i s n o t c r i t i c a l s i n c e

    i t w i l l b e a d j u s t e d a f t e r t h e f i r s t h a l f p e r i o d

    t o gi v e a n a d m i s s i b le a m p l i t u d e o f t h e l i m i t

    c y c l e o s c i l la t i o n . T h e o p e r a t i o n o f t h e a u t o t u n e r

    i s t h e n v e r y s im p l e . T o u s e t h e t u n e r , t h e

    p r o c e s s i s s i m p l y b r o u g h t t o a n e q u i l i b r i u m

    b y s e t t i n g a c o n s t a n t c o n tr o l s ig n a l i n m a n u a l

    m o d e . T h e t u n i n g i s a c t i v a t e d b y p u s h i n g t h e

    t u n i n g s w i t c h . T h e r e g u l a t o r i s a u t o m a t i c a l l y

    s w i tc h e d t o a u to m a t i c m o d e w h e n t h e t u n i n g

    i s c o m p l e t e .

    T h e w i d t h o f t h e h y s t e r e s i s i s s e t a u t o m a t i c a l l y ,

    b a s e d o n m e a s u r e m e n t o f t h e n o i s e l ev e l i n t h e

    p r o c e s s . T h e l o w e r t h e n o i s e le v e l , t h e l o w e r

    i s t h e a m p l i t u d e r e q u i r e d f r o m t h e m e a s u r e d

    s i gn a l . T h e r e l a y a m p l i t u d e i s c o n t r o ll e d s o t h a t

    t h e o s c i l l a t i o n i s k e p t a t a m i n i m u m l e v e l a b o v e

    t h e n o i s e l e v e l.

    T h e f o l l o w i n g a r e s o m e o p t i o n a l s e t t i n g s t h a t

    m a y b e s e t b y t h e o p e r a t o r :

    ( 1) C o n t r o l D e s i g n [ n o rm a l , P I , d e a d t im e [ .

    T h e d e f a u l t d e s i g n m e t h o d [ n o r m a l ] c a n r e -

    s u l t i n e i t h e r a P I o r a P I D c o n t r o l l e r d e -

    p e n d i n g o n w h e t h e r t h e p r o c e s s is o f f i rs t

    o r d e r o r n o t ( s e e t h e d i s c u s si o n a b o u t c on -

    t r o l d e s i g n a b o v e ) . T h e o p e r a t o r c a n f o r c e

    t h e c o n t r o l l e r t o b e P I b y s e l e c t in g [ P I] .

    F i n a l l y , t h e P I d e s i g n s u i t e d f o r p r o c e s s e s

    w i t h l o n g d e a d t i m e i s u s e d i f t h e o p t i o n

    [ d e a d t i m e ] i s s e l e ct e d . T h e c o n t r o l d e s i g n

    c a n b e c h a n g e d e i t h e r b e f o r e o r a f t e r a t u n -

    i n g , a n d d u r i n g t h e a d a p t a t io n .

    2 ) R e s e t [ Y e s / No ] . A r e s e t o f i n f o r m a ti o n c o n -

    c e r n i n g t h e a u t o t u n er , t h e g a i n s c h e d u l -

    i n g o r t h e a d a p t i v e c o n t r ol l e r c a n b e d o n e .

    S o m e i n f o r m a t i o n f r o m a t u n i n g i s s a v e d

    a n d u s e d t o i m p r o v e t h e a c c u r ac y o f t h e

    s u b s e q u e n t t u n i n g s , i n c l u d i n g t h e n o i s e

    l e ve l , t h e i n it i al r e l a y a m p l i t u d e , a n d

    t h e

    • e r i o d o f t h e o s ci l la t io n . f a m a j o r c h a n g e

    i s m a d e i n t h e c o n t r o l l o o p , f o r i n s t a n c e i f

    t h e c o n t r ol l er i s m o v e d t o a n o t h e r l o op ,

    t h e

    o p e r a t o r c a n m a k e a r e s e t o f

    t h e t u n i n g i n

    f o r m a t i o n .

    A r e s e t o f t h e a d a p t i v e c o n tr o l le r

    w i ll r e s e t t h e c o n tr o l l e r a r a m e t e r s t o

    t h o s e

    o b t a i n e d b y t h e r e l a y au t o t u n e r.

