Autocorrelation studies in two-flavour Wilson Lattice QCD ... · Abhishek Chowdhury, Asit K. De,...

19
Autocorrelation studies in two-flavour Wilson Lattice QCD using DD-HMC algorithm Abhishek Chowdhury, Asit K. De, Sangita De Sarkar, A. Harindranath, Jyotirmoy Maiti, Santanu Mondal , Anwesa Sarkar June 25, Lattice 2012, Cairns, Australia

Transcript of Autocorrelation studies in two-flavour Wilson Lattice QCD ... · Abhishek Chowdhury, Asit K. De,...

Page 1: Autocorrelation studies in two-flavour Wilson Lattice QCD ... · Abhishek Chowdhury, Asit K. De, Sangita De Sarkar, A. Harindranath, Jyotirmoy Maiti, Santanu Mondal, Anwesa Sarkar

Autocorrelation studies in two-flavour WilsonLattice QCD using DD-HMC algorithm

Abhishek Chowdhury, Asit K. De, Sangita De Sarkar, A.Harindranath, Jyotirmoy Maiti, Santanu Mondal, Anwesa Sarkar

June 25, Lattice 2012, Cairns, Australia

Page 2: Autocorrelation studies in two-flavour Wilson Lattice QCD ... · Abhishek Chowdhury, Asit K. De, Sangita De Sarkar, A. Harindranath, Jyotirmoy Maiti, Santanu Mondal, Anwesa Sarkar

• Dynamical Wilson fermion simulations at smaller quarkmasses, smaller lattice spacings and and larger lattice volumeson currently available computers have become feasible withrecent developments such as DD-HMC algorithm (Luscher).

• Measurements of autocorrelation times help us to evaluate theperformance of an algorithm in overcoming critical slowingdown.

• In addition, an accurate determination of the uncertaintyassociated with the measurement of an observable requires arealistic estimation of the autocorrelation of the observable.

• In this work we study autocorrelations of several observablesmeasured with DD-HMC algorithm using naive Wilsonfermion and gauge action.

Page 3: Autocorrelation studies in two-flavour Wilson Lattice QCD ... · Abhishek Chowdhury, Asit K. De, Sangita De Sarkar, A. Harindranath, Jyotirmoy Maiti, Santanu Mondal, Anwesa Sarkar

Definitions

The normalized autocorrelation function for an observable O isdefined as, ΓO (t) = CO (t)/CO (0) where

CO (t) =1

N− t

N−t

∑r=1

(Or −〈O〉)(Or+t −〈O〉) , 〈O〉=1

N

N

∑t=1

Ot .

The integrated autocorrelation time is,

τOint =

1

2+

window

∑t=1

ΓO (t)

Page 4: Autocorrelation studies in two-flavour Wilson Lattice QCD ... · Abhishek Chowdhury, Asit K. De, Sangita De Sarkar, A. Harindranath, Jyotirmoy Maiti, Santanu Mondal, Anwesa Sarkar

The error ,

δ 〈O〉=

√2τint(O)var [O]

N

For any stationary Markov chain satisfiying ergodicity and detailedbalance,

ΓO (t) = ∑n≥1

e−t/τn | ηn(O) |2

where τn =− 1lnλn

. λn’s are real eigenvalues of symmetrizedprobability transition matrix with λ0 = 1 and |λn|< 1 for n ≥ 1.τ1 =− 1

lnλ1→ exponential autocorrelation time (τexp).

• Different obsevables couples differently to the eigenmodes.

• ΓO(t) cannot be negative.

