ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the...

150
L44 140613 004 Tennessee Valley Authority, 1101 Market Street, Chattanooga, Tennessee 37402 CNL-14-077 June 13, 2014 10 CFR 50.4 ATTN: Document Control Desk U.S. Nuclear Regulatory Commission Washington, D.C. 20555-0001 Watts Bar Nuclear Plant, Unit 2 Construction Permit No. CPPR-92 NRC Docket No. 50-391 Watts Bar Nuclear Plant, Unit 1 Facility Operating License No. NPF-90 NRC Docket No. 50-390 Subject: Responses to Degraded Voltage Issue Requests for Additional Information References: 1. Letter from TVA to NRC, “Watts Bar Nuclear Plant (WBN) Unit 2 - Safety Evaluation Report Supplement 22 (SSER22) - Response to NRC Required Action Item, dated August 12, 2011 [ML11229A020] 2. Letter from TVA to NRC, “Watts Bar Nuclear Plant, Unit 2 - NUREG-0847 Supplemental Safety Evaluation Report (SSER) Related to the Operation of Watts Bar Nuclear Plant, Unit 2, Appendix HH Open Item 30 - Power System Degraded Voltage,” dated June 7, 2012 [ML12160A350] 3. NRC Regulatory Issue Summary (RIS) 2011-12, Revision 1, “Adequacy of station Electrical Distribution System Voltages,” dated December 29, 2011 [ML113050583] 4. NRC Electronic Mail (email) from Siva Lingam to Gordon Arent, on Watts Bar 2 - Open Phase and Open Item 30 RAIs, dated February 27, 2014 5. NRC Public Meeting Announcement with Tennessee Valley Authority (TVA) regarding Safety Evaluation Report electrical open items related to Watts Bar Nuclear Plant, Unit 2, April 24, 2014 [ML14100A313] 6. Letter from NRC to TVA, “Watts Bar Nuclear Plant - NRC Integrated Inspection Report 05000390/2010005,” dated January 28, 2011 [ML110280456]

Transcript of ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the...

Page 1: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

L44 140613 004

Tennessee Valley Authority, 1101 Market Street, Chattanooga, Tennessee 37402 CNL-14-077 June 13, 2014 10 CFR 50.4 ATTN: Document Control Desk U.S. Nuclear Regulatory Commission Washington, D.C. 20555-0001

Watts Bar Nuclear Plant, Unit 2 Construction Permit No. CPPR-92 NRC Docket No. 50-391 Watts Bar Nuclear Plant, Unit 1 Facility Operating License No. NPF-90 NRC Docket No. 50-390

Subject: Responses to Degraded Voltage Issue Requests for Additional Information References: 1. Letter from TVA to NRC, “Watts Bar Nuclear Plant (WBN) Unit 2 - Safety

Evaluation Report Supplement 22 (SSER22) - Response to NRC Required Action Item, dated August 12, 2011 [ML11229A020]

2. Letter from TVA to NRC, “Watts Bar Nuclear Plant, Unit 2 - NUREG-0847

Supplemental Safety Evaluation Report (SSER) Related to the Operation of Watts Bar Nuclear Plant, Unit 2, Appendix HH Open Item 30 - Power System Degraded Voltage,” dated June 7, 2012 [ML12160A350]

3. NRC Regulatory Issue Summary (RIS) 2011-12, Revision 1, “Adequacy

of station Electrical Distribution System Voltages,” dated December 29, 2011 [ML113050583]

4. NRC Electronic Mail (email) from Siva Lingam to Gordon Arent, on Watts

Bar 2 - Open Phase and Open Item 30 RAIs, dated February 27, 2014

5. NRC Public Meeting Announcement with Tennessee Valley Authority (TVA) regarding Safety Evaluation Report electrical open items related to Watts Bar Nuclear Plant, Unit 2, April 24, 2014 [ML14100A313]

6. Letter from NRC to TVA, “Watts Bar Nuclear Plant - NRC Integrated

Inspection Report 05000390/2010005,” dated January 28, 2011 [ML110280456]

Page 2: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

U.S. Nuclear Regulatory Commission Page 2 June 13, 2014

By letter dated August 12, 2011 (Reference 1), Tennessee Valley Authority (TVA) provided a response to NUREG-0847, Supplement 22, "Safety Evaluation Report Related to the Operation of Watts Bar Nuclear Plant, Unit 2," Appendix HH, Open Item 30.

By letter dated June 7, 2012 (Reference 2), TVA submitted updated information related to the offsite and onsite power system degraded voltage studies for safety-related electrical equipment. This submittal included excerpts from STUDY-EEB-WBN-12-001 , "Sensitivity Study of Degraded Voltage Relay (DVR) Protection During Motor Starting ," Revision 1. The information provided in Reference 2 demonstrated the impact of using a methodology meeting the intent of the guidance provided in Nuclear Regulatory Commission (NRC) Regulatory Issue Summary (RIS) 2011-12, "Adequacy of station Electrical Distribution System Voltages," Revision 1 (Reference 3).

On February 27, 2014, TVA received additional requests for information related to open phase and NUREG-0847, Open Item 30 (Reference 4) , including questions associated with Watts Bar Nuclear Plant (WBN) , Unit 2 Final Safety Analysis Report (FSAR) Section 8.3. The responses to these requests for additional information (RAis) are included in this transmittal as Enclosure 1.

On April 24, 2014, the NRC conducted a public meeting with members of TVA (Reference 5) . The purpose of the meeting was to discuss the status of electrical open items resulting from the NRC review of the FSAR for WBN Unit 2.

TVA addressed a non-cited violation (NCV) identified in Reference 6 by performing a motor starting analysis in the calculation of record at the DVR dropout analytical limit as opposed to the DVR reset. The analysis is provided in Appendix H of Enclosure 2.

Enclosure 1 to this letter also provides the TVA response to the information requested at the April 24, 2014 public meeting, including responses to the RAis received in Reference 4. Enclosure 2 provides a copy of the Sensitivity Study of Degraded Voltage Relay (DVR) Protection During Motor Starting, Revision 2, performed by TVA to address the additional concerns with the DVR protection scheme at WBN .

Please address any questions regarding this submittal to Gordon Arent at (423) 365-2004.

I declare under penalty of perjury that the foregoing is true and correct. Executed on the 13th day of June 2014.

resident, Nuclear Licensing

Enclosures cc: See Page 2

Page 3: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

E1-1

ENCLOSURE 1

TENNESSEE VALLEY AUTHORITY RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION FOR FSAR SECTION 8.3

ELECTRICAL OPEN ITEMS (TAC NO. ME2731)

Page 4: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

E1-2

1.0 DESCRIPTION This enclosure provides information related to degraded voltage protection at Watts

Bar Nuclear Plant (WBN). The enclosure provides an overview of the licensing correspondence regarding degraded voltage as it applies to WBN Unit 2 licensing, findings, and remedial actions taken as a result of Nuclear Regulatory Commission (NRC) inspections of degraded voltage relays (DVRs).

2.0 BACKGROUND

TVA has performed calculations to evaluate and document the adequacy of the WBN auxiliary power system for two unit operation. Calculation WBN-EEB-EDQ000-999-2007-0002, “AC Auxiliary Power System Analysis,” (Reference 1) verifies that adequate voltage is available for starting safety-related motors (individually) under degraded voltage conditions. Calculation WBN-EEB-MS-TI06-0029, “Degraded Voltage Analysis,” (Reference 2) demonstrates that the WBN auxiliary power system complies with NRC Branch Technical Position PSB-1, establishes the basis for the degraded and loss of voltage relay setpoints and their associated time delays, ensures that the voltage level is adequate to allow required safety-related electrical equipment and devices to successfully complete their safety function, and ensures that the duration of the degraded voltage at a given voltage level does not result in thermal degradation or damage of the equipment. TVA Calculation EDQ00299920080003, “Class 1E MCC Control Circuit Voltage Analysis and Transformer Sizing,” (Reference 3) and Calculation WBNEEBMSTI020020, “120V AC Class 1E Distribution Panel and Transformer Sizing and Voltage Drop Calculation,” (Reference 4) evaluate the control circuits of the Class 1E loads to determine if the circuits will operate adequately, as intended under worst-case voltage drop conditions. In addition, TVA has performed STUDY-EEB-WBN-12-001, “Degraded Voltage Relay (DVR) Protection During Motor Starting,” (Reference 5) to evaluate whether the existing DVR setpoint provides the minimum required voltages at the terminals of the Class 1E loads during motor starting (automatic start during a design basis event or individually) while still connected to the preferred offsite power source. A copy of STUDY-EEB-WBN-12-001, Revision 2 is provided in Enclosure 2. In 2010, two independent but related events resulted in DVR settings at WBN requiring additional evaluation. First, NRC inspections (References 6 and 7) conducted at WBN identified conditions where the DVR setpoint value in the calculation of record was non-conservative with respect to the voltage specified in Technical Specifications (TS). Secondly, TVA submitted WBN Unit 2 Final Safety Analysis Report (FSAR) amendments addressing Section 8, “Electric Power.” On January 28, 2011, TVA received a non-cited violation (NCV) of low safety significance regarding the failure to use the DVR setpoint values specified in TS and configured in the 6.9 kV bus based on the electrical design calculation (Reference 6). The NRC concluded that the availability, reliability and operability of the 6.9 kV safety buses was impacted due to a non-conservative degraded voltage input being used in the safety related motor start and running calculations. On January 31, 2011, the NRC issued NUREG-0847, Supplement 22, "Safety Evaluation Report, Related to the Operation of Watts Bar Nuclear Plant, Unit 2,” Supplement 22, Appendix HH. Appendix HH contained Open Item 30, stating:

Page 5: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

E1-3

TVA should confirm that all safety-related equipment (in addition to the Class 1E motors) will have adequate starting and running voltage at the most limiting safety-related components (such as motor-operated valves (MOVs), contactors, solenoid valves or relays) at the DVR setpoint dropout setting. TVA should also confirm that (1) the motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies are carried out by maximizing running loads on the Class 1E distribution system (bounding combination of safety systems loads), with the voltage at 6.9 kV Class 1E buses (monitored by the DVRs) at or just above the DVR dropout setting, and (3) the DVR settings do not credit any equipment operation (such as LTC transformers) upstream of the 6.9-kV Class 1E buses. TVA should also confirm that the final technical specifications (TSs) are properly derived from these analytical values for the degraded voltage settings.

By letter dated August 12, 2011 (Reference 8), TVA provided a response to NUREG-0847, Supplement 22, Appendix HH, Open Item 30. In the enclosure to the letter, and in response to Open Item 30, TVA informed the NRC that it had performed a motor-starting transient study assuming the 6.9 kV Shutdown Boards were maintained at the DVR dropout setting and applied the worst-case accident block-start loading (bounding combination of safety system loads). Additionally, the response indicated that the analysis did not credit any non-Class 1E equipment upstream of the 6.9 kV Class 1E buses (such as automatic load tap changers (LTCs) or administratively controlled grid capacity). TVA confirmed that the Class 1E motors required to start and mitigate an accident would have adequate voltage. On June 7, 2012, TVA submitted updated information related to the offsite and onsite power system degraded voltage studies for safety-related electrical equipment (Reference 9). In Reference 9, TVA submitted excerpts from the Reference 5 sensitivity study of motor starting relative to the existing DVR setpoint. The purpose of the study was to address issues concerning DVR protection at WBN as documented in 1) NRC NCV 05000390/2010005-003, “Failure to use Worst Case 6900 VAC Bus Voltage in design calculations,” 2) NUREG-0847, Supplement 22, “Safety Evaluation Report Related to the Operation of Watts Bar Nuclear Plant, Unit 2,” Appendix HH, Open Item 30, and 3) recent regulatory developments in the industry with respect to DVR protection and analysis including RIS 2011-12. The study was performed for both WBN Unit 1 and Unit 2. Subsequently, on February 27, 2014, TVA received a request for additional information (RAI) via NRC Electronic Mail (Reference 10) related to certain aspects of the degraded voltage methodology used at WBN. Responses to these RAIs are provided in Section 3.0 of this enclosure. On April 24, 2014, the NRC staff conducted a public meeting with members of TVA (Reference 11). The purpose of the meeting was to discuss the status of electrical open items resulting from the NRC review of the FSAR for WBN Unit 2 including the previous correspondence and the February 27, 2014 RAIs. The meeting allowed TVA to present the history of the regulatory guidance/industry events/actions implemented at WBN with regards to degraded voltage, highlights of the analysis performed by TVA on loss of voltage (LOV) and DVR settings, aspects of the TVA conformance with

Page 6: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

E1-4

Branch Technical Position PSB-1, and highlights of the TVA response to SSER Open Item 30.

3.0 RESPONSES TO REQUESTS FOR ADDITIONAL INFORMATION By email dated February 27, 2014, the NRC forwarded a request for additional information. The NRC stated questions and TVA’s responses are presented below. NRC Request for Additional Information The staff of the Electrical Engineering Branch (EEEB) of the Division of Engineering has previously requested information on open items associated with NUREG-0847, “Supplemental Safety Evaluation Report (SSER) Related to the Operation of Watts Bar Nuclear Plant, Unit 2.” In order to complete the review and close these items, the staff requests additional information from the licensee, as described below: BACKGROUND In letter dated June 7, 2012, the Tennessee Valley Authority (TVA) provided a response to Open Item 30 (power system degraded voltage) with respect to SSER, Appendix HH. The response states that the methodology used in the study was developed to meet the intent of Regulatory Issue Summary (RIS) 2011-12, “Adequacy of Station Electrical Distribution System Voltages”. The RIS states, “The licensee’s voltage calculations should provide the basis for proper operation of the plant safety-related electrical distribution system, when supplied from the offsite circuit(s) (from the transmission network). (emphasis added) These calculations should demonstrate that the voltage requirements (both starting and running voltages) of all plant safety-related systems and components are satisfied based on operation of the transmission system (including the bounding transmission system single contingency in terms of voltage drop) and the plant onsite electric power system during all operating configurations of transmission network and plant systems.” The TVA response states that to perform the analysis, the 6.9 kV shutdown boards were disconnected from all offsite power source(s) and a dedicated fixed voltage source was added to each 6.9 kV shutdown board (6.9 kV shutdown board was used as a swing bus). The source voltage was set to the degraded voltage relay (DVR) analytical dropout limit of 6555 V. RAI QUESTION 1 Based on the above statements:

a) Please explain how disconnecting the shutdown boards from offsite power source(s) meets the intent of guidance provided in the RIS section cited above.

b) Please explain how the voltage drop through station services transformers (CSST A,

B, C and D) is accounted for during block starting or sequential starting of emergency loads in the analyses provided.

Page 7: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

E1-5

c) If the shutdown bus is considered a ‘dedicated fixed voltage source’ or a swing bus, then please confirm that the calculation process assumes the swing bus to be an infinite source of real and reactive power. If not, provide basis for the assumption used.

d) From bus voltage perspective, discuss how this simulation depicts the dynamic response capabilities of the shutdown boards compared to the real and reactive power demand of motor starts postulated during accident conditions with offsite source(s) supplying power through CSST A, B, C and D including all worst-case operating and loading configurations.

TVA Response During discussions between the NRC and TVA at the April 24, 2014 public meeting, the NRC accepted the study case information presented by TVA and clarified that a response to Question 1 was no longer required. Enclosure 2, Appendix H includes the study cases presented and discussed during the April 24, 2014 public meeting. RAI QUESTION 2 The analyses states that for contactors, relays and solenoid valves, adequacy of pickup voltage was performed as part of the Control Circuit Voltage Drop (CCVD) analysis. This analysis was performed considering a steady state minimum voltage of 432V at the motor control center (MCC) bus. Please confirm that 432V is the minimum voltage required for operability of all equipment (minimum voltage required at component terminal) with nominal operating voltage of 480V and lower (230/120V) voltage systems supplied from the 480V system. TVA Response 432 V at the 480V AC Shutdown Boards and MCCs, ensures that the safety-related equipment connected to the Class 1E system is capable of performing their intended function. TVA’s analysis of this is contained in Calculations EDQ00299920080003, “Class 1E MCC Control Circuit Voltage Analysis and Transformer Sizing,” (Reference 3) and WBNEEBMSTI020020, “120V AC Class 1E Distribution Panel and Transformer Sizing and Voltage Drop Calculation,” (Reference 4). RAI QUESTION 3 The analyses states that the MCC transient bus voltage under degraded voltage conditions (at DVR dropout voltage of 6555V) drops below 432V due to starting of large motors on the 480V switchgear and recovers to a value of >432V within 4 seconds. Please confirm that the duration and magnitude of voltage drop and recovery during block starting of all safety related loads and sequenced start of loads remains within the acceptable range without actuating any protective devices (accident analyses perspective) if the 6.9kV busses remain connected to the 161kV offsite power source through the CSSTs. TVA Response The magnitude and duration of the < 4 second dip below 432V is acceptable for all equipment as discussed in TVA Calculation WBN-EEB-EDQ000-999-2007-0002, “AC Auxiliary Power

Page 8: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

E1-6

Systems Analysis,” and does not actuate any protective device, as discussed in TVA Calculation WBN-EEB-MS-TI06-0029, “Degraded Voltage Analysis.” RAI QUESTION 4 Calculation Number WBN-EEB-EDQ000-999-2007-0002 1 submitted in response to preliminary request for additional information regarding Unit 2 licensing process states the following:

“One 161 kV transmission line and CSSTs A and D, or the other transmission line and CSSTs B and C, shall be capable of starting and running all required safety-related loads and powering all running BOP loads for a design basis accident in one unit and orderly shutdown of the other unit. The analysis for the Class 1 E power system shall evaluate all equipment that is started by a safety injection signal (SIS) as starting at the same time unless the load's control circuitry has sequential time delay, and that all continuous loads that could be operating as required by the process, whether safety-related or not, are running. The analyses in this calculation evaluate the starting of the equipment required to mitigate an accident in accordance with the above requirements for one Unit and simultaneous orderly shutdown of the other unit. The worst case bases for this evaluation is assuming a 161 kV grid pre-event voltage of 164KV and a subsequent 161 kV grid drop of 9kV at event initiation resulting in a post event 161kV grid voltage of 153kV. The analyses shows that all equipment required to start to mitigate an accident receive adequate starting voltage within the time period (5 seconds) of Reference 2.16 for the cases when both CSST C and D are available and also when only one CSST (either C or D) is available.”

Enclosure 1 attached to TVA letter dated July 31, 2010, provided similar information (reference pages E1-63 and 64) regarding the capability of the electrical power system described in FSAR Section 8.1. Please clarify that the impact of the voltage drop in the 161kV system coupled with the voltage drop in CSSTs during block loading of accident loads is accounted for in the degraded voltage relay setpoint calculation performed in accordance with the recommendations of RIS 2011-12. TVA Response During discussions between the NRC and TVA at the April 24, 2014 public meeting, the NRC accepted the study case information presented by TVA and clarified that a response to Question 4 was no longer required. Enclosure 2, Appendix H includes the study cases presented and discussed during the April 24, 2014 public meeting. RAI QUESTION 5 1) In response to NRC letter dated December 20, 2013, for resolving open phase condition

(OPC) design vulnerability within electric system at Watts Bar 2, TVA stated that:

Vulnerability studies of the OPC faults have been completed for WBN and additional operator meetings are being scheduled to communicate the results. For the analyzed configurations, the vulnerability studies showed existing protection automatically actuates and provides protection to the Class-1E system for grounded open phase

Page 9: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

E1-7

conditions. Vulnerability to an ungrounded open phase condition has been identified for some analyzed configurations.

The TVA nuclear fleet has endorsed the generic schedule provided in the Industry OPC Initiative.

To resolve the OPC design vulnerability at Watts Bar 2, staff requests that TVA provide design features and analyses information in the Final Safety Analysis Report to automatically detect and alarm in the main control room for OPC with and without a high impedance ground condition including two open phase condition on the high voltage side of a transformer connecting a credited GDC-17 offsite power circuit to the transmission system. For OPC, automatic detection and actuation circuits will transfer loads required to mitigate postulated accidents to an alternate power source and ensure that safety functions are preserved, as required by the current licensing bases. The OPC should be sensitive enough to identify an open phase condition under all operating electrical system configurations and loading conditions for which they are required to be operable and. should minimize misoperation, maloperation, and spurious actuation. In addition, the staff requests TVA to address the limiting conditions of operation and surveillance requirements that must be added to the plant Technical Specifications to meet the provisions of 10CFR50.36 (c) (2) and c(3). The above information is required from TVA for staff to reach the necessary safety conclusion that the electrical power system for Watts Bar Unit 2 design meets the 10 CFR Part 50, Appendix A, GDC 17, 10 CFR 50.55a(h)(2), and 10 CFR 50.36 requirements with respect to addressing electric power system design vulnerability due to OPC which could affect the safety functions of both onsite and offsite power systems. TVA Response As requested by the NRC staff during discussions with TVA on June 4, 2014, the response to Question 5 is being provided in a separate transmittal. 4.0 Non-cited Violation (NCV) 05000390/2010005-003 On January 28, 2011, TVA received a NCV of low safety significance (green) regarding the failure to use the DVR setpoint values specified in TS and configured in the 6.9 kV bus based on the electrical design calculation (Reference 6). The NRC concluded that the availability, reliability and operability of the 6.9 kV safety buses was impacted due to a non-conservative degraded voltage input being used in the safety related motor start and running calculations. TVA STUDY-EEB-WBN-12-001, “Sensitivity Study of Degraded Voltage Relay (DVR) Protection During Motor Starting,” (Reference 5) evaluates whether the DVR setpoint provides the minimum required voltages at the terminals of the Class 1E loads during motor starting (automatic start during a design basis event or individually) while still connected to the preferred offsite power source. The study concludes that adequate starting voltage is available to each Class 1E load when the 6.9 kV Shutdown Boards are at the DVR dropout setpoint for the following cases: 1) during a design basis event (all Class 1E loads that are automatically actuated for a safety injection (SI) signal), and 2) when individually starting a motor (all Class 1E loads, even if not SI actuated). Therefore, the existing DVR setpoints are adequate. A copy of the study is provided in Enclosure 2 to address issues concerning DVR protection at WBN as documented in NRC NCV 05000390/2010005-003.

Page 10: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

E1-8

References 1. TVA Calculation WBN-EEB-EDQ000-999-2007-0002, AC Auxiliary Power Systems

Analysis, Revision 38, May 28, 2014 2. TVA Calculation WBN-EEB-MS-TI06-0029, Degraded Voltage Analysis, Revision 36,

March 13, 2014 3. TVA Calculation EDQ00299920080003, “Class 1E MCC Control Circuit Voltage

Analysis and Transformer Sizing,” Revision 10, dated February 1, 2014 4. TVA Calculation WBNEEBMSTI020020, “120V AC Class 1E Distribution Panel and

Transformer Sizing and Voltage Drop Calculation,” Revision 15, dated August 3, 2011 5. TVA STUDY-EEB-WBN-12-001, Degraded Voltage Relay (DVR) Protection During

Motor Starting, Revision 001 6. Letter from NRC to TVA, “Watts Bar Nuclear Plant - NRC Integrated Inspection Report

05000390/2010005,” dated January 28, 2011 7. Letter from NRC to TVA, “Watts Bar Nuclear Plant - NRC Component Design Bases

Inspection - Inspection Report 05000390/2010006,” dated June 11, 2010 [ML101620543]

8. Letter from TVA to NRC, “Watts Bar Nuclear Plant (WBN) Unit 2 - Safety Evaluation

Report Supplement 22 (SSER22) - Response to NRC Required Action Item,” dated August 12, 2011 [ML11229A020]

9. Letter from TVA to NRC, “Watts Bar Nuclear Plant, Unit 2 - NUREG-0847

Supplemental Safety Evaluation Report (SSER) Related to the Operation of Watts Bar Nuclear Plant, Unit 2, Appendix HH Open Item 30 - Power System Degraded Voltage,” dated June 7, 2012 [ML12160A350]

10. NRC Electronic Mail (email) from Siva Lingam to Gordon Arent, on Watts Bar 2 -

Open Phase and Open Item 30 RAIs, dated February 27, 2014 11. Summary of April 24, 2014 Meeting with Tennessee Valley Authority Regarding Watts

Bar Nuclear Plant, Unit 2, Open Item for Licensing, May 29, 2014 [ML14118A201]

Page 11: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

E2-1

ENCLOSURE 2

STUDY-EEB-WBN-12-001, DEGRADED VOTAGE RECOVERY ANALYSIS for DBE,

Revision 2

Page 12: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

NPG CALCULATION COVERSHEET I CTS UPDATE Page 1

REV 0 EDM§JRIMS NO.

T93120417020 CTS TYPE: EDMSTYPE: EDMS ACCESSION NO IN/A for REV. Ol

Galadation CALCULATIONS (NUCLEAR}

Calc Title: Sensitivity Study of Degraded Voltage Relay (DVR) Protection During Motor Starting

CALCID EEB STUDY -EEB-WBN-12-001 001 002

CTS UPDATE ONLYO NO CTS CHANGES 181 (Vefifier and Approval Signatures Not Required} (For calc revision, CTS has been reviewed and no CTS changes required}

UNIT (check one} SYSTEMS o 181. 1 0. 2 0. 3 0 NIA

APPLICABLE DESIGN DOCUMENT<Sl See References

STATEMENT OF PROBLEM/ABSTRACT

Statement of problem

UNIDS NIA

Issues were raised by the NRC cOncerning degraded voltage relay (DVR) protection which can be summarized as the need to determine if the DVR setpoint provides the minimum required voltages at the terminals of the Class 1 E loads during motor starting (automatic starting during a DBE or individually) while still connected to the preferred offsite power source.

Abstract This study is being performed as a sensitivity study to see the impact to the DVR setpoint and/or plant response if the current methodology is changed and determine if adequate starling voltage is available to each Class 1 E load when the 6.9kV Shutdown Boards are at the DVR dropout setpoint (analytical limit) for the following cases:

• During a design basis event (DBE): all Class 1 E loads that are automatically actuated for a safety injection signal (Sl-Phase A or 51-Phase B).

• When individually starting a motor (single motor start): all Class 1E loads, even if not Sl-actuated.

This study will also show that for a degraded voltage condition, overcurrent protective devices associated with Class 1 E loads will not trip during Sl-actuated motor starting and subsequent start on the emergency diesel generator. This analysis is performed for both Unit 1 and Unit 2.

The study has a Compact Disk (CD) that contains Appendices C, D, E, F and G (ETAP output reports).

TVA40532 Page 1 of2

Page 13: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

NPG CALCULATION COVERSHEET I CTS UPDATE Page 1A

CALCID ORG PLANT BRANCH NUMBER REV

NUC WBN EEB STUDY-EEB-WBN-12-001 002 BUILDING I ROOM I ELEVATION I COORD/AZIM I FIRM

N/A N/A N/A N/A BECHTEL

CATEGORIES

KEYWORDS (A-add D-delete) ' ACTION KEYWORD AiD KEYWORD

(AiD}

CROSS-REFERENCES (A-add D-delete) ' ACTION XREF XREF XREF XREF XREF

(AJD) CODE PLANT TYPE NUMBER REV

A p WBN CALCULATION EDX-000-999-2004-0002

CTS ONLY UPDATES: Following are reouired only when makinq kevword/cross reference CTS updates and paqe 1 of form NEDP-2-1 is not included:

PRE PARER (PRINT NAME AND SIGN) DATE CHECKER (PRINT NAME AND SIGN) DATE

PREPARER PHONE NO. EDMS ACCESSION NO. TVA40532 Page2 of2 NEDP-2-1 [10-31-2011]

Page 14: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

NPG CALCULATION RECORD OF REVISION

CALCULATION IDENTIFIER STUDY-EEB-WBN-12-001 I Page 2

Title Sensitivity Study of Degraded Voltage Relay (DVR) Protection Durin>! Motor Starting Revision DESCRIPTION OF REVISION

No. 000 Initial issue.

This sensitivity study also completes one of the corrective actions (298321-005) in PER 298321.

Total number of pages: 127 This calculation also contains a CD which stores the ETAP output files and is stored in the calculation library for reference.

Special Requirements/Limiting Conditions: None Successor Calculations: None

001 Revised to incorporate comments from Licensing, revised section 7 to add analysis for Control Circuit Voltage Drop and added Introduction to Appendix A.

Pages added: 13, Appendix A (page i, ii ) Pages revised & replaced: 1, 2, 3, 5thru 9, 11, AU. 4 (pages 10, 11), AU. 5 (pages 7, 8) Pages deleted: None

Total number of pages: 130

This study was prepared in accordance with procedure requirements, utilizing standard calculation format and forms. This study is a one-time sensitivity study to determine the impact, if any, to the plant if a new degraded voltage methodology is implemented.

Special Requirements/Limiting Conditions: None Successor Calculations: None

TVA 40709 [10-2008] Page 1 of! NEDP-2·2 [10-20-2008]

Page 15: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

NPG CALCULATION RECORD OF REVISION

CALCULATION IDENTIFIER STUDY-EEB-WBN-12-001 I Page 2A

Title Sensitivity Study of Degraded Voltage Relay (DVR) Protection During Motor Starting Revision DESCRIPTION OF REVISION

No.

002 This revision involves the following:

o Rerun Dynamic and Static Motor Starting analysis with the revised database incorporating all modifications performed to support U2 completion and ongoing modifications to the operating Unit 1.

o Perform additional degraded voltage analysis utilizing the offsite power as a swing source. This additional analysis is being performed in Appendix H ..

Pages added: 2A, 4A, App. H (5 pages), Alt. 5 (pages 8A, 88, 8C, 80) Pages revised & replaced: 1, 1A, 3, 5, 6, 10, 13, App. A (pages 1- 25), App. B (page 1),

Alt. 4 (pages 10, 11), Alt. 5 (pages 7, 8) Pages deleted: Appendix A (pages 26-27) This calculation contains a CD which stores the revised ETAP Reports for Appendices C, D, E, F and G.

Total number of pages for Calculation: 130 + 11 - 2 = 139

This study was prepared in accordance with procedure requirements, utilizing standard calculation format and forms. This study determines the impact, if any, to the plant if a new degraded voltage methodology is implemented.

Special Requirements/Limiting Conditions: None Successor Calculations: None

TVA 40709 [10-2008] Page I of I NEDP-2-2 [10-20-2008]

Page 16: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

P11ge 3

NPG CALCULATION TABLE OF CONTENTS

Calculation Identifier: STUDY-EEB-WBN-12-001 _I Revision: 002 I

SECTION

1.0

2.0

3.0 4.0

5.0

6.0

7.0

8.0

A

B

c D

E

F G

H

1 2

3 4 5

6

7

TABLE OF CONTENTS

Cover Sheet

CCRIS Update

Revision Log

Table of Contents

TITLE

Computer Input File Storage Information Sheet

Purpose

References

Bases/Assumptions

Methodology/Approach

Design Input Data

Computations and Analysis

Summary of Results

Conclusions

Appendices

Evaluation of Class 1 E Motor Starting Voltages

Degraded Voltage Relay LOV Voltage Recovery Analysis

ETAP Reports- 6.9kV Shutdown Boards 1A & 1 B (DBE Motor Starting Analysis)

ETAP Reports- 6.9kV Shutdown Boards 1A & 1 B (Single Motor Starting Analysis)

ETAP Reports- 6.9kV Shutdown Boards 2A & 2B (DBE Motor Starting Analysis)

ETAP Reports- 6.9kV Shutdown Boards 2A & 2B (Single Motor Starting Analysis)

ETAP Reports- 6.9kV Shutdown Boards Units 1 and 2 (Voltage Recovery Analysis)

Voltage Recovery Analysis for DBE

Attachments

Basis for Motor Starting Voltage

Degraded Voltage Relay Settings

Required Motor Starting Voltage

Required Voltage 89-10 MOVs (Unit 1)

Required Voltage 89-10 MOVs (Unit 2)

Motor data

Extract from Degraded Voltage Analysis Calculation

PAGE

1 1A

2 3 4

5

5 6

7

8 9

11 13

27 pages

4 pages

CD

CD

CD

CD

CD

5 pages

1 page

1 page

26 pages

11 pages

12 pages

12 pages

24 pages

TVA 40710 [10-2008] Page 1 of 1 NEDP-2-3 (10-20-2008]

Page 17: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Page 4

NPG COMPUTER INPUT FILE STORAGE INFORMATION SHEET

Document STUDY-EEB-WBN-12-001 Rev. 000 Plant: WBN

Subject: Sensitivity Study of Degraded Voltage Relay (DVR) Protection During Motor Starting

D Electronic storage of the input files for this calculation is not required. Conunents: The Output files for the software ETAP are accessible in the EDMS System under Document Identifier STUDY-WBN-EEB-12-001.

~ Input files for this calculation have been stored electronically and sufficient identifying information is provided below for each input file. (Any retrieved file requires re-verification of its contents before use.)

File Keeper Storage I Retrieval System

Plant WEN Document Identifier 319518, 359519 Document Type FILE Initiated Date 20120404 Key Items ELECTRICAL CALCULATION Equipment Name ETAP Reference STUDY-EEB-WBN-12-001 RO Description Input Files for WBN CALC 12-001 RO Added By User dsbhatia Property BSL Data Added 04/04/2012 3.26.36 PM Document Category FILEKEEPER Organization NUCLEAR File Name DVR Analysis WBN (DBE Motor Starting) (319518)

Single Motor Starting Analysis (319519) Resp Org WBNP

Calculation input files stored: WBNDATA.MDB 0312112012@ 2.'05 PM WBNDATA.OT! 0312912012@ 4.'36 PM WENDA T A.PSO 0711312010@ 10:05 AM

Note: Additional copy of the input/output files are contained on server: 1\chachaappS\etaps\wbnp\RO STUDY-EEB-WBN-12-001

D Microfiche/eFiche

TVA 40535 [10-2008] Page l of l NEDP-2-6 [10-20-2008]

Page 18: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Page 4A

NPG COMPUTER INPUT FILE STORAGE INFORMATION SHEET

Document STUDY-EEB-WBN-12-001 Rev. 002 Plant: WEN

Subject: Sensitivity Study of Degraded Voltage Relay (DVR) Protection During Motor Starting

D Electronic storage of the input files for this calculation is not required. Comments: The Output files for the software ETAP are accessible in the EDMS System under Document Identifier STUDY-WBN-EEB-12-001.

1:8] Input files for this calculation have been stored electronically and sufficient identifying information is provided below for each input file. (Any retrieved file requires re-verification of its contents before use.)

File Keeper Storage I Retrieval System

Plant WBN Document Identifier 323702, 323703 Document Type FILE Initiated Date 20140523 Key Items ELECTRICAL CALCULATION Equipment Name ETAP Reference STUDY-EEB-WBN-12-001 R2 Description Input Files for WBN CALC 12-001 R2 Added By User dsbhatia Property BSL Data Added 05/23/2014 Document Category FILE KEEPER Organization NUCLEAR File Name Dynamic and Single Motor Start Analysis (323702)

Voltage Recovery Analysis (323703) Resp Org WBNP

Calculation input files stored: WBNDATA.MDB 05113/2014@ 10:10AM 05/22/2014@ 10:10 AM WBNDATA.OTI 0511912014@ 1:42PM 0512212014@ 1:42PM WBNDAT A.PSO 0711312010@ 10:05 AM 0711312010@ 10:05 AM

Note: Additional copy of the input/output files are contained on server: \\chachaapp5\etaps\wbnp\R2 STUDY-EEB-WBN-12-001

D Microfiche/eFiche

TVA40535 [10-2008] Page 1 of I NEDP-2-6 [I 0-20-2008]

Page 19: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

CALCl.JLATION SHEET

CALC NUMBER: STUDY-EEB-WBN-12-001 I REV.002 I SHEET 5

ORIGINATOR: D.S. Bhatia DATE: \ CHECKER: A. C. Bangalore DATE:

1.0 Purpose

The purpose of this study is to address the issues concerning degraded voltage relay (DVR) protection at WBN as documented in:

1. WBN NCV 0500039012010005-003 "Failure to Use Worst Case 6900 VAC Bus Voltage in Design Calculations·

2. Watts Bar (WBN) Unit 2 NlJREG-0847, Supplement 22, RAII!em 30

3. Recent regulatory developments in the industry with respect to DVR protection and analysis including NRC Regulatory Issue Summary (RIS) 2011-12, "Adequacy of Station Electrical Distribution System Voltages•

4. Additional NRC comments received in public meeting These issues can be summarized as the need to determine if the DVR setpoint provides the minimum required voltages at the terminals of the Class 1 E loads during motor starting (automatic starting during a design basis event or individually) while still connected to the preferred offsite power source. Currently, the DVR analytical limit is determined by the Degraded Voltage Analysis calculation (Ref. 2.1 ), using methodology consistent with industry standard IEEE Std. 741-1997 and station licensing basis. The DVR setpolnt methodology has not previously considered motor starting voltage as a basis of the relay setpoint. This study is being performed as a sensitivity study to see the impact to the setpoint and! or plant response if the current methodology is changed.

1.1 Scope

This study determines if adequate starting voltage is available to each Class 1 E load when the 6.9kV Shutdown Boards are at the DVR dropout setpoint (analytical limit) for the following cases:

• During a design basis event (DBE): all Class 1 E loads that are automatically actuated for a safety injection signal (51-Phase A or 51-Phase B).

• When individually starting a motor (single motor start): all Class 1 E loads, even if not 51-actuated.

This study will also show that for a degraded voltage condition 1, overcurrent protective devices associated with Class 1 E loads will not trip during 51-actuated motor starting and subsequent start on the emergency diesel generator.

