Autoimmunity

149
AUTOIMMUNITY A major cause of morbidity and mortality in the world

description

Autoimmunity

Transcript of Autoimmunity

Page 1: Autoimmunity

AUTOIMMUNITY

A major cause of morbidity and mortality in the world

Page 2: Autoimmunity

Autoimmune diseases• Systemic

– Lupus– Sclerodermia– Vasculitis

• Organ-specific– Type 1 diabetes endocrine pancreas– Asthma lung– Rhumatoid arthritis joints– Myositis muscle– Thyroiditis (Graves, Hashimoto) thyroid– APECED endocrine glands– Multiple sclerosis nervous tissue– Anemia, thrombopenia, neutropenia blood cells– Psoriasis, eczema skin– Gastritis stomach– Colitis (Crohn, UC) colon– Myasthenia neuromuscular junction– Uveitis eye– Rhinitis nose– …..

Page 3: Autoimmunity

Many autoimmune diseases are difficult or impossible to cure for the obvious reason that the focus of the immune response

– self antigens- cannot be eliminated

The ultimate mechanism involves a failure of tolerance and the accumulation of

irreversible damage in the target tissues

Page 4: Autoimmunity

Proof of autoimmunity

• Damage in tissues due to immune cell infiltration

• Disease transferable by lymphocytes and / or serum

• Presence of cells/antibodies directed against self components

Page 5: Autoimmunity

Scheme of immune cell function

Central RepertoireSelection

Homeostatic expansion

Half-life

Self agonist selection

Antigen-drivenexpansion

Innate cell priming

Secondary lymph organ

Effectorfunctions

DEATH

SELFTISSUE

SELF TISSUESURVEY/REPAIR

Peripheralpool

Regulatoryactivity

Memory

Page 6: Autoimmunity

Epidemiology

• Diseases affecting young adults• Female > male• Triggering and / or evolution often

influenced by infectious diseases, pregnancy, traumatisms

• Familial trends• North-South gradient

– Higher prevalence in nordic countries– Inverse distribution with infectious diseases

Page 7: Autoimmunity

Genetics

• Evaluate the degree of familial clustering• Concordance rates between monozygotic versus dizygotic

twins• Increased risk of developing the disease in affected families

• Genetics of single gene disorders• Risk confered to one individual is high but impact on the

population is minimal due to the presence of rare variants• Deterministic relationship between the variant and the

disease state

• Genetics of common autoimmune diseases• Common gene variants• Complex inheritance mode• Complex phenotypes• Likely overtime selection of gene variants by environment

Page 8: Autoimmunity

Single gene disorders

Page 9: Autoimmunity

AIRE and central tolerance

– Autoimmune polyendocrine syndrome (APS-1): a multiple attack against endocrine organs, skin and other tissues

– The AIRE gene controls the expression level of several promiscuously expressed antigens in the thymus

– Lack of AIRE leads to impaired tolerance by failure of central deletion

Page 10: Autoimmunity

FOXP3 and regulatory T cells

• FOXP3, transcription factor of the forkhead family

• Lack of FoxP3 in mouse (scurfy mouse) leads to the absence of regulatory T cells

• Mouse equivalent of the rare human IPEX disease (immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome)

Page 11: Autoimmunity

FAS and lymphocyte apoptosis

• Fas (CD95), prototypic death receptor of the TNF family binds Fas-L

• Lpr/lpr and gld/gld strains of mouse share a common phenotype of lymphoproliferation and autoimmunity

• Lpr codes for Fas and gld for Fas ligand• The APLS (autoimmune lymphoproliferative

syndrome) disease mimics the mouse phenotype

• Fas contributes to the deletion of activated lymphocytes

Page 12: Autoimmunity

Le modèle murin lpr / gld

Mutations de Fas (lpr) ou Fas-L

Lymphadénopathie et autoimmunité de type lupique

Homme: APLS

IL-2

Expansion Mort

Tolérance périphériquepar délétion Fas-médiée

Page 13: Autoimmunity

CPA

FasTNF-R

Fas-LTNF

CD40-L, TNFCD40

Activation

Survie

MortCostimulation

CD28 -> NF-kB

Page 14: Autoimmunity

Répertoire périphérique

Répertoire naïftolérisémémoire

Temps

Page 15: Autoimmunity

Déficit Fas / Fas-L et caspases-> ALPS: Lymphoprolifération et Autoimmunité

Voie Fas

Page 16: Autoimmunity

Impact of single gene disorders on AI

Central RepertoireSelection

Homeostatic expansion

Half-life

Self agonist selection

Antigen-drivenexpansion

Innate cell priming

Secondary lymph organ

Effectorfunctions

Death

SELFTISSUE

SELF TISSUESURVEY/REPAIR

Peripheralpool

Regulatoryactivity

Memory

AIRE

FOXP3

FAS

Page 17: Autoimmunity

Genetics of complex autoimmune diseases

Page 18: Autoimmunity

Complex autoimmune diseases

• Chronic conditions elicited by a loss of immunological tolerance to self antigens

• Clinical manifestation: organ(s) failure

• Physiopathology: immune-mediated inflammatory disorder (IMID concept)

• 4-5% of the population, females > males

• Most common AIDs: Type 1 diabetes, Rhumatoid arthritis, lupus, Graves’ disease, multiple sclerosis, pernicious anemia

• 1 in 30 individuals affected: major health problem (2 x cancer ?)

