AUSTRIAN ACADEMY OF SCIENCES UNIVERSITY OF INNSBRUCK Quantum Computing with Polar Molecules: quantum...

28
AUSTRIAN ACADEMY OF SCIENCES UNIVERSITY OF INNSBRUCK Quantum Computing with Polar Molecules: quantum optics - solid state interfaces SFB Coherent Control of Quantum Systems €U networks Peter Zoller A. Micheli (PhD student) P. Rabl (PhD student) H.P. Buechler (postdoc) G. Brennen (postdoc) Harvard / Yale collaborations: Misha Lukin (Harvard) John Doyle (Harvard) Rob Schoellkopf (Yale) Andre Axel (Yale) David DeMille (Yale)
  • date post

    19-Dec-2015
  • Category

    Documents

  • view

    217
  • download

    2

Transcript of AUSTRIAN ACADEMY OF SCIENCES UNIVERSITY OF INNSBRUCK Quantum Computing with Polar Molecules: quantum...

Page 1: AUSTRIAN ACADEMY OF SCIENCES UNIVERSITY OF INNSBRUCK Quantum Computing with Polar Molecules: quantum optics - solid state interfaces SFB Coherent Control.

AUSTRIANACADEMY OF

SCIENCES

UNIVERSITY OF INNSBRUCK

Quantum Computing with Polar Molecules: quantum optics - solid state interfaces

SFBCoherent Control of Quantum Systems

€U networks

Peter Zoller

A. Micheli (PhD student)P. Rabl (PhD student)H.P. Buechler (postdoc)G. Brennen (postdoc)

Harvard / Yale collaborations:

Misha Lukin (Harvard) John Doyle (Harvard)Rob Schoellkopf (Yale)Andre Axel (Yale) David DeMille (Yale)

Page 2: AUSTRIAN ACADEMY OF SCIENCES UNIVERSITY OF INNSBRUCK Quantum Computing with Polar Molecules: quantum optics - solid state interfaces SFB Coherent Control.

Cold polar molecules

What‘s next in AMO physics?

• Cold polar molecules in electronic & vibrational ground states

– control & very little decoherence

What new can we do?

• AMO physics:

– new scenarios in quantum computing & cold gases

• Interface AMO – CMP

– example:

F–

exp: DeMille, Doyle, Mejer, Rempe, Ye, …

molecular ensembles / single molecules

superconducting circuits

compatible setups & parameters

strength / weakness complement each other

electric dipole moments

Page 3: AUSTRIAN ACADEMY OF SCIENCES UNIVERSITY OF INNSBRUCK Quantum Computing with Polar Molecules: quantum optics - solid state interfaces SFB Coherent Control.

Quantum Optics with Atoms & Ions

• trapped ions / crystals of …

• CQED

atomcavity

laser

• cold atoms in optical lattices

laser

• atomic ensembles

Polar Molecules

• single molecules / molecular ensembles

• coupling to optical & microwave fields– trapping / cooling– CQED (strong coupling)– spontaneous emission / engineered

dissipation

• interfacing solid state / AMO & microwave / optical

– strong coupling / dissipation

• collisional interactions– quantum deg gases / Wigner (?) crystals– dephasing

dipole moment

rotation

Page 4: AUSTRIAN ACADEMY OF SCIENCES UNIVERSITY OF INNSBRUCK Quantum Computing with Polar Molecules: quantum optics - solid state interfaces SFB Coherent Control.

Polar molecules

• basic properties

Page 5: AUSTRIAN ACADEMY OF SCIENCES UNIVERSITY OF INNSBRUCK Quantum Computing with Polar Molecules: quantum optics - solid state interfaces SFB Coherent Control.

1a. Single Polar Molecule: rigid rotor

• single heteronuclear molecule

dipole d~10 Debye

rotation B~10 GHz (anharmonic )

(essentially) no spontaneous emission (i.e. excited states useable)

N=0

N=1

N=2

"S"

"P"

"D"

F–

d

rigid rotor

d

• Strong coupling to microwave fields / cavities; in particular also strip line cavities

Page 6: AUSTRIAN ACADEMY OF SCIENCES UNIVERSITY OF INNSBRUCK Quantum Computing with Polar Molecules: quantum optics - solid state interfaces SFB Coherent Control.