This analysis is performed for both Unit 1 and Unit 2.

2.0 References

2.1 Calculation WBNEEBMSTI060029, Revision 33 "Degraded Voltage Analysis"

2.2 Calculation EDQ00099920070002, R37, "ACAuxiliary Power System Analysis (dual unit operation)"

2.3 Calculation WBNEEBEDQ199901 0001, R75, "AC Auxiliary Power System Analysis"

2.4 NRC Regulatory Issue Summary (RIS) 2011-12, Revision 1, "Adequacy of Station Electrical Distribution System Voltages•

2.5 Watts Bar (WBN) Unit 1 NCV 05000390/2010005-03, "Failure to Use Worst Case 6900 VAC Bus Voltage in Design Calculations"

2.6 Watts Bar (WBN) Unit 2 NUREG-0847. Supplement 22, "Safety Evaluation Report Related to the operation of Watts Bar Nuclear Plant, Unit 2", RAI Item 30

2.7 Calculation WBNEEBMSTI060010, R76, "Auxiliary Power System Analysis on 1 E Buses" (Historical Reference)

1 A degraded voltage condition is when the 6.9kV Shutdown Board voltage drops below the DVR setpoint, but not below the Joss of voltage (LOV) setpoint, and does not recover.

Page 20: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

CALCULATION SHEET CALC NUMBER: STUDY-EEB-WBN-12-001 I REV. 002 I SHEET 6

ORIGINATOR: D.S. Bhatia DATE: CHECKER: A.C. Bangalore DATE:

2.8 Calculation WBPE2119202001, R8, "6.9kV Shutdown Logic Boards Undervoltage Relays Requirements/Demonstrated Accuracy Calculation"

2.9 Limitorque Maintenance Update 92-2 (RIMS L33930113 803) - Extract from Design Guide DG-E2.4.6

2.10 TVA General Engineering Specification DS-E9.4.1, R1, Selection and Specifications of Motors

2.11 NEMA MG-1-1998, Motors and Generators

2.12 PER 298321

2.13 Calculation EDX-000-999-2004-0002, R3, TSS Grid Voltage Study of WBN's Offsite Power System

3.0 Bases/Assumptions

3.1 The DVR dropout analytical limit (6555V) as determined in the Degraded Voltage Analysis calculation (Ref. 2.1) will be used to determine the available starting voltage.

3.2 The ETAP model used to perform offsite power analysis for dual unit operation (Ref. 2.2) is used to perform the motor starting analysis.

3.3 All process controlled loads (random loads) are conservatively considered to start at zero seconds in a DBE.

3.4 The Phase A Start Sequence evaluates a Safety Injection Initiation without receipt of a Phase B Containment Isolation (High Containment Pressure). The Phase B Start Sequence evaluates a Safety Injection Initiation with receipt of a Phase B Containment Isolation.

The short term steady state loading at the 480V level is higher during a Phase A start sequence than during a Phase B and results in a lower voltage at the 480V busses. However, piping breaks associated with a Phase A Start Sequence are small and will result in ECCS equipment being removed from service within a short period after the event (less than an hour). This will result in a much lower overall long term loading for a Phase A event when compared to a Phase B.

This study uses short term Phase A loading for the single motor start analysis since it is the most conservative loading. If, however the starting voltage (480V) is not acceptable using the Phase A loading, then Phase B loading is used provided:

• The load is only required for a Phase B event, or

• The load is required to be manually started at a time that is at least 2 hours after the initiation of a Phase A event.

This assumption is conservative since the long term 480V loading for a Phase B event is higher than for a Phase A event.

3.5 The 89-10 MOVs for WBN utilize motor actuators which have 'hammer-blow' feature, which allows the motor I to start turning prior to engaging the mechanical load of the operator (i.e. start unloaded). The actual motor current draw is typically 50% of the full locked-rotor current (Ref. 2.9). Initially all MOVs are evaluated using full locked-rotor current but if the available voltage does not meet the required voltage criteria, the available voltage is re-calculated taking credit for the 'hammer-blow' feature. These MOVs are identified in Appendix A

Page 21: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

CALCULATION SHEET CALCNUMBER: STUDY-EEB-WBN-12-001 I REV. 001 I SHEET 7

ORIGINATOR: D.S. Bhatia DATE: CHECKER: A. C. Bangalore DATE:

4.0 Methodology/Approach

The methodology used in this study was developed to meet the intent of Regulatory Issue Summary (RIS) 2011-12, I "Adequacy of Station Electrical Distribution System Voltages". The RIS states the protective function of the DVR setpoint is to ensure adequate starting voltage to all Class 1 E equipment for all operating and accident conditions. Additionally, the RIS states that the DVR setpoint must be based on the starting voltage requirement at the terminal of the most limiting component and must account for the effect of all components which could affect voltage, this includes offsite power circuits, the plant distribution system, as well as all Class 1 E and non-Class 1 E loads.

However, the RIS does not prescribe the specific methodology to be used for the motor startinjl analysis, and there I is no industry consensus on how to best address DVR protection for motor starting scenarios. In actuality, the ability to start motors cannot be determined by monitoring voltage alone. The ability to start motors can only be determined by power system capacity, which is the ability to maintain voltage while providing the required starting I current. Therefore, the very premise of using a voltage relay to protect motor starting ability requires an assumption of the power source capacity, which seems to violate the stated purpose of the DVR protective function.

An analytical approach is used in this study to determine the acceptability of the voltage during any Class 1 E motor I starting scenario that bounds any value of upstream capacity. This approach is based on the fact that for any Class 1 E motor starting event (single motor or group of motors), the voltage at the DVR monitored bus can only respond in one of three ways:

1. The voltage decreases to the DVR setpoint, or above (i.e. DVR does not actuate)

2. The voltage decreases below the DVR setpoint and does not recover (i.e. DVR actuates and transfers loads to the DGs after the specified time)

3. The voltage decreases below the DVR setpoint and does recover (i.e. DVR actuates but does not initiate transfer since voltage remains above the LOV setpoint and recovers above the DVR reset value prior to timeout)

Analyses are performed for each of these situations as follows:

1. A starting voltage analysis is performed using a technique known as the "independent source" method. The voltage at the DVR monitored bus (i.e. 6.9kV Shutdown Board) is set at the DVR setpoint (dropout analytical limit) using an independent fixed voltage source. Since the initial DVR bus voltage prior to the event can be ignored, this simple technique produces correct voltages for downstream loads immediately after the initiation of the event. The analysis is performed for DBE motor starting (SI-actuated loads) as well as individual motor starts.

2. A protective device analysis is performed using a technique known as the "start-start" method. Since this is truly a degraded voltage situation, there is no need for a starting voltage analysis. However, an analysis should be performed to demonstrate that the Class 1 E loads will be successfully transferred to the DG and started prior to their protective devices tripping. This "start-start" analysis was previously performed in the Degraded Voltage Analysis calculation (reference 2.1) and the results are reprinted in this study. 1

3. For DBE motor starting events, a bounding analysis is performed to demonstrate that any possible voltage transient caused by DBE motor starting, including drop to the LOV setpoint, will also result in successful recovery above DVR reset within 5 seconds (without crediting automatic load tap changers). For individual motor starting events, this situation is bounded by the starting voltage analysis from item 1 since the analysis at DVR dropout is more conservative than analysis at the DVR reset value.

These analyses bound any possible voltage outcome at the DVR monitored bus when starting any Class 1 E motor required for any scenario.

2 IEEE Power &Energy Society, Nuclear Power Engineering Committee (NPEC), Working Group 4.7 (Protection of Class 1 E Power Systems and Equipment) meeting minutes of January 24, 2012, San Antonio, TX.

Page 22: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

CALCULATION SHEET CALC NUMBER: STUDY-EEB-WBN-12-001 I REV. 001 I SHEET 8

ORlGlNATOR: D.S. Bhatia DATE: I CHECKER: A.C. Bangalore DATE:

5.0 Design Input Data

5.1 For individual minimum motor starting voltage requirements, see Appendix A.

5.2 The degraded voltage relay setpoints are as follows (Ref. 2.1, 2.8 & Att. 2 of this study): I Dro~out (V) Reset (V)

Nominal Setpoint 6600 6642 Allowable Value 6570 6672 Analytical Limit 6555 N/A Operational Limit N/A 6681

Page 23: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

CALCULATION SHEET CALCNUMBER: STUDY-EEB-WBN-12-001 I REV. 001 I SHEET 9

ORlGlNATOR: D.S. Bhatia DATE: I CHECKER: A. C. Bangalore DATE:

6.0 Computations and Analysis

The motor starting analysis is performed using ETAP V?.O.ON and the existing ETAP model used to perform offsite power system analysis for two unit operation (Ref. 2.2).

6.1 Starting Voltage Analysis

The 6.9kV shutdown boards were disconnected from all offsite power source(s) and a dedicated fixed voltage source was added to each 6.9kV shutdown board. The source voltage was set to the DVR dropout setting of 6555V (Section 5.2).

Using the load configuration in the existing Unit 1 & 2 ETAP model, the following analyses were performed:

o Dynamic Motor Starting -Safety Injection Signal Phase A (SIA) o Dynamic Motor Starting- Safety Injection Signal Phase B (SIB) o Static Motor Starting (starting individual motor): This analysis is performed with SIA since this provides the

worst case voltages on the 480V system. For this analysis, motor starting study case is generated to individually start each Class 1 E motor. Resolutions to loads requiring additional review are annotated in Appendix A If the starting voltage using Phase A is not acceptable, analysis is performed using Phase B loading

DBE Motor Starting: Each study case is run for a total simulation time of 15 seconds. Since it is considered that by this time all motors have been accelerated and the APS system has come to a steady state condition. ETAP reports provide terminal voltage and current for every motor which starts at 0+ second up to 15 seconds in steps of 0.1 second.

The output reports are saved as U1 sdbds at DVDO-Complete (Study Case U1-DV-SIBms, Config. DV-LOCA-U1), U2 sdbds at DVDO-Complete (Study Case U2SIB-DV(N), Config. DV-LOCA-U2) and U12 sdbds at DVDO-Complete (Study Case U1/2SIA, Config. Deg Volt SU) in folder J:lwbnp\DVR Analysis (Static) WBNIETAP Reports - Dynamic Motor Analysis.

Single Motor Starting: Each study case is run using 'Study Case ID U1/2SIA and Config. Deg Volt SU'.

The output reports, in pdf format, are saved in folders J:lwbnp\DVR Analysis (Static) WBNIETAP Reports-Shutdown Boards 1A and 1B and J:lwbnp\DVR Analysis (Static) WBNIETAP Reports Shutdown Boards 2A and 2B\New Reports. Due to the large number of output reports, the output report names are not listed. These analyses did not credit any non-Class 1 E equipment upstream of the 6.9-kV Class 1 E buses (such as LTC transformers or administratively controlled grid capacity). The available starting voltage for each motor is then documented and compared to the required starting voltage. I

6.2 Protective Device Analysis (Start-Start scenario):

The scenario evaluated for the short time delay is an Sl concurrent with the degraded voltage condition such that a block start attempt is made. A determination is made of the time permitted to allow voltage to return above the degraded voltage relay setpoint reset limit under block start transient conditions and still assure a subsequent start on the diesel if the voltage fails to recover, thus, making this a start-start evaluation. To evaluate the effect of the starting currents during the start-start scenario, the effect on overcurrent protective devices are considered. The board voltages at the onset of the event are, considered normal (i.e. no preheat). The degraded voltage condition presumes that the voltage does not recover but remains below the degraded voltage relay setpoint subjecting the 81 initiated motors to starting currents for the time delay selected and then sequence onto the emergency diesel generators. The design calculated worst-case transient voltage dip during the accident loading sequence is used. This is conservative, because a lower voltage would produce less starting current for the motors.

Page 24: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

CALCULATION SHEET CALCNUMBER: STUDY-EEB-WBN-12-001 I REV. 002 I SHEET 10

ORIGINATOR: D.S. Bhatia DATE: I CHECKER: A. C. Banga1ore DATE:

The above evaluation is performed for the safety related loads required for Units 1 and 2 which would be actuated for an Sl as follows:

• Motor loads fed from 6.9kV and 480V Switchgear & MCCs, MOVs & Static loads fed from the MCCs are evaluated to determine the effect of the start-start heating of the overcurrent protective devices (breakers/TOLs), such that starting on the diesel without tripping can be assured.

• Protective devices are also evaluated for the 6.6kV and 460V safety-related motors that operate during non-accident conditions. The evaluation considers that the safety bus voltage is equivalent to operation at the lower boundary of the degraded voltage relay dropout The protective devices are evaluated to ensure that operation of the safety-related loads can be sustained indefinitely at this voltage without protective device trip.

• Sl actuated medium voltage (6.6kV) motor loads are evaluated to ensure that their thermal damage limits are not exceeded during the start-start event.

• 120VAC control power transformer (CPT) fuse time characteristics are evaluated to determine if the fuse could blow when carrying rated inrush current of the starter and any other normally energized devices for the safety analysis time of 11.5 seconds (upper boundary of the degraded voltage relay time delay, Attachment 2) or 12 seconds in the start-start scenario.

• MCC 120VAC distribution panel fuse time characteristics are evaluated to determine if the fuses melt during the start attempts. It is considered that circuit components required to pick-up during starting will be at inrush conditions.

6.3 Voltage Recoverv Analysis:

See Appendix B for voltage recovery analysis for DBE for detailed purpose, approach, bases and assumptions and computations.

In addition, Appendix H demonstrates the adequacy of the DVR protection scheme if the voltage source is placed at the switchyard bus and the grid voltage and capacity is set

1. Such that the DVR monitored bus voltage is at the DVR dropout analytical limit prior to DBE initiation 2. To support successful voltage recovery following DBE motor starting

Page 25: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

CALCULATION SHEET CALC NUMBER: STUDY-EEB-WBN-12-001 I REV. 001 I SHEET 11

ORIGINATOR: D.S. Bhatia DATE: CHECKER: A.C. Bangalore DATE:

7.0 Summary of Results

7.1 Starting Voltage Analysis

See Appendix A for summary of the results. Based on a review of the results, all safety related loads have adequate starting voltage during DVR conditions and the existing setpoints for the degraded voltage relay are considered acceptable.

Note: ERCW Screen Wash Pumps are not assured to have adequate voltage as analyzed. However per N3-67-4002 this load is not required to be manually placed into service until12 hours into a design basis event. This provides sufficient time to take corrective actions such as correcting the grid condition, adjusting the tap changers on the CSSTs or transferring the shutdown board(s) to the diesel generators.

Control Circuit Voltage Drop (CCVDl Analysis

With respect to the contactors, relays and solenoid valves, adequacy of pickup voltage for these control components (contactors, solenoid valves, relays) were performed as part of the Control Circuit Voltage Drop (CCVD) analysis. This analysis was performed considering a steady state minimum voltage of 432V at the MCC bus. All the components were determined to have adequate pickup voltage upon implementation of the issued design changes as identified in the CCVD calculation prior to Unit 2 fuel load.

The MCC transient bus voltage under degraded voltage conditions (at DVR dropout voltage of 6555V) drops below 432V due to starting of large motors on the 480V switchgear. This voltage, however, recovers to a value of >432V within 4 seconds. Since the startup of the safety related equipment may not have adequate starting voltage due to transient voltage conditions, Westinghouse evaluated the impact of additional 5 second delay for the startup of the safety injection pumps and feedwater isolation valves with offsite power available, and concluded the following: "This safety evaluation concludes that an additional five second delay for the startup of the safety injection pumps and an additional five second delay in the closure of the feedwater isolation valve does not impact the conclusions of the safety analysis that form the Watts Bar licensing basis (SECL-92-029; RIMS No. T33930330990)".

Based on the above, the analysis performed to verify adequacy of available voltage for the contactors, solenoid valves, relays is considered to be adequate and, therefore, no further analysis under the transient voltage conditions has been performed.

7.2 Protective Device Analysis

Motors Actuated by Sl Signal: As discussed in Attachment 7, there is no adverse effect of the start-start heating on the overcurrent devices on the safety related motors which would be actuated by safety injection signal and powered from safety related 6.9kV and 480V switchgears and 480V MCCs while operating at the lower boundary of the degraded voltage relay setting (6555V).

Non-Accident Safety Related Motors: Based on the analysis, operation of safety-related loads with the 6.9kV Shutdown Board voltage operating at the lower boundary of the degraded voltage relay 6555V, will not cause tripping of protective devices. Static loads (constant impedance) are not considered, since operation at lower voltage results in less current. Therefore, operation at the lower boundary of the degraded voltage relay dropout setting would not trip the motors.

TOL Evaluation: The generic evaluation of TOL's, in Attachment 7, showed that only motors having locked rotor current in excess of 850% are required to be evaluated further. A review of the WBN ETAP database, showed that four motors have a locked rotor current greater than 850% and start for an accident. An evaluation of those four loads shows that their TOL's are set at 115%. Therefore they would not be an issue, because it would increase their tolerance for tripping by an additional 15%. I

Page 26: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

CALCULATION SHEET CALC NUMBER: STUDY-EEB-WBN-12-001 REV. 001 SHEET 12

ORIGINATOR: D.S. Bhatia DATE: CHECKER: A.C. Bangalore DATE:

Fuse Evaluation for MCCs 120VAC CPT Circuits and 120VAC Distribution Panel Loads: Based on the evaluation in Attachment 7, fuses for all the 120V AC CPT Circuits and 120V AC Distribution Panel Loads are considered acceptable, the fuses will carry inrush current and will not blow or melt for at least 12 seconds during a start-start scenario.

The upper boundary limit for the time delay is 11.5 seconds, which is the maximum total time allowed for loss of voltage detection and emergency diesel generator start in the WBN safety analysis as documented in the FSAR. Based on the evaluation performed in Attachment 7, it has been determined that protective devices will not trip prior to 12 seconds for start-start operation of motors at a degraded voltage at which time period disconnection from offsite power and reconnection to the emergency diesel generators occurs.

7.3 Voltage Recovery Analysis

The voltage recovery analysis shows that in all cases the voltage on the 6.9kV shutdown boards 1A, 1B, 2A and 2B recovers above the DVR reset value (operational limit of 6681V) within 4 seconds.

Page 27: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

CALCULATION SHEET CALC NUMBER: STUDY-EEB-WBN-12-001 I REV. 002 I SHEET 13

ORIGINATOR: D.S. Bhatia DATE: \ CHECKER: A.C. Bangalore DATE:

8.0 Conclusions

8.1 This study determines that adequate starting voltage is available to each Class 1 E load when the 6.9kV Shutdown Boards are at the DVR dropout setpoint (analytical limit) for the following cases:

• During a design basis event (DBE): all Class 1 E loads that are automatically actuated for a safety injection signal (81-Phase A or 81-Phase B).

• When individually starting a motor (single motor start): all Class 1 E loads, even if not 81-actuated.

8.2 This study shows that for a degraded voltage condition, overcurrent protective devices associated with Class 1 E loads will not trip during 81-actuated motor starting and subsequent start on the emergency diesel generator.

8.3 The bounding voltage recovery analysis in Appendix 8 demonstrates that any possible voltage transient caused I by DBE motor starting, including drop to the LOV setpoint, will also result in successful recovery above DVR reset within 4 seconds.

8.4 The outcome of the analysis in Appendix H demonstrates the adequacy of the DVR protection scheme. I Therefore, using motor starting voltage as a basis for the relay setpoint shows no impact to the DVR setpoint and/or the plant response.

This page added by R 1

Page 28: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Appendix A

Introduction

STUDY-EEB-WBN-12-001 APPENDIX A

Page i

This appendix is a summary tabulation of the results for the various motor starting scenarios described in Section 6.0. The analyses in Appendix A were developed using the methodology and applicable inputs from References 2.2, and 2.3. Voltage values were obtained from the applicable ETAP files and output reports in this study. The key information and results are determined as follows:

A. Minimum Motor Starting Voltage

Minimum motor starting voltages are based on Attachments 1, 3 and 6 of this study. The minimum motor starting voltages used are:

6600 Volt Motors- 5280 Volts (80%)***

460 Volt Motors- 391 Volts (85%)**

460 Volt Air Compressors- 368 Volts (80%)**

89-10 MOVs -Valve thrust and torque design margin calculations/evaluations based on motor terminal voltage as documented in Attachments 4 and 5 of this study.

Non 89-10 MOVs- 368 Volts (80%)**

•• Percentages are based on 460 Volt rated motor voltage. For motors rated other than 480V, the same percentages are applicable. The minimum starting voltage may be different from the above voltage if it is based on manufacturer's data or test report as documented in Attachments 3 and 6 of this study.

*** 80% for all motors except for the ERCW Pump motor which requires 90% and the Auxiliary Feedwater Pump motor which requires 85%

B. Motor Starting Evaluation Results

Individual motor starting evaluation results are tabulated for all class 1 E safety-related motors and motor operated valves. As summarized in Section 6.1 of this study the following steps were performed:

1. Motor terminal voltage with Phase A loading is compared against the minimum motor starting requirements above. If acceptable voltage is obtained, no further action is required.

2. Motor terminal voltage with Phase B loading is compared against the minimum motor starting requirements above. If acceptable voltage is obtained, no further action is required.

3. Single motor start terminal voltage with Phase A loading or with Phase B loading provided the Phase B criteria in section 3.4 of this study applies is compared against the minimum motor starting requirements above. If acceptable voltage is obtained, no further action is required.

This page added by R1

Page 29: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

STUDY -EEB-WBN-12-001 APPENDIX A

Page ii

4. Individual circuit operating evaluations are performed based on when the motor is in service such as the ERCW Screen Wash Pump.

5. For 89-10 MOVs, See Section C below.

C. 89-10 Motor Operated Valve Evaluation Results

For Unit 1 and Unit 2 89-10 MOVs that did not meet the required valve motor starting voltage criteria, as a first step the calculated starting voltages for these MOVs were provided to Mechanical discipline (valve group) to evaluate if the revised voltages were acceptable. Based on the new thrust and torque calculations and calculated new design margins by mechanical valve group, the new available starting voltage for some MOVs was determined to be acceptable. However, some of the MOVs still did not meet either the required voltage or the minimum design margin criteria. Available voltage for these MOVs were re-evaluated further using the hammer-blow (HB) feature (see Section 3.5) which resulted in improved starting voltage available at the motor terminals. The available voltage with HB feature was again evaluated by the mechanical valve group and determined to be acceptable.

This page added by R1

Page 30: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc. STUDY-EEB-WBN-12-001

ETAP Bus ID/ Load Description Compt No

6.9KV Shutdown Board 1A-A Aux Feedwater PMP lA-A

12-10 AFW 1-MTR-3-118-A (600 HP) CNTMTSPRAY PMP 1A A

12-13 CSP 1-MTR-72-27-A (700 HP) RHR PUMP 1A-A

12-14 RHR 1-MTR-74-10-A (400 HP) SAFETY INJ PMP 1A-A

12-15 51 1-MTR-63-10-A (400 HPJ CNTFGL CHRG PMP 1A-A

12-18 CCP 1-MTR-62-108-A (600 HP)

ERCW PMPA-A 12-8 ERCW 0-MTR-67-28-A (800 HP)

ERCW PMPB-A 12-9 ERCW 0-MTR-67-32-A (800 HP)

480V Shutdown Board lAl-A Comp Cooling Sys Pump 1A-A

125-38 1-MTR-70-46-A (350hp)

Containment Air Rtn Fan 1A-A 126-lOC 1-MTR-30-38-A (100hp)

Reac Lwr Compt Clr Fan 1A-A 126-7C 1-MTR-30-74-A (50hp)

Elec Bd Rm AHU A-A 126-9( 0-MTR-31-308-A (SOhp)

Spent Fuel Pit Pump C-S 126-7A 0-MTR-78-35-S (100hp)

480V Shutdown Board 1A2-A

127-2( Control Rm .~~~A-A Compressor 0-MTR-31-80/2-A (250hp) Comp Cooling Sys Pump c-s

127-38 0-MTR-70-51-S (350hp)

Reac Lwr Compt Clr Fan 1C-A 128-70 1-MTR-30-77-A (60hp)

480V SD Bd Rm AHU A-A 128-90 0-MTR-31-45-A (75hp)

480V C&A Vent Board lAl-A Cant Bldg Emerg Press Fan A-A

203-126 0-MTR-31-6-A (1hp)

ERCW Scrn Wash Pump 1A-A 203-130 1-MTR-67-431-A (40hp)

Appendix A lA Boards

EVALUATION of CLASS 1E MOTOR STARTING VOLTAGES at DVR DROPOUT (Analytical limit) Comparison of Minimum Available Starting Voltage v/s Required Starting Voltage

Results Shown for DBE Actuation (51-A or SI-B) and Individual Motor Starts 51 Phase A 51 Phase B

DBE Actuation DBE Actuation Individual Motor Start Terminal Voltage(%) Terminal Voltage(%) Terminal Voltage(%)

6.6kV I 460V Base 51 Phase A 6.6kV I 460V Base 51 Phase B 6.6kV /460V Base

99.09 Starts 99.09 Starts 99.07

N/A Not Running 98.80 Starts 98.79

98.97 Starts 98.97 Starts 98.97

98.94 Starts 98.94 Starts 98.94

98.87 Starts 98.87 Starts 98.87

Starts (A-A Starts (A-A or B-Astart, or B-A start, but not both, but not both, other is not other is not

N/A running) N/A running) 96.46

Starts (A-A Starts (A-A or B-A start, or 8-A start, but not both, but not both, other is not other is not

93.26 running) 93.26 running) 93.12

83.52 (8s) Starts 84.13 (8s) Starts 83.56 ot Kunnrng ot Kunmng

Starts@ 9 Starts@ 9

N/A Min) N/A Min) 80.97 (SIB)

N/A Running N/A Trips 81.73

N/A Running N/A Running 83.82

N/A Running N/A Running 80.77

N/A Running N/A Running 90.08

81.61 (8s) Starts 82.07 (8s) Starts 80.61

N/A Running N/A Trips 81.25

N/A Running N/A Running 87.36

85.89 Starts 87.23 Starts 87.60

N/A N/A N/A N/A 73.63

This page revised and replaced by R2

Rev.O

Minimum Required Bases for Voltage Minimum Required

Terminal Voltage V(%) Voltage 6.6kV/460V

Base Reference

85 Att. 3

80 Att. 3

80 Att. 3

80 Att. 3

80 Att. 3

90 Att. 3

Same as ERCW Pmp A-A

90 (Att. 3) R 2

70 Att. 3

80 Att. 6

80 Att. 3

80 Att. 6

80 Att. 6

80 Att.1

70 Att. 3

80 Att. 3

85 Att. 1

85 Att.l

Att. 3 See Sec. 7.1 for

75 Justification

Page 1 of 25

Page 31: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc. STUDY-EEB-WBN-12-001

~:::~,~~/ load Description

203-2A (Coot Bldg Emerg Air CU f"O A-A

203-3C lcntmt Spray Pump lA-A Clr Fan (t-MTR-30-177-A i7.Shpl

203-40 ~G" 1A-A

203-68 lt-M;Rs;;';~A(3hp)

203-10A (Cntfg Chrg Pmp l~~AHR~ Clr F"O,

203-108 e<N "M OC W ~C~::;~ >A-A,

203-10C ("P' Cho" clr F',n1::-~·

203-llA r:~;;:~,:,:',:;,~u~ AN m-

1480V '>A-A 203-llC

203-110 (Cant Rm Ahu :-;

60 HP)

I'm vn '" "m II ""n m-203-12A lt-MTR-31-: l HPI

203-12( i480V Bd Rm >A A/C co.~: >A-A

203-12F1 e Air R•d5nH~)h Mon

203-2( eeN "M OC '" cc,:::~"

203-4A IBt<V Rm EI692'Ei~~;:;tA 15TH VITL BATT.RM.EX. FAN lBl·A

203-46 > (0.25 HP)

203-5A :~~~:HP) '4-A

203-5E '(20HP)

203-6A ::"~~;;;::.:7,";;"" "n li

203-6C '(SHP)

203-6Fl ILn<mt Bldg L:r~~~;,pt Air Mon

203-76 I:':;:",'~~~:~~~~;;~;~"'"' 203-8A

1:•:ty lnj Pmp ~A~:H~~ Clr loc

203-8B 1 Pen Rm El 737 ~r~:~;)lA-A

203-8C J4UOV xrmc "m ': ~;~;;n >A<-A

Appendix A lA Boards

c•RcuM lu,, of CLASS lE MOTOR: '•vc,Ruc; at DVR I Umltl Comparison of Minimum Available I ;. R:.q~i.re~: 1 ~Voltage

Results Shown for DBE ~' ,;c 1 (51-A or SI-B) and I I ·' "' ·" 51 Phase A 51 Phase B

DBE Actuation DBE Actuation Individual Motor'"" Terminal Voltage(%) ~ Terminal Voltage(%)

6.6kV I 460V Base 51 Phase A 6.6kV I 460V Base 51 Phase B 6.6kV /460V Base

86.39 (5t•rt> 87.73 Is""' 89.23

N/A (Rucoing 81.87 (St•rt> 83.18

87.24 Is""' 88.59 (Stort> 90.95

N/A I Ronning N/A I Running 76.43

84.47 (St•rt> 85.79 (St•"-' 86.76

86.68 I'""' 88.03 (st.rt,_ 90.30

85.43 (Stort> 86.76 (St•rt> 88.55

N/A N/A ~ ~ 92.18

N/A N/A N/A N/A 90.06

N/A N/A N/A N/A 88.19

N/A N/A N/A N/A 91.18

N/A N/A N/A N/A 90.76

N/A N/A N/A N/A 92.73

86.13 Is""' 87.47 (st.rt,_ 90.42

N/A N/A N/A N/A 88.45

N/A N/A N/A N/A 94.40

86.00 15t•rt> 87.34 Is""' 89.67

87.31 Is""' 88.66 ''""' 90.70

N/A N/A N/A N/A 92.71

N/A N/A N/A N/A 80.36

N/A N/A N/A N/A 92.68

N/A N/A N/A N/A 91.40

83.34 I'""' 84.63 jst.ct._ 85.19

88.04 lst•rts 89.41 is""' 92.28

N/A N/A N/A N/A 89.57

This page revised and replaced by R2

Rev.O

Minimum Required Bases for Vol,.ge Minimum Required

~V{%) Voltage

Base Reference

85 Att. 1

80 Att. 3

75 Att. 3

75 Att. 3

80 Att. 3

80 Att. 3

80 Att. 3

85 Att.l

~ ~

85 Att.1 R2

85 Att.1

85 ~1

85 Att. 1

80 Att. 3

~ ~

85 Att.1

80 Att. 3

_ll()_ ~

85 Att.1

80 Att. 3

85 Att. 1

85 Att. 1

80 Att. 3

80 ~

80 Att. 3

Page 2 of 25

Page 32: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc. STUDY-EEB-WBN-12-001

~:~~~,~~/ Load Description

'"m >A""""'"'. 203-80

203 8Fl I'~~;,'M:~~;. " L HP) RHR Pmp 1A·A Rm Clr Foo

203-9A

203-96 I Coot Rm A/C Ciro P"'pA·A

1:'~~:-~1 ""'"'' 203-9C 'Foo lAl·A

203-90 I Coot Rm Lot•ke Moo

203·9F1

203·4E IERCW Str 1A·: ~0~okw"h Vlv

203-6E CKLW ><r >A·: (0.33'H~; 203-70

RHR PMP 1A;~;-~~E~ FCV

203-7E I I480V 1A2-A

Nooe I I480V oacd 1A1·A

217-26 1 DG 1A·A Rm 8<~ ;:;h~~

~~.r;,~;.:~;~/1·A (1hpl " 217-30 jOG 1A·AAUX I CPMPA

217·4B I

217-40 l~'.."r~.:~:;;~\:~:;;1" 217·4E I1·MTR·304;9E~e:2~~)Rm """

217-3A jEM DG HX lA~ ~.::2SPLYVLV

217-6A l~';;,.;:,";:~;~~p) I480V ' oard 1A2·A

218-28 I"" " '"m "'~ ;;;h2;~

218·30 ~~':.,~R-:PAY IN"o""'M"

218-2A I DG 1A·A AUX I :PMPB

w.lA·A COO. ~':,':;)~mp' 218-20

jOg Bldg Co2 ; n Unit 218·5Fl

Appendix A lA Boards

EVALUATION of CLASS lE MOTOR STARTING VOLTAGES at DVR DROPOUT (Analytical Limit) Comparison of Minimum Available Starting Voltage v/s Required Starting Voltage

Results Shown for DBE Actuation (51-A or SI-B) and I I I 51 Phase A 51 Phase B

DBE Actuation DBE Actuation lodividual Moto~ Termioal Voltage (%1 Termioal Voltage (%1 Termioal Voltage

6.6kV /460V Base 51 Phase A 6.6kV /460V Base sr Phase B 6.6kV~Base

N/A N/A ~ N/A 91.34

N/A N/A N/A N/A 92.86

82.51 '""' 83.79 '""' 84.25

N/A N/A N/A N/A 89.07

N/A N/A ~- N/A 92.92

N/A N/A N/A N/A 89.49

N/A N/A N/A N/A 93.17

N/A N/A N/A N/A 82.02

N/A N/A ~ ~ 82.70

N/A N/A ~ -"LA_ 91.31

N/A N/A N/A N/A 86.27

91.83 lst.rn 92.48 Is""' 92.64

91.77 [Roodom 92.43 ~ 94.74

92.10 [Roodom 92.75 [Roodom 94.57

N/A N/A ~ ~ 92.14

91.95 N/A 92.60 N/A 94.29

82.50 N/A 83.08 N/A 85.85

91.88 Is""' 92.54 IRoooiog 95.01

92.40 Is""' 92.86 I""""'"" Is""' 92.94

91.63 [Roodom 92.08 ~ 93.94

N/A N/A N/A N/A 93.76

N/A N/A N/A N/A 93.46

N/A N/A N/A ~ 94.53

This page revised and replaced by R2

Rev. 0

Mioim~;,:;:uked Bases for Minimum Required

Termi~al Voltag~ Voltage

_llaSO_ Reference

80 Att. 3

85 Att. 1

80 Att. 3

85 Att.l

_se_ Att.1

80 Att. 3

_se_ Alt. 1

80 Att.1

80 Att.l Att.4t

Pass ~ R 2 Att. 4/

Pass ~

85 Att.1

85 Att.l

85 Att.1

85 Att.l

85 Att.l

'"' Att. 5

85 Att. 1

85 Att. 1

85 Att.l

85 Att.l

85 Att.1

85 Att. 1

Page 3 of 25

Page 33: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc. STUDY-EEB-WBN-12-001

ETAP Bus ID/ Load Description Compt No

480V RMOV Board 1A1-A lowerCNTMT lB CLRS ISLN VLV

235-SC 1-FCV-67-97-A {0.13hp) Seal Flow Ret lsln Vlv

235-7A 1-FCV-62-63-A (1.9hp) CHARGING FLOW ISLN VLV

235-76 1-FCV-62-90-A (1.9hp) Vol Cont Tank Outlet lsln Vlv

235-86 1-LCV-62-132-A (1.9hp) RWSTTo Charging Pmp Vlv Cant

235-9A 1-LCV-62-135-A (1.9hp) RCP Oil Ur Cntmt lso Vlv

235-90 1-FCV-70-100 (0.13hp)

SIS Pmp Inlet to CVCS Chrg Pmp 235-llA 1-FCV-63-7 (1.9hp)

SIS Boron lnj Tank Shutoff Vlv 235-110 1-FCV-63-26 (1.9hp)

Cntmt Sump To RHR Pmp A-A 235-128 1-FCV-63-72-A {13hp)

Cntmt Spray Hdr 1A lsln Vlv 235-13E 1-FCV-72-39-A (3.2hp)

RHR Pmp 1A-A Min FlowVIv 235-140 1-FCV-74-12-A (0.13hp)

LWR CNTMT 10 CLRS ISLN VLV 235-150 1-FCV-67-89-A (0.13hp)

Cntmt Standpipe lsln Vlv 235-178 1-FCV-26-240-A (0.67hp)

RCP Spray !sin Vlv 235-18E 1-FCV-26-243-A (0.67hp)

RWSTTo RHR Pmp Flow Cent Vlv 235-2E1 1-FCV-63-1-A (5.2HP)

RHR Sys lsln Vlv 235-58 1-FCV-74-1-A {2.6HP)

RCS Press Relief FCV 235-60 1-FCV-68-333-A (1.9HP)

SIS Pmp RecircTo RWST 235-108 1-FCV-63-3-A (0.7HP)

Appendix A lA Boards

EVALUATION of CLASS lE MOTOR STARTING VOLTAGES at DVR DROPOUT (Analytical Limit) Comparison of Minimum Available Starting Voltage v/s Required Starting Voltage

Results Shown for DBE Actuation (51-A or SI-B) and Individual Motor Starts 51 Phase A 51 Phase B

DBE Actuation DBE Actuation Individual Motor Start Terminal Voltage(%) Terminal Voltage(%) Terminal Voltage(%)