Page 19: Autoimmunity

Impact of complex gene disorders on AI

Central RepertoireSelection

Homeostatic expansion

Half-life

Self agonist selection

Antigen-drivenexpansion

Innate cell priming

Secondary lymph organ

Effectorfunctions

DEATH

SELFTISSUE

SELF TISSUESURVEY/REPAIR

Peripheralpool

Regulatoryactivity

Memory

Page 20: Autoimmunity

Strategy for analysis

• 1. Defining immune phenotypes

• 2. Phenotype / Genotype linking

• 3. Defining gene polymorphism

• 4. Identifiying pathogenic mechanisms

• 5. Defining epistatic interactions (additive / synergistic / suppressive)

• 6. Reconstituting the pathology

Page 21: Autoimmunity

Immune features in AID• Autoreactivity

– Autoantibodies RA, MG, SLE– T lymphocytes T1D, Thyroiditis– Altered regulation IPEX, APECED

• Cell activation– Innate immune cell activation– Lymphocyte hyper/hypo activation SLE– Inflammation (C’, …) Pemphigus

• Homeostatic phenotypes– Cell death T1D, SLE– Microenvironmental alterations SLE

• Various AID display at various levels these phenotypes• Some are responsible for the pathogenesis, others are associated to it,

few are specific for a given pathology

Page 22: Autoimmunity

From phenotypes to pathogeny

Page 23: Autoimmunity

• Directly pathogenic (myasthenia (AChR), FVIII deficiencies, Graves’ disease (TSH), autoimmune hemolytic anemia, neutropenia, thrombocytopenia)

• FcR dependent effects and innate cell degranulation

• Immune complexes (mixed cryoglobulinemia, SLE, RA, vasculitis)

The case of Autoantibodies

Page 24: Autoimmunity

Immune complexes

Polyclonal AbMulti-epitope Ag bindingOptimal concentrations

Deposition on basal membranesand inflammation/destruction

Page 25: Autoimmunity

Effector mechanisms for Ab

Page 26: Autoimmunity

Mastocyte activation

Page 27: Autoimmunity

Complement J. Bordet (1870-1961)

C’ is a system of plasma proteins that interacts with pathogens

to mark them for destruction by phagocytes

Page 28: Autoimmunity

Figure 2-19- Direct binding on bacteria-C-reactive protein(Pneumococcal C polysaccharide)- Ag-Ab complexes

Page 29: Autoimmunity

Figure 2-20

Page 30: Autoimmunity

Hydrolysis of C3 causes initiation of the C’ alternative pathway

C3 convertase

Page 31: Autoimmunity

C5 convertase

Surface-bound C3 convertase deposits large numbers of C3b fragments on pathogen surfaces and generates C5 convertase activity

Page 32: Autoimmunity

Small fragments of some Ct proteins can initiate

a local inflammatory responseC5a

Page 33: Autoimmunity

C’ inactivation

Page 34: Autoimmunity

Figure 2-27

Page 35: Autoimmunity

Figure 2-29

Page 36: Autoimmunity

Direct pathogenic role of autoantibodies

• Myasthenia gravis– Anti-acetylcholine receptor on the postsynaptic

neuronal plate– Blocks acetylcholine neuromuscular transmission– Leads to muscle paralysis– Improvement by plasma exchange and IVIG– Presence of C’ fixing on myelinated nerves

• Goodpasture’s syndrome: – Anti-glomerular basement membrane Ab– Kidney failure

Page 37: Autoimmunity

Hypersensitivities

Page 38: Autoimmunity

Immune complexes, C’ and FcR

• IC deposition, C’ activation– Kidney, lung, blood vessels -> kidney failure, lung

hemorrhages, vasculitis– Hepatitis C associated cryoglobulinemia (purpura,

glomerulonephritis, motoneuritis)– Role of C’: anti-C5 inhibitor antibody (eculizumab) in

RA• IC-mediated FcR activation

– Linked polymorphism of low affinity IgG FcR with AID (CD32, CD16) -> impact on phagocytic property of APC

– IVIG useful in idiopathic thombopenic purpura (engagement of inhibitory FcRIIB)