    3 ) I n i t i a l r e l a y a m p l i t u d e . I n s o m e v e r y

    s e n s i t i v e l o o p s , t h e i n i ti a l n p u t s t e p o f

    t h e

    r e l a y e x p e r i m e n t m a y b e t o o l a r ge . T h e

    i ni ti al s t e p c a n t h e n b e d e c i d e d b y

    t h e

    o p e r a t o r .

    (4 ) G a i n s c h e d u l i n g r e f e r e n c e . T h e

    s w i t c h e s

    b e t w e e n t h e d i ff e re n t s e t s o f P I D p a r a m e -

    t e r s i n t h e g a i n - s c h e d u l i n g t a b l e c a n b e p e r -

    f o r m e d w i t h d i f f e r e n t s i g n a l s a s t h e g a i n -

    s c h e d u l i n g r e f e re n c e . T h e

    schedu l ing can

    b e

    b a s e d o n t h e c o n t r o l s i g n a l , t h e m e a s u r e -

    m e n t s i g na l , o r a n e x t e r n a l s i g n al . T h e g a i n

    s c h e d u l i n g i s a c t i v e o n l y w h e n a r e f e r e n c e

    s i g n a l i s c o n f i g u r e d .

    6 .3 H o n e y w e l l U D C 6 0 0 0

    T h e H o n e y w e l l U D C 6 0 0 0 co n t r o ll e r h a s a n

    a d a p t i v e f u n c t i o n c a l l e d

    A c c u t u n e .

    A c c u t u n e

    u s e s b o t h m o d e l b a s e d p r o c e d u r e s a n d r u l e -

    b a s e d p r o c e d u r e s . I t c a n o n l y b e u s e d o n s t a -

    b l e p r o c e s s e s . I n t e g r a t i n g p r o c e s s e s c a n c o n s e -

    q u e n t l y n o t b e t r e a t e d .

    I n i t i a l T u n i n g

    T h e a d a p t i v e p r o c e d u r e i s i n i ti a l iz e d b y a s t e p

    r e s p o n s e e x p e r i m e n t . T h e u s e r b r i n g s t h e p ro -

    c e s s v a l u e t o a p o i n t s o m e d i s t a n c e a w a y f ro m

    t h e d e s i r e d s e t p o i n t i n m a n u a l , a n d w a i t s f o r

    s t e a d y s t a t e . S w i t c h i n g t o a u t o m a t i c m o d e w i l l

    i n i t i a t e a s t e p r e s p o n s e e x p e r i m e n t , w h e r e t h e

    s iz e o f th e s t e p i s c a l c u l a t e d t o b e s o la r g e t h a t

    i t i s s u p p o s e d t o t a k e t h e p r o c e s s v a l u e t o t h e

    s e t p o i n t .

    D u r i n g t h e e x p e r i m e n t , t h e p r o c e s s v a l u e a n d

    i t s d e r i v a t i v e a r e c o n t i n u o u s l y m o n i t o r e d . T h e

    d e a d t i m e L i s c a l c u l a t e d a s t h e t i m e i n t e r v a l

    b e t w e e n t h e s t e p c h a n g e a n d t h e m o m e n t t h e

    p r o c e s s v a l u e c r o s s e s a c e r t a i n s m a l l l i m i t .

  • 8/15/2019 AUTOMATIC TUNING AND ADAPTATION FOR PID CONTROLLERS - A SURVEY

    13/16

    Automatic Tuning and PID Controllers

    711

    I f t h e d e r i v a t i v e o f th e p r o c e s s v a l u e c o n t i n u -

    o u s l y d e c r e a s e s f r o m t h e s t a r t , i t i s c o n c l u d e d

    t h a t t h e p r o c e s s i s o f f i r s t o rd e r . S t a t i c g a i n

    K p

    a n d t i m e c o n s t a n t 7'1 a r e t h e n c a l c u l a t e d a s

    s t e a d y - s t a t e l e v e l s . T h i s p r o v i d e s t h e p o s s i b il i ty

    t o c a l c u l a t e t h e o t h e r t h r e e u n k n o w n s f r o m t h e

    t h r e e e q u a t i o n s a b o v e .

