Automatic Control 1 - Integral action in state feedback...

15
Lecture: Integral action in state feedback control Automatic Control 1 Integral action in state feedback control Prof. Alberto Bemporad University of Trento Academic year 2010-2011 Prof. Alberto Bemporad (University of Trento) Automatic Control 1 Academic year 2010-2011 1 / 15

Transcript of Automatic Control 1 - Integral action in state feedback...

Page 1: Automatic Control 1 - Integral action in state feedback ...cse.lab.imtlucca.it/~bemporad/teaching/ac/pdf/08-integral-action.pdf · Automatic Control 1 Integral action in state ...

Lecture: Integral action in state feedback control

Automatic Control 1

Integral action in state feedback control

Prof. Alberto Bemporad

University of Trento

Academic year 2010-2011

Prof. Alberto Bemporad (University of Trento) Automatic Control 1 Academic year 2010-2011 1 / 15

Page 2: Automatic Control 1 - Integral action in state feedback ...cse.lab.imtlucca.it/~bemporad/teaching/ac/pdf/08-integral-action.pdf · Automatic Control 1 Integral action in state ...

Lecture: Integral action in state feedback control Adjustment of DC-gain for reference tracking

Reference tracking

Assume the open-loop system completely reachable and observableWe know state feedback we can bring the output y(k) to zero asymptoticallyHow to make the output y(k) track a generic constant set-point r(k)≡ r ?Solution: set u(k) = Kx(k) + v(k)

v(k) = Fr(k)

We need to choose gain F properly to ensure reference tracking

!"#$%&'$()*+,'-..

Fr(k) u(k) x(k) y(k)

++

K

A,B C

',#/+,((-+

v(k)

x(k+ 1) = (A+ BK)x(k) + BFr(k)y(k) = Cx(k)

Prof. Alberto Bemporad (University of Trento) Automatic Control 1 Academic year 2010-2011 2 / 15

Page 3: Automatic Control 1 - Integral action in state feedback ...cse.lab.imtlucca.it/~bemporad/teaching/ac/pdf/08-integral-action.pdf · Automatic Control 1 Integral action in state ...

Lecture: Integral action in state feedback control Adjustment of DC-gain for reference tracking

Reference tracking

To have y(k)→ r we need a unit DC-gain from r to y

C(I− (A+ BK))−1BF = I

Assume we have as many inputs as outputs (example: u, y ∈ R)

Assume the DC-gain from u to y is invertible, that is C Adj(I− A)B invertible

Since state feedback doesn’t change the zeros in closed-loop

C Adj(I− A− BK)B= C Adj(I− A)B

then C Adj(I− A− BK)B is also invertible

SetF = (C(I− (A+ BK))−1B)−1

Prof. Alberto Bemporad (University of Trento) Automatic Control 1 Academic year 2010-2011 3 / 15

Page 4: Automatic Control 1 - Integral action in state feedback ...cse.lab.imtlucca.it/~bemporad/teaching/ac/pdf/08-integral-action.pdf · Automatic Control 1 Integral action in state ...

Lecture: Integral action in state feedback control Adjustment of DC-gain for reference tracking

Example

Poles placed in (0.8± 0.2j, 0.3). Resultingclosed-loop:

x(k+ 1) =�

1.1 10 0.8

x(k) +�

01

u(k)

y(k) =�

1 0�

x(k)

u(k) =�

−0.13 −0.3�

x(k) + 0.08r(k)

The transfer function G(z) from r to y isG(z) = 2

25z2−40z+17, and G(1) = 1

0 10 20 30 400

0.2

0.4

0.6

0.8

1

1.2

1.4

sample steps

Unit step response of the closed-loopsystem (=evolution of the system frominitial condition x(0) =

00

andreference r(k)≡ 1, ∀k≥ 0)

Prof. Alberto Bemporad (University of Trento) Automatic Control 1 Academic year 2010-2011 4 / 15

Page 5: Automatic Control 1 - Integral action in state feedback ...cse.lab.imtlucca.it/~bemporad/teaching/ac/pdf/08-integral-action.pdf · Automatic Control 1 Integral action in state ...

Lecture: Integral action in state feedback control Adjustment of DC-gain for reference tracking

Reference tracking

Problem: we have no direct feedback on the tracking error e(k) = y(k)− r(k)Will this solution be robust with respect to model uncertainties andexogenous disturbances ?

Consider an input disturbance d(k) (modeling for instance a non-idealactuator, or an unmeasurable disturbance)

!"#$%&'$()*+,'-..