6.6kV I 460V Base 51 Phase A 6.6kV I 460V Base 51 Phase B 6.6kV /460V Base

N/A Not Running 81.71 Starts 85.11 Closes on Ph Closes on Ph

78.93 A (Starts) 80.15 B (Starts) 83.38 Closes on 51 Closes on 51

85.86 (Starts) 87.20 (Starts) 90.69 Closes on Sl Closes on 51

80.54 (Starts) 81.79 (Starts) 85.08 Opens on 51 Opens on 51

83.79 (Starts) 85.09 {Starts) 88.51 Closes

N/A Not Running 81.60 (Starts) 84.97

N/A Not Running N/A Not Running 88.21"' Opens on 51 Opens on 51

86.95 (Starts) 88.30 (Starts) 91.83 perace ppera e

about 20 about 20 minutes after minutes after

N/A Sl N/A Sl 86.95

Opens on Ph N/A Not Running 89.45 (5s) B (Starts) 91.80*

80.60 Random 81.86 Random 85.24 Closes

N/A Not Running 81.83 (Starts) 85.21

82.41 Close (Start) 83.69 Close (Start) 87.08

83.68 Close (Start) 84.98 Close (Start) 88.42

N/A N/A N/A N/A 92.09*

N/A N/A N/A N/A 90.74"'

N/A N/A N/A N/A 89.2"'

N/A N/A N/A N/A 90.70*

This page revised and replaced by R2

Rev.O

Minimum Required Bases for Voltage Minimum Required

Terminal Voltage V(%) Voltage 6.6kV/460V

Base Reference

Pass Att. 4

Pass Att. 4

Pass Att. 4

Pass Att. 4

Pass Att. 4

Pass Att. 4

Att. 4 I Acceptable Margin with voltage

based on Hammer Blow Pass feature"'

Pass Att. 4 R 2

Att. 4 I Acceptable Pass Margin

Att. 4 (5 sec after 51) -Time Delay added per

Pass DCN 52834

Pass Att. 4

Pass Att. 4

Pass Att. 4

Pass Att. 4

Pass Att. 4 Att. 4 I Acceptable Margin with voltage

based on Hammer Blow

Pass feature* Att. 4 I Acceptable Margin with voltage

based on Hammer Blow Pass feature"'

Pass Att. 4

Page 4 of 25

Page 34: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc. STUDY-EEB-WBN-12-001

ETAP Bus ID/ Load Description

Pmp lA-A Recirc FCV 235-lOF 1-FCV-72-34·A(0.13HP)

RHRH,ATo< 235-llB I

SIS Pmp lA-A Inlet Vlv 235 12A lj1.9HP)

235-120 SIS To RCS loop• ~·:,;cv

SIS Pmp lA-A Outlet FCV 23S-12E lj1.9HP)

235-13A ISIS Pmp Out RCS Lp 1&3 Hot Leg

235-13B lcntmt Sump To Spray Hdr lA FCV

'i3.2HP)

23S-14A 'I1.9H;)vl,

235-14E I""""''".~"~"-~~'

235-4E 1Aew emp A-A "~~~:;';'A-A

480VI 1A2-A

1:'~~:-~~-:65-A ISOhp) C>A·>

236-17E

236-2A I""' ' ""' "'I" VI'

; (0.25hp) "'I" VI'

236-3A ; (0.1

236-30 I""'" NO':~,.;;:~

236-40 I" G'" ":7'1::~:·;, VI'

l'wr I qa.13h:/•o VI' 236-70

236-7F I"'' co<m v< u: :; ',':"~•o 'I'

!lwr Co<m< lA Clr Sply l•lo VI' 236-86 qo.33hol

Appendix A lA Boards

I of CLASS~~ •••v:~.",~;~" ,,.u. i at DVR vnvrvv' I ' I Umlt) I I I I 1''6 · o6~ Required Starting Voltage

1-Bl and I SIPhm A o:: :~::,~on Individual Moto~

Terminal Voltage(%) Terminal Voltage(%) Terminal Voltage

6.6kV I 460V Base Sl Phase A 6.6kV I 460V Base 51 Phase B 6.6kV /460V Base

N/A N/A N/A N/A 89.39*

N/A N/A N/A N/A 87.56

N/A N/A N/A N/A 88.18""

N/A N/A N/A N/A 90.73

N/A N/A N/A N/A 88.48'

N/A N/A N/A N/A 89.28'

N/A N/A N/A N/A 90.33'

N/A N/A N/A N/A 87.74

N/A N/A N/A N/A 85.35

N/A IMeoo.l N/A IMeoo.l 89.80

N/A IRoooiog N/A IRcoolog 91.94

N/A IReodom N/A IReodom 84.14

N/A IReodom N/A IReodom 84.72

81.97 1~:~:0·10 82.77 1~:~!9-10 82.79

79.85 ~:~:''" 80.63 ~~,:~'''" 80.80

N/A 1"0'"

86.85 Not Rcooiog 84.74 list•rt•)

N/A Not Ruooiog 82.36 1c1o'" llst•rt•) 84.42

N/A No<Rooolog 85.38 ~;:~:, 87.49

This page revised and replaced by R2

Rev. 0

Minim~;,:;,quiced Bases for Minimum Required

Termlna~V(%) Voltage b.bK\

Base Reference

""'"' I Margin with voltage

based on Hammer Blow Pass feature"'

Pass ""· "~argin Att. ~I Acceptable

Margin with voltage based on Hammer Blow

Pass feature* Att. 4

Pass Margin Att. 4/ Margin with voltage

based on Hammer Blow Pass featuce'

Att. 4 I Acceptable Margin with voltage

based on Hammer Blow Pa .. feoture •

Att. 4 I Margin with voltage

based on Hammer Blow p,., fe,.ure • R 2

Att.4/. p,., Margin

Att.4/. Pa .. Margin

85 Att.l

85 Att. 1

Pass Att. 4

Pass Att. 4

Pass Att. 4

Pass Att. 4

Pass Att. 4

Pass. Att.1

Pass Att. 4

Page 5 of25

Page 35: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc. STUDY-EEB-WBN-12-001

E~::~~s~~/ Load Description

236-80 • 1(0.13h:;•o ""

jUpcCotm I ',,o,l• 236-8F

236-9A t lC Cl: :~1-y l•lo VI•

\ (0,

'" ,' '" 1 bum 236-96 '"'

236-90 ~~',~';';':,'5~~::h~;' "o "''

236-9F 1upc cotm " clc "'":"1

1•o 'I"

236-lOA I~";'CV-"-'' ?-A1

:;~;:::o vc. (UeCN<M'

'm. ,L,"'u"' 236-100

236-lOF UP CNTM '' \ (O.l3hp) •m

236 110 "L' 1 ocm Bac: ~-;~;:m l•o VIY

236-llE "c' '"'m "" \(0.13hp)

236-12a RCP Oil Clc Rt; ~:~;·;;;"' "' "" CWO H' LOO< lol< l•o "'

236-160 \ (0.33hp)

236-28 ERCW Hdc A'"; ~~~~SHP)

AFWP Turb Stm Sup Fm Stm Gen 1 236-2a .-FCV-1

236-2E '":~::~'" '"" "' 236-38 ERCW Hdc A'''; ~~~-~3HP)

I 'l•lo ~::.13HP) 236-SA

"' vH> 1A<;o ContVIv 236-5E I (0.33HP)

236-SF Cntmt Spray H~ ~~~~~c;) Vlv

Appendix A lA Boards

EVALUATION of CLASS lE MOTOR STARTING VOLTAGES at DVR DROPOUT (Analytical limit) 1 nf I Available Starting Voltage v/s Required Starting Voltage

Results Shown fnc DBE, •"• '(51-A oc SI-B) and I i 1 I Mot< -Starts

a:: :~;::t~on a:: :~::,~on lndi,idual Tecmioal Voltage(%) Tecmioal Voltage(%) Tecmioal Voltage(%)

6.6kV I 460V Base 51 Phase A 6.6kV /460V Base 51 Phase B 6.6kV /460V Base

N/A I Not Ruoniog 84.49 jciO'" lis""'i 86.59 (Cio"'

N/A I NotRuooiog 81.29 li'"'") 83.32

N/A I Not Ruooiog 85.07 jCio"'

87.17 e N/A I Not Ruooiog 85.41 87.53

~ N/A I Not Rucoiog 79.88 81.87

N/A NotRucoiog 81.29 83.32

N/A NotRuoniog 85.46 ~ 87.58

N/A NotRuooiog 81.33 (St,rt•J 83.36

N/A NotRuooiog 82.36 ~~::) 84.42

N/A Not Ruooiog 86.05 ~~:~:) 88.16

N/A NotRuooiog 83.85 ~~:~:) 85.94

N/A NotRuooiog 85.13 ~~:~:) 87.25

83.86 ~~:.::" 84.68 ~~0:,::" 86.78

N/A N/A N/A N/A 84.13

N/A N/A N/A N/A 92.47'

N/A N/A N/A N/A 89.46

N/A N/A N/A N/A 84.72

N/A N/A N/A N/A 86.73

N/A N/A N/A N/A 92.51'

N/A N/A N/A N/A 92.19*

This page revised and replaced by R2

Rev. 0

Minimum Requiced Bases for Voltage Minimum Required

I Tecmioal Voltage V(%) Voltage

Base JV Reference

Pass Att. 4

Pass Att. 1

Pass Att. 4

Pass Att.4 Att. I

Pass Macgin

Pass Att.l

PaS5 Att. 4

Pass Att. 1

Pass Att. 1

Pass Att. 4

Pass Att. 4 R2

Pass Att. 4

Pass Att. 4

Pass Att. 4

""·"' Margin with voltage

based on Hammer Blow Pass feature*

Pass Att. 4

Pass Att. 4

Pass Att. 1 Att. 4

Margin with voltage based on Hammer Blow

Pass feature* Att.4 Margin with voltage

based on Hammer Blow Pass feature*

Page 6 of 25

Page 36: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc. STUDY-EEB-WBN-12-001

ETAP Bus ID/ Load Description Compt No

AFWP Turb St Sply Frm St gen 4 236-6A 1-FCV-1-16-A (1HP)

RHR Sys lsln Bypass Vlv 236-60 1-FCV-74-S·A (1.6HP)

Cmpnt Clg Hx A Disch Cant Vlv 236-llA 1-FCV-67-146-A (0.3HP)

ss&con AirCpsr Sup Hdr Also V 236-128 O-FCV-67-20S-A (0.33HP)

CCS HX A ERCW BYPASS FCV 236-lSA 1-FCV-67-143-A (0.13HP)

RHR Hx A-A Outlet Vlv 236-16E 1-FCV-70-156-A {0.33HP)

Sample Hx Hdr Outlet Vlv 236-17A 1-FCV-70-183-A {0.13HP)

SFPCS Hx Sply Hdr lsln Vlv 236-178 0-FCV-70-197-A (0.3HP)

480V Reac Vent Board lA-A None I

Appendix A lA Boards

EVALUATION of CLASS 1E MOTOR STARTING VOLTAGES at DVR DROPOUT (Analytical Limit) Comparison of Minimum Available Starting Voltage v/s Required Starting Voltage

Results Shown for DBE Actuation (51-A or SI-B) and Individual Motor Starts 51 Phase A 51 Phase B

DBE Actuation DBE Actuation Individual Motor Start Terminal Voltage(%) Terminal Voltage{%) Terminal Voltage(%)

6.6kV I 460V Base 51 Phase A 6.6kV I 460V Base 51 Phase B 6.6kV /460V Base

N/A N/A N/A N/A 92.52*

N/A N/A N/A N/A 90.99*

N/A N/A N/A N/A 88.07

N/A N/A N/A N/A 87.86

N/A N/A N/A N/A 84.62

N/A N/A N/A N/A 88.86

N/A N/A N/A N/A 86.09

N/A N/A N/A N/A 89.74

This page revised and replaced by R2

Rev. 0

Minimum Required Bases for Voltage Minimum Required

Terminal Voltage V(%) Voltage 6.6kV/460V

Base Reference Att. 4 I Acceptable Margin with voltage

based on Hammer Blow Pass feature*

Att. 4 I Acceptable Margin with voltage

based on Hammer Blow Pass feature*

Att. 4 I Acceptable Pass Margin

Att. 4 I Acceptable Pass Margin

Pass Att.4 R 2 Att. 4 I Acceptable

Pass Margin

Pass Att. 4 Att. 41 Acceptable

Pass Margin

Page 7 of25

Page 37: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc. STUDY-EEB-WBN-12-001

ETAP Bus ID/ Compt No load Description

6.9kV Shutdown Board 18-B Aux Feedwater PMP lB-B

13-lOAFW 1-MTR-3-128-B (600 HP) CNTMT SPRAY PMP 18-8

13-13 CSP 1-MTR-72-10-B (700 HP) RHR PUMP 18-8

13-14 RHR 1-MTR-74-20-8 {400 HPJ SAFETY INJ PMP 18-8

13-15 51 1-MTR-63-15-8 {400 HPj CNTFGLCHRG PMP 18-8

13-18 CCP 1-MTR-62-104-B {600 HP)

ERCW PMP F-B 13-8 ERCW 0-MTR-67-51-B {800 HP)

ERCW PMP E-8 13-9 ERCW 0-MTR-67-47-8 {800 HP)

480V Shutdown Board lBl-B Camp Cooling Sys Pump 18-B

129-3C 1-MTR-70-38-B (350hp) Elec 8d Rm AHU C-8

130-7A 0-MTR-31-318-B (SOhp) Reac Lwr Compt Clr Fan 18-8

130-70 1-MTR-30-75-8 (60hp)

480V Shutdown Board 182-B

131-28 Control Rm~~~ 8-B Compressor 0-MTR-31-96/2-B (250hp)

SHDN BD RM CHLR PKG B-B Compressor 131-3C 0-MTR-31-49/2-B {240hp)

Reac Lwr Compt Clr Fan 10-B 132-70 1-MTR-30-78-B (60hp)

Spent Fuel Pit Pmp B-B 132-9A 0-MTR-78·9-B (100hp)

Cntmt Air Rtn Fan 18-B 132-9( 1-MTR-30-39-B (100hp)

480V SD Bd Rm AHU C-B 132-90 0-MTR-31-55-8 (75hp)

480V C&A Vent Board 181-B Cant Bldg Emerg Press Fan 8-B,

205-11A 0-MTR-31-5-8 (1hp)

ERCW Scrn Wash Pump 18-B 205-130 1-MTR-67-440-8 (40hp)

Appendix A 18 Boards

EVALUATION of CLASS lE MOTOR STARTING VOLTAGES at DVR DROPOUT (Analytical limit) Comparison of Minimum Available Starting Voltage v/s Required Starting Voltage

Results Shown for DBE Actuation (51-A or SI-B) and Individual Motor Starts 51 Phase A 51 Phase B

DBE Actuation DBE Actuation Individual Motor Start Terminal Voltage(%) Terminal Voltage(%) Terminal Voltage{%)

6.6kV I 460V Base 51 Phase A 6.6kV I 460V Base 51 Phase B 6.6kV I 460V Base

99.01 Starts 99.01 Starts 98.98

N/A Not Running 98.70 Start 98.69

99.12 Starts 99.12 Starts 99.12

98.85 Starts 98.85 Starts 98.84

98.78 Starts 98.78 Starts 98.78

Starts ( F-B or Starts { F-B or E-B start, but E·B sti!rt, but not both, not both, other is not other is not

N/A running) N/A running) 96.20

Starts ( E-B or Starts { E-B or F-8start, but F-Bstart, but not both, not both, other is not other is not

95.10 running) 95.10 running) 95.01

80.89 {8s) Starts 81.53 {8s) Starts 80.63

N/A Running N/A Running 90.28

N/A Running N/A Trips 82.24

N/A Running N/A Running 83.25

N/A Running N/A Running 87.92

N/A Running N/A Trips 82.33

N/A Running N/A Running 83.47 l"ot "unnmg at Kunnmg Starts@ 9 Starts@ 9

N/A Min) N/A Min) 80.27 {SIB)

N/A Running N/A Running 86.74

89.06 Starts 90.34 Starts 91.38

N/A N/A N/A N/A 73.47 (SIB)

This page revised and replaced by R2

Rev. 0

Minimum Required Bases for Voltage Minimum Required

Terminal Voltage V(%) Voltage 6.6kV I 460V

Base Reference

85 Att. 3

80 Att. 3

80 Att. 3

80 Att. 3

80 Att. 3

90 Att. 3

Same as ERCW Pmp F-B 90 (Att. 3) R 2

70 Att. 3

80 Att. 6

80 Att. 3

80 Att. 1

85 Att.1

80 Att. 3

80 Att. 6

80 Att. 6

85 Att.1

85 Att.1 Att. 3

See Sec. 7.1 for 75 Justification

Page 8 of 25

Page 38: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc. STUDY-EEB-WBN-12-001

ETAP Bus ID/ Compt No Load Description

Cont Bldg Em Air C[nup Fan B-B

205-2A 0-MTR-31-7-B (10hp) Cntmt Spray Pump 18-B Rm dr Fan

205-3( 1-MTR-30-178-B (7.Shp) Em erg Gas Trtmt Sys Fan B-B

205-40 0-MTR-6S-42-B (20hp) ERCW Str 18-8

205-66 1-MTR-67-10-8 (3hp)

RWST to Spray Hdr 1A Vlv 205-7E 1-FCV-72-22 (3.2hp)

ERCW Str 18-B Backwash Vlv 205-4E 1-FCV-67·10A-8 (0.33HP)

IORCW Str 18-8 Flush Vlv 205-6E 1-FCV-67-108-B (0.33HP)

RHR PMP 18-8 INLET FCV 205-70 1-FCV-74-21-B (5.2HP)

Pen Rm El 713 Clr Fan 18-8 205-2C 1-MTR-30-197-B (3HP)

Shdn Bd Rm Chlr CW Cir Pmp B-B 205-3A 0-MTR-31-49/1-B (25HP)

Pipe Chase Clr Fan 18-B 205-3B 1-MTR-30-202-8 (3HP)

Cntmt Bldg Upper Compt Air Mon 205-3F1 1-RE-90-112-B (3HP)

Battery Rm El 692 Exh Fan B-B 205-4A 0-MTR-31-29-B (l.SHP)

CNTMT PURGE AIR EXH MON 205-4F1 1-RE-90-131-B (0.75HP)

SFP Pmp8-8&TB 8st Pmp SpCirFan

205-5A 0-MTR-30-193-B (7.5HP) CCS & AFW Pumps Sp Clr Fan 8-B

205-5E 1-MTR-30-191-B (20HP)

SHUTDOWN 80 RM A PRESS FAN C-8 205-6A 0-MTR-31-67-B (3HP)

Traveling Scrn 18-8 205-6C 1-MTR-67-445-B (SHP)

125V Vtl Bat Rm I Ex Fan 1A2-B 205-76 1-MTR-31-288-B (0.33HP)

High Press Fire Pmp Str 8-B 205-7C 0-MTR-26-14-B (0.75HP)

Safety lnj Pmp 18-B Rm Clr Fan 205-8A 1-MTR-30-179-B (SHP)

Pen Rm El 692 Clr Fan 18-B 205-88 1-MTR-30-187-B (3HP)

Shtdn Xfmr Rm 18 Exh Fan 182-E!

205-8C 1-MTR-30-248F-B {3HP) Shtdn Xfmr Rm 18 Exh Fan 183-

205-80 1-MTR-30-2486-B (3HP)

Appendix A lB Boards

EVALUATION of CLASS lE MOTOR STARTING VOLTAGES at DVR DROPOUT (Analytical Limit)

Comparison of Minimum Available Starting Voltage v/s Required Starting Voltage Results Shown for DBE Actuation {51-A or SI-B) and Individual Motor Starts

51 Phase A 51 Phase B DBE Actuation DBE Actuation Individual Motor Start

Terminal Voltage(%) Terminal Voltage{%) Terminal Voltage{%)

6.6kV I 460V Base 51 Phase A 6.6kV /460V Base 51 Phase B 6.6kV I 460V Base

87.77 Starts 89.03 Starts 89.81

N/A Random 87.96 Starts 89.52

86.53 Starts 87.78 Starts 88.81

N/A Running N/A Running 76.88

Stopped (No Stopped (No

N/A auto Start) N/A auto Start) 88.14 (SIB)

N/A N/A N/A N/A 82.31

N/A N/A N/A N/A 82.32

N/A N/A N/A N/A 91.09

87.64 Starts 88.90 Starts 90.90

N/A N/A N/A N/A 90.61

86.47 Starts 87.72 Starts 89.20

N/A N/A N/A N/A 89.78

N/A N/A N/A N/A 87.82

N/A N/A N/A N/A 92.86

86.27 Starts 87.51 Starts 88.78

86.59 Starts 87.83 Starts 88.44

N/A N/A N/A N/A 91.61

N/A N/A N/A N/A 80.61 (SIB)

N/A N/A N/A N/A 91.17

N/A N/A N/A N/A 86.83

N/A N/A N/A N/A 86.06

N/A N/A N/A N/A 89.52

N/A N/A N/A N/A 89.94

N/A N/A N/A N/A 89.89

This page revised and replaced by R2

Rev. 0

Minimum Required Bases for Voltage Minimum Required

Terminal Voltage V{%) Voltage 6.6kV I 460V

Base Reference

85 Att. 1

80 Att. 3

80 Att. 3

75 Att. 3

Att. 4 I Acceptable

Pass Margin

80 Att.1

80 Att.1

Att. 4 I Acceptable

Pass Margin

80 Att. 3

85 Att. 1

80 Att. 3 R 2

85 Att. 1

85 Att. 1

85 Att.l

80 Att. 3

80 Att. 3

85 Att.1

80 Att.3

85 Att.1

85 Att. 1

80 Att.3

80 Att.3

80 Att.3

80 Att.3

Page 9 of 25

Page 39: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc. STUDY-EEB-WBN-12-001

ETAP Bus ID/ Compt No Load Description

Cont Rm A/COr Pmp B-B 205-SE 0-MTR-31-96/1-B {15HP)

205-SFl CONT RM ~/-C B-B CONTROL/O.PMP 0-MTR-31-96/3-8 (3HP) RHR Pmp 18-8 Rm Clr Fan

205-9A 1-MTR-30-176-B (SHP) 5th Viti Batt Rm El<h Fan 182-8

205-98 0-MTR-31-4968-8 (0.25HP) 480V Bd Rm 1A Pr Sup Fan 1A2-8

205-9C 1-MTR-31-463-8 (3HP) Shtdn Xfmr Rm 18 Exh Fan 181-B

205-90 1-MTR-30-248E-8 (3HP) Pen Rm El737 Clr Fan 18-B

205-9E l·MTR-30·195-B (3HP) Cntfg Chrg Pmp 18-B Rm Clr Fan

205-10A 1-MTR-30-182-B (SHP) 480V Sd Rm 18 Pr Sup Fan 182-B

205-108 1-MTR-31-477-B (3HP) 125V VTL SAT RM II EXFAN 182-B

205-lOC 1-MTR-31-286-8 (0.33HP) Cont Rm Intake Mon

205-10Fl 0-RE-90-206-B (0.75HP) 480V Sd Rm 18 A/C Ahu 18-B

205-llB 1-MTR-31-475-8 (20HP)

205-llC 480V 8d Rm 18 ~~-C Cond 18-B 1-MTR-31-289-B (20HP) Cont Rm Ahu 8-8

205-110 0-MTR-31-11-8 (60HP)

480V C&A Vent Board 182-B

None 480V Diesel AuK Board 181-B

DG 18-B RM EXH FAN 1-B 219-28 1-MTR-30-449-B (1Shp)

DG 18-B DAYTNK FO XFR PMP 1 219-30 1-MTR-18-55/2-B (1hp)

Dg 18-8 Aux LubeOil Circ Pmp A 219-48 1-MTR-82-AOPA2B (0.75hp)

DG 18-8 Muffler Rm El<h Fan 219-6A 1-MTR-30-465 (O.Shp)

Dg 18-B Lube Oil Circ Pmp 1 219-20 1-MTR-82-81-B (1HP)

DG 18-8 480V ELEC 80 RM EX FAN 219-4E 1-MTR-30-461-8 (2HP)

480V Diesel Aux Board 182-B DG 18-8 Rm El<h Fan 2-B

220-28 1-MTR-30-453-B (15hp) DG 18-B DAYTNK FO XFR PMP 2

220-30 1-MTR-18-54/2-B (1HP) Dg 18-B Aux LubeOil Circ Pmp 8

220-2A 1-MTR-82-AOPBlB (0.75HP)

Appendix A lB Boards

EVALUATION of CLASSlE MOTOR STARTING VOLTAGES at DVR DROPOUT (Analytical Limit)

Comparison of Minimum Available Starting Voltage v/s Required Starting Voltage Results Shown for DBE Actuation (51-A or SI-B) and Individual Motor Starts

51 Phase A 51 Phase B DBE Actuation DBE Actuation Individual Motor Start

Terminal Voltage(%) Terminal Voltage(%) Terminal Voltage{%)

6.6kV I 460V Base 51 Phase A 6.6kV I 460V Base 51 Phase B 6.6kV /460V Base

N/A N/A N/A N/A 85.40

N/A N/A N/A N/A 91.69

83.13 Starts 84.33 Starts 83.45

N/A N/A N/A N/A 93.69

N/A N/A N/A N/A 92.36

N/A N/A N/A N/A 87.59

87.45 Starts 88.71 Starts 89.63

84.65 Starts 85.87 Starts 85.42

N/A N/A N/A N/A 92.22

N/A N/A N/A N/A 91.01

N/A N/A N/A N/A 89.58

N/A N/A N/A N/A 89.39

N/A N/A N/A N/A 91.40

N/A N/A N/A N/A 87.63

90.80 Starts 91.41 Start 91.42

90.85 Random 91.46 Random 93.65

91.49 Starts 92.11 Starts 93.89

91.27 Starts 91.88 Starts 94.31

N/A N/A N/A N/A 93.79

N/A N/A N/A N/A 93.52

91.32 Starts 91.79 Starts 92.60

91.14 Starts 91.60 Starts 94.85

N/A N/A N/A N/A 94.33

This page revised and replaced by R2

Rev.O

Minimum Required Bases for Voltage Minimum Required

Terminal Voltage V(%) Voltage 6.6kV I 460V

Base Reference

85 Att.l

85 Att. 1

80 Att.3

85 Att.1

85 Att.1

80 Att.3

80 Att.3

80 Att.3

85 Att.1

85 Att.1

85 Att.1

85 Att.1

85 Att. 1

85 Att. 1 R 2

85 Att.1

85 Att. 1

85 Att. 1

85 Att. 1

85 Att. 1

85 Att. 1

85 Att.1

85 Att.l

85 Att.1

Page 10 of 25

Page 40: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc. STUDY-EEB-WBN-12-001

ETAP Bus 10/ Compt No Load Description

Dg 18-B Lube Oil Circ Pmp 2. 220-20 1-MTR-82-82-B (lHP)

480V RMOV Board 181-B SIS ACCUM TANK FLOW ISOL VLV

237-3F2 1-FCV-63-98-6 {6.6hp) Seal Flow Ret lsln Vlv

237-60 1-FCV-62-61-6 (L9hp) CHRG FLOW ISLN VLV

237-7A 1-FCV-62-91-B (1.9hp) Vol Cant Tank Outlet lsln Vlv

237-8A 1-LCV-62-133-B (1.9hp) RWST To Charging Pmp Vlv Cant

237-88 1-LCV-62-136-B (1.9hp)

SIS 1A-A DSH TO RWST SHTFF VLV 237-10A 1-FCV-63-4-B (0.7hp)

RWSTTo SIS Pump Flow Cont Vlv 237-108 1-FCV-63-5-B (1.9hp)

SIS PMP INLTTO CVCS CHRG PMP 237-llA 1-FCV-63-6-B (1.9hp)

SIS Boron lnj Tank Shutoff Vlv 237-llE 1-FCV-63-25-B (1.9hp)

SIS Pmp 16-B Inlet Vlv 237-128 1-FCV-63-48-B (1.9hp)

CNTMT SUMP TO RHR PMP B-B 237-120 1-FCV-63-73-B (13hp)

Cntmt Spray Hdr 16 lsln Vlv 237-14A 1-FCV-72-2-B (3.2hp)

RHR Pmp 18-B Min Flow Vlv 237-158 1-FCV-74-24-6 (0.13hp)

AFW Pmp 6-6 Lube Oil Pmp 6-B 237-170 1-MTR-3-1280-6 {0.2SHP)

RCS Press Relief Flow Cant Vlv 237-SE 1-FCV-68-332-B (1.9HP)

RHR To RCS H.L.1&3 Flow lso V 237-98 1-FCV-63-172-B (2.6HP)

Appendix A 18 Boards

EVALUATION of CLASS lE MOTOR STARTING VOLTAGES at DVR DROPOUT (Analytical Limit)

Comparison of Minimum Available Starting Voltage v/s Required Starting Voltage Results Shown for DBE Actuation (51-A or SI-B) and Individual Motor Starts

51 Phase A 51 Phase B DBE Actuation DBE Actuation Individual Motor Start

Terminal Voltage(%) Terminal Voltage(%) Terminal Voltage(%)

6.6kV I 460V Base 51 Phase A 6.6kV I 460V Base 51 Phase B 6.6kV I 460V Base

N/A N/A N/A N/A 94.71

Opens on 51 Opens on 51 91.28 (Starts) 92.56 (Starts) 94.86

Closes on Ph Closes on Ph 81.68 A (Starts) 82.82 B (Starts) 85.18

Closes on 51 Closes on 51 86.42 (Starts) 87.63 (Starts) 90.11

Closes on 51 Closes on 51 81.82 (Starts) 82.97 (Starts) 85.33

Opens on 51 Opens on 51 79.51 (Starts) 80.63 (Starts) 82.92

Not Running Not Running N/A or Starting N/A or Starting 84.83

Not Running Not Running N/A or Starting N/A or Starting 88.02*

Not Running Not Running N/A or Starting N/A or Starting 88.21 *

Opens on 51 Opens on 51 82.98 (Starts) 84.14 (Starts) 86.53

Not Running Not Running N/A or Starting N/A or Starting 90.23*

pens at pens at approx. 20 approx. 20

N/A min N/A min 88.20

Closed, Not Opens, N/A Running 92.98* (5s) Starting. 92.86*

Opens, Opens, 79.61 Starting. 80.73 Starting. 83.12

N/A N/A N/A N/A 89.64

N/A N/A N/A N/A 88.06*

N/A N/A N/A N/A 86.20

This page revised and replaced by R2

Rev.O

Minimum Required Bases for Voltage Minimum Required

Terminal Voltage V(%) Voltage 6.6kV I 460V

Base Reference

85 Att. 1

Pass Att.1

Pass Att. 4

Pass Att. 4

Pass Att. 4

Pass Att. 4

Att. 41 Pass Acceptable Margin

Att. 4 I Acceptable Margin with voltage

based on Hammer Blow Pass feature*

Att. 4 I Acceptable Margin with voltage

based on Hammer Blow Pass feature*

Pass Att. 4 R 2 Att. 4 I Acceptable Margin with voltage

based on Hammer Blow

Pass feature*

Att. 41 Pass Acceptable Margin

Att. 4 (5 sec after 51)-

Time Delay added per Pass DCN 52834

Pass Att. 4

85 Att. 1

Att. 4 I Acceptable Margin with voltage

based on Hammer Blow

Pass feature* Att. 4 I Acceptable

Pass Margin

Page 11 of 25

Page 41: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc. STUDY-EEB-WBN-12-001

'~:::~~~~/ load i I

:Cont Spray Pmp 18-B Recirc FCV

237-9F l)0.13HP) RHR H' B To SIS Pmp

237-118

237-12E >I> ""~ ~'P' ~:;;c•

SIS Pmp 18-B Outlet FCV 237-13A """

237-138 ISIS PMP OUT RCS LP 2&4 H. LEG

I ISIS.o- ' RWSTShtff VI•

237-130 I

237-140 IRHRSp~y "'; :,·;~;)VI•

237-14E lcntmt Sump To Spray Hdr 16 FCV

3 (3.2HP)

237-150 1:-~~;:~!':;;~,~;1 182-B

lc"' • "' ll•ln VI• 238-2A ""'

ll•ln VI• 238-3A ""'

'"'"''~ •~u .<. FW ISLN VLV 238-30

238-40 !St Goo No 4 FW l•ln VI•

'(39.4hp)

238-5C ,_; ~~:;;:~" "' RCPThcm Bac1~~n;hp)

I 238-60

238-GE 3 {0.13h1p:•u m

Lwc Cntmt » uc Ui.O 1.0 •I• 238-70 '(0.13hp)

UpCntm I 3{0.13hp) ' vo. 238-7F

ewe 1-R

1(o.13hp)'"" 238-80

Appendix A lB Boards

EVALUATION of CLASS 1E MOTOR STARTING VOLTAGES at DVR DROPOUT (Analytical Limit)

Comparison of Minimum Available Starting Voltage v/s Required Starting Voltage • •1+ l (51-A or SI-B) and Individual Motor Starts

o:: :~~::on n;: :'::,'e ~ Individual Terminal Voltage(%) Terminal I I

6.6kV I 460V Base 51 Phase A 6.1 ''· Base 51 Phase B 6.6kV

N/A IN/A N/A IN/A 90.o8•

N/A IN/A N/A IN/A 85.98

N/A N/A N/A IN/A 90.80

N/A N/A N/A N/A 88.75•

N/A N/A N/A N/A 91.36.

N/A N/A N/A N/A 84.86

N/A N/A N/A N/A 85.82

N/A N/A N/A N/A 89.68'

N/A N/A N/A N/A 83.17

N/A Random N/A R.ndom 83.60

N/A Random N/A R.ndom 83.71

80.64 (St•rt• 81.41 Start• 82.74

80.64 1~:~89-10 81.41 ~:~89-10

82.74 Llo."

N/A i 82,.Q!. IISt•rt•l 85.62

N/A i 84.16 ~~~:~:) 87.83

N/A i 82.33 (Cio"' ((St•rt•) 85.96

N/A 82.80 )Liom

86.22 i l;st.rt•l )Lio•es

N/A i 80.64 lis""'i 83.98

N/A (Not Ronning 83.11 1~;::1 86.55

This page revised and replaced by R2

Rev.O

Minimum Required Bases for Voltage Minimum Required

!(%) Termina~V(%) Voltage

6.6k~:,~

Att. 4 • I Time Delay added per

Pa" DCN 52834 Att. 4/

Pa" Morgln

p.,, Att. 4 Att. 4 I Acceptable

Margin with voltage based on Hammer Blow

Pa" feature • Att. 4/ Acceptable Margin with voltage

based on Hammer Blow Pa" feature •

Att. "~argln I Pa"

Att. "~argln I Pa"

Att. ", I Margin with voltage

based on Hammer Blow Pa" feature •

Att. '~argln I _Pa"

Pa" Att. 4

Pass Att: 4/

I' Margin R 2

Pass Att. 4

Pass Att. 4

_Pass Att. 4

Pass Att. 4

Pass Att. 4

Pass Att. 4

Pa" Att. 1

Pass Att. 4

Page 12 of 25

Page 42: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc. STUDY-EEB-WBN-12-001

'~::~~~~/ Load C ' Up Cotm Vt Ur lC Ui•h l•o Vlv

238·8F 1-FC\ l (0.13hpl t lA Clr Di•h l>n Vlv

238-9A t lC Cit"''" l>n vlv

238-98 '"' Up Cotm Vt Cit 1B Di>h l>n Vlv

238·90

238·9F U~Cotm Vt Clr 1B Su~ l~o Vlv

238-lOA 1·FCV·67-~;',';;,3;·;PI 238-108 t Wl ~~ :i~~;m VIV

238-lOD 'CN!M VI CC"~,~~:,"UVCV

238·10F IUP Cotm Vt Ur w '"~:~o Vlv

238-llD (CWK CNTMT lC C~~;:s;;N VLV

238-130 1 Kce uil ur Kth cotot '"" VIV

l (0.13hpl IRCP Oil Clr HdrCotmt l<lo Vlv

238·13F

238-180 1;'~~:-~~';'.~'s~;SH~" >a·o

238·28 l'"cw "'" '''""'"

238·2E lst Flow To AFWPTurb lsln Vlv

"''" Vlv 238-36

"• Hx lB Sup Cont Vlv 238 SE l (D.33HPI

Hx lB Disch Vlv 238-SF l (0.33HP)

238·118 1ST As & CAC s~;,~:,~:;'su vcv

238·170 jccs HX B ERC~ ~:r:,~~;cv

t Board lB·B None

Appendix A lB Boards

EVALUATION of CLASS lE MOTOR STARTING VOLTAGES at DVR DROPOUT (Analytical Limit)

Comparison of Minimum Available Starting Voltage v/s Required Starting Voltage "''-A . ''-"1 aod I

n:; ::":,~ o:: :~::t:oo Individual Motor Start TermiO<I Volt,ge (%) TermiO<I Volt,ge (%) Terminal Voltage(%)

6.6kV I 460V Base 51 Phase A 6.6kV I 460V Base 51 Phase B 6.1 ''· Base

N/A I Not""'"'"' 80.60 1~;:~:1 83.93

N/A I Not""'";"' 83.71 lc'"" llsr•rt•J 87.16

N/A I Not Rvhhiog IU"e'

83.83 lrsr•rr.l 87.28

N/A Not R"'oiog 81.49 1~;:~:1 84.87

N/A NotR"'"'"' 80.55 ICio.e• llstart•J 83.88

N/A NotRUhhihg 83.74 I''"" 11sr.rt•J 87.21

N/A Not Rvhhiog 84.33 ~;:~:) 87.82

N/A Not""'"'"' 80.13 ~;:~:) 83.46

N/A Not""'"'"' 80.92 ~;::) 84.29

N/A Not Ruooiog 81.77 ~;:~:1 85.16

N/A Not Ruooiog 83.44 ~;:~:I 86.91

N/A Not Ruooiog 83.64 ~;:~:I 87.10

N/A N/A N/A N/A 89.30

N/A N/A N/A N/A 83.62

N/A N/A N/A N/A 92.50*

N/A N/A N/A N/A 83.72

N/A N/A N/A N/A 92.o8•

N/A IN/A N/A N/A 91.73•

N/A IN/A N/A N/A 91.28•

N/A IN/A N/A N/A 84.33

This page revised and replaced by R2

Rev.O

MioimuO> Requi"d Bases for Voltage Minimum Required

Termina~V(%) Voltage b.bkV I

Base Reference

PaS> Att.1

Pass Att. 4

Pass Att 4

PaS> Att.l

PaS> Att.1

Pass Att. 4

Pass Att4

Pass Att.l

Pass Att. 1

PaS> Att. 4

Pass Att. 4 R 2

Pass Att.4

85 Att. 1

Pass Att. 4 ~"· ., I Margin with voltage

based on Hammer Blow Pass feature"'

Pa" Att. 4 Att. 4 I Acceptable

Margin with voltage based on Hammer Blow

Pass feature • Att. 4 I Acceptable

Margin with voltage based on Hammer Blow

Pass feoture •

p,, Att. 4

Pass Att. 4 ;:,:rgin

Page 13 of 25

Page 43: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc. STUDY-EEB-WBN-12-001

Load i i

Appendix A lB Boards

Comparison of Minimum Available Starting Voltage v/s Required Starting Voltage Results Shown for DBE Actuation I and Individual Motor Starts

51 DBE Actuation

6.6kV Base 51 Phase A 6.6kV is calculated taking credit for the hammer blow feature.