Page 5: Autocorrelation studies in two-flavour Wilson Lattice QCD ... · Abhishek Chowdhury, Asit K. De, Sangita De Sarkar, A. Harindranath, Jyotirmoy Maiti, Santanu Mondal, Anwesa Sarkar

Simulation Detailsβ = 5.6

tag lattice κ block N2 Ntrj τ

B1b 243×48 0.1575 122×62 18 13128 0.5B3a , , 0.158 63×8 6 7200 0.5B3b , , 0.158 122×62 18 13646 0.5B4a , , 0.158125 63×8 8 9360 0.5B4b , , 0.158125 122×62 18 11328 0.5B5a , , 0.15825 63×8 8 6960 0.5B5b , , 0.15825 122×62 18 12820 0.5

C2 323×64 0.158 83×16 8 7576 0.5C3 , , 0.15815 83×16 8 9556 0.5C4 , , 0.15825 83×16 8 4992 0.25

β = 5.8

tag lattice κ block N2 Ntrj τ

D1 323×64 0.1543 83×16 8 9600 0.5D5 , , 0.15475 83×16 8 6820 0.25

Table: Here block, N2, Ntrj , τ refers to HMC block, step number for theforce F2, number of HMC trajectories and the Molecular Dynamicstrajectory length respectively.

Page 6: Autocorrelation studies in two-flavour Wilson Lattice QCD ... · Abhishek Chowdhury, Asit K. De, Sangita De Sarkar, A. Harindranath, Jyotirmoy Maiti, Santanu Mondal, Anwesa Sarkar

Negativity of autocorrelation function for plaquette

0 40 80 120 160 200 240 280t

0

0.5

Γ (t

)

Ntrj

= 500

B5b

: L24T48, β = 5.6, κ = 0.15825

0 40 80 120 160 200 240 280t

0

0.5

Γ (t

)

Ntrj

= 1000

B5b

: L24T48, β = 5.6, κ = 0.15825

0 40 80 120 160 200 240 280t

0

0.5

Γ (t

)

Ntrj

= 5620

B5b

: L24T48, β = 5.6, κ = 0.15825

Page 7: Autocorrelation studies in two-flavour Wilson Lattice QCD ... · Abhishek Chowdhury, Asit K. De, Sangita De Sarkar, A. Harindranath, Jyotirmoy Maiti, Santanu Mondal, Anwesa Sarkar

Improved Estimation of τint :Let τ∗ be the best estimate of dominant time constant. If for anobservable O all relevant time scales are smaller or of the sameorder of τ∗ then the upper bound of τint ,

τuint =

1

2+

Wu

∑t=1

ΓO (Wu) +AO(Wu)τ∗ where AO = max(ΓO(Wu),2δΓO(Wu)),

Wu chosen where autocorrelation function is still significant.

Estimate of τ∗:

τeff =t

2 ln ΓO(t/2)ΓO(t)

τexpeff = MaxO

t

2 ln ΓO(t/2)ΓO(t)

S. Schaefer et al. [ALPHA Collaboration], Nucl. Phys. B 845, 93 (2011);

S. Schaefer and F. Virotta, PoS LATTICE 2010, 042 (2010).

Page 8: Autocorrelation studies in two-flavour Wilson Lattice QCD ... · Abhishek Chowdhury, Asit K. De, Sangita De Sarkar, A. Harindranath, Jyotirmoy Maiti, Santanu Mondal, Anwesa Sarkar

0 50 100 150t

0

100

200

300

400

τ eff

0 50 100 150 200 250

0

0.2

0.4

0.6

Γ(t)

0 50 100 150 200 250 300 350 4000

0.2

0.4

0.6

0.8

Γ(t)

0 50 100 150 200 250 300 350 400t

0

100

200

300

τ eff

Figure: Normalized autocorrelation function and effective autocorrelationtime for P0 (left) Q2

20 (right) for the ensemble B3b.

Page 9: Autocorrelation studies in two-flavour Wilson Lattice QCD ... · Abhishek Chowdhury, Asit K. De, Sangita De Sarkar, A. Harindranath, Jyotirmoy Maiti, Santanu Mondal, Anwesa Sarkar

Autocorrelations for topological susceptibility (Q220)

0 100 200 300 400 500W/6

0

100

200

300

τ int

L24T48, β = 5.6, κ = 0.158L24T48, β = 5.6, κ = 0.158125 B

3b

B4b

0 50 100 150 2000

500

1000

1500

τ int

D1 : L32T64, β = 5.8, κ = 0.1543

D5 : L32T64, β = 5.8, κ = 0.15475

D1 D

5

W/32

Figure: Integrated autocorrelation times for topological suceptibilities(Q2

20) at β = 5.6 (a = 0.069 fm) (left) and at β = 5.8 (right) (a = 0.053fm).