Page 39: Autoimmunity

Pathogenic role for B cells

• Efficacy of B cell depletion in some AID– Rituximab : anti-CD20 Ab– CD20 marker of B cells, absent from plasma cells– Modes of action

• B cell -> autoAb depletion• Delayed reconstitution• Abrogation of B-cell dependent downstream effectors

including T-B cooperation (i.e. improvement of lupus by anti-CD40L mAb) and neolymphogenesis

• ITP: no direct correlation between auto-Ab levels and B cell depletion using Rituximab

• RA: impact on rhumatoid factor levels

Page 40: Autoimmunity

Modulation of B cell survival

• The BLys/BAFF pathway, members of the TNF/TNF-R family

• Required for B cell survival• Increased serum BLys/BAFF levels in

Sjogren, SLE patients• Transgenic BLys mice develop Sjogren’s

and lupus-like diseases• Blocking BLys signals improves SLE in

mouse

Page 41: Autoimmunity

Other players

• Lymphocytes: T, NK, regulatory, …

• Innate cells

• Acute phase proteins

• Tissues (mode of response to stress, fragility, organisation)

Page 42: Autoimmunity

Effector mechanism in RA

GPI / IgC3b deposition

C3 convertase

C5 convertase

ALTERNATIVE C’ PATHWAY

C5aC5aR

properdin

FcR

GPI / IgFactor B

Neutrophils

Mast cells

FcR

ARTHUS REACTION

AMPLIFICATIONLOOP

Page 43: Autoimmunity

RF in RA

• Anti-IgM anti-Fc IgG Ab

• Heavily mutated VH regions witnessing memory B cells

Page 44: Autoimmunity

Mouse models of RA• Collagen-induced arthritis (CIA)• ZAP70 mutation

– RF transfer does not cause disease– Role of B cells in pathology : altered APC ?

• KRN model– TCR Tg mouse: anti-RNase / I-Ak crossed on NOD -> joint inflammation, synovitis,

infiltration (neutrophils ++, few T/B cells), cartilage and bone resorption; no RF, vast IgG deposits in many organs on basal membranes

– Essential contribution of H-2g7 (disease in B6g7), alloreactivity of the Tg TCR, partial central and peripheral deletion

– T and B cell dependent, requires T-B MHC restricted interaction, antigen presentation by B or APC, transferable by serum (IgG1 dominant) -> transient disease

– Glucose-6-phosphate isomerase, an ubiquitous self antigen seen by Tg T cells and immune Ig

– Requirement for FcR, C5/C5aR, C3/B factor for disease induction (C5a is strongly attractive for neutrophils) -> FcRIII expressed by numerous innate cells, activated by Ig (Arthus reaction), importance of the alternative C’ pathway C3b2-IgG-properdin-factor B complex (neutrophils secrete properdin), amplification via C5 activation

– GPI in RA ? Evidence for affinity matured and somatically mutated IgG in the sera of RA patients, high concentration of GPI on synovial lining and arterioles, possible binding to a membrane receptor (growth factor function ?)

Page 45: Autoimmunity

Non-immune and environmental parameters

• Infections– Trigger or protector– Difficult to identify (delay, variations, non

contingent with AID)

• Food

• Mode of life (stress, neural factors)

• Sex: hormones, pregnancy, puberty,

• Age

Page 46: Autoimmunity

Genetic predisposition

Page 47: Autoimmunity

Linkage studies

• Inheritance of AID susceptibility is complex• MHC exerts a predominant influence• Many genomic segments show weak statistical

association (lod scores from 2-5 versus 30 for a fully penetrant Mendelian disease locus)

• Multifactorial diseases result from the combined impact of multiple susceptibility genes, further enriched by poorly defined environmental factors

• Complex but chronic so in principle accessible to therapeutic interventions if predictions are reliable

Page 48: Autoimmunity

Family studies in human AIDsDisease Concordance rate (%) Population

prevalence

Monozygotic twins

Dizygotic twins

Non-twin siblings

%

Diabetes 30-50 0-13 6 0.4

Multiple sclerosis

25 0-5 3-5 0.1

Lupus 24-57 2-5 2-5 0.2

Rhumatoid arthritis

12-15 3-4 2-4 0.2-1

Genetic influence

Multigenic

s 10-40

Page 49: Autoimmunity

Backcrosses in mouse

Page 50: Autoimmunity

MHC: a central player

Disease Concordance rate (%) Population prevalence

Monozygotic twins

Dizygotic twins

Non-twin siblings

%

Diabetes 30-50 0-13 6 0.4

15%

MHC identical siblings

MHC weightOther genes

Page 51: Autoimmunity

Complex diseases

Genetic contribution MHC

locus

Environmental /individual

contribution

Extrapolated from global familial risk of disease

Page 52: Autoimmunity

Linkage to MHC alleles

• Suggestive of T cell mediated dys-immunity

• Suggestive of a restricted set of primary autoantigens (still ill-defined)