This page revised and replaced by R2

Rev. 0

Bases for

Reference

Page 14 of 25

Page 44: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc. STUDY-EEB-WBN-12-001

ETAP Bus ID/ Compt No Load Description

6.9KV Shutdown Board 2A-A 14-lOAFW AUX FEEDWTR PMP 2A-A

2-MTR-3-118-A (600hp)

14-13 CSP CNTMT SPRAY PMP 2A-A 2-MTR-72-27-A (700hp)

14-14 RHR RHR PMP 2A-A 2-MTR-74-10-A (400hp)

14-15 51 SAFETY INJ PMP 2A-A 2-MTR-63-10-A (400hp)

14-18 CCP CNTFGLCHRG PMP 2A-A 2-MTR-62-108-A (600hp)

14-8 ERCW

ERCWPMP D-A 0-MTR-67-40-A (800hp)

14-9 ERCW

ERCWPMPC-A 0-MTR-67-36-A (800hp)

480V Shutdown Board 2Al-A Cmpnt Clg Sys Pmp 2A-A

133-36 2-MTR-70-59-A (3SOhp)

Cntmt Air Rtn Fan 2A-A 134-10C 2-MTR-30-38-A (100hp)

Reac lwr Compt Clr Fan 2A-A 134-7( 2-MTR-30-74-A (60hp)

Elec Bd Rm AHU 8-A 134-9( 0-MTR-31-300-A (SOhp)

480V Shutdown Board 2A2-A Elec Bd Rm A/C A-A Cprsr

135-2( OMTR-31-128/2-A (250hp) SHDN BD RM CHLR PKG A-A CPRSR

135-3( 0-MTR-31-36/2-A (240hp)

REAC LWR COMPTCLR FAN 2C-A 136-70 2-MTR-30-77-A (60hp)

480V SHUTDOWN BD RM AHU B-A 136-80 0-MTR-31-44-A (75hp)

Spent Fuel Plt Pmp A-A 136-90 0-MTR-78-12-A (lOOhp)

480V Reactor Vent Board 2A-A None I

480V C&A Vent Board 2Al-A Cntfg Chrg Pmp 2A-A Rm Clr Fan

207-10A 2-MTR-30-183-A (SHP)

Appendix A 2A Boards

EVALUATION of CLASS 1E MOTOR STARTING VOLTAGES at DVR DROPOUT (Analytical limit) Comparison of Minimum Available Starting Voltage v/s Required Starting Voltage

Results Shown for DBE Actuation (51-A or SI-B) cmd Individual Motor Starts 51 Phase A 51 Phase B

DBE Actuation DBE Actuation Individual Motor Start Terminal Voltage(%) Terminal Voltage(%) Terminal Voltage(%)

6.6kV I 460V Base 51 Phase A 6.6kV I 460V Base 51 Phase B 6.6kV I 460V Base

98.98 Starts 98.98 Starts 98.94

N/A Not Running N/A Starts 98.60

99.08 Starts 99.08 Starts 99.08

98.83 Starts 98.83 Starts 98.83

98.98 Starts 98.98 Starts 98.97

Stcrts ( D-A Starts ( D-A orC-A start, orC-A start, but not both, but not both, other is not other is not

N/A running) N/A running) 96.59

Starts ( D-A Starts ( D-A orC-A start, orC-A start, but not both, but not both, other is not other is not

96.67 running) 96.67 running) 96.61

81.38 (8s) Starts 81.78 (8s) Starts 81.26 0 unnmg ot Kunnmg

Starts@ 9 Starts@ 9 N/A Min) N/A Min) 82.41 (SIB)

N/A Running N/A Trips 83.31

N/A Running N/A Running 83.48

N/A Running N/A Running 86.06

N/A Running N/A Running 91.51

N/A Running N/A Trips 81.11

N/A Running N/A Running 86.84

N/A Running N/A Running 82.29

83.44 Starts on 51 84.19 Starts on 51 86.10

This page revised and replaced by R2

Rev.O

Minimum Required Bases for Voltage Minimum Required

Terminal Voltage V(%) Voltage 6.6kV I 460V

Base Reference

85 Att. 3 Based on Unit 1 motor

80 data (Att. 3) Based on Unit 1 motor

80 data (Att. 3) Based on Unit 1 motor

80 data (Att. 3)

80 Att. 3

90 Att. 3

Same as ERCW Pmp D-A 90 (Att. 3) R 2

70 Att. 3

80 Att. 6 Based on Unit 1 motor

80 data (Att. 3)

80 Att. 6

85 Att.1

85 Att.1 Based on Unit 1 motor

80 data (Att. 3)

85 Att.1

80 Att. 6

Based on Unit 1 motor

80 data (Att. 3}

Page 15 of25

Page 45: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc. STUDY-EEB-WBN-12-001

ETAP Bus ID/ Compt No Load Description

Pen Rm El 713 Clr Fan 2A-A

207-108 2-MTR-30-196-A (3HP)

Pipe Chase Clr Fan 2A-A 207-10( 2-MTR-30-201-A (3HP)

ABGTS HUM HTR A-A 207-100 0-HTR-30-147-A (S0.008kW)

480V Bd Rm 28 Pr Sup Fan 281-A 207-llA 2-MTR-31-478-A (3HP)

480V Bd Rm 2A AtC A u 2A-A 207-llC 2-MTR-31-461-A (lOHP)

12SV Vital Bat Rm Ill Ex Fan 281-A 207-12A 2-MTR-31-285-A (D.33HP)

207-12( 4BOV Bd Rm 2A _A~~ Cond 2A-A 2-MTR-31-290-A (15HP) Cntmt Purge Air Radn Exh Mon

207-12F1 2-RE-90-130-A (0.75HP)

ERCW SCREEN WASH PUMP 2A-A 207-130 2-MTR-67-437-A {40HP)

AUX CONTROL AIR COMPRESSOR A-A

207-2A 0-MTR-32-60-A (20hp)

Pen Rm El 692 Clr Fen 2A-A 207-2C 2-MTR-30-186-A (3HP)

Snon Bd Rm Chlr CW Cir Pmp A-A 207-3A 0-MTR-31-36/1-A (25HP)

Cntm Spray Pmp 2A-A Rm Clr Fan 207-3( 2-MTR-30-177-A (7.SHP)

Aux BlDG Gas Trtmt Sys Fen A-A

207-30 2-MTR-30-146-A (SOhp) EG Trtmt Sys A-A Rm Clr Fan

207-4A 2-MTR-30-200-A {3HP) ERCW Str 2A-A Backwash Vlv

207-4E 2-FCV-67-9A-A (0.33HP)

AFW & BA XFR SPACE CLR FAN A-A

207-5E 2-MTR-30-184-A (lSHP)

ERCW Str 2A-A

207-68 2-MTR-67-9-A (3HP) Traveling Scm 2A-A

207-6C 2-MTR-67-439-A (SHP) 125VVIT BAT RM IV EXFAN 2Al-A

207-7B 2-MTR-31-287-A (0.33HP)

Safety lnj Pmp 2A-A Rm Clr Fan

207-8A 2-MTR-30-180-A (SHP) Pen Rm El 737 Clr Fan 2A-A

207-88 2-MTR-30-194-A (3HP) 480V Xfmr Rm 2A Exh Fan 2A2-A

207-8C 2-MTR-30-2SOF-A (3HP) 480V Xfmr Rm 2A Exh Fan 2A3-A

207-80 2-MTR-30-2SOG-A (3HP)

207-8F1 El BD RM ~~-C A-A CONTR~:--'O.PMP 0-MTR-31-128/3-A (3.11HP)

Appendix A ZA Boards

EVALUATION of CLASS lE MOTOR STARTING VOLTAGES at DVR DROPOUT (Analytical Limit) Comparison of Minimum Available Starting Voltage vjs Required Starting Voltage

Results Shown for DBE Actuation (51-A or SI-B) and Individual Motor Starts 51 Phase A 51 Phase B

DBE Actuation DBE Actuation Individual Motor Start Terminal Voltage(%) Terminal Voltage(%) Terminal Voltage(%)

6.6kV f 460V Base 51 Phase A 6.6kV I 460V Base 51 Phase B 6.6kV I 460V Base

87.11 Starts on Sl 87.89 Starts on 51 90.89

84.55 Starts on 51 85.31 Starts on 51 86.93 Starts on ABI Starts on ABI

N/A (from 51) N/A (from 51) N/A

N/A Running N/A Running 92.41

N/A Running N/A Running 88.57

N/A Running N/A Running 91.84

N/A Running N/A Running 91.02

N/A Running N/A Running 93.49

N/A Running N/A Running 76.53

N/A Not Running N/A Not Running 84.61

84.16 Starts on 51 84.92 Sterts on 51 86.97

N/A Running N/A Running 86.75

Starts on

N/A Running 84.21 Phese B 87.19 Starts On ABI

83.76 (from 51) 84.51 Starts On ABI 89.53 Starts on ABI Starts on ABI

86.11 (from 51) 86.89 {fromSI) 91.20

N/A N/A N/A N/A 83.90

Starts on ABI Starts on ABI 87.08 (fromSI) 87.87 (from 51) 90.96

N/A Running N/A Running 82.53

N/A N/A N/A N/A 81.49

N/A Running N/A Running 92.12

Starts on Starts on

84.46 (2s) Pump Start 80.70 Pump Start 81.70 Starts on ABI Starts on ABI

87.66 (fromSI) 88.45 (from 51) 92.45

N/A Running N/A Running 91.94

N/A Running N/A Running 91.94

N/A Running N/A Running 91.13

This page revised and replaced by R2

Rev.O

Minimum Required Bases for Voltage Minimum Required

Terminal Voltage V(%) Voltage 6.6kV I 460V

Base Reference Based on Unit 1 motor

80 data (Att. 3)

Based on Unit 1 motor

80 data (Att. 3)

Static Load N/A

85 Att.1

85 Att.1

85 Att.1

85 Att.l

85 Att. 1

Att. 3

75 Also See Sec. 7.1

80 Att. 1 Based on Unit 1 motor

80 data (Att. 3)

85 Att.1

Based on Unit 1 motor

80 data (Att. 3)

80 Att. 3 R 2

80 Att. 3

80 Att. 1

Based on Unit 1 motor

80 data (Att. 3)

75 Att. 3

80 Att. 3

85 Att.1

Based on Unit 1 motor

80 data (Att. 3)

80 Att. 3

80 Att. 3

80 Att. 3

85 Att. 1

Page 16 of25

Page 46: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc. STUDY-EEB-WBN-12-001

E~::~:s~~/ Load I

IRHR Pmp 2A-A Rm Clc Foo 207-9A

207-98 ~~:"'"" '" ooom "" c>e '::"'

)'""' "" ""'-" 207-9(

'""'-207-90

207-9Fl ;com om'"":',~~;""

I"" 1 2A FCV 207 7E '"

t BoaFd 2A2-A Nooe I

12A1-A

221-28 ,\:~~,~-·

221-20 '~:',~';; Pmp 1

"" DG ENG 'VLV 221-3A

> "" IV m "''" > 221-30

221-46 ,. :~~;,h:~'"

Rm Exh Fan 221-6A \ (O.Shp)

~G Rm 2A-A Pol V.ot P,o 221-40

I EXFAN 221-4E

j480V mml Au• Boacd 2A2-A

222-2A I"" <A-A AU" "A (O.;Shp)

I"" <A-A OM"" >AN <-A 222-28

222-20 ~~':.,~~~~:~::11~1~ emp'

222-30 jOG 2A-A DAYTNK >u.::" m•c 2

j480V RMOV Boacd 2A1-A

I 239-lOF 'io.13hp)

{SIS B01oo loj TaokShutoff VI' 239-110 \{1.9hp)

"' To RHR Pmp A-A 239-12B

Appendix A ZA Boards

I of CLASS lE MOTOR STARTING ; at DVR ··•: I limit)

Comparison of Minimum Available Starting I s_ R~q~~re~ _Seen u••~ vu•cc5., Results Shown for DBE Actuation (51-A or SI-B) and i 1 I Motor ;tarts

SIPhase A a:::~::,:., lodl'id"'l Motoc 5tort i >{%) Tecmioal Voltage{%) i >{%)

Base 51 Phase A 6.6kV I 460V Base 51 Phase B 6.6kV I 460V Base

84.23(2s) Is""' oo 5I 80.47 "'"' 00 5I 81.35

N/A {Rooolog N/A Rooolog 88.10

N/A {Roooiog N/A '"""'"' 92.31

N/A IRooolog N/A '"""'"' 91.49

N/A IRooolog N/A Rooolog 93.16

N/A N/A N/A N/A 86.30

92.28 !s""' 92.66 Is""' 93.44

N/A Rooolog N/A {Rooolog 94.72

82.55 start• 82.90 {stort. 85.97

91.55 Rood om 91.94 (.,odom 94.78

N/A Rooolog N/A IRooolog 94.97

~::~~~ ~;~rt 1~::;:,00 91.99 fcom 5I 92.37 {fcom 5I 94.90

N/A N/A N/A N/A 92.29

N/A N/A N/A N/A 95.16

N/A Rooolog N/A IRooolog 94.93

92.59 '""' 92.85 !'""' 93.29

N/A Rooolog N/A Rooolog 94.98

92.18 Raodom 92.44 Roodom 94.94

N/A ' N/A ~;;;;~~~:, 8 89.37

86.11 ~~''"'." 5I {(st<rt•) 86.83 ~::~:t" 5I 92.06

I~:::,. afte> <bout20

N/A {51 N/A 5I 91.21

This page revised and replaced by R2

Rev. 0

Mioimum Requiced Bases for Volta go Minimum Required

~.6k~:,~V{%) Voltage

80 8asedd:;, ~;~13~otoc

85 Att.1

85 Att.1

85 Att.1

85 Att. 1

Pass Att. 5 ~aFgio

85 Att. 3

85 Att.1

Pas• Att. 5

85 Att.l

85 Att.l

85 Att. 3

85 Att. 3

85 Att. 1 R 2

85 Att.l

85 Att. 3

85 Att. 1

85 Att. 1

Pass Att. 5

'"' Att. I I

'"' Att. 5/ > Macg;ol

Page 17 of25

Page 47: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc. STUDY-EEB-WBN-12-001

ETAP Bus ID/ Compt No Load Description

Cntmt Spray Hdr 2A lsln Vlv 239-13E 2-FCV-72-39-A {3.2hp)

RHR Pmp 2A-A Min Flow Vlv 239-140 2-FCV-74-12-A (0.13hp)

LWR CNTMT 2A CLRS SUP ISLN VLV 239-150 2-FCV-67-89-A (0.33hp)

Cntmt Standpipe I sin Vlv 239-178 2-FCV-26-240-A (0.67hp)

RCP Spray lsln Vlv 239-18E 2-FCV-26-243-A (0.67hp)

Seal Flow Ret lsln Vlv 239-7A 2-FCV-62-63-A (1.9hp)

CHRG FLOW ISLN VLV 239-78 2-FCV-62-90-A (1.9hp)

Vo Cant TanK Outlet I sin Vlv 239-88 2-LCV-62-132-A (1.9hp)

LWR CNTMT 2C CLRS SUP ISLN VLV 239-5C 2-FCV-67-97-A (0.33hp)

RWST TO CHARGING PMPS CONT 239-9A 2-LCV-62-135-A (1.9hp)

239-90 2-FCV-70-lOOA (0,33hp)

SIS PMPS RECIRCTO RWST

239-108 2-FCV-63-3-A (0.7HP)

'"' " rans er mp "LA-A

239-28 2-MTR-62-230-A (lSHP)

SIS Pmp Inlet To CVCS Chrg Pmp 239-llA 2-FCV-63-7-A (1.9HP)

RHR H:< 2A Bypass Vlv

239-14E 2-FCV-74-33-A (1.9HP)

239-2( 2~~~;~;0~~;;_~ ~~~~;;VI~ Ll'-

RHR Hx A To eves Chrgr Pmp 239-118 2-FCV-63-8-A (1.9HP)

RWST To RHR Pmp Flow Cant Vlv 239-2E1 2-FCV-63-1-A (S.2HP)

.nng1 t..nrg mp LA-A Au~

239-3E 2-MTR-62-AOP-A (2HP)

SIS Pmp 2A-A Inlet Vlv

239-12A 2-FCV-63-47-A (1.9HP) mp A-A LUOe Ull mpA-A

239-4E 2-MTR-3-1180-A (0.2SHP)

SIS To RCS Loops 2&3 FCV

239-120 2-FCV-63-93-A (1.6HP)

SIS Pmp 2A-A Outlet FCV 239-12E 2-FCV-63-152-A (1.9HP)

SIS Pmp Out RCS lp 1&3 Hot leg

239-13A 2-FCV-63-1S6-A (1.9HP)

Appendix A 2A Boards

EVALUATION of CLASS 1E MOTOR STARTING VOLTAGES at DVR DROPOUT (Analytical Limit) Comparison of Minimum Available Starting Voltage v/s Required Starting Voltage

Results Shown for DBE Actuation ($1-A or SI-B) and Individual Motor Starts 51 Phase A 51 Phase B

DBE Actuation DBE Actuation Individual Motor Start Terminal Voltage(%) Terminal Voltage{%) Terminal Voltage{%)

6.6kV I 460V Base Sf Phase A 6.6kV I 460V Base 51 Phase B 6.6kV I 460V Base

Opens on Ph

N/A Not Running 83.13 8 (Starts) 87.97

83.91 Random 84.61 Random 89.71 Closes

N/A Not Running 87.91 (Starts) 93.22

82.10 Close (Starts) 82.78 Close (Starts) 87.74

81.17 Close (Starts) 81.85 Close (Starts) 86.47

Closes on Ph Closes on Ph 77.85 A (Starts) 78.50 A (Starts) 83.16

85.16 Closes on 51 85.86 Closes on 51 90.94

80.78 Closes on 51 81.45 Closes on 51 86.28 Closes

N/A Not Running 87.71 (Starts) 93.00

Opens on 51 Opens on 51 84.82 (Stcrts) 85.52 {Starts) 90.58

Closes on N/A Not Running 87.19 Phase B 92.46

N/A N/A N/A N/A 89.43

N/A N/A N/A N/A 92.42

N/A N/A N/A N/A 81.98

N/A N/A N/A N/A 84.67

N/A N/A N/A N/A 86.94

N/A N/A N/A N/A 89.05

N/A N/A N/A N/A 91.80

N/A N/A N/A N/A 85.44

N/A N/A N/A N/A 79.72

N/A N/A N/A N/A 88.24

N/A N/A N/A N/A 93.00

N/A N/A N/A N/A 85.61

N/A N/A N/A N/A 85.58

This page revised and replaced by R2

Rev. 0

Minimum Required Bases for Voltage Minimum Required

Terminal Voltage V{%) Voltage 6.6kV I 460V

Base Reference

Pass Att. 5/ Acceptable Margin

Pass Att. 5

Pass Att. 5

Pass Att. 5

Pass Att. 5 Att. 5/ Acceptable

Pass Margin

Att. 5/ Acceptable

Pass Margin

Pass Att. 5

Pass Att. 5

Att. 5/ Acceptable Pass Margin

Pass Att. 5 Att. 5/ Acceptable

Pass Margin

85 Att.1 Att. 5/ Acceptable

Pass Margin

Att. 5/ Acceptable

Pass Margin

85 Att. 1 R 2 Att. 5/ Acceptable

Pass Margin

Pass Att. 5/ Acceptable Margin

85 Att.1 Att. 5/ Acceptable

Pass Margin

85 Att.1 Att. 5/ Acceptable

Pass Margin

Att. 5/ Acceptable

Pass Margin

Att. 5/ Acceptable

Pass Margin

Page 18 of25

Page 48: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc. STUDY-EEB-WBN-12-001

HAP Bus ID/ Compt No Load Description

RCS Press Relief FCV 239-60 2-FCV-68-333-A (L9HP)

CntmtSump To Spray Hdr 2A FCV 239-138 2-FCV-72-44-A (3.2HP)

RHR Spray Hdr 2A lsln Vlv 239-14A 2-FCV-72-40-A (1.9HP)

480V RMOV Board 2A2-A Lwr Cntm 2D Clr Dish lso Vlv

240-lOA 2-FCV-67-112-A (0.33hp) Up Cntm Vt Clr 2C Dish JsoVIv

240-100 2-FCV-67-296-A (0.13hp) Up Cntm Vt Clr 2D Dish ISO Vlv

240-lOF 2-FCV-67-142-A (0.13hp) RCP Thrm Barr Rtn Cntm I so Vlv

240-110 2-FCV-70-90-A (0.7hp) RCP Thrm Barr Cntmt I sin Vlv

240-llE 2-FCV-70-133-A (0.13hp) RCP Oil Clr Rtn Cntmt lsln Vlv

240-120 2-FCV-70-92-A (0.13hp) E~cs Ltdn Hx cont I nit I so V v

240-160 2-FCV-70-143-A (0.33hp)

St Gen No 1 FW lsln Vlv 240-30 2-FCV-3-33-A {39.4hp)

St Gen No 3 FW Jsln Vlv 240-40 2-FCV-3-87-A (39.4hp)

lwr Cntm 2A Clr Dish I so Vlv 240-70 2-FCV-67-87-A (0.13hp)

Up Cntm Vt Clr 2A Sup !so Vlv 240-7F 2-FCV-67-130-A {0.13hp)

Lwr Cntmt 2A Clr Sply lsln Vlv 240-88 2-FCV-67-107-A (0.33hp)

Lwr Cntm 2C Clr Dish lso Vlv 240-80 2-FCV-67-95-A (0.13hp)

Up Cntm Vt Clr 2C Sup lso Vlv 240-8F 2-FCV-67-133-A {0.13hp)

Lwr Cntmt 2C Clr Sply lsln Vlv 240-9A 2-FCV-67-99-A (0.33hp)

Lwr Cntm 28 Clr Dish lso V v 240-9B 2-FCV-67-104-A (0.33hp)

Up Cntm Vt Clr 2A Dish ISO Vlv 240-90 2-FCV-67-29S-A (0.13hp)

Up Cntm Vt C r 28 Dish lso Vlv 240-9F 2-FCV-67-139-A (0.13hp)

Cmpnt Clg Hx A Disch Cant Vlv 240-llA 2-FCV-67-146-A (0.3HP)

CCS HX B ERCW BYPASS FCV 240-15A 2-FCV-67-143 A (0.13HP)

RHR Hx A-A Outlet Vlv 240-16E 2-FCV-70-156-A (0.33HP)

Appendix A 2A Boards

EVALUATION of CLASS lE MOTOR STARTING VOLTAGES at DVR DROPOUT (Analytical limit) Comparison of Minimum Available Starting Voltage v/s Required Starting Voltage

Results Shown for DBE Actuation (51-A or SI-B) and Individual Motor Starts 51 Phase A 51 Phase B

DBE Actuation DBE Actuation Individual Motor Start Terminal Voltage(%) Terminal Voltage(%) Terminal Voltage(%)

6.6kV 1 460V Base 51 Phase A 6.6kV I 460V Base 51 Phase B 6.6kV I 460V Base

N/A N/A N/A N/A 86.46

N/A N/A N/A N/A 80.63

N/A N/A N/A N/A 88.31

Closes N/A Not Running 89.57 (Starts) 92.14

Closes N/A Not Running 88.24 (Starts) 90.77

Closes N/A Not Running 89.61 (Starts) 92.18

C oses N/A Not Running 87.25 (Starts) 89.73

Closes N/A Not Running 87.62 (Starts) 90.14

Closes N/A Not Running 88.59 (Starts) 91.77

Closes on Closes on 88.49 Phase A 88.93 Phase A 91.48

Use 89-10 Use 89-10 85.33 start 85.75 start 86.38

Use 89-10 Use 89-10 87.00 start 87.43 '~rt 88.05

Closes N/A Not Running 89.73 (Starts) 92.31

Closes

N/A Not Running 89.63 (Starts) 92.20 Closes

N/A Not Running 89.57 (Stcrts) 92.14 C oses

N/A Not Running 89.45 (Starts) 92.02 Closes

N/A Not Running 89.59 {Starts) 92.16 Closes

N/A Not Running 89.40 (Starts) 91.97 Closes

N/A Not Running 89.40 (Starts) 91.97 Closes

N/A Not Running 88.06 (Starts) 90.59 Closes

N/A Not Running 89.61 (Starts) 92.18

N/A N/A N/A N/A 89.64

N/A N/A N/A N/A 92.44

N/A N/A N/A N/A 89.63

This page revised and replaced by R2

Rev.O

Minimum Required Bases for Voltage Minimum Required

Terminal Voltage V(%) Voltage 6.6kV I 460V

Base Reference Att. 5/ Acceptable

Pass Margin Att. 5 I Acceptable

Pass Margin

Att. 5 I Acceptable

Pass Margin

Pass Att. 5

Pass Att. 5

Pass Att. 5

Pass Att. 5

Pass Att. 5

Pass Att. 5

Pass Att. 5

Pass Att. 5

Pass Att. 5

Pass Att. 5

Pass Att. 5

Pass Att. 5

Pass Att. 5 R 2

Pass Att. 5

Pass Att. 5

Pass Att. 5

Pass Att. 5

Pass Att. 5 Att. 5 I Acceptable

Pass Margin

Att. 5 I Acceptable Pass Margin

Att. 5 I Acceptable

Pass Margin

Page 19 of25

Page 49: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc. STUDY-EEB-WBN-12-001

ETAP Bus 10/ Compt No load Description

Sample Hx Hdr Outlet Vlv 240-17A 2-FCV-70-183-A (0.13HP)

240-17E 480V BD RM 2A ~/-C CPRSR 2A-A 2-MTR-31-465-A (SOHP) ERCW Hdr A lsln Vlv

240-2A 2-FCV-3-116A-A (0.25HP) ERCW Hdr A lsln Vlv

240-28 2-FCV-3-1168-A (0.25HP) AFWP Turb Stm Sup Fm Stm Gen 1

240-20 2-FCV-1-15-A (1HP) ERCW Hdr A lsln Vlv

240-3A 2-FCV-3-136A-A (0.33HP) ERCW Hdr A lsln Vlv

240-38 2-FCV-3-1368-A {0.33HP) Semple Hx lsln Vlv

240-5A 2-FCV-70-215-A (0.13HP) Cntmt Spray Hx 2A Sup Cant Vlv

240-5E 2-FCV-67-125-A (0.33HP) cntmt Spray Hx 2A Disch Vlv

240-5F 2-FCV-67-126-A (0.33HP) AFWP Turb Stm Sup Fm Stm Gen 4

240-6A 2-FCV-1-16-A (lHP)

Appendix A 2A Boards

EVALUATION of CLASS lE MOTOR STARTING VOLTAGES at DVR DROPOUT (Analytical Limit) Comparison of Minimum Available Starting Voltage v/s Required Starting Voltage

Results Shown for DBE Actuation (51-A or SI-B) and Individual Motor Starts 51 Phase A 51 Phase B

DBE Actuation DBE Actuation Individual Motor Start Terminal Voltage(%) Terminal Voltage(%) Terminal Voltage{%)

6.6kV I 460V Base 51 Phase A 6.6kV I 460V Base 51 Phase B 6.6kV I 460V Base

N/A N/A N/A N/A 90.15

N/A N/A N/A N/A 91.53

N/A N/A N/A N/A 91.06

N/A N/A N/A N/A 90.94

N/A N/A N/A N/A 91.38

N/A N/A N/A N/A 90.06

N/A N/A N/A N/A 90.07

N/A N/A N/A N/A 90.31

N/A N/A N/A N/A 91.49

N/A N/A N/A N/A 91.49

N/A N/A N/A N/A 91.37

*This MDV terminal voltage is calculated taking credit for the hammer blow feature.

This page revised and replaced by R2

Rev. 0

Minimum Required Bases for Voltage Minimum Required

Terminal Voltage V(%) Voltage 6.6kV I 460V

Base Reference Att. 5 I Acceptable

Pass Margin

85 Att.l Att. 5/ Acceptable

Pass Margin Att. 5/ Acceptable

Pass Margin Att. 5/ Acceptable

Pass Margin Att. 5/ Acceptable

Pass Margin Att. 5/ Acceptable

Pass Margin Att. 5/ Acceptable

Pass Margin R 2 Att. 5/ Acceptable

Pass Margin Att. 5/ Acceptable

Pass Margin Att. 5/ Acceptable

Pass Margin

Page 20 of25

Page 50: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc. STUDY-EEB-WBN-12-001

ETAP Bus 10/ Compt No load Description

6.9kV Shutdown Board 2B-B AuK Feedwater PMP 28-B

15-lOAFW 2-MTR-3-128-B (600 HP)

CNTMT SPRAY PMP 28-B 15-13 CSP 2-MTR-72-10-B (700 HP)

RHR PUMP 28-B 15-14 RHR 2-MTR-74-20-8 (400 HP)

SAFETY INJ PMP 28-8 15-15 51 2-MTR-63-1S-8 {400 HP)

CNTFGL CHRG PMP 28-B 15-18CCP 2-MTR-62-104-B (600 HP)

ERCW PMP H-8 15-8 ERCW 0-MTR-67-59-8 (BOO HP)

ERCW PMPG-B 15-9 ERCW O-MTR-67-5S-B (BOO HP)

480V Shutdown Board 281-B Cmpnt Clg Sys Pmp 28-B

137-3C 2-MTR-70-33-8 (3SO hp) Elec Bd Rm AHU D-B

13B-7A 0-MTR-31-31D-B (SO hp) Spent Fuel Pit Pmp C-S ALT FDR

138-78 O-MTR-78-3S-S (100 hp)

Reac LwrCompt Clr Fan 28-B 138-70 2-MTR-30-7S-B (60 hp)

480V Shutdown Board 2B2-A

139-2B Elect Bd rm ~~C B-8 Cprsr 0-MTR-31-129/2-8 (2SO hp) Cmpnt Clg Sys Pmp C-5

139-20 O-MTR-70-51-S{350 hp)

Reac Lwr Compt Clr Fan 2D-B 140-7D 2-MTR-30-78-8 (60 hpj

Cntmt Air Rtn Fan 28-B 140-9C 2-MTR-30-39-8 {100 hp)

480V Shutdown Bd Rm AHU D-B 140-90 0-MTR-31-61-B (75 hp}

480V CA Vent Board 2B1-B

AuK Cant AirCprsr B-B 209-2A 0-MTR-32-86-B {20 hp)

Pen Rm El713 Clr Fan 28-B 209-2C 2-MTR-30-197-B (3 hp)

Pipe Chase Clr Fan 28-8 209-38 2-MTR-30-202-8 (3 hp)

Cntm Spray Pmp 28-B Rm Clr Fan 209-3C 2-MTR-30-178-8 (7.S hp)

Appendix A 2B Boards

EVALUATION of CLASS lE MOTOR STARTING VOLTAGES at DVR DROPOUT (Analytical limit) Comparison of Minimum Available Starting Voltage v/s Required Starting Voltage

Results Shown for DBE Actuation {51-A or SI-B) and Individual Motor Starts 51 Phase A Sl Phase B

DBE Actuation DBE Actuation Individual Motor Start Terminal Voltage(%) Terminal Voltage(%) Terminal Volta e (%)

6.6kV I 460V Base 51 Phase A 6.6kV I 460V Base 51 Phase B 6.6kV /460V Base

99.11 Starts 99.11 Starts 99.09

N/A Not Running 98.93 Starts 98.93

99.03 Starts 99.03 Starts 99.03

99.05 Starts 99.05 Starts 99.05

99.00 Starts 99.00 Starts 98.99

Starts ( H-B Starts ( H-8 erG orG-B start, 8 start, but not but not both, both, other is other is not

N/A not running) N/A running) 96.05

Starts ( H-B Starts ( H-B or G or G-8 start, B start, but not but not both, both, other is other is not

96.72 not running) 96.72 running) 6.66

81.40 (Bs) Starts 81.79 (8s) Starts 81.19

N/A Running N/A Running 85.53

N/A Running N/A Running 85.82

N/A Running N/A Trips 83.93

N/A Running N/A Running 86.53

N/A Running N/A Running 69.99 (SIB)

N/A Running N/A Trips 86.42 ot Running

Not Running Starts @9

N/A Starts@ 9 Min N/A Min 84.87

N/A Running N/A Running 88.06

N/A Not Running N/A Not Running 84.56

87.20 Starts on ABI 88.00 Starts on ABI 91.06

87.25 Starts on A81 88.06 Starts on ABI 91.11

Starts on 83.48 Random 84.25 Pump Start 86.17

This page revised and replaced by R2

Rev.O

Bases for Minimum Required Voltage Minimum Required

Terminal Voltage V(%) Voltage 6.6kV I 460V

Base Reference

85 Att. 3

Based on Unit 1 motor

80 data {Att. 3)

Based on Unit 1 motor 80 data (Att. 3)

Based on Unit 1 motor

80 data {Att. 3)

Based on Unit 1 motor

80 data (Att. 3)

90 Att. 3

Same as ERCW Pmp H-B

90 (Att. 3)

70 Att. 3 R 2

80 Att. 6

80 Att. 6

Based on Unit 1 motor

80 data {Att. 3)

85 Att.1

70 Att.3

Based on Unit 1 motor

80 data (Att. 3)

80 Att. 6

85 Att. 1

80 Att.1

Based on Unit 1 motor

80 data (Att. 3)

Based on Unit 1 motor

80 data (Att. 3)

Based on Unit 1 motor

80 data (Att. 3)

Page 21 of 25

Page 51: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc. STUDY-EEB-WBN-12-001

ETAP Bus ID/ Compt No Load Description

Aux Bldg GasTrtmt Sys Fan B-B 209-30 2-MTR-30-157-B (50 hp)

BATTERY RM EL 692 EXH FAN C-B 209-4A 0-MTR-31-27-8{2 hpj

AFWP&BA XFR PMP SP CLR FAN B-B 209-5E 2-MTR-30-185-B (15 hp)

ERCW Str 2B-B 209-6B 2-MTR-67-10-B (3 hpj

Traveling Scm 28-8 209-6C 2-MTR-67-10-B (S hpj

12SV Vit Bat Rm IV Ex Fan 2A2-B 209-78 2-MTR-31-288-B (0.33 hpj

RHR Pmp 28-B Inlet FCV 209-70 2-FCV-74-21-8 (5.2 hpj

Safety lnj Pmp 2B-B Rm Clr Fan 209-8A 2-MTR-30-179-B (S hp)

Pen Rm El 692 Clr Fan 28-B 209-88 2-MTR-30-187-B (3 hp)

Shtdn Xfmr Rm 28 Exh Fan 282-B 209-8C 2-MTR-30-2466-B (3 hpj

Shtdn Xfmr Rm 28 Exh Fan 283-8 209-80 2-MTR-30-246H-B (3 hp)

C. Bldg Ele 8dRm AC Cir Pmp B-B 209-8E 0-MTR-31-129/1-B {20 hp)

209-8F1 EL 8D RM ~/_C 8-B CONTROL/O.PMP 0-MTR-31-129/3-B (3 hpj

RHR Pmp 28-8 Rm Clr Fan 209-9A 2-MTR-30-176-8 (5 hpj

480V 8d Rm 2A Pr Sup Fan 2A2-B 209-9C 2-MTR-31-463-8 (3 hpj

Shtdn Xfrm Rm 28 Exh Fan 281-8 209-90 2-MTR-30-246F-8 (3 hpj

Pen Rm El737 Clr Fan 28-8 209-9E 2-MTR-30-195-B (3 hpj

Cntfg Chrg Pmp 28-8 Rm Clr Fan 209-lOA 2-MTR-30-182-8 (S hpj

480V 8d Rm 28 Pr Sup Fan 282-8 209-108 2-MTR-31-477-8 {3 hp)