Fr(k) u(k) x(k) y(k)

d(k)+

+ +

+

K

A,B C

&#*/0)!&.0/+1$#'-

',#0+,((-+

Prof. Alberto Bemporad (University of Trento) Automatic Control 1 Academic year 2010-2011 5 / 15

Page 6: Automatic Control 1 - Integral action in state feedback ...cse.lab.imtlucca.it/~bemporad/teaching/ac/pdf/08-integral-action.pdf · Automatic Control 1 Integral action in state ...

Lecture: Integral action in state feedback control Adjustment of DC-gain for reference tracking

Example (cont’d)

Let the input disturbance d(k) = 0.01, ∀k= 0,1, . . .

0 10 20 30 400

0.2

0.4

0.6

0.8

1

1.2

1.4

sample steps

The reference is not tracked !

The unmeasurable disturbance d(k) has modified the nominal conditions forwhich we designed our controller

Prof. Alberto Bemporad (University of Trento) Automatic Control 1 Academic year 2010-2011 6 / 15

Page 7: Automatic Control 1 - Integral action in state feedback ...cse.lab.imtlucca.it/~bemporad/teaching/ac/pdf/08-integral-action.pdf · Automatic Control 1 Integral action in state ...

Lecture: Integral action in state feedback control Integral action

Integral action for disturbance rejection

Consider the problem of regulating the output y(k) to r(k)≡ 0 under theaction of the input disturbance d(k)Let’s augment the open-loop system with the integral of the output vector

q(k+ 1) = q(k) + y(k)︸ ︷︷ ︸

integral action

The augmented system is�

x(k+ 1)q(k+ 1)

=�

A 0C I

��

x(k)q(k)

+�

B0

u(k) +�

B0

d(k)

y(k) =�

C 0�

x(k)q(k)

Design a stabilizing feedback controller for the augmented system

u(k) =�

K H�

x(k)q(k)

Prof. Alberto Bemporad (University of Trento) Automatic Control 1 Academic year 2010-2011 7 / 15

Page 8: Automatic Control 1 - Integral action in state feedback ...cse.lab.imtlucca.it/~bemporad/teaching/ac/pdf/08-integral-action.pdf · Automatic Control 1 Integral action in state ...

Lecture: Integral action in state feedback control Integral action

Rejection of constant disturbances

!"#$%&'$()*+,'-..

H+

+ +

+

K

A,B C

&#*/0)!&.0/+1$#'-

&#0-2+$()$'0&,# !

.0$0-)3--!1$'4

q(k)

u(k)d(k)

x(k) y(k)

Theorem

Assume a stabilizing gain [H K] can be designed for the systemaugmented with integral action. Then limk→+∞ y(k) = 0 for all constantdisturbances d(k)≡ d

Prof. Alberto Bemporad (University of Trento) Automatic Control 1 Academic year 2010-2011 8 / 15

Page 9: Automatic Control 1 - Integral action in state feedback ...cse.lab.imtlucca.it/~bemporad/teaching/ac/pdf/08-integral-action.pdf · Automatic Control 1 Integral action in state ...

Lecture: Integral action in state feedback control Integral action

Rejection of constant disturbances

!"#$%&'$()*+,'-..

H+

+ +

+

K

A,B C

&#*/0)!&.0/+1$#'-

&#0-2+$()$'0&,# !

.0$0-)3--!1$'4

q(k)

u(k)d(k)

x(k) y(k)

Proof:

The state-update matrix of the closed-loop system is��

A 0C I

+�

B0

K H�

The matrix has asymptotically stable eigenvalues by construction

For a constant excitation d(k) the extended stateh

x(k)q(k)

i

converges to asteady-state value, in particular limk→∞ q(k) = qHence, limk→∞ y(k) = limk→∞ q(k+ 1)− q(k) = q− q= 0 �

Prof. Alberto Bemporad (University of Trento) Automatic Control 1 Academic year 2010-2011 9 / 15

Page 10: Automatic Control 1 - Integral action in state feedback ...cse.lab.imtlucca.it/~bemporad/teaching/ac/pdf/08-integral-action.pdf · Automatic Control 1 Integral action in state ...

Lecture: Integral action in state feedback control Integral action

Example (cont’d) – Now with integral action

Poles placed in (0.8± 0.2j, 0.3) for the augmented system. Resulting closed-loop:

x(k+ 1) =�

1.1 10 0.8

x(k) +�

01

(u(k) + d(k))

q(k+ 1) = q(k) + y(k)y(k) =

1 0�

x(k)

u(k) =�

−0.48 −1�

x(k)− 0.056q(k)

Closed-loop simulation for x(0) = [0 0]′, d(k)≡ 1:

0 10 20 30 40−0.5

0

0.5

1

1.5

2

2.5

3

sample steps

Prof. Alberto Bemporad (University of Trento) Automatic Control 1 Academic year 2010-2011 10 / 15

Page 11: Automatic Control 1 - Integral action in state feedback ...cse.lab.imtlucca.it/~bemporad/teaching/ac/pdf/08-integral-action.pdf · Automatic Control 1 Integral action in state ...