• Existence of MHC molecules with peculiar antigen-binding properties

• Peptide register shifting in MHC class II groove renders the predictive task more difficult

Page 53: Autoimmunity

Difficulty of linkage analysis

• Most MHC-linked diseases are multigenic

• Strong linkage desequilibrium in the MHC locus

Page 54: Autoimmunity

MHC susceptibility locus for T1D

• HLA-DQ1, HLA-DR1 : still candidate alleles, not definitively proven

• Mouse equivalent: I-Ag7 (Tg allo-MHC protective) • Frequency of MHC susceptibility alleles in

Caucasian population: 53% => More frequent than protective alleles !!

• Inheritance – Recessive mode for susceptibility– Dominant mode for protection

• Incomplete penetrance of susceptibility alleles

Page 55: Autoimmunity
Page 56: Autoimmunity

CEH type CEHs [HLA-B, complotype, DR] Ratio (T1D:normal)

Susceptibility B62, SC31, DR4 17.0

B18, F1C30, DR3 14.6

B62, SB42, DR4 5.8

B62, SC33, DR4 4.4

B8, SC01, DR3 2.1

Neutral B60, SC02, DR6 1.0

B35, FC(3,2)0, DR1 1.0

B44, SC30, DR4 0.77

B35, SC31, DR5 0.45

Protective B7, SC31, DR2 0.22

B44, FC31, DR7 0.21

B57, SC61, DR7 0.14

T1D

And

MHC

Conserved Extended Haplotypes

Page 57: Autoimmunity

Genetic complexity and heterogeneity

• Association studies differ between ethnic groups• Genetic localisations of AIDs vary between disease

models

T1D redMS blueRA green

Page 58: Autoimmunity

Single Nucleotide PolymorphismSNP

• Most abundant form of DNA variation• Around 7 million SNPs with MAF around 5% (minor allele

frequency) and 4 million SNPs with MAF between 1 and 5%, plus numerous rare SNPs

• Relation between common variants and human phenotypes (height, eye color, disease susceptibility) not known

• Global approach for a dense SNP map : oligonucleotide arrays• Hinds et al (Science 2005): 1.6 million SNPs mapped covering 95%

of the genome (inter-SNP intervals < 50kB) -> informative of population ancestry, but in agreement with the notion that most common DNA variations are shared across human populations

Page 59: Autoimmunity

Causal variants

Table 2 papier Rioux

10 millions SNPs with a minor allele frequency greater than 1%

Common haplotypes

Page 60: Autoimmunity

Penetrance of susceptibility genes

• Basic observation: discordance rate between monozygotic twins => incomplete penetrance of susceptibility genes

• Environmental triggers (difficult to define !)

• Intrinsic parameters: parental imprinting, allelic exclusion of BCR and TCR, monoallelic expression of cytokines, NKR

• Importance of other non-MHC genetic loci

Page 61: Autoimmunity

Environmental triggers

Page 62: Autoimmunity
Page 63: Autoimmunity

Systemic lupus erythematous

Page 64: Autoimmunity

Features of SLE

• Disease heterogeneity in humans (glomerulonephritis, hemolytic anemia, vasculitis, arthritis, cutaneous lesions, …), drug inducibility

• Complex interactions between hormonal, genetic and environmental factors

• 9:1 female gender bias• Lethality linked to glomerulonephritis (IC)• Numerous antoantibodies to nuclear antigens• Existence of various mouse models displaying

some features of the human disease

Page 65: Autoimmunity

Autoantibodies in SLE

• Antinuclear Ab– Sensitive test for SLE– Not SLE specific– Not associated with severity of SLE (flares without ANA)– High ANA levels in the absence of disease

• Anti-Sm Ab specific for SLE• Anti-RNP Ab associated with subset of patients with

mixed connective tissue disease• Anti-phospholipid Ab predisposition to thrombotic events• Anti-ribosomal P Ab increased risk of CNS disease• Anti-Ro (SSA) Ab increased risk of heart block in

newborns of SLE patients

Page 66: Autoimmunity

Immunological diagnosis

• Autoantibodies– Antinuclear Ab– Anti ds DNA Ab– Anti Sm Ab

• Complement: decrease C3, C4 (disease activity)

• Inflammatory markers (sedimentation rate, acute phase proteins)