12SV Vit BatRm Ill Ex Fan 282-8 209-10C 2-MTR-31-285-B (0,33 hpj

Cont Rm Intake Mon 209-10F1 0-RE-90-126-B (0.7S hpj

209-11B 480V Bb Rm 28 _A(C:Ahu 28-8 2-MTR-31-47S-8 {20 hpj 480V 8d Rm 28 A/C cond 28·8

209-11C 2-MTR-31-289-B {20 hpj EG Trtmt Sys 8-8 Rm Clr Fan

209-128 2-MTR-30-207-8 {3 hp)

ERCW Scrn Wash Pmp 28-8 209-13D 2-MTR-67-447-8 {40 hpj

RWSTTo Spray Hdr 2B FCV 209-7E 2-FCV-72-21-8 (3.3 hp)

ERCW Str 2B-B Flush Vlv 209-6E 2-FCV-67-108-B {0.33HP)

ERCW Str 28·8 Backwash Vlv 209-4E 2-FCV-67-10A-8 (0.33HP)

Appendix A 2B Boards

EVALUATION of CLASS lE MOTOR STARTING VOLTAGES at DVR DROPOUT (Analytical Limit) Comparison of Minimum Available Starting Voltage vjs Required Starting Voltage

Results Shown for DBE Actuation (51-A or 51-B) and Individual Motor Starts 51 Phase A 51 Phase B

DBE Actuation DBE Actuation Individual Motor Start Terminal Voltage(%) Terminal Voltage{%) Terminal Voltage(%)

6.6kV I 460V Base 51 Phase A 6.6kV /460V Base 51 Phase B 6.6kV I 460V Base

82.90 Starts on ABI 83.66 Starts onABI 88.68

N/A Running N/A Running 89.95

87.24 Starts on A81 88.05 Starts on ABI 88.81

N/A Running N/A Running 77.30

N/A Running N/A Running 81.68

N/A Running N/A Running 92.11

N/A Not Running N/A Not Running 93.70 Starts on Pump Starts on

84.79 Start 85.58 Pump Start 87.41

86.61 Starts onABI 87.41 Starts onABI 89.49

N/A Running N/A Running 91.83

N/A Running N/A Running 92.14

N/A Running N/A Running 88.44

N/A Running N/A Running 92.33

Starts on Pump Starts on 81.19 '~" 81.94 Pump Start 82.53

N/A Running N/A Running 92.84

N/A Running N/A Running 92.45

87.63 Starts on ABI 88.43 Starts on A81 91.70

Starts on Pump Starts on 86.12 Start 86.91 Pump start 89.04

N/A Running N/A Running 93,15

N/A Running N/A Running 91.90

N/A Running N/A Running 93.11

N/A Running N/A Running 90.81

N/A Running N/A Running 90.23

87.39 Starts on ABI 88.20 Starts on ABI 91.70

N/A N/A N/A N/A 74.69

N/A Not Running N/A Not Running 87.70

N/A N/A N/A N/A 83.36

N/A N/A N/A N/A 83.62

This page revised and replaced by R2

Rev.O

Bases for Minimum Required Voltage Minimum Required Terminal Voltage V(%) Voltage

6.6kV I 460V Base Reference

Same as Fan A-A (207-80 3D), Att 3

85 Att.1 Based on Unit 1 motor

80 data (Att. 3)

75 Att. 3

80 Att. 3

85 Att.1

Pass Att. 5 Based on Unit 1 motor

80 data (Att. 3) Based on Unit 1 motor

80 data (Att. 3)

80 Att. 3

80 Att. 3

85 Att.1

85 Att.1 Based on Unit 1 motor

80 data (Att. 3) R

85 Att.l

80 Att. 3

80 Att. 3 Based on Unit 1 motor

80 data (Att. 3j

85 Att.1

85 Att.1

85 Att.1

85 Att.1

85 Att.1

80 Att.3 Att. 3

75 Also See Sec. 7.1 Att. 5/ Acceptable

Pass Margin

80 Att. 1

80 Att. 1

Page 22 of 25

Page 52: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc. STUDY-EEB-WBN-12-001

ETAP Bus ID/ Compt No load Description

480V CA Vent Board 282-B None

480V Diesel AuK Board 281-B OG 28-B RM EXH FAN 18

223-28 2-MTR-30-450-B (15 hp) DG 28-8 Lube Oil Circ Pmp 1

223-20 2·MTR·82-B1-B (1 hp) EM DG ENG SUPVLV FROM HDR 18

223-3A 2-FCV-57·57-B (0.13hp) DG 28-8 DAY TNK FO XFR PMP 1

223-30 2-MTR-18-55/4-8 (1 hp) OG Rm 2B·B Pnl Vent Fan

223-40 2-MTR-30-494-8 (1S hp) DG 28-8 480V Elec Bd Rm Ex Fan

223-4E 2-MTR-30-462-8 {2 hp) Dg 28-8 Muffler Rm Exh Fan

223-6A 2-MTR-30-466 (O.SHP) 480V Diesel Aux: Board 282-B

DG 28-8 Aux LubeOil Circ Pmp 8 224-2A 2-MTR-82-AOPB2B (0.75 hp)

DG 28-8 RM EXH FAN 2-8 224-28 2-MTR-30-454·8 (1S hp)

DG 28-8 Lube Oil eire Pmp 2 224-20 2-MTR-82·82·8 (1 hp)

DG 28-B DAYTNK FO XFR PMP 2 224-30 2-MTR-18-54/4-B {1 hp)

480V RMOV Board 281-B AFW Pmp 8-8 Lube Oil Pmp 8-8

241-170 2-MTR-3-1280-8 (0.25 hp)

SIS Accum Tank flow lsol Vlv 241-3F2 2-FCV-63-98-B {19.5 hp)

HPFP SysLow Level Intake Vlv 241-5A 0-FCV-26-8-8 (0.13 hp)

RCS Press Relief FCV 241-SE 2-FCV-68·332-B {2 hp)

Seal Flow Ret lsln Vlv 241-60 2-FCV-62-61-8 (1.9 hp)

CHRG FLOW ISLN VLV 241-7A 2-FCV-62-91-8 {1.9 hp)

Vol Coot Tank Outlet lsln Vlv 241-8A 2-LCV-62-133-8 {1.9 hp)

RWSTTO CHRG PMPVALVECONT 241-88 2-LCV-62-136-B {1.9 hpj

RHR To RCS H.L.1&3 Flow I so V 241-98 2-FCV-63-172-B {2.6 hp)

Cntm spray Pmp 2B·B Recirc FCV 241-9F 2-FCV-72-13-8 (0.1 hpj

SIS 28-8 Dsh To RWST ShtffVIv 241-lOA 2-FCV-63-4-8 {0.66 hpj

RWSTToSIS Pump FCV 241-108 2-FCV-63-5-B {2 hpj

SIS Pmp Inlet To eves Chrg Pmp 241-11A 2-FCV-63-6-B {2 hpj

Appendix A 2B Boards

EVALUATION of CLASS lE MOTOR STARTING VOLTAGES at DVR DROPOUT (Analytical Limit) Comparison of Minimum Available Starting Voltage v/s Required Starting Voltage

Results Shown for DBE Actuation {51-A or SI-B) and Individual Motor Starts 51 Phase A 51 Phase 8

DBE Actuation DBE Actuation Individual Motor Start Terminal Voltage(%) Terminal Voltage(%) Terminal Voltage{%)

6.6kV I 460V Base 51 Phase A 6.6kV /460V Base 51 Phase B 6.6kV /460V Base

92.48 Starts 92.88 '~rt 94.64

N/A Running N/A Running 95.14 Open on Diesel Open on

82.55 Start 82.90 Diesel Start 86.33

92.31 Random 92 .. 71 Random 95.03

N/A Running N/A Running 92.52

N/A Running N/A Running 94.63

92.72 Starts 93.11 Starts 95.56

N/A Running N/A Running 94.71

92.76 Starts 92.99 Starts 93.13

N/A Running N/A Running 94.83

92.53 Random 92.76 Random 94.80

N/A Running N/A Running 88.48

N/A Not Running N/A Not Running 86.66

N/A Not Running N/A Not Running 80.91

N/A Not Running N/A Not Running 84.25

Closes on Ph A 82.53 (Starts) 83.24 Not Running 87.63

86.71 Closes on 51 87.45 Closes on 51 92.06

81.30 Closes on 51 82.00 Closes on 51 86.25

80.20 Opens on 51 80.89 Opens on 51 85.08

N/A Not Running N/A Not Running 80.97

Starts 10s N/A Not Runn!ng N/A after Phase B 89.77

N/A Not Running N/A Not Running 89.02

N/A Not Running N/A Not Running 83.31

N/A Not Running N/A Not Running 81.72

This page revised and replaced by R2

Rev.O

Bases for Minimum Required Voltage Minimum Required

Terminal Voltage V(%) Voltage 6.6kV I 460V

Base Reference

85 Att. 3

85 Att. 1

Pass Att. 5

85 Att.l

85 Att. 3

85 Att.l

85 Att. 3

85 Att.1

85 Att. 3

85 Att.1

85 Att.1

85 Att.1 R 2 Att. 5/ Acceptable

Pass Margin

80 Att. 1 Att. 5/ Acceptable

Pass Margin Att. 5/ Acceptable

Pass Margin Att. 5/ Acceptable

Pass Margin Att. 5/ Acceptable

Pass Margin Att. 5/ Acceptable

Pass Margin Att. 5/ Acceptable

Pass Margin

Pass Att. 5 Att. 5/ Acceptable

Pass Margin Att. 5/ Acceptable

Pass Margin Att. 5/ Acceptable

Pass Margin

Page 23 of 25

Page 53: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc. STUDY-EEB-WBN-12-001

'~~:~:·~~/ load i

>SPmp 241-llB

)S>SBomo I 241-llE '" "' 241-126

ls.~:mo_":' '"let"' '{2 hp)

241-120 :~;,": :~p ,.,

241-lZE I'" To RCS Lo:::.: ~; FCV

241-13A l:':;mo":' ~~~·:;,cv ' B {2.hp) 241-138

' I 241-130 B{OG6 ;;,

241-14A > ,;c22~;:1o VI•

241-140 S {2 :;:OLVLV

FCV 241-14E ahp)

241-15B RHR Pmp 28-B ~-~~ ~~w Vlv

241-lSD I RHR "' "_'YP~". VI.•

'"'' I480VRMOV

242-lSD I'""" Rm 2':(,~'::';:' ZB·R

IERCw Hdc R "I" VI• 242-2A '{0.67 hp)

242-2B R>sl; ~~~~, hp)

242-lE I" Flow·, o "'~'>' vco "I' VI•

I 242-3A R [O.a3 hp)

242-38 oV'.o

3hp)

242-30 IStGeo No 2FW ·~~h~;

242·40 )St Goo No 4 FW >sl.~ ~~;)

ILWR e>StNVLV 242-5C 8 [03 hp)

y "' 242·5E . ahp)

y "; ;;,,;h,i "'' 242-SF oCotm >•oVI•

242-60 '{0.7 hp)

I I of' l.o 'of>m• i • ,.,,,,

'"""' Showo foe DBE. 51 Phase A

DBE Actuation ,(%)

6.6kV I 460V Base 51Ph,eA

N/A Not Roooiog

86.65 ""'" 00 S>

N/A )No<'"""'"'

N/A ~O~en-~t 20 Min )oftecS>

N/A

N/A '

N/A ' N/A ' N/A I

N/A I

N/A I

85.18 I start on RHR

N/A )No< Rooolog

N/A I'"""'"' N/A I''""""'"' N/A )NotRvoolog

N/A )Rvoolog

N/A )oaodom

N/A )R.,dom

85.16 [u,. 89·10 "'"

86.16 luse89-10start

N/A '"" '""''"' N/A I NotRvooiog

N/A )NotRvoo'.og

N/A )No< Rvoolog

Appendix A 2B Boards

;atDVR I .. 6 I "~" v/s Required 1

\ oc SI-B) ood lodl•ldval Motoc 5tort

a:: :::::,:o, I '{%)

6.6kV I 46DV "'" I 51 Pha" B

_1-ljfo._

87.40 I""'" oo"

N/A '

N/A 1~::;:~:1 N/A I

N/A I

N/A I

. N/A I

85.96 ~ N/A I'"""""'"' N/A 1,;, '"""'"'

'"" 00 """

85.91 ooS>

N/A No<'"""'"'

N/A )Rooolog

N/A I''""""'"' ~ ~

N/A ''"""''' N/A )oaodom

N/A )R.,dom

85.41 1~:~89-10

86.41 ];,'9·10

88.43 lei"" )15""''

_1-ljfo._

_1-ljfo._

87.62 ~~;;~:,

This page revised and replaced by R2

Rev.O

IUmlt)

Bases for lodi•id"'l Motoc 5"rt i i 'Voltage Minimum Required

I ,(%)

~0~ I ~

6.6kV I 46DV Ba" Reference

Att. > ;,acgio I

87.60 ''" Att.~ I

91.98 Pass

Att. 5 ;,,,,, I 84.14 ''"

Att. 5 ~""'" I 91.40 ''"

Att.~ I 92.80 Pass

Att. 5 ~"glo I 85.71 '"' 88.35 '"'

Att. > ~:~::""'

89.50 -""' Att. 5:.

Macglo

90.37 Pass Att.~

Att. 88.15 '"' Macglo

82.22 ~ Att. > ~::;:'"''

Att. 5 I Acceptable 90.5a '"' Macglo

79.68 -''" Att., :.

Macgio

90.83 85 Att.1 I" Att. 5/ 89.82 ~ ~

89.81 Pass Att. 5 !. ~

91.06 '"' Att. 5/.

Macgio

Att. > ~- I 90.39 ~ . Macgio

Att. 5 ~- I 90.20 '"' ~

87.81 ''" Att. 5

88.83 Pass Att. 5

91.99 -""- ~ Att.~ I

_9_1i1 -""-Att.~ I

91.00 Pass

91.14 ~ ~

Page 24 of 25

Page 54: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc. STUDY-EEB-WBN-12-001

ETAP Bus IDI

Compt No Load Description RCP Thrm Barr Cntmt lsln Vlv

242-6E 2-FCV-70-134-B {0.1 hpj Lwr Cntmt 26 Clr Dish I sin Vlv

242-70 2-FCV-67-103-B {0.1 hpj Up Cntm Vt Clr 2A Dish I so Vlv

242-7F 2-FCV-67-131-8 (0.1 hp) Lwr Cntm 2D Clr Dish I so Vlv

242-80 2-FCV-67-111-B (0.1 hp) Up Cntm Vt Clr 2C dish lso Vlv

242 SF 2-FCV-67-134-B (0.1 hp) Lwr Cntm 2A Clr Dish I so Vlv

242-9A 2-FCV-67-88-B (0.3 hp) Lwr Cntm 2C Clr Dish I so Vlv

242-98 2-FCV-67-96-8 {0.3 hp) Up Cntm Vt Clr 28 Dish lso Vlv

242-90 2-FCV-67-297-8 (0.1 hp) Up Cntm Vt Clr 28 Sup I sin Vlv

242-9F 2-FCV-67-138-B {0.1 hp) LwrCntmt 28 Clr Sply I sin Vlv

242-lOA 2-FCV-67-91-B {0.3 hpj Lwr Cntmt 2D Clr Sply I sin Vlv

242-108 2-FCV-67-83-B (0.3 hpj Up Cntm Vt Clr 2D Dish I so Vlv

242-100 2-FCV-67-298-B (0.1 hp) Up Cntm Vt Clr 20 Sup lsln Vlv

242-10F 2-FCV-67-141-B {0.1 hpj LWR CNTMT 28 CLRS SUP ISLN VLV

242-116 2-FCV-67-105-8 (0.3 hp) ccs Hx c Disch Vlv To Hdr El

242-126 0-FCV-67-152-B (0.7 hp) RCP OIL CLR R1N CNTMT ISLN VLV

242-130 2-FCV-70-89-B {0.3 hpJ RCP Oil Clr Hdr Cntmt I sin Vlv

242-13F 2-FCV-70-140-B (0.3 hp)

SFPCS Hx Sply Hdr I sin Vlv 242-17A 0-FCV-70-194-B {0.33 hp)

RHR Hx B·B Outlet Vlv 242-15E 2-FCV-70-153-B {0.33 hp)

480V Reactor Vent Board 28-B None

Appendix A 28 Boards

EVALUATION of CLASS lE MOTOR STARTING VOLTAGES at DVR DROPOUT {Analytical Limit) Comparison of Minimum Available Starting Voltage v/s Required Starting Voltage

Results Shown for DBE Actuation (Sl-A or SI-B) and Individual Motor Starts

51 Phase A Sl Phase B DBE Actuation DBE Actuation Individual Motor Start

Terminal Voltage(%) Terminal Voltage(%) Terminal Voltage(%)

6.6kV I 460V Base Sl Phase A 6.6kV /460V Base Sl Phase B 6.6kV I 460V Base Closes

N/A Not Running 87.60 (Starts) 91.14 Closes

N/A Not Running 87.51 (Starts) 91.04 Closes

N/A Not Running 87.18 (Starts) 90.69 Closes

N/A Not Running 87.93 (Starts) 91.48 Closes

N/A Not Running 87.18 {Starts) 85.63 Closes

N/A Not Running 86.92 (Starts) 90.43 Closes

N/A Not Running 87.02 {Starts) 90.53 Closes

N/A Not Running 86.19 {Starts) 89.66 Closes

N/A Not Running 87.18 {Starts) 90.69 Closes

N/A Not Running 86.93 (Starts) 90.43 Closes

N/A Not Running 87.23 (Starts) 90.75 Closes

N/A Not Running 86.87 (Starts) 90.37 Closes

N/A Not Running 87.18 (Starts) 90.69 Closes

N/A Not Running 88.09 (Starts) 91.65

N/A Running N/A Running 89.74 Closes

N/A Not Running 88.11 (Starts) 91.67 Closes

N/A Not Running 86.94 (Starts) 90.45

N/A Not Running N/A Not Running 92.18*

N/A Not Running N/A Not Running 91.47

• This MDV terminal voltage is calculated taking credit for the hammer blow feature.

This page revised and replaced by R2

Rev.O

Bases for Minimum Required Voltage Minimum Required

Terminal Voltage V(%) Voltage 6.6kV /460V

Base Reference

Pass Att. 5

Pass Att. 5

Pass Att. 5

Pass Att. 5

Pass Att. 5

Pass Att. 5

Pass Att. 5

Pass Att. 5

Pass Att. 5

Pass Att. 5

Pass Att. 5

Pass Att. 5 R 2

Pass Att. 5

Pass Att.5

Pass Att. 4

Pass Att. 5

Pass Att. 5 Att. 4/ Acceptable

Margin with voltage based on Hammer Blow

Pass feature*

Pass Att5

Page 25 of 25

Page 55: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc STUDY-EEB-WBN-12-001, R2 Appendix B Page 1 of 4

Voltage Recovery Analysis for DBE

Purpose The purpose of the attachment is to demonstrate that any possible voltage transient caused by motor starting during a DBE (SI with Phase A or Phase B isolation), including drop to the LOV setpoint, will also result in successful recovery above DVR reset within 5 seconds.

Approach This transient voltage dip and recovery analysis is similar to that analyzed by the offsite power analysis (reference 2.2) which shows that the voltage recovers above the DVR reset within 5 seconds. However, the offsite power analysis credits the use of automatic load tap changers (LTC) for voltage recovery and also assumes minimum operable grid capacity. The offsite power analysis accounts for minimum operable grid capacity by using an extremely conservative technique of forcing the switchyard voltage to the minimum allowable post-event voltage. This technique ignores the voltage recovery that would occur once the larger motors accelerate.

In this analysis, the offsite power source has been modeled using a classical Thevenin equivalent impedance technique (fixed voltage source behind impedance). The impedance chosen is equivalent to that grid capacity that would result in the voltage at the 6.9kV Shutdown Boards dropping all the way to the loss of voltage (LOV) relay setpoint during initial DBE motor starting (block-start of ECCS loads).

Bases/Assumptions • The offsite power LTCs (CSST C & D) are not allowed to correct the voltage during the motor

starting event. However, they are allowed to adjust the voltage prior to the event. This is conservative because it will result in the worst-case voltage transient with no voltage recovery from the L TCs.

• The auxiliary power system is assumed to be in normal alignment prior to the event (Unit Boards and RCP Boards on USSTs, Common Boards on CSSTs NB, Shutdown Boards on CSSTs CID). This is conservative, because it puts the least amount of load on the offsite power source prior to the event and thereby results in a "stiffer" offsite power source impedance (i.e. less recovery). In addition, aligning the Shutdown Boards to CSSTs NB would result in even greater recovery due to the Unit Board load shed feature.

• The 161 kV Switchyard voltage is assumed to be at the minimum operable voltage prior to the event. This is conservative, because it will also result in a "stiffer'' offsite power source impedance (i.e. less recovery).

Computations Using the existing ETAP model used to perform offsite power analysis for two unit operation (Ref. 2.2), a dynamic motor starting analysis was performed for both SI-Phase A and SI-Phase B events on each unit. Using a trial and error technique, the switchyard source capacity (MVA") was adjusted until the applicable 6.9kV Shutdown Board voltages just equaled the LOV setpoint (80% nominal) at t=O+ in the event being studied.

Each dynamic motor starting study case (SIA and SIB) was run for at least 5 seconds. The associated ETAP reports provide the voltage during the event in 0.1 second intervals for each 6.9kV Shutdown Board.

Results A plot of the worst-case voltage recovery is shown for both U1 SIB and U2 SIB. The results show that in all cases the 6.9kV Shutdown Board voltage recovers above the DVR reset value (operational limit of 6681V) within 4 seconds.

Conclusions This bounding analysis demonstrates that any possible voltage transient caused by DBE motor starting, including drop to the LOV setpoint, will also result in successful recovery above DVR reset within 5 seconds.

This page revised and replaced by R2

Page 56: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Project: Location: Contract: Engineer:

Watts Bar Kt.:clear Plant II cr.achaapp5/etaps/wbnp/

WBN-EEB-MS-TIO 6-002 9

ETAP 7. 0. 01-:

Study Case: U1 SIB-U2

Appendix B Calc. STUDY-EEB-WBN-12-001 Page 2 of 4

Date: 03-21-2012 SK: 9DTVA12DC2 Revision: Unit 1&2 Con fig.: N 4 CSST-U2

Unit 1 SI Phase B. Plant in normal alignment (4CSSTs) at lowest operable grid (161kV). No LTC during the event.

Project File: J:\wbnp\RO EDQ00099920120D04 (DVR Analysis)\DVR Analysis WBN\DVR LOV Recovery Analysis\NBNDATA Output Report: U1SIB-152MVA

-1:.\/Sl>/.1-.4 ~·· j • ,

""

MOTOR STARTING ANALYSIS

Bus Vultage

DVR Reset 6681V (96.8%) Reset Time < 4s

oo+-~---r--+-~~-+--+---r--+--~--+-~---r--+---~-+--+---r--4--~--+-~---r--+---~~

Page 57: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Project: Location:

Watts Bar t;uclear Plar:t II chachaapp5l etapslwbnpl

ETAP 7. 0. 01\

Appendix B Calc. STUDY-EEB-WBN-12-001 Page 3 of 4

Date: Sl-::

03-21-2012 90TVA12DC2

Contract: Revisior:: Ur:it 1&2 Er.gir.eer: Study Case: Ul/2 SIA

WBN-EEB-MS-TI 0 6-002 9 Ur.it 112 SI Phase A. Plant in normal alignment (4CSSTs) at lowest operable grid (161kV). 1\o LTC durir.g the event.

Project File: J:\wbnp\RO EDQ00099920120004 (DVR Analysis)\DVR Ar.alysis WBN\DVR LOV Recovery Ar.alysis\WBNDATA Output Report: Ul2-SIA

MOTOR STARTING ANALYSIS

Bus Voltage

-J!Jl.\'11/,;-:) J.i .\lSI' .'.I _-J

'"'

Config.:

DVR Reset 6681V (96.8%) Reset Time < 4s

N 4 CSST-U2

"+-~---r--+-~---+--+---r--+--~--+--+---r--+-~~-+--+---r--+--4---+--+---r--+-~~~ 17me (SecJ

Page 58: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Project: Location:

1-latts Bar Nuclear Plant I I chachaapp5/ etaps/wbnp/

ETAP 7. 0 .ON

Appendix B Calc. STUDY-EEB-WBN-12-001 Page4 of4

Date: SK:

03-21-2012 90TVA12DC2

Contract: Revisior.: Ur.it 1&2 Engineer: St1.:dy Case: U2 SIB-U2

WBN-EEB-MS-TI 0 6-002 9 Unit 2 SI Phase B. Plant in r:ormal aligr:ment (4CSSTs) at lowest operable grid (16lkV). l\0 LTC during the ever:t.

Project Pile: J:\wbr.p\RO EDQ00099920120004 (DVR Analysis)\DVR Analysis WBN\DVR LOV Recovery Ar.alysis\~!BNDATll Output Report: U2SIB-152MVA

MOTOR STARTING ANALYSIS

Bus Voltage

Config.: K 4 CSST-U2

"" DVR Reset 6681V (96.8%) Reset Time < 4s

m+-_,--~--+-~---+--~--r--+--~--+-_,---r--+---~-+--~--r--+~~--+-_,--~--+---~-1

17me (Sec.)

Page 59: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc. STUDY-EEB-WBN-12-001, R2 Appendix H 1 of 5

Degraded Voltage Recovery Analysis for DBE

Purpose

The purpose of this appendix is to address NRC comments concerning the adequacy of the analytical methodology for the motor starting cases previously analyzed in this study to support DBE. The nature of the comments concerned the initial voltage used in the analysis at the DVR monitored bus and fell into two general areas:

1. Demonstrate the adequacy of the DVR protection scheme if the voltage source is placed at the switchyard bus and the grid voltage is set such that the DVR monitored bus voltage is at the DVR dropout analytical limit prior to the DBE initiation.

2. Demonstrate the adequacy of the DVR protection scheme if the voltage source is placed at the switchyard bus and both grid voltage and capacity are adjusted to any value that will support successful voltage recovery following DBE motor starting (i.e. Class 1 E loads remain on offsite power).

Approach

This appendix follows a similar analytical technique as described in Appendix B. Additional study cases were set up to address the NRC comments as follows:

Study Case 1: The grid is set to strongest capacity (maximum short-circuit strength) and grid voltage is lowered until the DVR monitored bus voltage reaches the DVR analytical limit prior to DBE initiation. The outcome of this evaluation should demonstrate that the Class 1 E bus voltage will not be able to successfully recover (i.e. reset the DVR) following the DBE initiation.

Study Case 2: Grid voltage and capacity are adjusted until the lowest possible initial voltage is found (at the DVR monitored bus) that allows successful recovery following DBE motor starting (i.e. the resulting voltage dip recovers from the Loss of Voltage relay (LOV) and also resets the DVR in a bounding fashion). The outcome of this evaluation should demonstrate that any combination of initial grid voltage and capacity that results in successful recovery of the Class 1 E bus voltage does so because of the proper acceleration of the accident initiated motors on the 6.9kV 1 E buses.

Analysis is performed for each study case using normal offsite power alignment via CSSTs C & D as well as alignment via CSSTs A & B (Shutdown Boards aligned to Start Buses via Unit Boards).

Bases/Assumptions

All the bases and assumptions listed in Appendix B of this study are applicable to this appendix. (Ref. Attachment 2 for relay setpoints)

Computations

The existing ETAP model from offsite power analysis for two unit operation (Ref. 2.2) was used to perform dynamic motor starting analyses similar to Appendix B. The analysis was performed considering a DBE for Unit 1 (SI with Phase B isolation). Detailed evaluation was performed for 6.9kV Shutdown Board 1A-A only (aligned to CSSTs A, B, C, or D) as the results are considered to be representative of the other Shutdown Boards for the purposes of these analyses.

Study Case 1:

1) The utility source model was placed on the 161 kV switchyard bus. 2) Tlie applicable CSST automatic load tap changers (LTC) were placed in manual (i.e. not working).

This page added by R2

Page 60: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc. STUDY-EEB-WBN-12-001, R2 Appendix H 2 of5

3) Using normal plant operation loading, the source voltage was lowered until the voltage at the DVR monitored bus (6.9kV Shutdown Board) was exactly at 6555V (DVR dropout analytical limit).

4) The source capacity was set to the maximum short-circuit strength (Ref PSO Study), which allows the greatest ability of the grid to recover the Class 1 E bus voltage above the DVR reset value following DBE motor starting.

Study Case 2:

1) The utility source model was placed on the 161 kV switch yard bus. 2) The applicable CSST automatic load tap changers (LTC) were placed in manual (i.e. not working). 3) Normal plant operation loading was used prior to the DBE initiation. 4) The source voltage and capacity were adjusted as required to achieve all of the following criteria:

a) voltage at the 6.9kV Shutdown Board is not lower than 6555V (DVR dropout analytical limit) prior to DBE initiation.

b) if the voltage dip produced by DBE initiation (at the 6.9kV Shutdown Board) drops below the LOV relay setpoint, it also recovers above the setpoint within the relay timeout (nominal settings used for convenience)

c) the voltage at the 6.9kV Shutdown Board recovers to (exactly) the DVR reset point following the initial "block start" transient (nominal setting used for convenience).

Each dynamic motor starting study case was run for 5 seconds. The associated ETAP results provide the voltage profile in percent in 0.01 second intervals at the 6.9kV Shutdown Board. These values were plotted to evaluate the results. The existing offsite power analysis voltage profile for the same DBE (minimum grid capability) were also added on the same plots for general comparison (see Figures 1 and 2 of this appendix).

The following study cases have been run:

Results

Study Case 1 1 2 2

ETAP Configuration NCSSTABD-U2 N4CSST-U2 NCSSTABD-U2 N4CSST-U2

ETAP MS Case U1SIB-U2 U1SIB-U2 U1SIB-U2 U1SIB-U2

Based on the study cases the results are summarized below:

Study Case 1 -

ETAP Report Name DVR DOAB DVRDOCD we GridAB we Grid CD

Voltage at the DVR monitored bus is at DVR dropout with a strong grid capacity. The evaluation shows (Ref. Figure 1) without the load tap changer, the DVR will not reset and Class 1 E buses will disconnect from offsite power and transfer to the DGs as designed. Transfer to DG is acceptable because previous protective device analysis shows the successful transfer to the onsite power supply with all required Class 1 E loads achieving adequate voltage for starting and running within required time limits.

Study Case 2 -Voltage at the DVR monitored bus is at the lowest possible initial voltage that allows successful recovery. This case, while not representative of any actual postulated grid, results in the worst conceivable grid that allows Class 1 E buses to remain on offsite power. The evaluation shows (Ref Figure 2) the DVR recovery time is not significantly different than that shown for offsite power analysis (minimum qualified grid). This case demonstrates that any conceivable voltage transient caused by motor starting, even at the threshold of LOV timeout and DVR timeout, will result in recovery of voltage (DVR reset or above) within 4 seconds.

This page added by R2

Page 61: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc. STUDY-EEB-WBN-12-001, R2 Appendix H 3 of5

Conclusions

The outcomes of these additional requested analysis demonstrate the adequacy of the DVR protection scheme based on:

1) If the LOV relay times out

a. Class 1 E buses disconnect from offsite power and transfer to the DGs

b. Based on previous analysis, Class 1 E components have adequate voltage for starting and running within analyzed time limits

2) If the LOV relay does not time out, then either:

a. The DVR times out

i. Class 1 E buses disconnect from off site power and transfer to the DGs

ii. Based on previous analyses, Class 1 E components have adequate voltage for starting and running within analyzed time limits

OR

b. The DVR does not time out

i. Class 1 E buses remain connected to off site power

ii. Based on previous analyses, Class 1 E components have adequate voltage for starting and running within analyzed time limits

This page added by R2

Page 62: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

7580859095100

105 ‐0

.50

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

Voltage (%)

Time (sec)

DVR at Dropo

ut Prio

r to LO

CA, Shd

n Bd

 1A‐A, U1 SIB

OSP

DVR DO

 AB

DVR DO

 CD

DVR Re

set

DVR DO

LOV SP

OSP

 Analysis

Minim

um Ope

rable Grid

LTCs ope

rate as d

esigne

d

DVR at Dropo

ut Prio

r to LO

CAShdn

 Bds on CSSTs C

/DDV

R ne

ver resets

DVR at Dropo

ut Prio

r to LO

CAShdn

 Bds on CSSTs A

/BDV

R ne

ver resets

Cal

c ST

UD

T-EE

B-W

BN

-12-

001,

R2

App

endi

x H

, Pag

e 4

of 5

FIG

UR

E 1

This

pag

e is

add

ed b

y R

2

Page 63: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

7580859095100

105 ‐0

.50

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

Voltage (%)

Time  (sec)

Worst‐Case Grid

 that Recovers, Shd

n Bd

 1A‐A, U1 SIB

OSP

WC Grid

 AB

WC Grid

 CD

DVR Re

set

DVR DO

LOV SP

Worst‐CaseGrid th

at Recovers

Shdn

 Bds on CSSTs C

/DBa

rely prevents LOV trip

Barely allows recovery to DVR

 reset

OSP Analysis

Minim

um Ope

rable Grid

LTCs ope

rate as d

esigned

Worst‐CaseGrid th

at Recovers

Shdn

 Bds on CSSTs A

/BDo

es not actuate LOV relay

Barely allows recovery to DVR

 reset

Cal

c ST

UD

Y-EE

B-W

BN

-12-

001,

R2

App

endi

x H

, Pag

e 5

of 5

FIG

UR

E 2

This

pag

e is

add

ed b

y R

2

Page 64: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

CALCULATION SHEET

Calc. STUDY-EEB-EBN-12-001 Attachment 1 Bases for Motor Starting Voltage Page 1 of 1

CALC NUMBER: WBN-EEB-EDQ000-999-2007-0002 I REV. NO 20 I SHEETNO.

3.0 DESIGN INPUT DATA & REQUIREMENTS

The evaluation documented in this calculation was previously performed and documented in the following calculations:

WBN EEB-MS-TI05-0001, Auxiliary Power System Database (TELAS) WBN EEB-MS-TI06-0002, Auxiliary Power System Analysis (ELMS-NON1E), WBN EEB-MS-TI06-0010, Auxiliary Power System Analysis on 1E Buses (ELMS-1E).

The design input data identified in these calculations are still valid and will not be repeated here. Only new and significant design input data will be identified here.

3.1 ''WBN ETAP CONVERSION, Phase 1 -database Conversion", RIMS B43 990303 001

3.2 Not used

3.3 Acceptable Voltage Ranges

3.3.1 Steady State Board Voltages

Max: Min:

6.9kV Switchgear

7260V (2) 6681V (1)

480V Switchgear/MCCs

508V (2) 440V (2)

(1) This is the reset operational limit for the degraded voltage relay (Sec. 3.12). (2) Per Table 1 of ANSI C84.1 (Ref. 2.23), Utilization Voltage Range B.

3.3.2 Minimum Operating Voltages

Running Motors

Max: 7260V 506V Min: 5940V 414V

480V Static Loads

Max: 528V Min: 432V (this voltage is conservative compared to the Range B utilization voltage of 424V in Ref. 2.23)

11

• NEMA MG1 Section 12.45 requires that motors shall operate with variation in voltage up to plus or minus 10% of rated voltage (Reference 2.24).

•• Ref. 2.23, Utilization Voltage Range B.

3.3.3 Minimum Motor Starting Voltages

6.6kV Motors 460V Motors 460V Air Comp 89-10 MOVs Non 89-10 MOVs

5280 (80%)'.. 391V (85%).. 368V (80%} Att. 11.5 368V(80%}

•• Percentages are based on 460V rated motor voltage. For motors rated other than 460V the same percentages are applicable. The minimum starting voltage for these motors may be different from the above voltage if it is based on manufacturer's data or test reports per Att. 11.4.

••• 80% for all motors except the for ERCW Pump motor which requires 90% and Aux Feedwater Pump motor which requires 85%. See Attachment11.4 for motor starting voltage.

The minimum motor voltages for LV motors are based on the following:

Class 1 E motors up to 30HP, NEMA Type B, provide 150 percent starting torque at full voltage which corresponds to close to 100 percent torque at 80 percent voltage (Ref. 2.24). For loads, such as fans, as the speed increases, so does the torque requirement. Other loads such as positive-displacement compressors start unloaded and do not require a

Page 65: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc. STUDY-EEB-WBN-12-001 Attachment 2 Degraded Voltage Relay Settings Page 1 of 1

'AtBN EEB Tl98 99:2!9

Figure 8.3

- - Grid at 153kV Post Event

.....•••••••••••••• 6681. V"

ll672 v-•• (Pickup)

--- - -- f---Nominal Reset 6642V

Degraded Voltage Relay

---1--1---11- ··Nomlnal6800 V

L-.... ...1--- 6570 V"" (Dropout)

•••••••• ············6555V"

-- ----- Sl Motor Start Voltage Dip (6060 V per Ref. 2.2)

--- ---Grid Security Boundary 141 kV 6560V Q.e. 1 failure awaY from collapse)

-------- ------------ 6072 v-6060 V"" (Pickup)

--1--1-·-· ---- Nominal Reset 6036V

Loss of Voltage Relay

I 8.5

l •• ·····--Nomlnal6000 V

967.6 V"" (Dropout) 0.4

-----------5934 v· ---- 1--- Voltage at Motor

Stall Point (5600V)

DS-1. DS·2 Timers

T D

LV-1, LV .. 2 Timers

0. 5

I 11.5

I 1.14

I I 12SecFSAR Commilment

- -Grid Collapse at 113kV Calc. No. WBN-EEB-MS-TI06-0029 Rev. 31

This Sheet revised by Revision 31 .