"P"

1b. Identifying Qubits

• rigid rotor • adding spin-rotation coupling (S=1/2)

N=0

N=1

N=2

N=0

N=1

N=2

J=1/2

J=1/2

J=3/2

J=3/2

J=5/2

"S"

"D"

"S1/2"

"P3/2"

"D5/2"

"D3/2"

"P1/2"

H = B N2 H = B N2 + N·S

• How to encode qubits? ``looks like an Alkali atom on GHz scale´´(we adopt this below as our model molecule)

spin qubit(decoherence)

charge qubit

spin-rotation splitting

Page 7: AUSTRIAN ACADEMY OF SCIENCES UNIVERSITY OF INNSBRUCK Quantum Computing with Polar Molecules: quantum optics - solid state interfaces SFB Coherent Control.

2. Two Polar Molecules: dipole – dipole interaction

• interaction of two molecules

features of dipole-dipole interaction

long range ~1/R3

angular dependence

strong! (temperature requirements)

repulsion

attractionVdd d1d2 3 d1eb ebd2

R3

Page 8: AUSTRIAN ACADEMY OF SCIENCES UNIVERSITY OF INNSBRUCK Quantum Computing with Polar Molecules: quantum optics - solid state interfaces SFB Coherent Control.

What can we do with Polar Molecules?

• a few examples & ideas

Page 9: AUSTRIAN ACADEMY OF SCIENCES UNIVERSITY OF INNSBRUCK Quantum Computing with Polar Molecules: quantum optics - solid state interfaces SFB Coherent Control.

Cooper Pair Box (qubit)

superconducting (1D) microwave transmission line

cavity(photon bus)

1. Hybrid Device: solid state processor & molecular memory + optical interface

Yale-typestrong coupling CQED

R. Schoelkopf, S. Girvin et al.

see talk by A. Blais on Tuesday

Page 10: AUSTRIAN ACADEMY OF SCIENCES UNIVERSITY OF INNSBRUCK Quantum Computing with Polar Molecules: quantum optics - solid state interfaces SFB Coherent Control.

Cooper Pair Box (qubit)

as nonlinearity

superconducting (1D) microwave transmission line

cavity(photon bus)

molecular ensembleoptical

cavity

laser

optical (flying) qubit

1. Hybrid Device: solid state processor & molecular memory + optical interface

polar molecular ensemble 1:quantum memory

(qubit or continuous variable)[Rem.: cooling / trapping]

polar molecular ensemble 2:quantum memory

(qubit or continuous variable)

strong coupling CQED

P. Rabl, R. Schoelkopf, D. DeMille, M. Lukin …

Page 11: AUSTRIAN ACADEMY OF SCIENCES UNIVERSITY OF INNSBRUCK Quantum Computing with Polar Molecules: quantum optics - solid state interfaces SFB Coherent Control.

Trapping single molecules above a strip line

• Three approaches:– magnetic trapping (similar to neutral atoms)– electrostatic trap: d.E interaction DC– microwave dipole trap: d.E interaction AC

• Goals– Trapping of relevant states h~0.1 mm from surface– High trap frequencies ( > 1-10 MHz)– large trap depths …

• Challenges: – Loading – no laser cooling (?)– Interaction with surface

e.g. van der Waals interaction

micron-scaleelectrode structure

0.1m

Electrostatic Z trap (EZ trap)

• DC voltage: same trap potential for N=1,2 states at ~10 kV/cm• AC voltages: same trap potential for

N=0,1 states at “magic” detuning

Andre Axel, R. ScholekopfM. Lukin et al.

@ h~0.1 and t> 10 MHz shifts levels by less than 1%

Page 12: AUSTRIAN ACADEMY OF SCIENCES UNIVERSITY OF INNSBRUCK Quantum Computing with Polar Molecules: quantum optics - solid state interfaces SFB Coherent Control.

|2>

|1>

Sideband cooling with stripline resonator (“g cooling”)

• “g” cooling: position dependence of coupling g(r) to cavity gives rise to force

• “” cooling: spatially uniform g but different traps in upper/lower states → gives rise to force

engineered dissipation + analogy to laser cooling

Page 13: AUSTRIAN ACADEMY OF SCIENCES UNIVERSITY OF INNSBRUCK Quantum Computing with Polar Molecules: quantum optics - solid state interfaces SFB Coherent Control.

2. Realization of Lattice Spin Models

• polar molecules on optical lattices provide a complete toolbox to realize general lattice spin models in a natural way

• Motivation: virtual quantum materials towards topological quantum computing

XX YY

ZZ

xx

zz

Duocot, Feigelman, Ioffe et al. Kitaev

HspinI

i 1 1

j 1 1 J i,jz i,j 1

z cos i,jx i 1,jx Hspin

II J x links

jx kx J y links

jy ky

Jz z links

jz kz

#

# protected quantum memory:

degenerate ground states as qubits

A. Micheli, G. Brennen, PZ, preprint Dec 2005

Examples:

Page 14: AUSTRIAN ACADEMY OF SCIENCES UNIVERSITY OF INNSBRUCK Quantum Computing with Polar Molecules: quantum optics - solid state interfaces SFB Coherent Control.