• Anemia, …

Page 67: Autoimmunity

Spontaneous murine models of SLE

-> Analysis of phenotypes

Page 68: Autoimmunity

Genetic factors

• Large number of loci

• Epistatic interactions

• Linked gene clusters

• Suppressor genes

• Threshold effects

Page 69: Autoimmunity

Mode of analysis

• Immunological tools: defining cell phenotypes

• Genetic tools: linkage analysis, backcrossing studies, transgenic approaches

• Biochemical tools: probing candidate pathways

Page 70: Autoimmunity
Page 71: Autoimmunity

Candidate susceptibility genes

• HLA: DR-B1 (DR2, DR3)

• Genes of the HLA region in linkage desequilibrium: MHC class III (TNF, TAP, HSP)

• FcR: low affinity receptor for IgG and IgG IC

• Complement: classical pathway

Page 72: Autoimmunity

Gene OMIMa Cytogenetic location

Associated allele(s)

FcGR2A 146790 1q22-23 R131

FcGR3A 146740 1q22-23 F176

IL10 124092 1q31-32 Multiple alleles

CTLA-4 123890 2q33 +49G

PDCD-1 600244 2q37 PD-1.3A

HLA-DR3, -DR2 152700 142860 6p21 DR2/DR3

TNFα 191160 6p21 TNF2

TNFβ 153440 6p21 TNFB*2

C4 120790 6p21 AQ0

MBL 154545 10q11.2-q21 230A

FASL 134637 1q23 –844C

FAS 134638 10q24 297C/416G

Bcl-2 151430 18q21 Multiple alleles

Genetic association studies of systemic lupus erythematosus.

Page 73: Autoimmunity

Targeted gene producta Mechanism

Fas, Fas ligand, Bcl-2 (Tg), IEX-1(Tg) Defective apoptosis

SAP, DNase, Mer, MFG-E8, IgM (secreted), C1q, C4Defective clearance of apoptotic cells, cell debris,

and/or ICs

FcγRIIB, TACI, CD22 TGFβRII, CD45*, PD-1 BAFF (Tg)

Dysregulated lymphocyte activation caused by receptors and their ligands

SHP-1, Lyn, PKC-d, P21, E2F2, Stra13, Gadd45a, Rasgrp1, Fli-1 (Tg), SOCS-1, LIGHT (Tg) TSAd

Dysregulated lymphocyte activation caused by intracellular signaling molecule mutations

TGFβ, IL-10, IFN-γ (Tg) IL-4 (Tg) Cytokine production abnormalities

ERα Defective hormone signaling

Examples of genetic manipulations that lead to lupus-like disease in mice.

No single gene defect is sufficient for lupus development

Page 74: Autoimmunity

Lupus nephritis: pathogenic Ab

Page 75: Autoimmunity

Apoptosis defect

Defective clearanceOf apoptotic cells

Loss of toleranceTo apoptotic self

Complement deficiency

Immune complexdeposition

Hyperactivation of self reactive B cells

The tolerance hypothesisThe clearance hypothesis

Physiopathology of Lupus

Page 76: Autoimmunity

The tolerance hypothesis

Page 77: Autoimmunity

SLE pathogenesisas a progression of successive stages

In the lupus prone NZM mouse, Sle1+2+3 are the major susceptibility lociTriple congenic mice on a B6 background reconstitute the pathology (Koch’s postulate)

Sle1 C’, SapLoss of tolerance to chromatin leading to ANA production, B cell defect

Sle2, lpr, yaa, BlysProgressive expansion of autoimmune response with epitope spreading

Sle3Dysregulation of CD4+ T cells, non T-cell autonomous

Sle6 FcREnd organ damage culminating in fatal lupus

Page 78: Autoimmunity

Physiopathologie du lupus D’après Morel et al, Immunity 1999

Sle1 Sle2,3Lpr, gld, yaa

Sle6

Rupture de tolérance/ chromatine

ANA

Expansion, ANA ++

Lésion d’organeLupus fatal

NZM loci

Page 79: Autoimmunity

Sle1, a cluster of functionally related genes

• Human and mouse studies converge on mouse telomeric chr1 and human 1q21-44

• Mutations of genes encoded in this region FcgRIIA, FcgRIIIA, FcRg and SAP modulate lupus susceptibility

• Backcross studies B6.Sle1 – selective loss of tolerance to chromatin

(H2A/H2B/DNA subnucleosomes) and spontaneously activated T and B lymphocytes

– But normal immune responses and normal lymphocyte apoptosis

Page 80: Autoimmunity

Contribution of B cells in Sle1 effect

• Bone marrow reconstitution studies: – B6.Sle1 bm -> B6: autoantibodies, activ CD4+– B6 bm -> B6.Sle1: normal

• Cotransfer of bone marrows: B6’, B6.Sle1– Ig Allotype marker: « a » for B6’, « b » for B6.Sle1– Autoantibodies of the « b » allotype Activ B cells of

the « b » allotype

• B cells carry the Sle1 phenotype in a cell-autonomous fashion but autoantibodies are non nephrogenic

Page 81: Autoimmunity

Dissecting further Sle1

• Genetic recombinants in Sle1 -> 1a, 1b, 1c using new microsatellite markers polymorphic between B6 and B6.Sle1

• Congenic lines on B6 background (> 800 mice analysed !!)