Figure 8.3 • Degraded Voltage and Loss-of-Voltage Relay Setpoint

Analyllcalllmll (Ref. 2.20) •· OperaUonalllmlt (Ref. 2.20) "**Allowable Value (Excludes PT accuracy~ Ref. 2.16) This page replaced by R20

I I

Page 66: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

WBtJ EEB EB G888-999-2887 6e62, R5

. :-- . . .·.··

16-Feb-92 ---. ::.:·::

Attachment 10.5

Block Motor Start Data

Calc. STUDY-EEB-WBN-12-001 Attachment 3 Required Motor Starting Voltage ~_a_ge, .1 of 2Q. . .. . ,., .. ·::-: ;;'-c"f

·-.,· .... _:.

. : : ,'

·'_,..

. \ ... : .. · ,-;··

-.... ·-;-.:

.. :

·. ·. !-.'·

Page 67: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

17-Sep·!l

IIBll-fEB-Il5·1I06..;:JillO RO ,I,TIAtiO!Elfi 10.5 - BlOO: HllTOii! STAI!T DAlA

IIIN !eta ftDlOR llllAI<Il HAllE CIJIIP IIOJOR liAI!E HP FLI m UIPF l!OIOR nnmR llillOR C!lllE CABLE CABLE CABLE CABLE Till Till TlllAL TOTAL START liNE Vli.T!~ REV :!! Ill. z, b J1• 1111. SIZE LEIISlll R jl 1111. R R jX Vtlll S'".t.C 1!81 "' m ~ • 2 £. 9XV SlfTDH BD U-A 13 CNTltT SPRAY PnP U·A 700.00 52.58 ~4.(1 0.33 12.9609 •• 177t 12.2349 1PP6lS! 3-!C IUO 130 0.1085 0:.0780 0.0684 0.04-!11 "" 3.30 5300.1 m • 3 &.!kV SIITOM BD I!·A II Rill PUll!' lA-A 400.00 :Ml.oo 197.5 0.33 20.3227 &.6252 !!.2125 !PP51SA 3-!C 12/0 Gbl O.JOBS 0.0180 0.0119 O.«il7 BO 3.60 SlSS.B "' "' ' I &.!It:'/ SliTDR BO 11-A IS SAFETY IIIJ Pill' lA-A · 400,00 31.00 211.0 0.30 17.~96 5.2153 16.5582 1PP600A 3·JC IUO 618 D. lOSS 0.0780 0.0611 0.0482 " 1.00 5300.1 '? • £.9KV 5HTD!I !ID l!-A a ERC1I PNP H 8!10.00 63.00 344.0 0.(9 11.0711 2..2046 1Ml53 1PP07SA 3-IC 12/0 "" 0.1085 0.07SO 0.3622 0.2004 "' 3.&0 &116.2 0 • 7 &.!!t:V SlllllN BD lA-A 10 .1111 IIDUTR PftP lA-A 600.00 !!.SO 300.0 0.20 !2.7017 Z.Wl 12.1451 !PP!SOA 3-!C t!IO 3:Ml 0.1085 0.0780 0.0358 0.0257 BS ;.oo 5021.3 0 0 g !.!kV Sll!DN BD 1A·A 19 CN!l"&t Cl!RG Pill' !A·! 600.00 4$.00 20!.7 0.35 !4.!287 4.!450 13.2351 1PPS:iOA 3-IC 1210 531 0.1085 0.0780 0.0516 0.0414 so <.65 531)1.1 ~

' II &. 9KV SHTOH an 10-B II l<llR PllllP IB-B 400.00 31.01 m.s 1.33 21.3227 &.Em 19.2125 IPP5B78 3•11: 12/0 371 0.101l!i o.olBO 0.1408 o.om Bl 3.~ mo.1 "' 'P • 12 6. !XV SlllllN BD IN IS mrn !KJ PNP 10-B 400.10 31.00 219.1 O.lO 17.:E9& 5.2199 !6.5982 1PP612B 3-!C 1210 lliO C. lOBS o.omo 0.004£ O .. O&Dil BO 4.00 5305.4 ~

• 13 &. 3kV S!ITnH BO I B·B 18 CN!f&t CIIRS PHP 11-B 600.01 45.00 2&9.7 0.35 14.1287 4. 9151> 1:3.2351 IPP5628 J·lt 12/0 699 O.lll85 0.01BD 0. 07:ll 0,054:4- ao 4.&5 5309.0 0 0 • 15 E..SKV SHT!llf BD l!·B 8 EP.OI PM? F-8 BOD,OO 63.00 344.0 0.19 11.0771 2.1G4& 10.9753 lPP100B 3-lC t210 3639 o.t~ss 0.0700 0.39~ ··- "' 3.1>0 6132.3 ~

6 • 16 &. 9KV Sl!TOH SO 11-B 10 AUI I"EEIIIITR fliP 11-B 600.00 49.50 300.0 0.2il 12.7017 2.5403 12.44SI IPPi621 3·1C 12/0 H6 O.IOSS o.D78ll D.641H 0.0348 ~ 6.60 5529.4 0 0 • !7 &, 5KV 511TI!M BD 18-B • OUltt SPRflY P!f? IB'-B 1CIO.OO 52.SB m.o 0.33 12.9&09 ... 2771 12.2349 1PP637B 3-lC 1210 156 O.IOBS 0.(171!0 0.002il 0.0590 ao 3.30 5313.8 -~

• 20 4110'1 SOBO 1~1-A 3200 31 DIPNT CUi SYS PltP 1A-A 350.011 383.00 2004.0 0.30 O.U14 0.0382 o.m; 1Pl4725A l-It t500 675 0.0314 0.0540 o.oro; O.OIIl2 n 3.10 374, [ 1!1 ::;! 1Pl4726A 3-!C: 1500 675 0.0314 0.0040 ~ " ~&OV II:I lillY BD 1Al-A IBE ~CP SPRAY ISUf VI..V 0.67 2.10 to.s 0.&0 25.293( 15.17!il 20.tJ4B 1\19165.1 I-3C 112 40& 2.1500 0.0765' 111 1.0700 2,1149 O.Gl72 as 411.9 QJ 40 nov Rl nov BD !Al-A 3E CNTFSI. CllRS P!!P lA-o\ AOP 2.00 3.10 u.; 0.&2 11.7670 7.2BS:i 9.2324 1Pl6145A 1·3C 112 600 2.1500 0.0765 !31 O.HlD 1.4i110 0.0459 as o\23. 2

49 4BOV Rl H11Y DB 1Ahl BB VQl Cru!l!M<I< OUJl£1 ISU! VLY I. SO 3.50 26.0 0.6.G HI.2H7 &.11:118 11.1717 tV2760A Hit 112 500 2.1500 {),0765 129 0.2370 1.3120 o.om as 42{.1 QJ • 51 4SOY RI ~DV BD 1A 1-A " CHAR6JJIS FUlll Isut vt.V 1.'!0 3.50 26.0 o.so 10.2147 ;.uea B.1717 IY2247A 1-JC 112 191 2.1500 0.0765 12l 0.2370 1.7076 0.0523 BO of09.l :r 52 49DV RI HOY BD 1A1-A 7! SEAl FLOll REI !Sot Vl V 1,10 3.50 20.0 o.so 10.2147 6.121!8 !.1717 lV2BOOA 1-lC 112 616 2.1500 0.0765 T!~ 0.2370 1.5614 0.0471 BO ros.5

-o~ i1l 53 I!OV Rl ~DY BD !Al-A II ~ST TD C:llAi&INII P/!P YlV ttlKT !.!10 3.50 26.{1 0.60 10.2117 6.111111 0.1717 JY21170A 1·3C 112 43( 2.1500 0.0765 T29 0,2370 !.1701 0.0332 BO 3!5.6 rn ~ 4801' Rl lillY BD lil-A liD SIS !DROll IIIJ !Alii( SliUTOIT VLY 1.90 3.50 20.0 0.60 10.2147 &.1288 9.1717 JV26BOA 1·3C 112 528 2.l500 0.07!5 129 0.2370 t.lm O.OIC! BO <00.7 --; 64 480'1 Rl "DV BD 1U·A HE SIS BIT IHI.ET SHllTllFf 'ILV 1.~0 3.50 26.0 0.60 10.2147 &.1288 B.17ti 11'26!SA 1-lC 110 532 1.3500 0.0705 129 0.2370 MID O.Ol7S a; 415.1 •o <OI

75 IBOV RX nov an 1Ahl 17C AlflrulUS STA11DPIPC !SOl vtV 0.67 2.10 10.5 0.60 25.2S3~ 15.1161 2il.234B IV9360A 1-lC 112 532 2.1500 0.0765 121 1.0700 2.2139 o.om as 412.9 ms: )> t7B 4110V RX nov BD 11.1-A 13£ CNTKr SPRAY f!DR a ISlH vtV 3.20 5.20 36.0 0,6() T.3m 4.42&4 5.1010 1V2S2(tt; 1-3C UO 352 1.3506 O.DlOS t32 0.1000 O.Sl57 0.02.8 BO 38&.0 ~m Ci Q.z

81 4BOY Rl 110'1 BO !Al-A 140 RHR PftP LA-! ft!H FLOW VLY 0.13 0.45 2.$ 0.&0 102.1466 &1.2000 81.7173 IYl9lSA I-3CI!2 &70 2.1500 0.0765- 19 u.noo ta.t605 0.0513 BO 3!0.4 ~-~ 0 "'~ •05 4BOV RI tllJV BD 11.\~A lJB OITIU 5Ur.DPIPE lSLN VI.V' 0.67 2..10 10.5 0.&0 25.2934 J!i.l7it 2o.2J.IB IV91<17A HCI12 6!1 2.1500 0.0765 l2l 1.oroo 2.5!61 0.05"32 BS 41fi..i rn •1!'1 490V DSL IIlli BD lAtA 5~ 11U 1H AIR CPRSO 2 5.00 7.10 14.5 0.62 s.s&er 3.7002 4.082& PL2195 I-JC 112 roo· 2.1500 0.07&5 TJ9 0,028!1 0.2~38 0.0077 as 401.5 :,. Ci • 91 <OOV Dst All! BD !UA 3.1 at D6 Hl 1Al k U2 5i'LY VLV 0.13 0.39 2.6 0.60 102.H66 61.21!80 01.7173 Pl2H6~ 1-31: 112 15"5 2.JSDO o.o7ES Til 13.9500 14.2032 0.011! . as 426.1 rn <93 ~SOV DSL AUI BD lAtA 6A 11G lA-A K11IT1H R:lf EIK fAH 1.50 2.&5 20.0 O.S2 13,279'1 8.2330 I0.41Sil PL22l5 1-~ ll2 &2 2.1500 0.0765 ns o.2950 o.ual o.aou !· as 39M -< 9& 490Y l!Sl AUJ Bn tAlA 2B D6 lA-A RJf tiH fAll I-A ts.oo I!I.SO' 1.18.4 0.4!1 2.2427 t.MB9 1.9550 PL2620A l-3C IB lOS 0.849'0 O.DJOS 149 0.0057 0.09<9 0.00741 ~ <fOO • .S

'101 4BOV llSl AIJI BD IAIA 4D DS Rl! 1ft-A PHI. V.EMT fAN 15.01) 20.00 118.4 0.49 2.2427 1.1130'J l. 9550 PlJ4HA I-JC 18 130 0.8490 0.0705 ·~ 0.0083 0.118& 0.0092 : 05 402.9 :::0 •104 4SOV CU YT BD tU-A IOC PIPE CHASE ctR rAW 14-A 3.00 4.00 25.2 O.S6 IO.S3B9 6.3'J79 7.8803 1Pl307!A HC 110 600 1.3500 0.0105 m O.lDOO 1).9JOB 0,0423 I 811 2.80 390.9 rn 105 iSOV W. YT BD IU~~ 9A P.HR PfiP lA-A Rl'l ClR FAN 5.00 6.10 45.0 0.!2 5,lJ01S 3.~1 4.&306 1Pl30~1A 1-3C 110 624 1.3500 0.0705 T37 0.0430 Q.8BSC. 0,0440 ~ Btl 2.10 406.5 ::::: 1106 4BDV W 1'T BD IAI·A 3C CKTll SPRAT P!!P !A-A R• f:tR FAll 7.50 !.00 62.0 0.~ 4.2BJ& 2.441& g,S:l~b 1Pl3{151A Hit 110 &'!0 1.3500 0.0705 HO 0.022' 0.8134 0.0441 f DO 0.70 •4JH.2 1107 ~BOY ClA VT 80 IAh~ BA SArETY IHJ Ft!P U-A il't tLR F'AH 5.00 6.10 45,0 0.62 5.90111 3.6591 4.6306 !PL23BIA 1-JC 1!0 6SZ 1.3500 O.li70::i 137 0.0430 O,BS62 C.0441i . 80 2.10 40T.a

lOB 4BOV &ItA VT Bn lAl-A JOA OOHi l:lfl& PJUI lA-A R1l C~ fAH s.oo 6.10 ~5.0 0.52 5.,018 3.6591 .C,&JO& 1PL300U 1-3C 110 447 1.3500 0.0105 137 o.orn 0.6465 0.0315 BO 2.10 395.7 ...1::: !09 4001' CU VI BD IAI·A 5I SrP PftP A-Ill& BST P~ SPI:tRFAH 7 .so 9.00 62.0

··~ 4.21!3& 2.4116 3,5190 1Pl3151! l·lt 110 240 1.3500 0,0705 HO 0.0229 0.34S9 0.0169 so 0.70 38&.9 "'U::Ul>O

fl!O 4DOV CIA I'T 00 !Al-A SE CCS l Al1l fliPS SP CUt FAN A-A 20.00 24.SO 139.9 (1.38 1.11901 0,7138 1.7531 IPL3191A 1-3< li 400 0.8490 O.OJOS l!iO 0.003~ 0.343.2 0.0282 BO 0.48 402.5 ~2 ~~ Ill IB" CU VI BD IAI·A SB PEJI R11 El 737 Cl.R FAll lh~ J.OO 4.00 . 25,J 0.65 10.4973 f.-.8127 7.9552 1PI.J091A 1·3t. 110 tn 1.3500 1'1.0705 732 0,1000 ··= 0.0121 BO 2.40 J-76.0 CD C 0 fl

N:::;·::::r(J) 112 190'1 CIA V"/ DO IAH 2C PEM Rft El. 6!!2 cut F!H 1!-A 3.00 4.00 25.0 0.62 10.6232 &.511&4 B.lBSO 1Pl3131A 1·3C 110 481 l.llOO 0.0705 m 0.1000 0.75!1 0.0313 00 2.10 3BS. 7 0~3-i

. 0.~2 &..3:nl B.OI« 1Pl3111A 1-JC 110 396 1.3500 0.0705 732 o. 1000 0.13<6 0.0279 BO 0.90 3l!3.4 ~ me 113 <D" CIA V1 BD !Al-A lOB PEII R1! El. 713 cut FAll II-A 3.00 4.00 20.0 10.2147 NS:~o 1117 490\1 Cl:l. VT SD lAt-A 7A aJIIT BlDG EIID!Ii .AIR CU fAN A-A 10,110 12.20 110.0 O.SJ 2.4144 1.2796 2.tl4H 1Pl3:301A 1-JC tB 240 o.am 0.0705 143 MilS 0.2176 0.0169 05 4!3.(1 6'·

mg.w-;< H16 400'1 CU Y1 BD IAI·A l2B C!llll Blll6 EllERS PRESS FAH H 1.00 1.70 15.0 0.62 17.i054 io.9774 13.8917 1Pl37B7A l·3C 112 6112 2.1500 o.ms m o.mo 1.1&13 0.0522 as 420.1 ~ m co (f) m 119 480V CU Vi BU IAI.-A 411 ElERC SA5 TRUIT SYS A-A w.oo 2S.oa 132.0 0.4& 1.0120 0.9255 1.796.5 1PL3520A 1·3C ID 368 O.B490 o.o1o; 150 0,00:.:16 0.3Uill 0.0253 75 IJ.70 :175.7 or "' 209 480i RI lllV BD tA2.-A 3D ST SEJi lfO.I FV ISOl VLV 39.40 {f!.HJ 494.0 0.45 0.5376.· o.zm 0.4801 1~29BIIA 3-IC 1300 1150 o.csco o.osss 153 0.0023 0.0149 O.Oo\97 70 sso.s a :i;;

ST stM 119.1 HI Jsut VlV BRAKE 0.30 2.6 1.00 176.923l 176 •• 92"31 0.0000 lrnBOA 3-lt 14 530 0-3363 rr.o£Jo 0.4317 0.7881 O.OlifiB DO asu; ~ OJ <0 ~ •211 4SOV et l'lD'" BD lA'Z-A 4D ST 6EK N0.3 FV lSlH,.. YlV J~-~0 48.10 494.0 0.45 0.5376 a-.2m 0.4801 tvmu J·IC 131m BSO 0.0500 0.0'5115 T53 0.0023 O.OH:B ~.0497 70 360.9 <

ST SEN Hi1.3 rll lSDL ID 'foot£ 0.30 2.6, 1.oo 175.9231 np.9ZJI O.OGO& 1V299'0A 3-lC 14 lOB o.:m3 0.1)<30 0.4317 O.TI33 0.7734 so 3~9.6 0 ~

0.€0 84.5800 so.mo 57.6540 1\'JOSfiA 1-at m 492 2.1500 0.07£5 19 11.7200 12.7778 0.0376 liS 431.6 if 0 21& 480V Rl tm~ liD 1A2-A In UPR C1C1 VI ClR lA DIS !Sill VLV 0.13 0.45 J.l <0 ~ IY3087A 3-IC 1!2 340 2.1500 D.0765 0.1310 0.02&0 ro

·----------~·

Page 68: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

IIIDI-£IB·It5-JIOD-0010 Ro ATTAC11l191T 10.5 • BLOC( KOTOF. STIR! DATA

•t• AtCEl. rmmR BOARD NAJIE C:O!IP l'tOfOR HA~ llP Fll LRA l/IPf "'lUI 110nlR HOT!lR ClBLE CABt.! !:ABlE tABlE CABLE TDL TDL liiiA!. JilT At START TJtU: VOlTAGE REV HD. Io ,, jh HD. SIZE lENGTH R jl RD. I R jl VDL! SEt REI :< Ill ro 121 -480V 21 liiJV BD 1A2-A 7B LIIR CM'"T ClR !A DISCH lSD YI.Y 0.13 o.£0 3.5 0.60 75.0803 45.5"18! 00.7043 IY2161A 1·3C Ill 375 !.1500 0.0765 Tl2 7.5300 0.3363 ua.• z O,G28T ~ n, H'22G2i\ 1-at 112 35 2.150tl 0.07Ei$ 0.0753 0.0021 m 22f ~SOV RI JUlY liD IA2-A 7f Ul'lt tlln Yl CLR !A SUP ISO VLV 0.13 . 0-!5 3.2 o.£0 B4.l!l5 so.ss.g 67.Hl2 lV3020A 1·3C 112 250 2.150<1 o.o765 n 11.7200 12.2575 0~0191 es 421.6 'P m 123 490V RX l'fDV l!D lAl·A BF UPR CHIM VT CLR JC SUP lSD liLY 0.13 0.45 3.2 O.liO S.C.3!15 !ill.:iijsg &7.H92 1VJ035A 1·3C Ill 250 2.1500 O.D76S 19 11.7200 12.2SJ5 O.OtSl liS 417.6 b 224 48\W RI IIOV DD !A2-A 8B tilR OiTifT 1l CLR SPLT IS!ll VLV 0.33 D.95 5.7 0.60 4&.5932 27.95~ 37.2745 lV1990A 1-JC 112 "' 2..1500 0.0765 liS 3,7900 4.7382 0.0337 B5 41&.3 225 "BOV Rl !IOV &D U'l-11 !A lliR CIIW IC ctl Sl'lY ISDL VLY 0.3:1 0.95 5.7 o.oo 4t.5m 2Mssg 37.2745 JY2020A l·3C Ill 5!5 2.1500 0.076S 11S 3.7900 -1.9403 0.0409 85 417.5 0

0 22& 4BGV 21 lUlV BD tAl-~ l OD UP tlfTft vr Cl.R 1C DISH 150 VLV G.l3 C.45 3.1 6,60 84.:S800 50.7-180 fiT.&L40 I \~309M I~JC 112 "' 2. fSOO 0.076'5 lS 11~7200 ll. 7349 0.0361 liS 430.5 :s JV3997A 3-IC 112 ,., 2.1500 0.0765 0.-4!100 0.0153 "' 229 480~ F.l nOV Btl IA2-A gr UP CK!" YT ct! !B D!SH ISO VLV 0.13 0.4~ 3.! 0.60 81.3115 SO.SB6~ u.m2 11'3060! l-3C1!2 150 2.1500 0.0765 T! u.mo t2.157S o.mt 85 <127.6 :t; 230 4BOY U IUJY BD JA2·A 31 llll CPlUif HI Cl.R liiS&H IS[t Vl.V 0,33 0.35 5.7 uo 10.5932 21.3553 37.2745 1\'2030A t-31: U2 510 2.1500 0.0765 TIS 3.7!00 <.B865 0.0330 as <117.1 0 0 23! 480V RI IIIW BD U2-A 80 LIIR CHTHT JC CLR DISCH ISO VlY 0.13 MD 3.5 0.60 75.BSD3 45.S282 60.7043 IY:l210A l-3CIL1 m 1.LSOO o.om m 7.5soo a.5g21 0.0378 115 417.5 ~

b IV3ll!A 3-JC Ill 40 2.1500 0.0765 o. 01160 0..0031 0 0 233 !BOY Rl HDV BD IAH IOF UP Clllli VI CLR LD DISH lSD VLV 0.13 0.45 3.2 0.60 84.3115 50.SBfi7 &7.4492 1~01HA I-3C 112 250 2.1500 0.0765 Tl 1!.7200 12.1575 0.0191 115 427.6 -"' 2J< ~!JDV RI tiDV Btl IA2-A LOA lliR CHIH1 10 l:l.R DTSCH ISO VLV 0.33 o.g5 5.7 0.60 46.5932 27.9557 l7.2745 !Y2090! L-,_ Ill 416 2.1500 0.07£5. TIS 3.7!00 UBH 0.031B BS 41&.tl ;u 0 12J7 480V Rl 1L0V BD IAH liD RCf> 1llRII BARR no CNTI! ISO VLY 0.70 1.30 12.0 0-60 11. L3Le 13.21l1 17.1051 LY1650A 1-at: 112 LSD l.ISGO O.IU6S 124 0.6320 2..0~ 0.0497 B5 414.2 1239 (BOV RI IIOV BD IA2-A liE ReP THRH B!RP. CHTlll LSDL Vll o.n 0.45 2.6 0.&0 102.14&& L!.2990 B1.7173 l\12&60A 1~3C 112 L50 2.1SOO 0.0765 T9 11.7200 13.1115 0.0497 BS <12l.2 211 4BOY Rl !OY BO 1!2-A 120 Rt:F Dll ClR. nM OIT~T ISUI vtV O.ll 0.60 3.2 o.oo e4.3LL5 5o.58£g L7.ml W2B£TA 1-JC 112 m 2.1soo 0.0765 m 7.5"Joo a.s739 0.0418 es '117.2 -· 241 4BOV Rl HOV BO JAN 121 RtP Oll tli R0R [Milll !SUI Vl.Y 0.33 o.gs 5.7 o.6o 4£.sg;2 17.9553 37.2745 1V2!7BA HCII2 tlB 2.1SOO 0.07t5 TL! 4.7200 6.1tl!i 0.0497 as m.1 .. t2SI 4BOY Rl KDY BD IAH l6D EICS LTDR HI CDliT !LILT ISO VLY 1.13 0.95 5.7 0.60 "6.5332 27.5559 37.27(5 1Y22121 l·3C 111 &SO 2.1500 0.0765 TIS 3.7900 S.L9JS 0.0497 as 418.! ~- 255 4BOV RI l'IDV UD IA'l·,A 13E ANIIlJI.~ SPR. JSlN VLV L.OO z.to 5.0 O.GO 5!.!162 31.11697 -42.·mo lV3157A HCI12 &Go 2.tsoo 0,076'5: Tl9 I.SSOO 2.950<1 U<59 85 404.7 (f: t2il7 UOV DSL AUI BD IA'ZA SA Di IH AIR CPRSP. L 5.00 7. LO 14.5 0.62 s.ms 3.7011 4.&!36 Pl220<1 1·31: Ill 74 2.1500: 0.07&5 130 0-0238 O,)B]!J 0.0057 ~5 :m.o ,~ (:"":

1289 mY !Sl lUI BD 1!2.\ 2B D& U.-A Rll £IH f~R 2-A 15.00 l9.50 11!.4 0.49 2.24:30 1.09SI 1.9551 Pt2&29A l-3C IB '' ti.B490 (r.070S H9 0.0057 ULJB 0.00<7

~ 31!.1 1]01 ~BOV SOSD nn~B 3200 " QUIRT Wl STS PnP Ie-!1 JSO.OO JS'j.QO 2£194.0 0.30 0.1214 0.0882 G.mt lrL47<1l& 3-tt IJtiO 575 O.IJ5110 o.oses 0.0144 0.~1611' :m.t mo -;

~:I: n. 1Pl4742.B J-JC 1300 575 o.osoo- Ct.OSSS $s: t327 4SOV !!I IIOV DD 1.81·B 40 C!lTF6l CY!Ii6 PfW lB .. B AOP 2.00 l.ltl 22.1i 0.62 11.7670 7.1955 '· ':!314 lrt&1529 t-3C 112 649 2.1SOO 0.0765 131 O.lUO 1.5342 0,04'16 ~15.'1 "'m rn !<.z -i 328 480V Rt ltnV !D IBI-B 8! VOL CDN7 rANt OUllEl !Sl/{ Vt\1 1.90 l.SO 2E..O O.LO 10.2147 6.12ee B.17l1 1V177U9 1-31: 112 485 1.1500 o.rms 129 tl.%370 1.21CJB 0.0371 illS . ~13.3 ~_,

I 330 iUOV ~~ I!OV BD 11ll-B 1A tllP.6 rLOif ISUI VLY 1.90 3.50 2.6.0 0-60 10.214? £.1298 e.1717 lV225SB l-3C U2 L70 2.1SOO Q.0765 12'J 0.2370 !.£7J!i 0.0513 po 40B.S m~

> 333 4BOV P.I ti!W BD IBHl LD SEll FlDII P.£1 ISLH VlY 1.90 J.SO 16.0 0.60 10.1147 6,1288 e.J7[7 JY2e08B L·3C Ill 282 2.1501 0.0765 m 0.2310 0.8433 0.021£ 80 ~8.8 !'-CJ IV28D'JB J~lt 114 135 J.UJO O.llBl5 O • .C60B o.our ao Q 334 4BQII R.t IUIY &D l!t·B SB RIISJ lD £:1lAiliUI& PMP \ILY tOJIT 1.90 3.SO 2L.D 0.60 10.2H7 6.1288 a. t7L7 1Y2L009 1-:!C 112 612 2.1500 0.0765 m 0.2310 1.5528 0.0168 eo 405'.3 rn •J3& 4B(IV ll liUV BD IBI-B 1711 AmutS SUNDPlPE ISUI IJLY 0.67 2.10 5.0 0.60 53.1162 31.e097 42.4730 1'191558 1·3C IL2 1150 2.1500 0.0765 m 1.6600 3.4875 0.11650 95 40i,3 0 t340 4!0Y ~I HOV BD l BI-B LIE S!S Bll!!LH !HI TAIO: Slru!DFf lll.V L.BS 3.50 26.0 0.60 L0.2LH L.l!BB B.1717 LY21BT8 1-JC ILO 612 1.3!100 0.0705 m 0.1370 1.1037 O.lll53 Ill ct•J.D ITJ 1360 480V it l'tnV BD IBl-B l4A CNl!l SPiA.T HOI!: lB ISlN Vl\1 3.20 5.20 36.0 o.£0 7.3773 4.4!£( S.90L9 JV2B3DB l·3C 110 430 1.3500 o.o1os 131 D.LOOO o.6e05 0.0303 eo 330.S -< •364 480V Rl ~DY SO !BI-B lSI LIHR Pill' 19-B KlH nllll VLY 0.13 0.45 3.1 o.£0 84.3LL5 so.sm 1!.7.441.12 1Vl915B 1·3C 112 B26 2.1500 O.Oli5 rg u.noo J3.mg O.Oii32 BO 401i.3

13&9 480V OS!. m eo !BIB 51 IS 18-B m CPRSl! 2 S.OD 7.10 44.5 0.&2 5.9681 3.7002 4.6e2G Pl221S 1-lt 112 120 2.1SOO 0,0765 m o.o2BB 0.2e6B o.oon llS 40!.4 ... 137J 4eOV DSl. lUI aD 1818 J; £~ Di EllS HI SUP VLV fK HOi 18 0.13 0.3g 2.L D.£0 I02.1C6L 61.2880 ~1.7173 Pl2Ui7B I-3C Ill J5e 2.1500 0.07S5 1B 13.9500 !4.2897 0.0121 BS 42&.1 ~ ,, 1373 4DOY DSL &II BD JBIB 6! OS lD-B nurflER i!l. EXH FAH LSO 2.65 2 ... o.sz 13. 27!1 8.2330 10.4JBB Pl224lJ I-3Cil2 65 2.1500 0.07£5 129 0.2950 0.4347 0.01150 liS 393.2 ... 376 480V DSl AUI liD IBIII lB tlG lB·B M £IH fAll J-9 15.~ 19.50 LIB.< 0.19 2. 2431 t.mt t.m3 Pl26SbB 1·3C 18 132 0.8490 0.070S 149 0.0057 0.1178 0.0093 85 102.tl "U;;o:t:=-o t3Bl 490V nSl. AUI BD !BIB 40 us Rll 1B-B m vm r111 JS.OO 20.00 LIB.< 0.49 2.2m I.Om 1.SSS!I Pl34S1B l-3t IB 150 O.B490 0,0105 149 0,0093 0.1357 0.0106 115 404.7 ~ E §= Q!_ I 13113 4809 ctr~, vr n m-s 38 l'lPE CHASE CU1 fAll IB.-9 '3.00 4.00 25.2 0.66 !0.5'J89 &.9979 7.8801 lPl30BlB I-3C fltl 591 I.J51l0 0.0705 m 0.1000 D.1191J2 0.04J7 80 2.eo Jlo.L rocn9 {...J:::: w::;·::rro .J394 41!lJV CloA VT BD lBt-B gA RHt Pl'IP lD-B Rl1 tl~ fAN 5.00 li,!O (5.0 0.62 5.90JB 3.L531 (,6'306 lPLJ0418. 1-Jt 110 m 1.3500 0.0705 m 0.043{) 1.0636 0.0533 BO 2.10 ~U.7 0 ~ 3 -l

- roc 13115 lBOV CU VI BD IBI-D Jt Oilll SPRAr PMP JP~B ill CU fAH 7.50 9.00 61.0 0.57 4.1936 2.44lt 3.511~ !PL3D&IB 1·3C UG sg1 1.3500 0.0705 HO o.om o.em 0.0119 00 0.70 415.2 r-:J:li:~o 386 4BOV Cr.A 'lT Bn 1Bi~B 51 STJ> Ptf'&·li~TB BST P11P SPCLRiAH 7.50 9.0\1 62.0 O.S7 4.21131i 2.4410 3,519& lPl3l6tB 1-31: 110 520 1.3500 0.0705 140 o. 0229 0.7249 0-0367 _ BO o.1o 409.1 mg.w~ 3117 4SOV ti.A 1JT 89 181-B 5E CCS UFV FM SJ> ll.R: fAN !-B 20.00 24.50 13~. ~ 0.39 !.Ble4 0.7138 !.1591 1Pl32DLB 1-x ta 370 0.8450 0.0705 150 . 0.0036 0.3tn 0.02&1 110 0.41 3'l9.7 15'- Q m

(f) m 3118 <SOV til VT DO 181·8 8A .SAFET'i U;J PISP. IB-B Rll. CU FAll 5.00 b.ltl 50.1 0.&2 ~.'.!969 3,2840 4.1559 1Pl2991B 1~x uo 756 1.350<1 0.0705 137 0.0~30 J.om O.OSJJ eo 2.10 420.4 \0 lil" OJ 389 4SDV tiel. VT BD IBH!. lOA CNTF& CHR.S PIU' 11-B Rll CU!: fAll s.oo £.10 45.0 0.01 5.9018 J.t:m 4.6305 1Pl30111 1·3C 110 596 L:lstJO 0.0705 131 o.ooo o.sm; 0.0420 " z.to 404.8 ~ :!;:

4!0Y aA YT til !SI-B ee PEl< R" EL i9l CLR rAH Ja-B 4.00 ~5.0 0.02 to.tm &_.5Bii4 D.3lSO IPl3HlB L·JC llD SID 1.3500 0.0705 m o.tooo o.BZ!!O O.OJBL 80 2.!0 3117.4 ~ OJ l'lO 3.00 "' z 311 480~ tU YT BD lBI-B 2C PEH Rn El 713 C:U TAN lB-8 3.00 <.00 2L.O 0.62 10.2147 6.J:IJI B.O!H llt3L111 I-3C ILO 404 1.3500 0.0705 131 O.iOOO 0.&454 o.om ao O,lO 3B3.6 < t.:mo 0.0705 lJ2 0.1000 0.£535 0.02U9 so 2.<(0 394.0 0

~ Jg) 4BOW CU. VT BD IBJ-B 'll' P!H ill E1. 737 CLR riH JH 3.00 4.00 25.3 CI.DS 10.(573 &.8127 7.~&2: lfUIOIB 1-3[ 110 410 if 1397 4StiV C~A VT ED IBl-B llA cmrr BlD& EllERS PRESS fiJI IHI 1.00 1.10 15.0 0.02 17.7004 tMm tl.B9L7 1Pl3715e L-lt Ill 150 2.1500 0.0765 115 0,4950 0.8175 O.Oll5 115 402.L ~ :': ro

Page 69: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

V9H-fENIS-rtOh..OrHO RD ATTAO!Imlt lO.S - B!.OtX tlntll£ STAP.:T VI'ITA

KIR AtCB. KOTIIR BOARD HIJIE COftP !010~ HAllE liP m lllA li!PF !IBTIJP. IIOTOR ftOTOR CABLE Ci.i!L.£ CABLE CAllE WlE !Ol Till TOTAL Tiffl!.. START Til£ 'lllli!SE Rl:V NO. la •• jll NO. SUE l£NG111 I jl HO. • • jl 'llll.T S£C "'' (1) :;: "' fJ98 l80V CU VT SO IBl·B 2A tDHI BlDG Eft All!: ttHUP FAK B-B 10.00 12.20 110.0 o.sl 2.4144 1.279& 2.011< IPlJJOBB l-3C lS 210 0,81!0 0.0705 H3 0.0139 0.1!112 0.01!8 85 110.3 z •399 480V tt!A Vi liD 1111-B !D W1!G GAS TR!KT SYS FIN 1-1 20.00 25.00 m.o 0.1& 2.0120 o.ms !.78&11PLJSJOB !·3C 18 "' 0.8490 0.070!i 150 0.0030 o.mo 0.03!5 75 9.70 l9S:.O in

138 <BO'I Rl ftD'I DO 192-B lD ST GEl! !Ill 2 f1l IS!.N 'llY 39.40 U.!O 194.0 0.!5 0.&792 O.JOSJ 9 .. 5066. 1\llOOOS 3-IC 1300 850 o.osoo o.asas !53 0.0023 ~.0!173 0.(1497 70 3li2 .. 7 m 'I' ST 6!11 !Ill 2 f1l !S!.H 'llV II"XE 0.30 2.6 '·" 176.9231 176.9231 o.aaoo J\130008 l·!C 14 824 0.3363 O.O&lO 0.4393 o:9535 0.1039 so 370.! m

t51JO 181W XI tiOV BD IB2-B 40 ST SEll NO l f1l IS!.ft VLV 3!,40 !8.!0 !94.0 0.45 0.&792 0.3057 IJ.60D& IV3010B 3·1C 1310 BSO o.osoa D;O.Sl!S 153 O.OD23 0.0813 o.on7 70 362.7 I' ST liEN fill -1 r11 IStK VlV BRAI::E 0.30 2.& 1.oo n&.S2:n 17£.mJ o.oooo lVJOIOll 3-u:: 1~ m 0.3353 o.o&go 0 •• 391 0.9263 0.0!12 so 36!.9 g

sos <18011 R.r !IDV BD 1B2-B .. RCP THRII BAR R.Tit tJHJir ISO Vl~ 0.10 2.30 12~0 o.&O 22.1318 13.2791 17.7054 IY2&!0B 1-JC 112 618 2.1500 0.0765 121 0.&320 1.%07 0.0473 85 !IS.9 0

~ IY2&478 HCill 100 2.!l00 0.0765 0.2150 0.0077 "' 506 ~80:\7 2% t!OV BD 182-B &E Rtfl THIUI BAR CIIJliT 151l \'LV {1,13 0.45 2.6 O.bO 102.14f.§ 61.2880 ~1.7113 !1126701 l•JC. li:Z SZ2 2.1:500 0.0765" " 11.7200 12.8423 0.&399 85 422.4 'P 507 48GV RI HDV BO 182-B " UP tHTJI \ll ClR lB DISH lSD VLV 0.!3 0.45 l.6 o.;a 102.11&6 U.2RBO 11.7173 IVJIOSB 1·3C 112 1&3 2.1500 0.01&5 '19 11.7200' 12.7155 0.0354 ~ m.& N 0 0 1'13!078 t-:lC 112 440 2.15011 0.0765 0.9460 0.11337 "" 1510 !so~ Rr ll!l~ eo 102-a 70 lWR omtT tB CU DISH ISO VlV 0.13 0,60 3.5 0.60 7S:.S803 <15.5282 60.70.3 tV2275B 1-'JC 112 619 2.1500 0.0705 112 7.S3DO B.tl54 0.049S as 42.0.7 0 0