    T1 = Y2 - Yl

    d y l d y 2

    (32)

    Y2 + dy2 T1

    gp AU

    w h e r e y x a n d Y 2 a r e t w o m e a s u r e m e n t s o f t h e

    p r o c e s s v a l u e ,

    d y l

    a n d

    d y 2

    a r e e s t i m a t e s o f t h e

    d e r i v a t i v e s o f th e p r o c e s s v a l u e a t t h e c o r r e -

    s p o n d i n g i n s t a n t s , a n d A u i s t h e s t e p s i z e o f

    t h e c o n t r o l s i g n a l . T h e v a l u e s y i a r e c a l c u l a t e d

    a s d i s t a n c e s f r o m t h e v a l u e a t t h e o n s e t o f t h e

    s t e p . T h e s e c a l c u l a t i o n s c a n b e p e r f o r m e d b e -

    f o r e t h e s t e a d y - s t a t e i s r e a c h e d . I t i s c l a i m e d

    t h a t t h e p r o c e s s i s i d e n t i f i e d i n a t i m e l e s s t h a n

    o n e t h i r d o f t h e t i m e c o n s t a n t . T h e c o n t r o l l e r is

    t h e n s w i t c h e d t o a u t o m a t i c m o d e a n d c o n t ro l le d

    t o t h e s e t p o i n t . W h e n t h i s i s d o n e, a f i n e a d j u s t -

    m e n t o f t h e p a r a m e t e r s i s d o ne b y c a l cu l a ti n g

    t h e g a i n

    K p

    f r o m t h e s t e a d y - s t a t e l e v e ls .

    I f t h e d e r i v a t i v e o f t h e p r o c e s s v a l u e i n c r e a s e s

    t o a m a x i m u m a n d t h e n d e c r e a s e s , t h e p r oc e s s

    i s i d e n t i f i e d a s a s e c o n d - o r d e r p r o c e s s . T h e s t e p

    r e s p o n s e o f a s e c o n d - o r d e r p r o c e ss w i t h t w o t i m e

    c o n s t a n t s i s

    t t

    y t ) = 1 + T , T2

    (33)

    T h i s e q u a t i o n i s u s e d t o c a l c u l a t e s t a t i c g a i n K p

    a n d t i m e c o n s t a n t s T1 a n d 7 '2 . A s f o r th e f i r s t

    o r d e r s y s t e m , t h e p r o c e s s i d e n t i f i c a t i o n i s p e r -

    f o r m e d i n t w o s t e p s . A f i r s t c a l c u l a t i o n i s d o n e

    s h o r t l y a f t e r t h e t i m e o f m a x i m u m s lo p e. T h e

    c o n t r o l l e r i s t h e n s w i t c h e d t o a u t o m a t i c m o d e

    a n d c o n t r o l l e d t o t h e s e t p o i n t . W h e n s t e a d y

    s t a t e i s r e a c h e d , t h e p a r a m e t e r s a r e r e c a lc u -

    l a t e d u s i n g t h e a d d i t i o n a l i n f o r m a t i o n o f s t e a d y

    s t a t e l e v e l s . T h e e q u a t i o n s f o r c a l c u l a t i n g t h e

    c o n t r o ll e r p a r a m e t e r s a r e

    Adaptation

    T h e U D C 6 0 0 0 c o n t ro l l e r a l s o h a s t h e c o n t i n u-

    o u s a d a p t a t i o n f e a t u r e . T h e a d a p t a t i o n m e c h -

    a n i s m i s a c t i v a t e d w h e n t h e p r o c e s s v a l u e

    c h a n g e s m o r e t h a n 0 . 3 % f r o m t h e s e t p o i n t o r

    i f t h e s e t - p o i n t c h a n g e s m o r e t h a n a p r e s c r ib e d

    v a l u e . ( M o r e d e t a i l s a r e g i v e n b e l o w . )

    T h e d e t a i ls o f t h e a d a p t i v e c o n t r o l le r a r e n o t

    p u b l i s h e d , b u t i t c o n t a in s a r u l e b a s e w h e r e

    s o m e o f t h e r u l e s w i ll b e p r e s e n t e d . T h e c o n -

    t r o l l e r m o n i t o r s t h e p r o c e s s v a l u e . D e p e n d i n g

    o n i t s n a t u r e , t h e f o l l o w i n g c o n t r o l l e r a d j u s t -

    m e n t s a r e m a d e :

    (1)

    T h e c o n t r o l l e r d e t e c t s o s c i l l a t i o n s i n t h e

    p r o c e s s v a l u e . I f o s c i l l a ti o n f r e q u e n c y w 0

    i s l e s s t h a n

    1 / T i ,

    t h e n t h e i n t e g r a l t i m e i s

    i n c r e a s e d t o

    Ti = 2/COo.