τint(Q220) ↓ as κ ↑

Page 10: Autocorrelation studies in two-flavour Wilson Lattice QCD ... · Abhishek Chowdhury, Asit K. De, Sangita De Sarkar, A. Harindranath, Jyotirmoy Maiti, Santanu Mondal, Anwesa Sarkar

0 100 200 300 400 500W/6

0

100

200

300

400

τ int

L24T48, β = 5.6, κ = 0.158L24T48, β = 5.6, κ = 0.158125

B3b

B4b

0 50 100 150 2000

500

1000

1500

2000

τ int

D1 : L32T64, β = 5.8, κ = 0.1543

D5 : L32T64, β = 5.8, κ = 0.15475

D1

D5

W/32

Figure: Integrated autocorrelation times and their upper bounds (τuint) for

topological suceptibilities (Q220) at β = 5.6 (a = 0.07 fm) (left) and at

β = 5.8 (right) (a = 0.055 fm).

τint(Q220) & τu

int(Q220) ↓ as κ ↑

Page 11: Autocorrelation studies in two-flavour Wilson Lattice QCD ... · Abhishek Chowdhury, Asit K. De, Sangita De Sarkar, A. Harindranath, Jyotirmoy Maiti, Santanu Mondal, Anwesa Sarkar

Topological Charge Density Correlator (C(r))

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

Tag : B : β = 5.6, Tag : D : β = 5.8

D1

B3b

t /96

Γ Q20

(t)

2

0 1 2 3 4

0

0.5

1

Γ(t)

D1, Q

20

2

D1, C(r=12.000)

B3b

, Q20

2

B3b

, C(r=12.00)

Tag B : β = 5.6, Tag D : β = 5.8

t /96

Figure: (left) Comaparison of normalized autocorrelation functions forQ2

20 at β = 5.6 and 5.8. (right) Comparison of β dependence ofnormalized autocorrelation functions for Q2

20 and C (r = 12.0).

C (r) is affected only slightly by critical slowing down.More about the properties of C(r)−→ talk by SM, Session: Chiral Symmetry

Page 12: Autocorrelation studies in two-flavour Wilson Lattice QCD ... · Abhishek Chowdhury, Asit K. De, Sangita De Sarkar, A. Harindranath, Jyotirmoy Maiti, Santanu Mondal, Anwesa Sarkar

Effect of Size and Smearing

0 5 10 15 20 25 30 35 40W

0

2

4

6

8

10

12

τ int

R=1, T=1R=3, T=3R=5, T=4

D1 : L32T64, β = 5.8, κ = 0.1543

0 5 10 15W

0

1

2

3

4

5

τ int

HYP 5HYP 15HYP 25HYP 35HYP 40

C2 : L32T64, β = 5.6, κ =0.158

Figure: Integrated autocorrelation times of Wilson loops for differentsizes (left) and for different levels of HYP smearing (right).

Autocorrelation increases with increasing size and smearing level.

Page 13: Autocorrelation studies in two-flavour Wilson Lattice QCD ... · Abhishek Chowdhury, Asit K. De, Sangita De Sarkar, A. Harindranath, Jyotirmoy Maiti, Santanu Mondal, Anwesa Sarkar

Pion and Nucleon Propagators

β = 5.6

tag κ τPionint τNucleon

int

B3a 0.158 99(19) 75(18)B4a 0.158125 50(9) 34(9)B5a 0.15825 40(10) 25(9)

C2 0.158 39(13) 33(17)C3 0.15815 31(15) 26(7)C4 0.15825 34(11) 18(6)

Table: Integrated autocorrelation times for pion (PP) and nucleonpropagators with wall sources.