3. (Wigner-) Crystals with Polar Molecules

• “Wigner crystals“ in 1D and 2D (1/R3 repulsion – for R > R0)

Coulomb: WC for low density (ions)

dipole-dipole: crystal for high density

2D triangular lattice(Abrikosov lattice)

mean distance

WCTonks gas / BEC

(liquid / gas)

~ 100 nm

e2/R

2/2MR2~R

1st order phase transition

H.P. BüchlerV. SteixnerG. PupilloM. Lukin…

quantum statistics

g(R)

R

solid

liquid

potential energy

kinetic energy d2/R3

2/2MR2~ 1R

n1/3

Page 15: AUSTRIAN ACADEMY OF SCIENCES UNIVERSITY OF INNSBRUCK Quantum Computing with Polar Molecules: quantum optics - solid state interfaces SFB Coherent Control.

• Ion trap like quantum computing with phonons as a bus.

• Exchange gates based on „quantum melting“ of crystal– Lindemann criterion x ~ 0.1 mean distance– [Note: no melting in ion trap]

• Ensemble memory: dephasing / avoiding collision dephasing in a 1D and 2D WC– ensemble qubit in 2D configuration– [there is an instability: qubit -> spin waves]

x

phonons

(breathing mode indep of # molecules)

ion trap like qc, however:

d variable

spin dependent d

qu melting / quantum statistics

compare: ionic Coulomb crystal

d1 d2 /R3

Applications:

Page 16: AUSTRIAN ACADEMY OF SCIENCES UNIVERSITY OF INNSBRUCK Quantum Computing with Polar Molecules: quantum optics - solid state interfaces SFB Coherent Control.

Quantum Optical / Solid State Interfaces

Page 17: AUSTRIAN ACADEMY OF SCIENCES UNIVERSITY OF INNSBRUCK Quantum Computing with Polar Molecules: quantum optics - solid state interfaces SFB Coherent Control.

Cooper Pair Box (qubit)

as nonlinearity

superconducting (1D) microwave transmission line

cavity(photon bus)

molecular ensembleoptical

cavity

laser

optical (flying) qubit

Hybrid Device: solid state processor & molecular memory + optical interface

polar molecular ensemble 1:quantum memory

(qubit or continuous variable)[Rem.: cooling / trapping]

polar molecular ensemble 2:quantum memory

(qubit or continuous variable)

strong coupling CQED

with P. Rabl, R. Schoelkopf, D. DeMille, M. Lukin

Page 18: AUSTRIAN ACADEMY OF SCIENCES UNIVERSITY OF INNSBRUCK Quantum Computing with Polar Molecules: quantum optics - solid state interfaces SFB Coherent Control.

1. strong CQED with superconducting circuits

• Cavity QED

• [... similar results expected for coupling to quantum dots (Delft)]

• [compare with CQED with atoms in optical and microwave regime]

R. Schoelkopf, M. Devoret, S. Girvin (Yale)

SC qubit

strong coupling!(mode volume V/ 3 ¼ 10-5 )

good cavity

“not so great” qubits

Jaynes-Cummings

Page 19: AUSTRIAN ACADEMY OF SCIENCES UNIVERSITY OF INNSBRUCK Quantum Computing with Polar Molecules: quantum optics - solid state interfaces SFB Coherent Control.

• rotational excitation of polar molecule(s)

• superconducting transmission line cavities

• hyperfine excitation of BEC / atomic ensemble

atoms /molecules

SC qubit

hyperfine structure

» 10 GHz

rotational excitations

» 10 GHz

N=1

N=0

… with Yale/Harvard

ensemble

2. ... coupling atoms or molecules

• Remarks:– time scales compatible– laser light + SC is a problem: we must move atoms / molecules to interact with light (?)– traps / surface ~ 10 µm scale– low temperature: SC, black body…

Page 20: AUSTRIAN ACADEMY OF SCIENCES UNIVERSITY OF INNSBRUCK Quantum Computing with Polar Molecules: quantum optics - solid state interfaces SFB Coherent Control.

3. Atomic / molecular ensembles:collective excitations as Qubits

• ground state

• one excitation (Fock state)

• two excitations ... eliminate?– in AMO: dipole blockade, measurements ...

etc.

microwave

|g|q

|r

microwave

nonlinearity due to Cooper Pair Box.

harmonic oscillator

• also: ensembles as continuous variable quantum memory (Polzik, ...)