    (2 )

    I f t h e o s c i l la t i o n f r e q u e n c y w 0 i s g r e a t e r

    t h a n

    l I T .

    t h e n t h e d e r i v a t i v e t i m e i s c h o -

    s e n t o b e

    T d = 1 / W o .

    (3)

    I f t h e o s c i ll a ti o n r e m a i n s a f t e r a d j u s t m e n t

    ( 1 ) o r ( 2 ) , t h e c o n t r o l l e r w i l l c u t i t s g a i n K

    i n h a l f .

    (4 )

    I f a l o a d d i s t u r b a n c e o r a s e t - p o i n t c h a n g e

    g i v e s a r e s p o n s e w i t h a d a m p e d o s c i l l a t i o n ,

    t h e d e r i v a t i v e t i m e i s c h o s e n t o b e

    T d =

    1~COo.

    (5)

    I f a l o a d d i s t u r b a n c e o r a s e t - p o i n t c h a n g e

    g i v e s a s l u g g i s h r e s p o n s e , w h e r e t h e t i m e t o

    r e a c h s e t p o i n t i s l o n g e r t h a n L + T 1 + T 2,

    b o t h i n t e g r a l t i m e 7 ' / a n d d e r i v a t i v e t i m e

    T d

    a r e d i v i d e d b y a f a c t o r o f 1 .3 .

    y t ma , ) + d y t , n a , ) T 1 +

    7'2)

    gp = Au

    1 - N 2

    7 '1 + 7 2 - N l n ( ~ t ,~ax (34)

    7 1

    N = - -

    T2

    w h e r e

    t ma ,

    i s th e t i m e f r o m t h e s t a r t o f t h e

    r i s e to t h e p o i n t o f m a x i m u m s lo p e. T h e s e

    t h r e e e q u a t i o n s h a v e f o u r u n k n o w n s :

    K p , T 1 ,

    T 2 a n d N . A t t h e f i r s t t i m e o f i d e n t i f i c a ti o n ,

    s h o r t l y a f t e r t h e t i m e o f m a x i m u m s lo p e , i t is

    a s s u m e d t h a t N = 6 , a n d K p , T 1 a n d 7'2 a r e

    d e t e r m i n e d f r o m t h e e q u a t i o n s . W h e n s t e a d y

    s t a t e i s r e a c h e d , g a i n

    K p

    i s c a l c u l a t e d f r o m t h e

    (6)

    I f t h e s t a t i c p r o c e s s g a i n

    K p

    c h a n g e s , t h e

    c o n t r o ll e r g a in K i s c h a n g e d s o t h a t t h e

    p r o d u c t

    K K p

    r e m a i n s c o n s t a n t .

    C o n t r o l D e si g n

    T h e U D C 6 0 0 0 c o n t r o l l e r i s w r i t t e n o n s e r i e s

    f o r m a n d h a s t h e t r a n s f e r f u n c t i o n

    Go s ) = K

    ( 1 + s T i ) ( 1 +

    s T d )

    s T i 1 + O .1 2 5 S T d )

    T h e d e s i g n g o a l i s t o c a n c e l t h e p r o c e s s p o l e s

    u s i n g t h e t w o z e r o s i n t h e c o nt r ol l er . I f t h e r e

    i s n o d e a d t i m e i n t h e p r o c e s s t h e c on t r o ll e r

  • 8/15/2019 AUTOMATIC TUNING AND ADAPTATION FOR PID CONTROLLERS - A SURVEY

    14/16

    7 1 2 K . J . / ~ , s t r 6 m e t a l

    p a r a m e t e r s a r e c h o s e n i n t h e f o l lo w i n g w a y :