• Autoantibodies and activ CD4+ cells: – 1b > 1a and 1c – 1a + 1b = 1a + 1b + 1c = WT Sle1

• Nephrogenic Ab ? : cross Sle1 congenic mice on the NZW background and analyse proliferative GN: GN correlates with Sle1b in (NZWxB6.Sle1)F1 and activ CD4+ T cells but not with higher autoAb titers

• Additional locus in Sle1b controls the extent of GN (Sle1d => Suppressive effect ?)

• Candidate gene for Sle1c: CR2 ?

Page 82: Autoimmunity

Regulating the Sle1 effect

Sle1 Sle2,3Lpr, gld, yaa

Sle6

Rupture de tolérance/ chromatine

ANA

Expansion, ANA ++

Lésion d’organeLupus fatal

Sles1

Sles1 is present in the lupus-prone NZM strain and attenuates the pathology in this strain via epistatic interactions

Page 83: Autoimmunity

The clearance hypothesis

Page 84: Autoimmunity

Apoptotic cells must be cleared

At least two steps: - clearing- digesting and masking

Page 85: Autoimmunity
Page 86: Autoimmunity

Phagocyte receptors

Page 87: Autoimmunity
Page 88: Autoimmunity

Opsonisation via C1q

Flexibility and versatilityof ligand recognition

HeterotrimerModular assemblyChargeSpatial orientation

Symmetrical trimerof -sandwich subunits

(TNF superfamily)

Important role in-Clearance

- Altered self- Infectious nonself

-Inflammation

Page 89: Autoimmunity

C1q-based recognition• C1q engagement leading to

– MAC activation• immune complexes (IgG) -> MAC• non immune molecules (polyanions such as LPS, DNA,

RNA,polysaccharides, viral membranes, Prp, and unidentified microbial components)

– opsonisation• CRP, SAP, pentraxin : regulators of opsonin activity towards altered

self debris• Fibronectin, fibrin, …: involved in wound healing• natural antibodies

• In conclusion:– Higly diversified recognition modules with combinatorial potential – Recognition of ALTERED SELF versus NON-SELF recognition

leads to differential effector functions (opsonisation versus lysis ?)

Page 90: Autoimmunity

Le rôle du complément

D’après Janeway-Travers, Immunobiology

Page 91: Autoimmunity
Page 92: Autoimmunity

Le facteur H régule l’activation du C’

Page 93: Autoimmunity

CR1, récepteur à C3b, C4b, iC3b (CD35)

Expression par B, neutro, mono, GR, FDC, ep glomérulaire

Cofacteur de I (serine estérase) et H : conversion C3b -> C3bi

Fonction d’opsonisation des structures fixant C3b, C4b , iC3b

Rôle régulateur des seuils d’activation du lymphocyte B

Page 94: Autoimmunity

CR1C3b C3bi

Corps apoptotiques

CRP

CRP

CRPC1q

C1q

C1q

H

C3bC3b

Phagocyte

Rôle des pentraxines1. Proteine C Réactive (CRP) :

- fixation sur les corps apoptotiques (phosphorylcholine)- recrutement de C1q, activation du C’ et donc opsonisation - recrutement du facteur H qui bloque les C 3 et C5 convertases

2. Serum amyloid protein (SAP)Fixation et solubilisation de la chromatine libre

TGF

Page 95: Autoimmunity

Pentraxins

Protomers

Oligomers

CRP SAP

Page 96: Autoimmunity

A famous pentraxin: C-reactive protein

• Highly conserved plasma protein (vertebrates and invertebrates)

• Marker of Acute Phase Response (associated with clotting proteins, C’, anti-proteases, transport protein)– Plasma concentration increased by inflammation (x > 1000),

induced by IL-6, IL-1(via C/EBP)– Produced mainly by hepatocytes (g/ml range)

• Recognition molecule for patterns exposed during cell death and on pathogen surfaces

Page 97: Autoimmunity

C-reactive protein complexed with phosphocholine

5 non covalently associated protomers, symmetrically arranged around a central pore

Page 98: Autoimmunity

Plasma membrane asymmetry

phosphatidylserine and phosphatidyletholamine

phosphatidylcholine and sphingomyelinglycosphingolipids

Page 99: Autoimmunity

Interaction of CRP with C1q

Recognition face binds ligand : « masking effect » ? Effector face binds C1q or FcR

Page 100: Autoimmunity

Effector function: opsonin ?