JV227611 1·3C 112 40 2.1500 0.(1765_ 0.096.0 0.0931 0 !" 51! <aov RI •ov •• m-e 'lF UP CXTft VI ctR IB SUP ISO 'llV 0.13 o.!S 3.1 0.60 84.51100 50.7480 &7.&64n !Y3051B !·3C Ill 5!5 2.1500 0.0765 !9 u.noo 12.8918 0.0!!7 :as 429.£: ;o 512 4EOV 11 Hill BD IIIH lOT UP CNTII YT ClR !D 511? ISO VLV 0.13 0.4S 3.2 0.60 ll4.3ll5 l0.58&9 67.443'2 !Y30!6i !·JC 112 304 2.1500 0.0765 19 11.72® 12.m& 0.0233 f.:as ~28.0 0

E Sl3 1HOV 21 II!J\1 liiJ lB~-B IDA UIR ctmST Ill CU: SPLY ISUI \IL\1 0.33 0.9S 5.7 0.60 4&.5932 17.9S59 37.2145 !VlOSOB 1-3t: 112 513 2.1500 0.0765 TIS 3. 7900 !.ll!lO o.o:nz U7.2

i:i 514 IBOY ~~ "Ill iD 1112-B lOB lWI CNTK! !0 ct! SPtY !Slll VlY 0.33 0.95 5.7 0.60 1&.5932 l7.9S59 37.2145 mom I-3CI12 337 2.1500 0.0765 115 3.7900 l.S!I& 0.0258 5 us.o 515 iliGY n tinY ~0 1B2•B IOn UP Off!! YT CUI ID DIS ISO VLV 0.13 o. f5 3.H 0.£0 94 • .5800 50.7-tBO &7.&&40 IVJI208 l-3:1: 11'2 255 2.15"00 0.07&5 T! 11.7200 12.2683 0.0195 41.'l.9

I·JC Ill ' !V3!21B 3!0 2.!500 0.07&5 0.73'10 0.026{) r U· 518 480V Rl ftll'l BD IBH 7F UP CHTft VT C!R I! DISII !SO VLV 0.13 IUS 1.2 0.&0 91.31!5 SO.SS&3 67.4492 lYJ02QB l-3t tt2 412 2.15011 0.07&5 19 u.noo 12.7348 0.0361 ·!IS 4211.2 I 519 1BOV RX HilV BD 1'82-8. 9A LVR I:HTII.T lA Cl2 lllSH ISO VLY 0.33 0.95 5.1 0.60 4S.:i!13Z 17.9559 J1.ZH5 l'IZDIIIB 1-31: 112 525 2.1500 0:0765 115 !.79011 4.9181 0.04G2 B5 4!7.3

;?~ (/.' ... 510 480\1 RI lmV .liD JB2·8 BD UIR tHI"T ID tilt UlSH ISO VLY 0.!3 0.60 3.5 0.60 75.11803 15.5282 60.7043 !'122B3B I-3C 112 <63 2.1500 0.0765 TIZ 7 .SJOO 8.5255 0.0354 as 4!9.5 r 1'121B4B J-3C 112 &1 2.1500 0.0765 O.J440 0.0051 _n: 522 4BOV Rl Kill ID IBN er UP DfTI1 VT CIR lC DISK ISO Yl\' 0.13 0.45 '3.2 MO 84.3\15 50.51/&l &7.4492 II~Oi31 1-lt 112 '" 2.1500 0.076.5 !' 1]. 7200 12.78(3 o.om as 419.3 ~I

";:: 1;: 523 4Bt'V RI l'lll\1 !U Jtl£-11 !15 liiP. t:lltKT IC Cte llJSil ISO VlV c.~ O .. !IS S.7 G.&O ~&.5932 27.~5 31.2H5 J\'20408 l-3C It::: 4t1B :.rsoo 0.01£5 TJ5 J.7900 4.Sa!2 0.0]73 '' 41£.!1 "m •528 .(SOY' RI lltl'/ SO 192.-B 12t AID!tl.US SPR iSUI !JI .. V O.f.7 2. Etl 5.0 0.&0 Sl.IH.2 3J.SE!I1 42.~~0 1\'?1708 l-3C 112 720 2.15(11) IJ.07GS 113 t.ESIJO 3.2G80 0.0551 B5 ~1)5.9 <?_z f534 4BlW RI 1'10.~ ~D IB2·B Ill RCP Oil ClR HOR CHTftl !SUI VlV 0.33 o.ss 5.7 MiO !Ul32 27.9SS9 37.2145 1'12BBDB 1·3t Ill 5<5 2.1500 0.0765 TIS 3.7!£10 4.!1639 O.oue 85 417.1> N-1

"'~ G 510 -19011 P.J liDV BD 182-B tlD RCP DIL tlR. I!:TK CHJHT !SUI VlY 0.13 0,60 3.5 a.&O 15.8803 45.5282 50.7043 IV2ei4B I-3C 112 2&5 1.1500 0.0705 TlZ ].53!10 O.OS9B 0.0203 85 ua.2 )'-0 !Vl2558 1·3t 112 100 2.1l00 M765 0.21SO 0.0071 rn S570 !BOY DsL AU! BO IIIli SA a; 18-ll AIR CPP.SR I 5.011 7.10 44.5 0.62 5.%8! 3. 7002 Ull2& Pl2220 1-JC Ill !00 2.1500 ll".07&S m 0.0288 0.208 o.oon 85 401.5 c •512 lllo• asl AU! sa IBlB 211 Dli U!-17 R!l ElK FAif 2-B IS.OO 19.50 119.4' 0.49 2.2427 1.0991 1.9553 PL2fi653 1-JC 18 110 0.11490 0.070S "' O.ODSJ O.Ol!! 0.0079 85· 401.0 I tS85 6. SKV S!!TDH ID 2A-! IB CMTFBl CHI& PI\P 2.1-A 600.00 45.00 l&l.l 0.35 14.1297 !.9150 13.235! 2Pl'S'.i0! 3-IC 1210 b73 0. lOSS 0.0110 O.ll730 0.0525 so us 530U CD 507 6. !KY S!!Tl» BD 2H 0 lli\1 PI\P D·A 000.00 £3.00 m.o 0.11 11.077! 2.!1)4£ 10.8753 2PP6S7A 3-IC 12/0 3186 o.tnes 0.0180 0.3<57 0.2485 llO 3.&0 sm.4 -< I •sa a £,, ro' S8JBK ID 2A-A 10 AUI t'mVTR PftP 21.-A 601),1)0 49.50 JOO,Il 0.20 12.7017 1.5403 12.~451 2PPS15A 3-JC 12(0 '" 11.1085 0.0780 O.OSIO 0.03&7 85 6.60 5&30.4 .: ::::J •59& &.SKI' SI!TDH BD 21!-B a Eitll PI\P H·B aoc.ao &3.00 311.0 0.19 11.077! 2.114& 10.8753 2PP7l2B 3·1t lliD 3822 0.1085 0.0780 0.4147 0,291l! 90 3.10 &!42.!

~~ •597 &.ltv SI!TDH BD 28-B !0 lUI FEIIIV!R PIIP 28-B 500.011 4CJ.Stl 300.0 D.lO 12.7017 2.5403 12.445! 2PPSBIB a-te 121o 300 O.lDSS 0.0780 0.0326 0.0231 as 6.60 5liZl.O •&SO 480\1 DSL AUI BD 2AJA 5.1 01 21-A AIR CPRSR 2 !'i.OO 7.10 11.5 0.62 5.2£81 3.7002 4.6826 Pl220S I-3C1!2 100 l;llOO 0.0755 T39 a.Olllll o.24JB o.011n as !01.5 Hi62 4800 IISL lUI 80 2W 3! Ell DS Ell6 HI 2.\1 I 2!2 SliP VI.V 0.13 0.39 2.& o.&O 102.14&6 Sl.211110 81.1173 Pl2!60! I-3CII2 160 2. t5Q{I 0.07&5 TO 13.9500 14.2940 O-.llt'l2 85 42&.1 16&4 <BOY DSl WI BD 2Al! · 61 IS 21-A llllllEi P.ft EIR Fill !.SO 2.&5 20.0 0.61 13.2191 lt.2330 10.4188 1'1.2242 1·3C 112 52 2.1lOD 0.0765 T2B o. 2950 . o. 4068 o.oom 85 :..s.s "''J:;D)>()

I ruro:::l:ru ~ m !BOV OSL lUI ll6 2111 28 DS 21-1 RK ElH fAll I·A 15,00 !9.50 I!B.4 0.49 2.2127 1.0989 1.9SSO Pl21iJBl l-JC Ill 70 0.8491 0.0705 H9 O.OOS1 0.0&52 0,0049 85 397.4 cc..cru-

ro c a P I lli72 480V mSL AU! BD 2AIA 4D DG 1\11 2A-A Pl'il. VEllT FIJI 15.00 20.0G 119.4 0.!9 2.2127 1.om 1.955<) Pl.lliOA 1-3C IB 130 0.8490 O.OJOS HS 0.0093 G.UB& 0.0092 B5 40'2.!1 +:>. :::;· ::J" CJ) ! 614 !BOY CIA .YT BD 2AI·A IOC PIPE CI!.!SE ru FAll 2A-A 3.00 4,:!0 2S.2 0.66 10.53!1! li..!97lJ 7.11803 2Pl307lA 1-JC 1!0 100 1.3500 0.0705" 132 0.1000 1.0<50 0.0491 B5 4Jg.O 0~3-l - 0 c { •m ~SOY tU VT BD 2A1-A 5£ AT\1 t.BA Jf'R SPU.E. ClR tAN A-A 15.00 28.20 105.2 0.49 2.523& 1.23U 2.199! 2rl31SIA 1-SC 18 210 o.a-190 o_07CS' TIS o.ooal 0.1B66 o.oua 85 401.9 1\.)S::~o

!.1!0 !BOY CIA VT BD 211-A SB PEN f!li a 737 ClP. UH 2A-A 3.00 4.00 25.5 0.6S 10.4021 &. B£59 7.8151 2R.l0!1A 1-:n: 110 ~2 !.3500 0.0705 132 0.10110 0.4537 O.OIUS so 2.40 J79.3 rng,w-;< ~ Q m 1££1 489V CU YT BD 2AI-A 2C Pill Rll a &92 CUI Fill lA-A 3.00 4.30 26.7 Ml 9 .. 9506 6.1654 7.Dm 2Pi313IA 1-3C 110 776 1.3500 0.0705 tl2 0.10110 1.1<16 0.0541 8S .(22.0 (f) m

4.00 26.7 O.S2 5.SS06 &.1&94 1.flon. 2PL31I u. l-JC 1!0 350 l.JSOQ 0.0705 tl2 0.1000 {1,5125 0.0247 es 406.1 0 @' "' 682 480¥ Clo\ Vi DD 2M-A !OB PiH Rll EL 713 tlP. fJJl 2A-A 3.00 !;: £85 !BOY tl' \7 ID lM·A 4A EG TRlliT SYS I.-A Rrl C'..i: FAll l.OO 4.10 27.0 O.S.I 9.8~&3 5.2133 8.3412 2Pl'3774/o 1-3t 110 500 l.lSDO 0.0785 132 0.1000 o.n:o 0.0353 BO !.OS JBS.2 a. ~ OJ 1650 !BOV m vr eo lA!-1 :n Alii Bl.ll6 GAS TRTMl SYS Fllfl .\-A '50.00 6.2.00 3tl4.0 0.37 0.8736 0.3232 O.Btl6'2Pl...':rHBA l·lC ll 5SO 1!.:!.134 0.0615 m o.-ootz O.U81i 0.0338 7S 9.!0 37t.7 <0 !: •B4l li!OV DS!. AU! BD 2!2! sA Dli 2.1-A m t:P!!S'i 1 5.00 7.2S 46.0 0.12 5. 7135 3.57!& 4.529~ Pt2210 1-3C U2 il2 2-1500 0.11i&5 ""' D.OliS 0,2111 0.0063 85 !OD;3 2

1845 480Y DSl AUl 80 2A2A 2& DG '2A-A RPf EJH fAR 2·A 15.00 19.'50 liB. 4 0.49 2.2411 1.09111 t-. SSSO PL2£<7A 1-JC IS 100 0.841Hl 0.0705 m 0.0057 0.0905 0.®70 es 400.0 if ~ ~ :: ID

·----·----- .·r- -,·-· -·--:-··

Page 70: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

m en :;:: rn m -j

> 0 0 m 0 (JJ -< :II rn :::::

17-51!,1r'~2

lmli-teli~HS-Tlll&-<1010 M AITACHI!EHT 10.5 ~:SUlCI: liCITDR START DATA

IIOTDR HD.

KDIIIR HAH£ RP FLI I.BA UU'F IWTllR lU!TllR Zo b

1301 480' SDBD 2BH 3200 3C CI!PHT tl& SYS Pl!P la-B 3SO.OO 319.00 :ro84.0 0.30 0.1274 0.0302

1914 lSOV DSl AU! BD 2Bl8 ~~ li6 1ll·8 AIR Cl'RSR 2 s.OO 191& 4801 ISl AUI 80 1lll8 3A Ell D6 ENG SUP VLY FRIIK llDR 19 0.13 >918 480V DSl AUl 80 1lll8 6! DS 29·8 JrumER RK EIH FAK t.SO 921 4BOY IISI.. AUf DD 2B1B 2B DG 2e-11 RJt Ell!' FAI' fAll' IB lS.OD

1-927 490\' Dst AUX BD 2BlB .fD DE PJI 2B~B Pill VEIT f'AIC IS.GD 529 <lillY CU \IT 80 281·8 38 PIPE CIIASE ru1 fAN 28-8 3.00

1931 4110Y CIA VT 81 281-8 SE AF11PI8A IFP. Pl!P SP tlR FAH 8-8 tS.OO t934 4BGV C!.A VT 80 281-8 BB l'EJI Rl! EL 692 CUI FAK 28-8 J,OO m lBOV CIA \IT BD 1lll·B 2C PEl! Rl! EL 713 tlR FAM 28-B 3.00 936 49GY C!.A VT BD 281·8 9E PEl! Rn EL Tif1 CUI FIM 28·9 J.GO 942 !0011 CIA VT 80 281-B tlB EG TRll!T SYS i-9 R1! CUI m 3,00

1943 4liOY CIA VT 80 291-B 31 AU! BlllS 6!5 mliT SYS FAK B-8 SO,OO tHIS7 UOV RI I!OV SD 2B2-i 128 CCS HI C DISOI VLV TO KDR D 0.67 fU02 4atiV DSL AUI Dl 2B2B SA DE 2S-B AIR: CPRSP. J 5.00 fH04 4BOV liSt. Alit BD 2829 '28 06 21!-9 RPI EI fAll 2-D 15,00

1119 -480V RI ltBV BD IB2-S SC RC1 O!t CLR. SUP CHI~ ISOL YLV 0.13

7.10 o.~

2.65 19.50 2MD ~.DO

IS.~ 4.30 4.30 4.00 4.10

62.00 1.'30 7.2S

I!.SO o.60

u.s 2.6

:ro.o 118.4 IIB.ol 2S.2 m.s 2&.7 26.7 24.6 27.0

304.0 7.6

44.5 118.4

3.5

0.62 5.9691 9.7002 0.&2 102.1466 &:1.3309 0.62 13.2791 a.23lo 0.49 2.2427 t.ll'Jil'J 0.49 2.2<27 LO'JB!l' 0.66 10.5389 6.9979 0.49 1.9891 o.ms G.62 9.9506 6.1694 0.62 9.9506 6.16!1 o.os 10.7!160 7.1361 0.53 9.8363 5.2!33 o.n 0.8116 0.3232 0.60 35.1198 21~0779

0.62 s. 9581 3.7002 o.n 2.2427 1.0989 D.6G 75.81Ml3 -4:5.52112

1120 <BOY Rl nov 80 lAt-A SO eCP OIL CUI SUP CI!TJIT ISOL VLV 0.13 0.60 J.S 0.60 7S.890J 4:5.5292

IIDTOR Jla

C!lllE HB.

0.1216 2PL4ll2B 2PL4743B

4.6826 Pt222S 80.1441 Pl2lSOB IO.llSS PL225S 1.!1550 Pl26748 1.9550 Pl.34508 ; .aaOJ 2f'UGBJB t.nH 2PL31619 7,8072 2Pl314IB 7.son 2PI.3t21B a.tDt2 2Pl3tota S .3112 2PL320I8 O.Sllb 2Pl37608

28.1038 2V279lll 4.6826 Pl.2230 l.95SO PL2!llli

60,704"3 1Y800B fYSOU

60.7043 lVII!! 1V817A

niN ACCEL CABLE CA2l.E CABlE CABLE TOL Tilt TOTAL TOTAL START TillE. YDlT~ REV SUE l.£NGT11 i J~ tro. R R J1 VOLT SEC iEQ

3-IC IS~ 675 O.OJil :HC ISoo 675 0.0314 HC 112 122 2.1500 1-3C 112 162 2.!500 HC IIi DO 2.1500 l-3C IB 120 0.8490 1·3C 19 150 O.Sl!D l-3t 110 460 1.3500 1·3C 18 250 0.!430 l-3C 110 4Sll 1.3500 1·3t liD 306 1.3500 t-3c no 340 1.3500 1·3t ItO 367 1.3500 1·3C 12 J!iG 0.2134 1-3C tt2 342 2.1'500 l·3C 112 HS 2.1500 1-JC 19 lH 0.11-190 t-3t tiD 408 1.3500 1-Jc: no 70 l.:tSOO 1-JC 112 425 2.15~ 1-3C Ill 175 2.1500

Ill 0.0540 0.0540 0,07&5 0.0765 0.0765 0.0105 0.0705 0.0705 0.0705 0.0705 0.0705 0.0705 {1,0705 0.0615 0.07£5 o.oru 0.0705 0.0705 0.0705 0.07!5 111 0.0765

0.01!6 0,0182 )0 3.10 371.1

ras o.o2BB o.l'lll 0.00!3 as TD 13'.9500 14.2993 0.0124 · SS m o.mo o.ti!S<) · o.oo6J ( as m o.oo57 o.J076 o.ooasl' as T-48 O.fl0!13 0,1357 0.010& ~ 85. 132 0.1000 O.nJO 0.0314 I B5 m o.oo57 o.1too o.OI7!j· as 1:12 u.1ooo o.nB.'J o_mu ." as m o.1ooo o.stat o.om as u2 o.tooo o~ss90 o.0240 ao m o.tooo o.m5 o.om so T5b 0,0012 !1,0759 0.0215 15 121 o.mo t.36r.J o.ol62 es T39 0.0289 0,27&0 O.OOBB 85 H! o.o~ D.I02S o.ooao as nt s.2:;oo 9.B!53 o.oJ:l7 as

9.2500 10.5400 0.0459 as

m.6 4ZT.l 3!!8.7 . 401.8 401.7 410.1 416.5 HO.l 404.5 301.5 3Bl.l 364.9 400.5 ~02.9

401.3 423.1 :P.4

Gt;cP 9--21·'1'-m.o :Rl ~

-""-9''l>"Y-lSo )> ~--- mo

~:I: ms: "'m <;(z "'-< m~

Page 71: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

WBN-EEB-ED-Q000-999-2007-0002, RO

18-Feb-92

WBN-EE8-MS-TI06-0010

ATTACHMENT 11.4, · ··Page !l.Q! ~!l. '.:· .'·' · .. -.

·' -··

. '· .·.,I

Attachment 10,6

·-·.

Calc. STUDY-EEB-WBN-12-001 Attachment 3 Required Motor Starting Voltage Page 6·.Pf 29 · .···.' ._;_,_ -

PAGE I '1 ;;J. .. ,.,.,,

:, .·

4BOV Switchgear and· Motor Control Cente.r Motor Starting Voltages' .:··

·._ .. ·.: :

. . ··-

. ·' •;-.:....-:;:. ... ·. . ·· .....

···. ··.·., __ .·.·

,- ... .·•·.

-.. ·. ··,,

.

· .. . ·,,,

:---·.:-:·

--, ..

·· .. . · .... ,.:

··· .. '

·:,

' , .

Page 72: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

(f'!

(."')

=~ rn rn

> 0 0 1:1 0 m -<

ll!IH-Et&i'""<Yll06..f!010 RO ATTAOIE!IJ 1D.6 - l!ll Vll..Titfi SlllTtlliFJ.R triTOO STMTIN6 VIX.TIIfiS

ll11rlllllll Alt!LRBW«S EIO_llll£

LV";; llll!G: ,..!,4111USS llliFJI OllElllllE

]"' STJIRT STMT lllE lll.T l!l.T !It

($) ($$)

1m Bldg Gen felr f"1A 1001' Sllll ill1Al-A 1C 1-lfil!-30-103 100.0 1.15 120.0 !21 O.ll O.U!W 0.13Zl6 O.IQl91lJI.lUO 1/0 105 0.00723 0.00616 m.a ttiFCH3iT on. SYS FUfl ltrll UIH m oo w'""' :JJ l-KJR-70-4H :®.o us 389.<1 2004 0.30 OJ.27« o.03823 o.l2157 IA.m.51t SO!Jtlt 509 o.oom o.owt m .9 1o; J.I PMillil... Cilfi

~ Sillll!l1AJ-A "' ll!.m<ldiOIIIJ! 509 CA!!t Clr faJ!A-A tltr 1 ~81'1 SIOf BJ !AH 7B looHTR-lHlfl"'\ 1S.O 1.15 91.0 m 0.33 M4305 {).21221 G.~JallR..m:n\ 110 WI 0.0621, 0.02760 408.1 IWFAll.

4&:11 SID( ED lAl'"ll 18 lFU&:IlA UO 110 0.01481 0.03660 !IIlii IIl W·A It 1-lfil!-:10-71-A !0.0 1.00 73~ lSl 0,13 O.&ll! 0.13302 O.IJ569ll!.l7lM 12 !50 o.!llll o.ome 368.@:-alt Jl,O Eat llOO!IRO SUI ID loU--A 7C lft47SIA 12 ll 0.1Xll40 0.001115

miH Clr Fan 1frll 1ttr 2

E!ec Bd 111 jill A-A Clltlt Ait Rt11 Fan 111-A

.400'J Slot ID IA1-A lfJ loo!ITR-30-8li2-A 75.0 1.15 97.0 413 0.33 O.bB15 O.ZI.221 C.UiMJ lPIJ81Ui 1JU 471 0.06'49 0.02862 (117.0 lOCI/ Slllllll1Al-A 1D 1PI.ISJ7A l/0 llO 0.01<07 0.00!10 ~Sill !ll W-A lC IH!TR·31·::<s.; 50.0 1.15 Sli~ 3!5 0.370.672l6 O~ISJl 0,!2(;1 1PI.I500o\ 1/0 Sill 0.03115 0.03015 110.1 ~Sill !ll1Al-A !IX: 1·1t!R-30-~.A---IOO.O.L~NL31 '·'li511 0.09171 0.29051i ll!.~ "' 191> 0.113376 0.03011 3&.5 I!IOV Silll Ill IAl-A ICC li!.WOI UO 70 0.0091& 0.~ IB<ri Slllllll JAH 2C 0-lfil!-31-11012-A 150.0 1.15 275.0 J82!i 0.21 O.USS2 0.03193 O.llll7ll!.l5l2A 110 111 0.0048.1 0.00131 Ol.l · 48IW Slii!EI!IIAH 2C llt452DI! 410 141

l:tJI'!Wil toa. 51'S PI.IP C-5 ~ Sillllll1AH :ll 0-lfil!-70-51·5 350.0 1.15 :m.o l<l8l 0.30 OJ27« 0.01113 0Jlll7 1PI.173l0l«<lll 515 0.01138 0.01!ill 384.3 lilt 3.1 IB<ri Sllll illlA2'>l ll li!.IT.MA 300ID1 ~ Sill !ll JA2-/I ll li!.I7JSS 500Kll ~ Slli! m 1A2-A ll 1PI.I7l!!i 500Kll

NJt. coo' m AIR CPRSR A .fHOV m ro lAH ~ D-«m-:n-25 m.o us tu.o no o.2'S b.JU':Il o.09657 o.ll1111A.5Q3J 4/G s11 o.o3562 o.m!lli m.rn Stati®F.irePiptH U!OVSH»>fll1A2-II 41l 1-i'JTR-.2&-H .20/J.01.002:X).OlJ1f 0.270.22Sl$0.QE.0790.21678-lltSCIOlfi.SOCVDI3220 G.a505S 0.0069ol 316.ftsr

ll't!004A 5lil'a. l22D =or-· Spent Fll"..! Pit Pip C-5 {SPNEJ .u!IW SlflH m 1A2-Ii Oi!lR-18·35·5 100.0 1.15 lll.O 647 0.41 0.41067 0.11218 ~.'112>9 11'1.15111\"' 531 0.03111 0.03315 396.6

lPL&.\JS 110 .f.7 0,00&3$ 0.00282 Oll) l'e<h Clr Fu lt-A '" 1 46GV Slli! Ill) lA2-A 7A H!JR·30-9S/1-A. 71.0 1.15 W.O 113 0.33 0.613Ql 0.21221 0.6070lli!.WO\ 110 50 o.07ll! 0.03258 403.1

ISO'/ Sll>l ill1A.">l 1A li!.4821A UO 93 0.01217 0.00l58

Ill' FAIL

Ill' FAll.

iW FAit

Ill' FAll

.. Bldg 6!n !.rlm!tt"f>lN.\ ""'!illlll ill1A2-A 711 l'i!ll!-»-157 125.0 1.15 111.0 91J7 0,29 O.li9130.0180> 0.2S157 lPI.S150 1/0 ·120 UN 0.01968 ~ @..~ (BOV SID!. BllA2-A 7D 1-tml-lr77-A .60.0 1.00 73.9 593 0.211 O • .f.SSS4 U3302 (lo,t356, lA.471SI S2 660 G.l~ 0.00159-~D EOi 110014&0

""' !WI m JAH '7D 1PI.1771A 12 20 o.00121 o.OOl2J CRD !Itch tJr Ftalc--A Ktr 2 J.8!XI Sib ffJ 1AH SA 1--tm!-31>-BB!H. 15.~ 1.15 97.0 U6 0:33 0.&3881i 0.21C83 O.&Oll9 lA..~ 1/l.l 53J 0,07166 O.OJIBO 404.4 tiP fAit

llfflPI!ilCAl!JI; OWISill; PI.IP MI mrr • m AIR [1lR5R H Eho Bd l!a 1111 H ~ lleeb Clr Fae IH Ktr I

~ oo· Kl!ch Clr Fi!\ 19-9' t!tr 2

4aoY ShdD Bd Rl" thlei 9-8 SUtiot fire ~ 1H

4009 5KW llll/12--A &\ 1A..C831A liD en OJI1257 0.0055!1 4.BOV srm Bl 11tH 90 G-lfiR--lHs-A 15.0 US 92.0 S92 l.l.ll M41!5-! tl.l~ 0,42.34:1 lFt.SliM U 1~ G.0217.f. 0-COOXI 429..9 46II'J SFDI SO IBHI 2!1 1-;{JR-'lG-lOZ 100.0 1.15 120.0 624 0,31 0.42561 0.1319-4 0.4046&1A..516G 410 122. O.o:!Btl O.OOJSO .UU .f.BOY 9Qf Bl ~ 1-KJR-7G-3!HJ 350.0 US 389.0 2l:l!U 0.30 IU27« 0.03923 O.J2l9 1FU70 lDOt 515 0.01438 0.01&82 394..3 7ot JJ PMtillL COO ""'SlDl m lSHl X ·-· ll!.lllll :lOOIQI 515 <" 1001' S!DlOO 181~ 38 1-lllli-62-101 200.0 1.15 221.0 !In 0.25 U6S20 0.01205 0.16285 lRl02!i llk'W:II 391 0.001l7 0.0105! 116.! 480V ~ !IIIBHI :n o-trn!-32-16 125.0 l.!S 1El2Jl 710 0.28 0.344'11 0.0%57 0.33111 U\.SCI89 410 79S 0.05478· O.GC889 314.4 Sot: 400\' S1Ui 1D 181-i 7A !Hfl'R-"31-3111-£1 SO.O 1.15 62.5 360 0:!1 O.i377J. 0.21296 US537 191..4U.OO 12 650 0.1381'1 o.oma 39-1.':1 ISO'/ SlDl !ll!B1~ 7C l-lllR·31H2/l~ 15.0 J.JS 97.0 Ill 0.33 O.bl305 0.2l22l 0.10701 lPI.-!8llB 1/0 58! 0,07150 O.Ol518 100.1 (SOY 5tDi QlleH 7C 1Pl-484te 110 1!13 0.01393 0.00&18

/If' fAll. NP FIIR.

caov mw m 181-:B 7D t"fit"R-30-JS-& ~.o 1.00 7.U 583 0.2111.~SSSt o.t3302 o.US6\! .IH..f.7MB 12 tsn o.oot o.oma ~ f'Jinoott.I!O .m1J 9IW m JB!-il iD .1R..-476!i8 f2 30 O.OOMO 0.00185 OliPI SlDl BliB!-B 100 H!lR-J0-92JH 15.0 l.ll W.O 413 0.33 0.64301 0.2l22l U070! IPI.4alll 110 578 0.07815 0.03468 101.0 480Y ~ Bl1B.1-B tOO ll\COO VO 103 0.01"393 0.00618 1.WJi srQi lll·lS..'l..f.l 29 o--KTR-31-%12-B a!.O 1.15 215.0 1625 fi,2, O.USS2 0.0349'3: D.lCl.V IA.m98. ~OOC!I 6N 0,01H6 Q.Ol620 392.0 ISO'/ Sllll !ll !IH lS ll!.«lii 400101 !00 (90V 5H»1. 8:1 1~o.B 29 C/0 20 O.OOlJB 0.001.23 IOCI/lllilllllBHl X G-ltlR-lH9/H 210.0 117.0 1109 O.ll O.ll!Q 0.115272 0.21315 1PI.Sl00630<iill llll 0.01110 0.0!650 409.8 ""'Sill Ill JBHl Ill 1-lllR·IH-B 200.0 1.00 130.0 1171 O:f/ 0.22515 0.0!0~ O.IJ67111P1.5011i lllMll 3333 O.OS1ll 0.~ 312.! 681

1PL50ISR 50CtDI 3333

000 F-U8l6-A llot F-ll81H

OCHF-12119-11 llot F·l211H

lVSil Ol.l"-111.1

-l Ul

Page 73: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

.. ,

')

.J

• ..•

)

')

()

0

.)

-i :I: lf)

lf) :t: rn rn -i

l> CJ CJ rn 0 OJ -< :::0 rn < ~

'8H£8-trHI06'110lG RO ATIA!li£HT 10.6 - UM/ Vtl.Tflt£ SIIJOEM tmOP. SJM'rmi Vll.TAllS

E!l;_11ll.E tm1 EOOIPID Jll Ill.

.. CABll: CABll: CABll: Ill. SllE l!ll; Rt

lllllll· Hill - R8WI(S jlt STAAT STMr TilE

\I!.TI'ilT!£1:

LVSG Yll.TA!f. -u&.4V lN..E'SS IDlED DTimii~ (0] ($$)

F\D Bldg beD Erllaust fJ.B lB .(8IV !'Q Ill 1KHI 7A l-KIR-lrl62 125.0 l.®lV.O 8SC OiJ 0.31098 0.0901! O."lJ!Sl. 1Jt517i) U0 J20 0.022!15 0.01%8 ~12.5 Clll Keeh C:lr Ful!HI tltr 1 «m ~ ID 182-B 7B t-+UR~3l-80/li! 75.0 l.l5 fl.O 413 0.33 0.6-4JIJ5 0.21221 MOJIJ:3 UU8568 UO 07 O.OS'JOO 0.02621 -09.~

1B 1PL4a518 1/0. Ul 0.01S28 0.00618 .JW.c l.Jir Colpt Clr Fan lH um 91»1 m 1HH 7D l101l-ll-18-B 60.0 1.00 73:.! 583 o~ 0 • .(5554 0.13302 0..1569 1Ft47898 f2 ~0 0.13&58 0.03936 ~.0 e

~ 5DI Ill 1!2-ll 7D • !Pllm! 12 0 Ml6SI 0.-tltlt Air Rttl fill IH (871 !'iD{ M> JBH 'it 1-ffJR--30-39-B 100.0 l.tXI US.O 828 0.31 O.l20~S O.oml 0.3)(95 .tPL.(SS 4/0 •20 0.029'9 0.02632 391.8

460'1 5DI Ill !ll2-ll '1C 111.481l!il 2SaiJt !20 O.OOJU o.-lM'/9£11( 8l 1B2-8 1t 210 lO 0.00109 O.oDQ60

Sf<nt Fuol Pit Po> H liO'I liP! Ill !ll2-ll 9A IH!TR-71+1! 10<1.0 I.!S 115.0 647 0.42 0.41061 O.lnl8 0.31W!Pll8'1$ 40!IIl! !112 0.02223 0.0.1143 403.7 410 6S 0.00«8 0.00400

liO'ISilrtA!on> Bd '"""t-il liO'I mmtJJH 90 1-!!lR-ll-55-i! 71.01.15 n.o m o.33 0.44862 o.ti&Jt o.- UI.S5lOO 410 20 o.o1.151 o.otl1! C21J 12 Ill 0.01061 0 .(@$

0!0 llecll Clr Fa•11H!IItr 2 0W 901 ID 182-B 10:: l-mR-3r8012i1 15'.0 l.lS tJT.O 413 o.:n 0.6UlS 0..212Zl 0.6011J31A..481ll 110 418 O.o56S! UlS!B UU liO'I!HIIIIl1!2-ll 10: UI.W!S 110 Ill MtSl>l 0.00611!