    F i r s t o r d e r p r o c e s s : K = 2 4 / K p

    Ti = 0.167'1

    T j = 0

    S e c o n d o r d e r p r o c e s s :

    K = 6 / K p

    T i T I

    T d = T 2

    F o r p r o c e s s e s w i t h d e a d t i m e , t h e f o l l o w i n g

    c h o ic e o f c o n t r o ll e r p a r a m e t e r s i s m a d e :

    F i r s t o r d e r p r o c e s s :

    S e c o n d o r d e r p r o c e s s :

    3

    K =

    Kp (1 + 3 L / T i )

    T i = T 1

    T d = 0

    3

    K =

    Kp (1 +

    3 L / T i )

    T i = T I + T 2

    7 72

    T d -

    T I + T 2

    O p e r a t o r I n t e r f a ce

    T h e f o l l o w in g a r e s o m e o p t io n a l p a r a m e t e r s

    t h a t m a y b e s e t b y t h e op e ra t o r:

    1 ) S e l e c t w h e t h e r a d a p t a ti o n s h o u l d b e p e r -

    f o r m e d d u r i n g s e t - po i n t c h a n g e s o n l y , o r

    d u r i n g b o t h s e t -p o in t h a n g e s a n d l o a d d is -

    t u r b a n c e s .

    2 ) S e t t h e m i n i m u m v a l u e o f s e t - p o i n t h a n g e

    t h a t w i l l a c t i v a te t h e a d a p t a ti o n . R a n g e :

    + 5 % t o + 1 5 % .

    6 .4 Yo k o g a w a S L P C- 1 8 1, 2 8 1

    T h e Y o k o g a w a S L P C - 1 8 1 a n d 2 8 1 b o th u s e a

    f i r s t o r d e r p l u s d e a d - t i m e m o d e l o f t h e p r o -

    c e s s fo r c a l c u l a t i n g t h e P I D p a r a m e t e r s . A n o n-

    l i n e a r p r o g r a m m i n g t e c h n i q u e i s u s e d t o o b -

    t a i n t h e m o d e l . W i t h t h e f i r s t - o r d e r p l u s d e a d -

    t i m e m o d e l , t h e P I D p a r a m e t e r s a r e c a l c u l a t e d

    f r om e q u a t i o n s d e v e l o p e d f r om n u m e r o u s s i m u -

    l a t i o n s . T h e e x a c t e q u a t i o n s a r e n o t p u b l i s h e d .

    T h e P I D c o n t r o ll e r c a n t a k e o n e o f t h e f o ll o w in g

    s t r u c t u r e s :

    1 / d y f ~

    1:

    u = K - y + ~ e d t - Td d t }

    (35)

    e + ~ f e d t - T d ? )

    :

    u = K

    w h e r e

    d y f N

    - y - y f ) (36)

    d t T d

    T a b l e 5 . S e t - p o i n t r e s p o n s e s p e c i f i c a t i o n s .

    I ~ p e F e a t u r e s C r i t e r ia

    1 n o o v e r s h o o t n o o v e r s h o o t

    2 5 % o v e r s h o o t I T A E m i n i m u m

    3 1 0 % o v e r s h o o t I A E m i n i m u m

    4 1 5 % o v e r s h o o t I S E m i n i m u m

    S t r u c t u r e 1 i s r e c o m m e n d e d i f l o a d - d i s t u r b a n c e

    r e j e c ti o n is m o s t i m p o r t a n t , a n d s t r u c t u r e 2 i s

    s e t - p o i n t r e s p o n s e s a r e m o s t im p o r t a n t . T h e s e t

    p o i n t c a n a l s o b e p a s s e d t h r o u g h t w o f il t er s i n

    s e r i e s :

    1 + a i s T i

    F i l t e r 1 :

    l + sT i

    (37)

    1 - adST d

    F i l t e r 2 :

    l + sTd

    w h e r e a i a n d a d a r e p a r a m e t e r s s e t b y th e u se r,

    m a i n l y t o a d j u s t t h e o v e r s h o o t o f t h e s e t - p o i n t

    r e s p o n s e . T h e e f f e c t s o f t h e s e t w o f i l te r s a r e

    e s s e n t i a l l y e q u i v a l e n t t o s e t - p o i n t w e i g h ti n g . I t

    c a n b e sh o w n t h a t a i = f l , w h e r e fl is t h e s e t -

    p o i n t w e i g h t i n g f a c t o r in E q u a t i o n 7 .