• Activator of C’–mediated opsonisation (up to C3 convertase) due to recruitment or induction of inhibitory factors (H, CD59, DAF, …)

• FcR-mediated phagocytosis

Page 101: Autoimmunity

CRP role

• Hiding SELF ?

• rather anti-inflammatory towards self components (ex: lupus) ->

• proinflammatory towards bacteria, provides protection towards PC and PE+ bacteria

Page 102: Autoimmunity

C’ bridges innate and adaptive immunity

Carbohydrate-rich particleslacking sialic acid

Immune complexesNon immune molecules(CRP, SAP, polyanions,Microbial ligands)

Page 103: Autoimmunity

Apoptose et lupus ?

1. Cellules apoptotiques, sources d’autoantigènes ?2. Clairance des cellules apoptotiques3. Réponse immunitaire anti-corps apoptotiques4. Rôle du complément dans la clairance5. Rôle des anticorps anti-C1q

Page 104: Autoimmunity

Déficit en complément et prédisposition au lupus

% LUPUS

Homme Concordance Souris entre jumeaux

C1q 93 90 ++C1r/s 57 67C4A/B 75 80 ++C2 10 +/-C3 rare -MAC rare -

Page 105: Autoimmunity

Phenotypes of SLE patients

• Low CRP levels in serum

• Reduced DNAse 1 activity

• C’ defects

• Reduction in the degradation capacity of necrotic-derived chromatin

Page 106: Autoimmunity

Cellules apoptotiques, source d’autoantigènes ?

Auto-anticorps du lupus Corps apoptotiques

a) Ag intracellulaires -> chromatine intracellulaire +-> spliceosome +-> snRNP +

b) Antigènes membranaires : Phospholipides (PS) +c) Protéines plasmatiques : 2 glycoprot I, C1q +

Ag ubiquitaires, abondants => rupture de tolérance improbable NéoAg ?Externalisation AgCA in vivo rares ?

Page 107: Autoimmunity

Présentation antigénique par les CPA

infection

capture

réplication

Virus

MHC

TCRT CPA

Signal 1

MHC I

MHC II

Voie exogène

Voie endogène

Page 108: Autoimmunity

Expérience:

1. Immunisation de souris avec des tumeurs syngéniques apoptotiques2. Injection de tumeurs normales -> mort ?

A) Immunisation avec des DC « pulsées » -> protection anti-tumorale=> immunisation

B) Immunisation avec des Macrophages -> croissance tumorale=> tolérance

Conclusions1. Les cellules apoptotiques peuvent être immunogènes2. La CPA impliquée (ou son état) décide de l ’issue

D ’après Ronchetti et al, 1999

Page 109: Autoimmunity

Cross-Présentation antigénique

Corps apoptotiques

MHC

TCR

T CPA

Signal 1

MHC I

MHC II

Voie « croisée »

Régulation ?

Page 110: Autoimmunity

Facteurs régulateurs

• Complément

• Nature de la CPA

• Auto-anticorps

• Inflammation

Page 111: Autoimmunity

C’ et inflammation

C’ consommé en phase active de lupus- C1q, C2, C4, plus rarement C3 (formes sévères)

Dépôt de C’ -> associé aux IC-> pas strictement corrélé aux lésions tissulaires

Clairance des IC : CR versus FcR ?

Rôle des anticorps anti-C1q ?-> Vascularite urticariante (HUVS)-> Lupus (1/3 patients +)

Page 112: Autoimmunity

Expérience:

1. Péritonite stérile (thioglycolate IP) -> macrophages péritonéaux2. Injection de thymocytes apoptotiques -> clairance in vivo ?

Souris Clairance Lupus

Contrôle +++ -C1q KO - +++C4 KO + ++C3 KO +++ -

Conclusion:

La déplétion en C1q entrave la phagocytose des corps apoptotiques et prédispose au lupus

Page 113: Autoimmunity

CPA

Virus

CPAprimée

Le deuxième signal est induit par l ’inflammation et permet l ’expression des molécules B7 par les CPA

Inflammation

poly

AntigèneSignal 1

Signal 2B7

TCR

CD28

Virus

BCR

T

B = CPAHELP

Anticorps

Effecteurs

Le rôle de l ’inflammation

Page 114: Autoimmunity

Apoptose et inflammationmacrophage

CPAprimée

B7

Eliminationdiscrète !

AgitateursToll, IFN, TNF, IL-1

Convocationdu lymphocyte et identification du cadavre

Cross-présentationCo-stimulationRecrutement

Toll

Page 115: Autoimmunity

Corpsapoptotique

Phospholipidesannexin V, GPI

C1q

Ag nucléaires

snRNP

1. Expression des autoAg à la membrane des corps apoptotiques 2. Clairance médiée par les auto Ac -> capture FcR-dépendante3. Consommation de C1q -> perte du pouvoir « solubilisant » du C ’ pour les complexes immuns4. Conséquence systémique -> dépôts d ’IC dans les tissus5. Début des lésions tissulaires

Le rôle des auto-anticorps ?