Lecture: Integral action in state feedback control Integral action

Integral action for set-point tracking

!"#$%&'$()*+,'-..

H+

+ +

+

K

A,B C

&#*/0)!&.0/+1$#'-

&#0-2+$()

$'0&,#

!

.0$0-)3--!1$'4

q(k) u(k)d(k)

x(k) y(k)

-

+r(k)

0+$'4&#2)-++,+

Idea: Use the same feedback gains (K, H) designed earlier, but instead of feedingback the integral of the output, feed back the integral of the tracking error

q(k+ 1) = q(k) + (y(k)− r(k))︸ ︷︷ ︸

integral action

Prof. Alberto Bemporad (University of Trento) Automatic Control 1 Academic year 2010-2011 11 / 15

Page 12: Automatic Control 1 - Integral action in state feedback ...cse.lab.imtlucca.it/~bemporad/teaching/ac/pdf/08-integral-action.pdf · Automatic Control 1 Integral action in state ...

Lecture: Integral action in state feedback control Integral action

Example (cont’d)

x(k+ 1) =�

1.1 10 0.8

x(k)

+�

01

(u(k) + d(k))

q(k+ 1) = q(k) + (y(k)− r(k))︸ ︷︷ ︸

tracking error

y(k) =�

1 0�

x(k)

u(k) =�

−0.48 −1�

x(k)− 0.056q(k)

0 10 20 30 400

0.5

1

1.5

2

2.5

3

3.5

sample steps

Response for x(0) = [0 0]′,d(k)≡ 1, r(k)≡ 1

Looks like it’s working . . . but why ?

Prof. Alberto Bemporad (University of Trento) Automatic Control 1 Academic year 2010-2011 12 / 15

Page 13: Automatic Control 1 - Integral action in state feedback ...cse.lab.imtlucca.it/~bemporad/teaching/ac/pdf/08-integral-action.pdf · Automatic Control 1 Integral action in state ...

Lecture: Integral action in state feedback control Integral action

Tracking & rejection of constant disturbances/set-points

Theorem

Assume a stabilizing gain [H K] can be designed for the systemaugmented with integral action. Then limk→+∞ y(k) = r for all constantdisturbances d(k)≡ d and set-points r(k)≡ r

Proof:The closed-loop system

x(k+ 1)q(k+ 1)

=�

A+ BK BHC I

��

x(k)q(k)

+�

B 00 −I

��

d(k)r(k)

y(k) =�

C 0�

x(k)q(k)

has input�

d(k)r(k)

and is asymptotically stable by construction

For a constant excitation�

d(k)r(k)

the extended stateh

x(k)q(k)

i

converges to asteady-state value, in particular limk→∞ q(k) = qHence, limk→∞ y(k)− r(k) = limk→∞ q(k+ 1)− q(k) = q− q= 0 �

Prof. Alberto Bemporad (University of Trento) Automatic Control 1 Academic year 2010-2011 13 / 15

Page 14: Automatic Control 1 - Integral action in state feedback ...cse.lab.imtlucca.it/~bemporad/teaching/ac/pdf/08-integral-action.pdf · Automatic Control 1 Integral action in state ...

Lecture: Integral action in state feedback control Integral action

Integral action for continuous-time systems

The same reasoning can be applied to continuous-time systems

x(t) = Ax(t) + Bu(t)y(t) = Cx(t)

Augment the system with the integral of the output q(t) =∫ t

0y(τ)dτ, i.e.,

q(t) = y(t) = Cx(t)︸ ︷︷ ︸

integral action

The augmented system is

d

dt

x(t)q(t)

=�

A 0C 0

��

x(t)q(t)

+�

B0

u(t)

y(t) =�

C 0�

x(t)q(t)

Design a stabilizing controller [K H] for the augmented systemImplement

u(t) = Kx(t) +H

∫ t

0

(y(τ)− r(τ))dτ

Prof. Alberto Bemporad (University of Trento) Automatic Control 1 Academic year 2010-2011 14 / 15

Page 15: Automatic Control 1 - Integral action in state feedback ...cse.lab.imtlucca.it/~bemporad/teaching/ac/pdf/08-integral-action.pdf · Automatic Control 1 Integral action in state ...

Lecture: Integral action in state feedback control Integral action

English-Italian Vocabulary

reference tracking inseguimento del riferimentosteady state regime stazionarioset point livello di riferimento

Translation is obvious otherwise.

Prof. Alberto Bemporad (University of Trento) Automatic Control 1 Academic year 2010-2011 15 / 15