    T h e u s e r s p e c if ie s t h e t y p e o f s e t- p o i n t r e s p o n s e

    p e r f o r m a n c e a c c o r d i n g t o T a b l e 5 . A h i g h o v e r -

    s h o o t w i l l o f c o u r s e y i e l d a f a s t e r r e s p o n s e .

    T h e c o n t r o l l e r h a s f o u r a d a p t i v e m o d e s :

    ( 1 ) A u t o m o d e . T h e a d a p t i v e c o n t r o l i s o n . P I D

    p a r a m e t e r s a r e a u t o m a t i c a l l y u p d a t e d .

    ( 2 ) M o n i t o r i n g m o d e . I n t h i s m o d e , t h e c o m -

    p u t e d m o d e l a nd t h e P I D p a r a m e t e r s a r e

    d i s p l a y e d o n ly . T h i s m o d e i s u s e f u l f o r v a l -

    i d a t i n g t h e a d a p t i v e f u n c t io n o r c h e c k i n g

    t h e p l a n t d y n a m i c s v a r i a t i o n s d u r i n g o p e r -

    a t i o n .

    ( 3) A u t o - s t a r t u p m o d e . T h i s i s u s e d t o c o m p u t e

    t h e i n i t i a l P I D p a r a m e t e r s . A n o p e n - l o o p

    s t e p r e s p o n s e i s u s e d t o e s t i m a t e t h e m o d e l .

    ( 4) O n - d e m a n d m o d e . T h i s m o d e i s u s e d w h e n

    i t i s d e s i r a b l e t o m a k e a s e t - p o i n t c h a n g e .

    W h e n t h e o n - d e m a n d t u n i n g i s r e q u e s te d , a

    s t e p c h a n g e i s a p p l i e d t o t h e p r o c e s s i n p u t

    i n c l o s e d l o o p . T h e c o n t r o l l e r e s t i m a t e s t h e

    p r o c e s s m o d e l u s i n g t h e s u b s e q u e n t cl o se d -

    l o o p r e s p o n s e .

    T h e c o n t r o l l e r c o n s t a n t l y m o n i t o r s t h e p e r f o r -

    m a n c e o f t h e s y s t e m b y c o m p u t i n g t h e r a t i o of

    t h e p r o c e s s o u t p u t a n d m o d e l o u t p u t v a r i a n c e s .

    T h i s r a t i o i s e x p e c t e d t o b e a b o u t 1 . I f i t is

    g r e a t e r t h a n 2 o r l e s s t h a n 0 .5 , a w a r n i n g m e s -

    s a g e f o r r e t u n i n g o f t h e c o n t r o l l e r i s g i v e n . D e a d

    t i m e a n d f e e d - f o r w a r d c o m p e n s a t i o n a r e a v a i l -

    a b l e f o r t h e c o n s t a n t g a i n c o n t r o l l e r b u t t h e y

    a r e n o t r e c o m m e n d e d b y t h e m a n u f a c t u r e r t o

    b e u s e d i n c o n j u n c t i o n w i t h a d a p t a t i o n .

  • 8/15/2019 AUTOMATIC TUNING AND ADAPTATION FOR PID CONTROLLERS - A SURVEY

    15/16

    Autom atic Tun ing and PID C ontrollers

    713

    7 . C O N C L U S I O N S

    V a r i o u s a d a p t i v e t e c h n i q u e s h a v e b e e n i m p l e -

    m e n t e d i n s in g l e- l o o p P I D c o n t r o ll e rs d u r i n g

    t h e l a s t d e c a d e. I n t h i s p a p e r , a s u m m a r y o f

    t h e s e d i f f e r e n t t e c h n i q u e s h a s b e e n g i v e n t o -

    g e t h e r w i t h a n o v e r v ie w o f i n d u s t r i a l p r o d u c ts .