Page 116: Autoimmunity

Corpsapoptotique

Macrophage Celluledendritique

C ’PCR

Corpsapoptotique

C ’PCR

Auto Ac

CR1, CD36, ….

CR1, CD36, …., FcRIL-1, TNF

Présentationcroisée

TGF, IL-10

Rupturede tolérance

Tolérance

FcR ?

Page 117: Autoimmunity

Corpsapoptotique Macrophage

« Eat me » signals

« Cool down » or

« Turn me on » signals

CHOiC3bPSC1qb2GPITSPox LDL

CD14lectinb2 intégrine

PS-RC1q-RCR1CD36, intégrines

CD68 ...

Distribution tissulaire des récepteurs- différentielle- régulée

Fonctions différentes des récepteursTether -> Trigger

Page 118: Autoimmunity

Apoptose Clairance

Prédisposition

Déficit en C ’, CRP, …Défaut de maturation des CPA...

Excès de mortLésion

Lupus

InfectionGènes

etc

Gènes

Page 119: Autoimmunity

Autoantibody-mediated pathogenesis of SLE.  

Lymphocyte activation in GC

IC formation

Tissue inflammation and lesions

Apoptosisdefect

But not all autoAb and IC are pathogenic

Page 120: Autoimmunity

D’après Immunological Rev, 2001

Clairance des IC: rôle du C’ et des GR

Page 121: Autoimmunity

Additional factors

Page 122: Autoimmunity

Lymphocyte activation defect

Gene OMIMa Cytogenetic location Associated allele(s)

IL10 124092 1q31-32 Multiple alleles

CTLA-4 123890 2q33 +49G

PDCD-1 600244 2q37 PD-1.3A

TNFα 191160 6p21 TNF2

TNFβ 153440 6p21 TNFB*2

FASL 134637 1q23 –844C

FAS 134638 10q24 297C/416G

Bcl-2 151430 18q21 Multiple alleles

Page 123: Autoimmunity

Gadd45a deficiency

• Growth-arrest and DNA damage-inducible gene

• Downstream effector of p53

• Participates to growth arrest, genomic stability and apoptosis

• KO mouse: lupus-like disease

Page 124: Autoimmunity

Immune phenotypes

• Glomerulonephritis

• Autoantibodies

• Unabated T cell proliferation upon stimulation

Page 125: Autoimmunity

Excessive inflammation

Chronic IFN pathway activation

Page 126: Autoimmunity

The IFN signature

Page 127: Autoimmunity

Abnormal lymphoid organs

Page 128: Autoimmunity

Abnormal cell positioning ?

Page 129: Autoimmunity

Impact on B cell function ?

• Excessive autoantigen production• Engagement of immunogenic rather than

tolerogenic Ag presentation• Hyperactivation of B cells• Abnormal regulation of Ig switch and production

of high affinity autoantibodies• Abnormal capture / clearance of IC complexes• Abnormal immune deposits, innate cell

activation and tissue response to inflammation

Page 130: Autoimmunity

Conclusions

• Genetics: identify susceptibility and protective alleles using TagSNPs

• Function: gather markers of disease evolution during the infraclinic development in human, then modelie in animals

• Intervention: skew/reset immune responses, immunotolerize, induce lymphoid regeneration

Page 131: Autoimmunity

• The classical pathway is initiated by activation of the C1 complex

Page 132: Autoimmunity

Figure 2-21

Page 133: Autoimmunity

Figure 2-22

Page 134: Autoimmunity

Figure 2-22 part 1 of 2

Page 135: Autoimmunity

Figure 2-22 part 2 of 2

Page 136: Autoimmunity

Figure 2-23

Page 137: Autoimmunity

• The mannose-binding lectin pathway is homologous to the classical pathway

Page 138: Autoimmunity

Figure 2-24

Page 139: Autoimmunity

• Ct activation is largely confined to the surface on which it is initiated

Page 140: Autoimmunity

Figure 2-25

Page 141: Autoimmunity

• The terminal Ct proteins polymerize to form pores in membranes that can kill pathogens

Page 142: Autoimmunity

Figure 2-34

Page 143: Autoimmunity

Figure 2-35

Page 144: Autoimmunity

• Ct control proteins regulate all three pathways of Ct activation and protect the hosts from its destructive effects

Page 145: Autoimmunity

Figure 2-36

Page 146: Autoimmunity

Figure 2-37

Page 147: Autoimmunity

• Ingestion of complement-tagged pathogens by phagocytes is mediated by receptors for the bound complement proteins

Page 148: Autoimmunity

Figure 2-31

Page 149: Autoimmunity

Figure 2-32