Autocorrelation decreases with increasing κ.About low lying hadron hadrons and chiral condensate −→ talk by Asit De,

session: Chiral Symmetry

Page 14: Autocorrelation studies in two-flavour Wilson Lattice QCD ... · Abhishek Chowdhury, Asit K. De, Sangita De Sarkar, A. Harindranath, Jyotirmoy Maiti, Santanu Mondal, Anwesa Sarkar

0 10 20 30 400

2

4

6

0 10 20 30 400

2

4

6

0 10 20 300

2

4

6

0 10 20 30 400

2

4

6

PP AP

PA AAτ in

t

Window

Figure: Integrated autocorrelation times for PP, AP, PA and AAcorrelators with wall source for the ensemble B3a. Measurements aredone with a gap of 24 trajectories.

P = qγ5q and

A = qγ4γ5q

q = u/d quark.

Page 15: Autocorrelation studies in two-flavour Wilson Lattice QCD ... · Abhishek Chowdhury, Asit K. De, Sangita De Sarkar, A. Harindranath, Jyotirmoy Maiti, Santanu Mondal, Anwesa Sarkar

Conclusions

• Autocorrelations of topological susceptibility, pion and nucleonpropagators decrease with decreasing quark mass.

• The topological charge density correlator is affected onlyslightly by critical slowing down compared to topologicalsusceptibility.

• Increasing the size and the smearing level increases theautocorrelation of Wilson loop.

Page 16: Autocorrelation studies in two-flavour Wilson Lattice QCD ... · Abhishek Chowdhury, Asit K. De, Sangita De Sarkar, A. Harindranath, Jyotirmoy Maiti, Santanu Mondal, Anwesa Sarkar

β = 5.6 MeV

κ mq mpi

0.1575 123 790

0.15755 95 684

0.158 65 562

0.158125 51 499

0.15815 49 483

0.15825 35 416

0.1583 28 378

0.1584 21 315

β = 5.8, Volume=32364 MeV

κ mq mpi

0.1543 76 600

0.15455 42 453

0.15462 31 400

0.1547 18 317

0.15475 16 275

Page 17: Autocorrelation studies in two-flavour Wilson Lattice QCD ... · Abhishek Chowdhury, Asit K. De, Sangita De Sarkar, A. Harindranath, Jyotirmoy Maiti, Santanu Mondal, Anwesa Sarkar

The statistical variance of the measured value 〈O〉 is,

σ2 = 2τintσ

20

For any stationary Markov chain

ΓO (t) = ∑n≥1

(λn)t | ηn(O) |2 .

λn, are the eigenvalues of the matrix,

Tx ,y = π12

x Pxy π− 1

2y

Pxy → probability transition matrix of the Markov chain,

πx → is the stationary distribution.

ηn(O) = ∑x O(x)χn(x)π12

x where χn(x) is the eigenfunctioncorresponding to λn.

Page 18: Autocorrelation studies in two-flavour Wilson Lattice QCD ... · Abhishek Chowdhury, Asit K. De, Sangita De Sarkar, A. Harindranath, Jyotirmoy Maiti, Santanu Mondal, Anwesa Sarkar

Tx ,y is positive definite. Now if the algorithm satisfies detailedbalance Tx ,y is symmetric.Then by Perron-Frobenius theorem,Tx ,y has real positive eigenvalues λn, n ≥ 0 with λ0 = 1 and|λn|< 1 for n ≥ 1.Hence,

ΓO (t) = ∑n≥1

e−t/τn | ηn(O) |2

where τn =− 1lnλn

.

τ1 =− 1lnλ1→ exponential autocorrelation time (τexp).

Page 19: Autocorrelation studies in two-flavour Wilson Lattice QCD ... · Abhishek Chowdhury, Asit K. De, Sangita De Sarkar, A. Harindranath, Jyotirmoy Maiti, Santanu Mondal, Anwesa Sarkar

Q220

β κ τint τuint

5.6 0.158 247(27) 276(30)5.8 0.1543 1030(93) 1056(190)

C (r = 12.0)

β κ τint τuint

5.6 0.158 264(53) 314(76)5.8 0.1543 458(83) 850(168)

Table: Integrated autocorrelation times (τint) and their upper bounds(τu

int) for Q220 and C (r) in two β ’s.