    A l m o s t a l l c o n t r o l l e r s t h a t u s e a d a p t i v e t e c h -

    n i q u e s h a v e s o m e f o rm o f a u t o m a t i c t u n i n g

    f u n c ti o n . T h e a u t o m a t i c t u n i n g f u n c t io n is n o t

    o n l y u s e f u l t o h e l p t h e o p e r a t o r i n f i n d i n g s u i t -

    a b l e c o n t r o l l e r p a r a m e t e r s . I t i s a l s o u s e fu l t o

    b u i l d g a i n s c h e d u l e s a n d t o i n i t i a l i z e a d a p t i v e

    c ont ro l l e r s .

    G a i n s c h e d u l i n g e ff e c ti v e ly c o m p e n s a t e s f o r

    n o n l i n e a r i t i e s a n d o t h e r p r e d i c ta b l e v a r i a ti o n s

    i n t h e p r o c e s s d y n a m i c s . S i n c e i t is m u c h e a s i e r

    t o i m p l e m e n t t h a n o t h e r a d a p t i v e t e c h n iq u e s ,

    i t i s s u r p r i s i n g t h a t m a n y i n d u s t r i a l a d a p t i v e

    c o n t r o l l e r s l a c k t h i s f e a t u r e .

    T h e a d a p t i v e c o n t r o l l e r s c a n b e d i v i d e d i n t o

    t w o c a t e g o r i e s , n a m e l y t h e m o d e l b a s e d a n d

    t h e r u l e b a s e d . I t i s i n t e r e s t i n g t o n o t e t h a t

    t h e r e a r e m a n y s u c c e s s f u l a p p l i c a t i o n s o f r u l e

    b a s e d a d a p t i v e c o n t r o l l e r s , a l t h o u g h a l m o s t a l l

    u n i v e r s i t y r e s e a r c h h a s b e e n f o c u se d o n m o d e l

    b a s e d a d a p t a t io n .

    A d a p t i v e f e e d f o r w a r d c o n t r o l i s r a r e l y u s e d i n

    s i n g le - l o o p c o n t r o l le r s . T h i s i s a l s o s u r p r i s i n g ,

    s i n c e a d a p t i v e f e e d f o r w a r d c o n t r o l h a s p r o v e n

    t o b e v e r y u s e f u l i n o t h e r a p p l i c a t i o n s o f a d a p -

    t i v e c o n t r o l , s e e , f o r i n s t a n c e , ( B e n g t s s o n a n d

    E g a r d t , 1 9 8 4 ) . A d a p t i v e f e e d f o r w a r d c o n t r o l i s

    a l so e a s i e r t o i m p l e m e n t t h a n a d a p t i v e f e ed b a c k

    c ont ro l .

    8 . R E F E R E N C E S

    ANDERSON, I~ L., G. L. BLANKENSHIP, an d

    L . G . LEB OW (1988) : A ru l e -ba se d P ID c on-

    t ro l l e r . In P r e c. I E E E C o n f e r e n c e o n D ec i-

    s i o n a n d C o n t ro l , A u s t i n , T e x as .

    k~STROM, K . J .

    a nd T .

    HAGGLUND

    (1984) : Aut o -

    m a t i c t u n i n g o f s im p l e r e g u l a t o r s w i th s p ec -

    i f ic a ti o n s o n p h a s e a n d a m p l i t u d e m a r g i n s .

    A u t o m a t i c a , 2 0 , p p . 6 4 5 - 6 5 1 .

    /~TROM, K J . a n d T . HAGGLUND (1988): A u t o -

    m a t i c T u n i n g o f P I D C o n tr o ll er s. I n s t r u -

    m e n t S o c ie ty o f A m e r i ca , R e s e a r c h T r i a n g l e

    P a r k , N o r t h C a r o l i n a.

    BENGTSSON, G. an d B. ECA~DT (198 4): Exp e-

    r i e n c e s w i t h s e l f - t u n i n g c o n tr o l in t h e p r o -

    c e s s i n d u s t r y . I n P r e p r i n t s 9 t h I F A C W o r l d

    Congr es s , B u d a p e s t , H u n g a r y .

    B RISTOL, E . H . (1977) : Pa t t e rn r e c ogn i t i on : An

    a l t e r n a t i v e t o p a r a m e t e r i d e n t if i ca