• collisional dephasing (?)

Page 21: AUSTRIAN ACADEMY OF SCIENCES UNIVERSITY OF INNSBRUCK Quantum Computing with Polar Molecules: quantum optics - solid state interfaces SFB Coherent Control.

molecules:qubit 1

SC qubit

molecules:qubit 2

solid state system swap molecule - cavity

ensemblequbits

4. Hybrid Device: solid state processor & molec memory

time independent

+ dissipation (master equation)

Page 22: AUSTRIAN ACADEMY OF SCIENCES UNIVERSITY OF INNSBRUCK Quantum Computing with Polar Molecules: quantum optics - solid state interfaces SFB Coherent Control.

5. Examples of Quantum Info Protocols

• SWAP

• Single qubit rotations via SC qubit

• Universal 2-Qubit Gates via SC qubit

• measurement via ensemble / optical readout or SC qubit / SET

Cooper Pair

cavity (bus)

molec ensemble

Atomic ensembles complemented by deterministic entanglement operations

Page 23: AUSTRIAN ACADEMY OF SCIENCES UNIVERSITY OF INNSBRUCK Quantum Computing with Polar Molecules: quantum optics - solid state interfaces SFB Coherent Control.

Spin Models with Optical Lattices

• we work in detail through one example

• quantum info relevance:

– polar molecule realization of models for protected quantum memory (Ioffe, Feigelman et al.)

– Kitaev model: towards topological quantum computing

A. Micheli, G. Brennen & PZ, preprint Dec 2005

Page 24: AUSTRIAN ACADEMY OF SCIENCES UNIVERSITY OF INNSBRUCK Quantum Computing with Polar Molecules: quantum optics - solid state interfaces SFB Coherent Control.

Duocot, Feigelman, Ioffe et al. Kitaev

HspinI

i 1 1

j 1 1 J i,jz i,j 1

z cos i,jx i 1,jx Hspin

II J x links

jx kx J y links

jy ky

Jz z links

jz kz

#

#

Page 25: AUSTRIAN ACADEMY OF SCIENCES UNIVERSITY OF INNSBRUCK Quantum Computing with Polar Molecules: quantum optics - solid state interfaces SFB Coherent Control.

microwave microwavespin-rotation

couplingspin-rotation

coupling

dipole-dipole: anisotropic + long range

effective spin-spin coupling

Basic idea of engineeringspin-spin interactions

Page 26: AUSTRIAN ACADEMY OF SCIENCES UNIVERSITY OF INNSBRUCK Quantum Computing with Polar Molecules: quantum optics - solid state interfaces SFB Coherent Control.

Adiabatic potentials for two (unpolarized) polar molecules

• Spin Rotation ( here: /B = 1/10 )

Induced effective interactions:

0g+ : + S1 · S2 { 2 S1

c S2c

0g{ : + S1 · S2 { 2 S1

p S2p

1g : + S1 · S2 { 2 S1b S2

b 1u : { S1 · S2

2g : + S1b S2

b

0u : 02u : 0

for ebody = ex and epol = ez

0g+ : +XX{YY+ZZ

0g{ : +XX+YY{ZZ

1g : {XX+YY+ZZ1u : {XX{YY{ZZ2g : +XX

S1/2 + S1/2

Feature 1. By tuning close to a resonance we can select a specific spin texture

Page 27: AUSTRIAN ACADEMY OF SCIENCES UNIVERSITY OF INNSBRUCK Quantum Computing with Polar Molecules: quantum optics - solid state interfaces SFB Coherent Control.

Example: "The Ioffe et al. Model"

• Model is simple in terms of long-range resonances …

Feature 2. We can choose the range of the interaction for a given spin texture

Rem.: for a multifrequency field we can add the corresponding spin textures.

Feature 3. for a multifrequency field spin textures are additive: toolbox

Page 28: AUSTRIAN ACADEMY OF SCIENCES UNIVERSITY OF INNSBRUCK Quantum Computing with Polar Molecules: quantum optics - solid state interfaces SFB Coherent Control.

Summary: QIPC & Quantum Optics with Polar Molecules

• single molecules / molecular ensembles

• coupling to optical & microwave fields

– trapping / cooling

– CQED (strong coupling)

– spontaneous emission / engineered dissipation

• interfacing solid state / AMO & microwave / optical

– strong coupling / dissipation

• collisional interactions

– quantum deg gases / Wigner crystals (ion trap like qc)

– WC / dephasing