Ntl. Bldg S!a ~ly Fatt 2A .falY 511»1 &I 2Al'"A 21: 2-KJR-30-104 lOJ.O l..lS 120.0 &)) 0.31 0.42l!l. O.l»!oa 0..0019 2R..S!40 4/0 84 0.00579 0.00517 0.4 C!II'IHlll toa. S1S lUI' 2lh\ liO'I!HII Ill 2AH 3S 2-l!IJt-JHM\ :llO.O 1.15 !89.0 2001 0.30 0.12744 0.038l) O.t21S7 2li.UllA IOO!IJI 615 0.01ll60 O.OIB?l 38!.2 1lll

em ~ Clr FaD 2IH Xtr 1 ~ Lllr tOIJ!t Clr F.an 2H. tro J!ecf\ Clr Fn 2IHt Ktr 2 Elec 8d llllltl B-A Catst Air Rtn Fill 21M\ Elec Blf Rl AIC tr-A CPrsr

-UJOY Sbda Bd ~ Chlr In\ ~: Bid; lien fWust faR 2A fl!tl Halrlli119 ExharJ:st Fan A ... SlllTO(UI Ill 91/BJ 6'11 Station fire Pip 2iH

Speat fuol Pit Po> A-A tm ~tech Clr Fu2C-A lttr 2 P£!1: l!l1 Wl'l (!R Fti12t -A ® !EOf a.R Fi\11 t-A I!IR 1 lw. Bldo Gel Sp!y Fao 28 - coa. SlS !1.!1' lll-B

U!YI 9111111/Ah\ :II l!U72!A 50011:11 6l5 . ""' 5DI Ill 1Ah\ 71 2-l!IJt-:lHJ/hl 71.0 «N m m ?Al-A JC 2-i~TR--ll-74-11 4o.o ""' liP! 1111 2AH 10 2-II!R-lO'SliH 71.0 91.0 liO'ISHil ID IAh\ 9C IH!TR-31-l»-A !11.0 1.1> 56.5 :315 0.:!7 O.IIZJ(, 0.1!8n OJ.ZIII otl!OCI\ 12 620 0.13Zll 0.03813 3!2.£ .(80\1 ;,n( II) 2A!-11 10C 2-l'!m-30-39-A IOO.G US.O .CBW SfDf 00 ZAH 2C Nt'TR-31-12812'1\ ~.0 1.1S Z7S.C 11125 0.24 0.1455!' 0.03493 0.14127 at45201t ~/tl 350 0.01206 0.0107& 400.2 480V !:aft £0 lAH E 2PI..W2A ~I!J 350 (SOY SIOf £0 2A!-A X Hfl'R--31-3&12-A 2~0.0 ~~7.0 1209 0.2~ 0.21%7 0.05212 0.21325 2!\.SlZ!!il. 30DPtll 192: 0.00%0 0.011D 42!1.9 I#J/90( tn lAl"'A 78 2--MTR-»-21~ I2S.o 1.00 m.o 116& 0.29 D-.))668 o.osau o.mso 2ru1so ~1o 3&9 0.02.542 o.DZ2&9 ~7.2. .CBOV .5KH !D 2AH 7C o-tn'l+-lHl& 100.0 l.JS 120.0 624 0.:31 0 • .(25&1 OJ31'U 0.4046.t ZUlU ~/0 229 l).(l1578 D.DJ40B 427~9

""'5DI Ill IAH II> Htllrll-<h\ 75.01.!5 1!.0 In 0.33 0.14&12 Oj!OJI OJ13l9 2!15180! 12 306 O,c:<530 0.01882 107.6 0N stDf Ill 2112:-A .W MrR-2t'i-H 200.0 1.00 2)).0 U79 0.27 0.22S15 G.U079 0..21&19 2PL50DlA. SOMH 2002 0.04399 Mn65 329.J 6St

~~~ 50!101 2002 480V 5WN m 2AHt 90 HrR-7NH 100.0 U3.B M7 0.(2 U1067 0,1.72.(8 D.3J269 2Pl4895A 4/0 70 0.05119 0.6(569 386.4 49'N 9DI!i12AH Bll. HITR-::t!-aan-A 75.0 97.0 ""' ""' m1AH m 2-!lm-lO'n-A 0.0 S<.o ~'"" !mf m 2A2-A 1~ HITR-lHIBlJ--A 75.o rn .o ""'SHllllll lll!-il lB 2-lllR-lO'IOl 100.0 !.llllO.O £26 OJ! 0.<2<25 0.13102 0.10335 Z\51£0 110 76 0.00514 0.00"7 410J liO'I 511!! Ill 21ll-il X 2-lllR-71>-33-il 350.0 1.15 38!.0 2001 03! OJ21U 0.0382l 0.12157 211.47428 5(001 £JS 0.010£0 0.01623 38!.2 70> l8<fl S1l!! II) 281-il X ' 1!UI431! SIXIIll £71

Eltt Bd Rl Nil H' .f8tiY SKll m 281-il 7A HUR-31-311HI so.o us 62.5 3611 o.37 ~.1377J 0..272% 0.!.85312Pl.«£00 u 53& o.um o.0330'l •oJ.c Redprocati~ char!Jint Pip CIJOii 901 ED 281-i ll MTR-Q-101 200.0 ZZl.D Spelll fuel ?it PIP £--5 liT mt ~PIN 91W Ill 2BHi 7B ~79--lS-$ 100.0 1.15 US.O 647 0.42 ll.U061 0.17248 O...lm9 2Ft45«6 110 26!1 O.GJ&Zl 0.016011 410.3

IP\.45415 110 47 O.oo6JS OJ10292 I,2'H SO{ ID 2Bl..S 7D :HITR-3l-7H 40.0 >tO 4BOY sat ED 21'1-il 100 2-K'!'R-li-9212 7S.O fl.D l8<fl !l{l! lll21ll-B 7C 2-111R-""l21!-il 75.0 97.0

tM EtH 110014110

!IF FAIL

!IF FAIL

!IF FAIL PMI!l.B. C!Nl

Nf'Fflll

!IF FAIL Nf' fAll

Ileac l.wr ~ clr Fn 21HJ ~ m em rm 20-s HJR 2 11111 ll!ch Clr ru 2IH Ktr 1 Elec Bd Rl .vt: !Hi l::n'st -tfiW 9llf ED 2fiH 28 -OOR-31-.12912-ll 250.0 1.15 275.0 lB2S

liO'I 511!! Ill 282-B l8 0.24 O,USSl 0,03493 0.14127 211.4441:6 .VO JlS O,OJOBS 0,00%9 Ul.B PIM!a aHl

.a:w 91){ IJ) 21!2·8 2D ~7Hl-5 351>.0 1.15 :i89.0 20B4

... SII!!II)lBM lD

... 511!1111l 282-B l!l liO'I 511!1111) 282-B l!l

211.®1! 4/0 315 03) OJ.2Ut 0.03823 O.l21512Pt47m SOMlt 1500 O.Q235S 0.04!60 :131.0 M 3.1 PNW1B. CtHl

211.173!8 m<l! 1500 PMtUa too 111.!1$s !«iiJ! !Pli736S _,

-··-,_,-; .. ,

:;; <D z in m 'P m '?

.0 0

~ :!; 0

~ .i<l El

Page 74: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

i

Calc. STUDY-EEB-WBN-12-001 Attachment 3

WBN-EEB-ED-Q000-999-2007-0002, RO ATTACHMENT 11.4, - .: .·- · Page 9 of26

Required Motor Starting Voltage :,_.· _,_Rag~ 9 ~f.-26. · ... _

... __ , .-::'

i!L

i ~ . ~

l!i I !21 i !!;

~h~ ~~iil:£ to Us i~;~ a

;(i ~nn .!! n~u

Oe>e>c:te>

!~ H!!:"'U !~ $$$"'n

§!i ~u n !.!, u~

~00 ~ -,.~ "' II! ~!L ~ cidd 0 .. ~u ~

~ ~~~ ~

!!i l<i"il:! "1 ~0 0 ';'

!'i illili!li 3 t1 ~9~ ..,

9;!'1&! j;l

"' ~:l:J ~ ~ 9~""\

l':l~l'1 ~ S!, !!i!S* ~

ii .. ~ Ui ~ !i

i ~2 i~~~' i ~ I I'"'"B '" I Uiii iii @~n ~

w S!

!i ~1<1~:!:

~~ J!~~ ill ?· ~. "<liiJII! >!"l H.., !!: r· !!l ~£u ~ d !i~ :3

~il:U a

.-·

,, .,

:· .. ,--..

-·,_

THIS SHEET ADDED BY REV _:t_

0 0 0 'i

-· ·:;._ ··ITs··· ... ... -.. ·u

·-. :-

. ,-.

: . . . '-·: . '· :-.:

.. ··'

. -.· ...

.. ··

. -. :-

., ., '·

I . I . ! . ' ,.

.. ;

·. ::

1 .

Page 75: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

WBN-EEB-ED-0000-999-2007-0002, RO ATTACHMENT 11.4, P_age _1Q of 26

.,·. E.-

. =

.. . .

...

w

~ i " :;; s = = ~

:J ;: !'ii li

- ": ~ "';"': --= : --:::: ;: ..: - ~ --- ::< ~a ,.

~ ----~~;a :::::::=!; ~:;:~~· •c:o~ ....

=-=:;;:::~::=~::~==== ..... ~~~0~~~~~··~-~

=

_. ............... ~~~~ !::::::5:;:::: ~-­- ....... ~~::~ :::;...::;::::: -....... -E=;:;E ::Li;;;;:

Calc. STUDY-EEB-WBN-12-001 Attachment 3 Required Motor Starting Voltage Page 10 of26

-e;

___ ... :::=::::

= § !'ii z -- -

.... _ .... = ...........

---:: "'

5~5555555~5 :;:;:;::;:;~:===:;;;: ......... -_ ........ ...,. ....... "":.0:""::'"':'1"":CO:.-.:"':OO:"": ................... _ ...... ;:; ... ii§§§E~§ESE~ •.• ·'1 •••.•. ... =--- ........ --e., ~::;:::=:~.q~::::;~-000 ... __ ~ .. ---

~i~i~~~~;;;

-t~ ~ ...... c 9 ~ a s 5 = ~ -1:1 ;;:

" ~ !'! :;

"' :;:

"' A

5! § ;; " ~ -g g l!

~' -= "' "' ~ g

"' ., " !ii --~ 5 = -:; -:: .. g e = ii ~

!! <!

~ ;;;

I :s

Page 76: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

~

WBN-EEB-ED-Q000-999-2007 -0002, RO ATTACHMENT 11.4, Page 11 of-?6

.:

I ~ i § ~ lh: i!: g---_ .. == §~ c.:.. 62 -= :;ti ' :: --:::;; -~ ""' 1!:: 5§

" i :af:t "'w =-" -lHi ~.:. '~

~; == --

c:ooucoo-o._ ... __ _ ===:::-=-==--

~~~~q .... _..,._.,.

__ .,. __ ..., __ ... _ ................. ::::::::::;;~ ..., ___ _ ~~~~'i: ""e::: .... .... --- .... ... EEESE ..;;:::~...;..:

~~~~~ a:;;::;""-.,. ___ ..._ ....., .... ___ _ ..... ___ ..,."'"

~~~~~E

~===:;~ ----,!,-~ M

!:!!E= :l::::::::;::::-::.=:=:!::!:: ~co-~

~~=:=: __ ,.. ... :;;::;:;

::::::::;:~

..:::..:·~· oc. .... - ..................... ....

a~~~~= .... :::~=s

~~~=~~=~=~~==~~~~~ --~---~----~=----~ !!!!!!ZZ!!!!!!1Z!Z ~~~~~~-~~~~~~----­-----------------~ ==~=:~~===~======= CC6~es;~SES5555ES55 ... ~~···~~·--~~--asasaaae5as~~aaaE~ EEE=E~==E~Ei=EESEE

....... ~ ........... ===.:::=~

.,. .... ---P;l;::;:;: ~=t::!::!: ~:;r=::::=i~ :::-=~· .. --

=p~~~q~ ___ ... __ .... <> ....... - .... :::::::::::~~

_..,. ___ coo

'":"":CO:~'"":~ b-.-- .... o;.

"' - M.::::.--ZiZ~~s: -:'-:"7;;77 ---.--;:n::==~= ~..!...!..:':..:...:.

":"-:"":'"":"~":"

E3EE3E ______ ... ,... ___ _ E555CS -~-·- ... aseaes ------~~:;::;::;:~

Calc. STUDY-EEB-WBN-12-001 Attachment 3 Required Motor Starting Voltage Page 11 of 26

-N

!i .. ~ " :!::: :u~E ::: "' ::!:! aaa s = == -:l ~:: ,.: ~---;; -- ---- "' ==

~~ -- .., --:.:; :;; == --

~~~~~~~~~~~~~~ --a.--o·-- ... .-.a .... a. _ ... ____ Q_,.. ____ _

--- .... ----------- - ---- ---~~

~-~ gt;:g ES ~:;= E!:= ~35 ~0

~:;;:; ~-:'9 :::: 0---~~ M-o E:!;! ~~ ::~::: ~~---- --

4::;;q::;:;::;:~~~~~::==i 000_ .... .,. __ .,. ..............

~::~~:;:;~~~~=1~~~ ~ ... ~-~-~--=-- .... 2

............... ---·----::;:;;::::: =:: ;;::.;:;: = ---------------===========~=~ -=s---- .. -------St! ... eseesesasee ~assae;;aaasaaa --- ... ------ ............. ...... 0 __________ _ ... ,..,... ...................................... -

5 ~ :; l'J -=---·~ u 1l ~ ::: ;: : o! !E = ;; " 9 :: § ::: g ~ ~ :i I< i e tl

f u

" ~ -!;; "' ~

~ ~ ::;

!l 10

= ~ :; -I :; g I M

!i! " --,.. e :; !<

Page 77: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

-!h.~··;:.;l..~ ~

lO•OtHl . f"a:~~·j ~~~J:.~Oal~" /Q•~I-1 2 ~

. c~"'!<l~' ni?--92 m z m m

.m IJI·W·IS·fiOHUI II uuemn 10-1 w 4Ur Si'lra:c:m n~ xoraa con1or. !2ltu xotcr sruru~ won<;ts m 0 (TliU 'Ll - 111ft 1 XCC IO'!nl Sl'lll'liC JOLTltts liOif IU·UI-llS~tJOHGU Ill) 8 . 0 0

JJA- IILOCI. IJI K'CI' <b "' uc_tmt !ODI:.)O to ltD corn rQIJUJt_ra tau rLI '" uPr ,, .. j[J OTI.I ltol cmt CIU! " _jle IOfOI JOfOI J01U flU IIDJIS Ul. . "' ,:., 10 SUI ••• Slit L!JG mu srur stur n:c 0

lOU rou tdf.t ·o

1!11) !Ill) Ill l$11 6 0 0 notRiJ ID II A tlUS lU C·l lU CU. fl.U1D liH " O·lfNHH UG Ut lU 0.,1 !.1150 s.am 1.mo 7H O.tllOG 1PLUUI Ill 110 G.lHO l,tm ur.7 !"

IICJ UUIID 11·1 lOS en nn Ji IJI-l u 1-xu-n-ul-l 3.00 t,DG JO.l D.H Llm l.UU 1.nn ru a.amo l?LlUOJ I< l!OO o.nn o.un l!l.l Ill .;o 0 m ni rnr 11 UH .. u tn UGO l.l!fl I.O!Il · lru_diar Sera U·l 10S. tU fU! ID lll-1 IC 1-111-n-~ts-a S.GO '-·~ 11.1 o.n ,.uu l.UH l.UOI Ill O.OJIU li'UUU ll 1110 1.1111 l.ll!! JU.I Ill

2tS CU J!Jt II Ul-J " II lllO l.llll t.tm net str U•l rJu~ fh m en JUt u 111-1 II 1•7a•U·ION o.n us s .. n '·'" 4S.uu JJ.sw n.u51 rlt 1.mu mnu II In! l.!Oll ll.lm m.1 5th. m uu b btl Ju 111-1 m eu 1m 11 111·1 II O·ltfJ•lH1iH 1.50 !.SO U.5 0.11 ll.llll II.Jlll 11.1107 Ill utmmmaa 111 lll t.un .t,IUJ 111.1 llSt IU Ill Ia I t1 ru LU-I 2l5 cu Jm u UJ·J n 1-1n-JHJN t.ll 1.111 l.l o.u u.nu n.mt n.am r11 2.mu umm Ill "' O..SUI -umm.t NHU-1 11!\ frt5$ r!u ,., Sir 1·1 ItS CU tU! U lll·J " O·Xtl·H·U·J (1,15 l.OS l.l G.U n.uu u.m~ zum ti' o.mot m.uua "' nn J.nu t.OIU U!.t ,

lOS CU Ull U 111·1 7C II Ult J.H2J 1.111! .,g lll ht 11-1 hid rer 2C5 CU f!H ID 111-1 lC HCV·lHH S.lD 1o.sa ,a_a G,fO ~.UH um J.sm tH o.mn nuou ll un o.mJ t.mo lll.l l·ll'ltH,,P·lUli-1 u:rs <1lr> zu cu un 111 111-1 " II " a.ms t.OOU r·lU11·1,HlUN: :u m:I: IISJ 11 spur Ur 11 rcr m cu tur u Ill·• 1! Ha•H·ll•l uo 5.U JU ua l.l1ll .f.UH S,!OII fJ! O.llfDO nm.n II Ill D.SJJI t.em m.a l-ll125-J ~s:

·"'m 115 CU l!lf II 111•1 11 1112 • 50 uns t.OOll l•lJlJhl Q,~ sdttr hj hr tl·l •• ctr rn us cu n:n lliJl·l u 1-JU·li·UH 5.110 t.U SO. I o.n S.HU I.UJD USH f31 11.um trnnn no Ill um o.mJ m.t 1u.1 Ill 2.1 til rm. ~~ Pta h II nl tlr rn lJ•I US CU UU ID IIH 11 l·ltt~3HI1~1 uo t.U n.o $.51 tum i.sm J.Jm nz O.UOOO lrUllll Ill 510 1.1m o.un m.t na.l 101 2.{ suo rt.r J:a u 1:1• ru 111·1 !1115 CU fllf 11 Ul·l IC l·IIU•ll•lut·l UG 4.H n.t UJ 1.Ul7 um 1.mo m o.mu uunu 112 2ll o.m• a.om m.t Ill l·lllll·l ·"' sua. Jflr •• 11 rd rn lJJ-J 21~ eu nn u 111-1 n- I·~u-l.o-mt·J J.;o t.U l1.l 1.12 um ,.em Ullll UC unc~ mmn 112 "' ~.uu •:om m:.l "' J·UUl·l

Cllt b ~/C Cit ht 1-1 US Cll fUT h 111·1 at O·JJt·ll·U/1·· JS.n 10.01 111., ~-" l.Hll t.om 1.1SSl m o.mn 1mu11 " "' 1.1111 t.OU( IU.$ mun. Cllll b 1/C Srs Oil l'•p 11$ Cll JUT Jl 1JH lr1 O·JtNHl/J•l l.OQ '·" u.& O.ll t.HH S.HU l.llll ULlllfl II l7l 1.1115 o.uit nM ' Ul tap ll·l Ia Ch fll 715 tU 101' JD 111-1 fl l·trHC·lU•l • 5.0~ '·U .n.D Ul 5.1011 usn (.UU rJ1 G.GUU IPUDUI Ill "' l.Uei O.IHJlla.4 lU.l Ill J.J 1ll tliL 50 Jill uu z. t1• rn tn-1 215 Cll rUt Jl ·lU•I U ~-IU·Jl·UU:J 1.H 1.50 u.s t.n u.mr u.nu H.nol ru t.mu mum Ill m ~.lGU o.uu m.t tiDY Jd 11 11 tr Stl fib !ll·a liS tU JUt 10 Ul·J JC 1-JttNl·Ul·l l.U ua ll.t CI.U t.ma UUJ l.IUO fH umow.mn Ill lll O.llll 11.tlli UL.I SUlfA Uar b ll !1, ru 111·1 2t5 CU fUJ U 111-J ,. 1-JR·U·lU!·I UO 1.40 n., ~.n um '·"m 1.1no tH 0.01JGO UUIUI Ill UJ ·D.n!T f.Dl!$ 4U.t Ill I·U2J3·1 ftt Ja Zlll1 &:lr ru 11·1 215 CU fllf RD 111<1 !I l·Jtl•JC·US•l l.U u~ U.J a.iS ta.uu f.am 1.un rn 1.1atGO llLllGII 111 m um 1.1m m.1 111.1 101 1-1 tttf, clrr ,.. 11·1 b Cit ln. 2D~ til fRT II lll-J tel l·iR·lt·lU·I s.u 1.10 {5,1 o.u s.ma J.t:m t.nt' tn o.ama mmu Ill JJ' t.fiU a:am: iDt.llU.l 10\ !.I U.Dr U a. 11 rr s.r rn 112·1 215 CU. fUT ID 111•1 lei l•ltl·ll·lll·l l.GC I.U a.a o.n '· uso 1~nn 1. ma tH a.tmt m.1m1 ua Ul I .llll t.tUl Ol..S nsr nL nr u u mn 112-1 ltS e'll·fU! DD lll-J II< l·l!l·ll·lll·l l.ll I.J4 l.l o.u ll.12lll1."1l 10.1112 tll !.llloo ULlllll "Ill Hf a.uu UlOl 125.1 I-OIUI·l

~~ cll~~Q tnt II fthb IOI 115 en rut ta Ul·llfll NZ·11·lls-& l.U 1.10 '·' us u.un n.1Alt n.nu lPUlUI Itt tu t.mt D.41U Ut.S cg-g~?J ent Jld't buJ rru.s 111 1·1 ns :u nn u lJI:-1 Ju •·•n·ll·l·• 1.aa 1.711 }S,I I,U n.nH to.rm u.uu rn a.moa llL3U5J 112 1~o · o.Jm t.uu m.l m.s

~~ ..... ~-3(/) nAT aa ll 111/t u., 11-1 us cu. rot n 111-1 Utl·Afl·lH15-J lt.C'G zs.to m.o c.n l.UDJ t.UCl J .U01 fSl t,nm m.mu II m c.mJ I.IUI 111.1 ur rut I'Vo.co-l un J4 1a 11 l]C cui 11·1 us en TlU u 111~1 uc l•ltl·ll·lU·J 10.00 l~.OD lU.I o.u J.UU D.IUJ 1."01 'ISl a.aam mtnn II ut a.m:z t.alU m.1· 111~m Q.:s;;l§ l!llllt •• lkl 1·1 2u cu nn u 111-l tn a-xn-n-11-1 U.fiO ll.OD UJ.I 0.51 UUJ l.lil5 G,}Si) tSI o.uut ur.nua 12 m o.un uan m.I lU fl" ~'-. NOv;.-< t~eiJ Chrt r., .1• Cit hi m en rut 11 111-1 111 l·nt~la-m J.lll l.lO U.l o.n J.UU (,Jnl 1.10u !ll a .. uoaa rmm Ill 4ta t.sm 1.am ut.l mg ,

~ m Cut IUt Pttn ln J·J 205 CU TU! U lll·J 1111-Irt·lt•l·l Ut l,ll ll.l a.u !.llil r.nu l.llll U1 G.IUII ml!lll II Ill 1.1111 l.llll lll.l ~~ (f) m

CIS[m!S· rn WI JDI us cu rut JD m-1 uu G·Jn-u-un s.oo J,lf 4M l ;;; ~ " C:od be f•P lir Uklu m en TDl' 11 111·1 Utll•U-JS·U 1.{0 1.11 SA tUS H.UU Jl.1flllJ,l1U l!l.Jlll JIO llt l.HH I.Oill ll!.l

.~ ~ s· CD ln t•nt Plf n 2Gl CU lUI II 111-l llll·IU·lt·ll l.GO 1.10 U.l .O.Il n.tm u.lUJ lUlU ~a O.U'!.OG lP.Ll!U Ill .m c.sm 0.0111 UI.J . <0 'E ln C~ff! hlr r., US ell t!lf II lJI·J llJ G·l11•1t'·ll l.OD- J.ID II.J l.ll ll.SIH 11.5!15 11.UU US o.moa m1us 112 "' !.Ill( o.am m~z <

PUL!D ~l·lZ 0

~ tJ:t:.L hlllu Ytc: ru n 111 en rur n 111-1 uc 1-m·,S·H '·" til 11.1 •.n s.uu ).2110 1.1551 Ill 0.01111 IILllll Ill m l.UU a.asn JU.t if t <0 "0 ro

\Olli;tJD\ $ llll!mt IOfCII stlltllt JOLUC! : n1 OF UOr, liCUf IDlU. !$ lCClL£11UOJ Uki IS U JQ\ SUifiJt YliLf!Cl, liCU'l lOUD. t cutr: tnt:tl nro u ttmcx Lucu nas lOt mr. u IUidl c1au '"m cuoa nu ~ . --'

Page 78: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

-··'"'''~"'----?·-----

l!f·W-KS-nDHDU 10 1UlCD!I1' lD.i - HDT SIJTC!~ !JO !llffll C:OJtiQL tl'IUl 101'01 SUlfiJG TDU!i!$ (!IlL! Ll • DIU I IICC 111IOI S!U!!IG TOL!IC!S 11011!1-EIB·!S·IIU·OIIl Ill)

nc_mn IDDt_ro , BOJID com zoamo_Jo tOlD "' lU mr II I!D .atoa: Ill l('Cit .. ji< on11 lttl CUll cuu " jtc JIDtOl XGTQI X01'0i !IU 1I!UIS

JO Sill "· SUE WI: nm nut nut uc YOTil l'OU riJL't

{110) (Ill) [ ll !Ill ncr satu liJSR ron n-1 lOS Cl1 Ill! !D 1!1-1 BD 1-MU•&HfO•! . IO.CQ 1!.10 l!O.O 1.11 o.sm •.ma G.llll !51 UOlOl l!Ll!OSI l-1/1 l!OI O.liUI o.am nu lll

lU Cll ftl'f IP lU•I lln ll/1 llll o.ms o.am Shdt 14 It Cklr Pkt I·! 0. l'lp 2U C:llltlt JD UH nrz O·Ul-JH!/H l.OO. 't,U ll.l o:il ll.lm !l.llu u.mo mmu ru llO 0.1115 o.om m.l l.llhp

!ciltt W. Lc~br b bb. lU w cu rnr 1!11!2-B. a o-m-n-ut 0,13 l.OD la.tl 0.52 25.5511 u.mo tum m 1.17510 1Pt.n5{ 112 no .o.ms ~.nn u;.l Slplf b led hh ha U lH cu nn 111 111-1 n Hfi-JD-2&C Utl 1.11 lU o.u n.l05~ lUfTt u.un m D_, UZIO IPLUU Ill m 1.me- um m.l S!p1g h loa! bh ho lc 1lli CU m1 !II lJH JC l·IR-3Hi l.GD L.TO 15.0 Ml J1.10H 1~.,1113.1!ll l'2t a.moo.ltum Ill m uno o.am cu41: Snti bit n Yllltlf !th ru 2" cu mt 111 m~t n 1-IU·lD·JUZ l.OD 1.10 31.0 a.n r.1:m s.lm um fll a .uaoe u.mn Ill su um uns lt7.l Sc110 lib Sl lit h} Fu lO( CU f!lf ID 11?-1 U 1-ll!l-ll·li 1.00 uo ll.O 0.12 l.llll !.lUi 1.!111 Ill o-.otOIR uum Ill 511 1.2112 ••• Ill 311.2 Colt. lof Or l:ut I• 1/C ll m cu nn- n 112-1 u l"UNHU 47.30 11.40 m.s a.~o o.nn o.au ll.lim nmu l/1 sn um um uo.( o11 ll·llh:r BDa4 Ell ru 111 DSLllrllD llH ll l·llfi·lO·tSS·l 0.3] 1.00 lOot I.U U.331J lUlU 20.1115 tl! l,UOID 1'1.2510.1 Ill ll O.lUI f.ttf5 Ul.2 DG 11-1 U W fll 1·1 2l1 DSL JlJI 1D Ul·l ll l·HflrlH4H U.Dil ll.lO 111.4 1.11 l.llll 1.0191 umtn o. oem milO! II 105 I.Ot!l UO:H m.l 421.1 DJ 11·1 L•bt Oil eire PIP 1 217 DR lUI BD lll-1 . 20 l·m-IHJ·l l.OG l.ll I.J 11.12 li.ltl7 l!JSU 2S.l5U tl' O...I.UMI !'L11151 Ill ll Uill a.tnl 4!f.l tli.KIIW~lllSPI.TnY ll1 DSt Alii 1D Ul-1 ll 1-rcr·S"Ni·l o.u G.l! uo uo 1a~.uu U.lln 11.1111 n u.,mo umu Ill Ill a.Jlll l.lllllll.l lll,l Ill 0, 11·1 by n 10 llr hp 1•1 m an 11111 111-1 lD 1-!rt-11·53·1 l.GO 1.15 ll.l Ul 2J.mt U..5!TS 11.4111 tH 0.0101 Pl.ZJUI· Ill " a.z•u D.Dill 02.1 DC U·llil LDI!OU tiiC fll' A mmuznuH II I·IU-12·101'1-1 0.75 1.21 u.s o.n 11.mo u.:ms u.tm m 1.amo runu Ill " 1.1210 o.oou m.! O.OSlU·J D; b U·l hi tnl J'u 217 DR 1U 1D lll·l II l·ltl·lH!l·l 15.00 lUD 111.1 e.u 2.2m um l.tssl rn a.oom mnu II Ill a.uu o.oau Ul.~ us.t 119" 11·1 Utf !lee li h l.t ru 211 list UI P lll·i " l·xtl-lD-111-1 2.00 1,70 12-i o.n u.Bu 1.21n um tl! o.mto nmu no !5 a.uu o.aan tn.t Dt 11-llir C,ur l 211 1151. lJJ u lll·l II l·lfi·U·lll S.ta 1.10 14-! o.n s.ms l.lUU um U! a.am• ruus Ill Ill 1.1111 t.an7 m.s ut.7 D; ll·lltffhr la IU lu lll D5t. UJ 1D lll·l II l·lU·JQ-Ul 1.50 l.ll lU o.n u.nn J.lln u.nu tn umo unu Ill i2 l.llll o.om m.llll.!

nc: n-liDI tuuou cue m 1 lll D!l. In 10 111-l l1 H!l·ll-ID!D-1 l.ll l.ll u.s 0.1S ll.O!II ll.llalll.!lll !ll D.ll!aaD J'Llllll Ill 111 l.llll o.ms m.1 c-um-1 ec: 11-1 u Em ru 2-1 Ul DSL W 1D 111·1 U l•lfl .. lHSH u.n u.so 111.{ a.u 2.H31 LUU 1. tm tu o.cam nutu II " a.ouo a.aon m.l 425.' Pt U·l tth! Oil Cin: hp 2 lll Oil Ill 10 lll-l a !·l!l·ll-ll-1 1.10 1.10 15.0 O.ll ll.lOllll.lllll.l.llll Ill G.illll Pl1l!ll Ill 111 1.3155 MilO 121.5 !lK UC 111 I U2 SIP fLY :HI list ill II U2·1 Jl 1-ftr·U·U·l O.ll ~.l! :r.u uo uum n.mo u.rm n u.maa num Ill 110 o.ms o.ont .tot.~ ., 11·1 bJ l'llt ro lfr ,., lvl lll !lSI. ltll' 1~ UH lt l·l'tl·U-5H l,DI l.IS U.l o.n ll.stU 1•.sm u.mo tz' a.-1nn n.mu Ill 111 0..35!1 O.Olll UD.J ~ 11-llll ctlll l m m m 11 IU-1 Sl l·l!i·J2·UII 5.00 7.11 H.5 I.U s.ms UtU ·UIU m 0.11171 Ullall Ill 11 um um m.1 tl!.l !It !lit Col tdrigudin l"ftit 211 DSt. lDI !I 11!·1 m ~-li;·JHl 2.00 l.lO !5.0 a.n 1UZJ2 I.~IH J.USII nun 110 151 0.1025 O.OlDC 414.5

f 'De Oil • Co2 Stor b Elk In m m m u lU·l U HU·lHll l.ll !.II u.s uz u.lUS!l.llll u.mo m uuoo mm Ill Ul ·O,lG!I I,G!Illll,l

.fig l!-1 Jalt.UJ IDII:d J!U fall ZU DSL UI U 1!1-1 21 l·ln·lf·4SH 11.11 l.OG 10.0 a.n U.SSU U.·HU 20,1175 tll 1.115011 PL25901 ll2 Ill D,llSII o.aan Hl.l DGU·Illt!DF.UH ZU OSL .UJ: U lU·J 11 l·Jrl·lHt!-1 lS.Gt 1!.50 m.~ a.H 1.201 t.om I.tm m o.mn mma ll Ill 1.1121 um m.I IU.l og 11-1 LUe. llil eire r., 1 21, 1151 1111 !D 111-1 n I-m·tl-li:l-1 1.e1 2.05 11.1 u1 n.stu u.sm. 11-lllO tu t.um unm Ill 152 l.llll B.lllllll.l !X hli DG II SO'!" IU II !01 11 m Blt 1111 10 111-1 Jl.l·lct-11·11-1 1.13 O.l! ).10 u1 !Ol.!lll u.llllll.ll1111 u.!sou mun Ill 151 o.mr o.nu tn.1 JU.t m ' Dg lS·lli&I M ftl If: b) 1~1 2U DSJ. lDI II UH 3D l·m-li-SS-1 l.DD 1.15 11.3 ao.u n.su-4 H.sm u.mt !U · o.nua nms• Ill Ul um D.II.J:JUIU ag n·! ll:t LlllltOiJ tir~: Pill lll lSI lOt II 111·1 41 1-ltl-12-laP.&-J o.u l.ll 11.1 a.1s n.am n.nu l5.21SJ tn a.uon rmm Ill II 0,12!1 um m.l 1-mu-1 11J b 11·1 ~Dllut lu. m 11st. 1111 JD 111~1 U l·IR·3H!H 15.110 lO.OO Ill. I •~·U 2.2Ul l.UU l.!S5l '!U 1.80125 PlliSlB II Ill o.un e.ou' us.1 m ·"-~C 1!·1 mr ILIC II U U fB zn osr. ltll' u lll·J H: l·lf1·3~·fH-l 2.U 2.15 22-i a.n 11.7SU 1.2m !.UOl TU D.231aa !£2:5301 no II l.!lll D.tQU U1.3 Ds u~llit Cpr.~r 2 U! DSL ltn: U lU·I 51 1-m-ll-lll s.cn 1.10 ll.l l.il s.nn l.UIIl t,m, tn o.um tuns 112 121 0,2511 Q.IUllll.5111.l

liT

f~ ~-...,.. R'~ ~

\OllCCID\ $lUJJM IDTOI $1'.U.riiC JattlGI:: l5l 01 UGY, llmt JDUD. U ACtUWtiO!'II!L U At tD\ SUltiiC YOf..fi.IJt. m:m JOU:D. I Cl!lot LUGt! U$tD l$ JISIGI niCti Pr.IS 1411 fUf, u Wltml tUU W;<rl CillO lut

'/'

. )>

=t ,, &lo ·m :c ~s:

. "' rn oz -..., ~~

_:,.

;9$l~Q cc..oru-ro c n P .....>. ,. ::r (j) \J.)~~-~ 8.s:;a.§ ~g.w-;<

Q rn (/) rn ro or

"' " ~ ro "' '1: < 0

~ iii' "' :1 m

Page 79: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

WBN-EEB-ED-Q000-999-2007-0002, RO

. .;!

·.!l

'"':"":"':-:-::~ ------::;;l~!:!::;ta

:a====::: ~~c;~~;; g,....,. ....... """

===~=~ <1'!""!'1"":""'!"': ... o.,. ooo:::oa

====== ~!iEEE~ iH'!iH2iH2 .......... "" ... _ gs~~~E ~9"":""l'"":'9; DOO:::C>-

E E i$ :do15 _ ........... .,....-.......... _.., .... ~~!';:;:::'!;::: ::S...:::::=..: .... -... ., ... -~~~~:p~ :::;-::::~= .... ~~!!:~5 ~..J::j~;:i.,;

~::~~~~ -OC>OO::OO

~~~.::~::; ..... ::: ..... -........... :~:g::::g:~ ..::::j...;o-<...;

!!Z!Z! ~=~=== :=:::i:::::: t:tH;: t: ~ S: _ ............. .... tlttt~ ..... t:t:: e:>O:O .... :gG.,.. ~::=:~:ene~ ............... _ ....

ATTACHMENT 11.4, Page.~4 of26

"1"'!:~"':0::"':""::"'!: .,., ... _.., ........... -Q!;:~:;;:~:~~

~=~;:::::;::::;:;:;

~~~~~~:;~ .,..,. ...... .,. .... g ...

~~~~~~~~ csDo:::ow:ooo:::oo•

""!'"!-:"":~;:::-:~ ........... _ ..... ... :;::~ ...................... .... :~p~~~~:::9~ ::=:.-.::;:..,.co .......

........................... i1-b~i::~i;-bi:: :;;::i;==~=== 5~~5!EBHi Ii )1! it :a ii sHH~ ~Ea;:s~~=

=======

~q~~~~q ..... .,. ......... _ '":""':~"'1":::"!"": ::::~::;!::::::::;

~:;p;~~~~ ... ......... ::: ...... -~9:i!~~~~ ......... -~ ........ -

~*iii;6~ii ===:==== E!!liHiS5!i ut~~;:::;!l;;;;;; "".,. ... -"" 0::::0. Po .................... ................................. .... .................... ....

==-=

Calc. STUDY-EEB-WBN-12-001 Attachment 3 Required Motor Starting Voltage Page 14 of 26

= ----~---~5~

~~ ·=;E ~-

~~ -::; S:: E5 ~""! ~t:: -----~ :::; ·:= ~;!

:

i

Page 80: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

..

. ·"' ·;! ll

WBN-EEB-ED-Q000-999-2007-0002, RO

• • • •

g -, i

-:: ~I

• •• ATTACHMENT 11.4,

. Page 15 of.29 • • •• • .. • "

Calc. STUDY-EEB-WBN-12-001 Attachment 3 Required Motor Starting Voltage Page15of26

• • • • w •

:a - ~~ E~

~/'%1 ~~#y!Pw~/ ~:~... . "

-'-~"""--··-

~ u u .,.

" ~ ~ ~ ;:; .. .. .:.

!::=. iS : -- -EE :; g :; ~~

... P'I __

~i~ ---...:..:..:~ ..:...;,..: ~:::;:::;; :;:~s

' '! ;: = .. it == ~~ !:!: .:.,:,. ;,..-

~ --...;.,;

===

=-~- -- ....

--:: ~ -:; e

iE;;~~~

.,. § z

s "' s -.. - -;;: .,

"1~~"":""':""':'-:"":"1 ... ----- .... -- .... ==~~::;::~=

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •-o-~oo~-GOooBoo-------•-o•6-•-•-•ooqo--

~=~-~----~-~~~--~-~-o~ ... ~---~~-~---~-----B~5~~35~~55~55~5~~~~~:~~~~~5~~~~~3~~~~55 ~~.~~E~;i!ES!~5§SEI~E~~~aaaa;~~~ei;~E~~~$

;:; .. =~ r.--.: ti'"i: ~-~ 2 -· ""' z-

-... .,. --- ... ~!1!:3=1 ::-- .... ;;;::a "'!"':"':-: =~= ... =~~:: d.;c:c:

-.:0':"-:"'1' ......... ~Q ....... ---:.:....!..=.-6666 -:'':"':"':" ""'-- .....

. -;:; . " -·-:;:..: = """~::;;;:

:=.!l!:!.-~0:~= 00:"":! ... s!~e -... - ... ::-;;?J: :=:::o;;

EEE ---;;::::;: !::=:::1 ~~~ :;::::::: ::;-.-. ...... :: ~~5 ---55;

----~-...;..:..; ------:;:;;::;: -- g ";"";" .... :;::;:~

g~~ .!..!..!.

·- ...-!:;; ,. g:;-

~:3] .,.u~ ·c~ :.tJE .:- t

.. .!:;: .::ec

Z~i •o ·--·==.;;. --- -~-t:=t: ~ ..... ~

-=~ --~ .-..=;;; uu• =-~ t:~-e·- =~::.: -~

. ;: ;: B ;: -r. -= :! !! -

-0 --

G-000 ........ 3~:'!~:!~= ~;;~~::;::~ ;::; .............. .,. ............. --:: -::=~=~ ... E!:EE;:;:$ "':-:""'!"":"1'i"'t =------

~~::~!1~~ ._ ... _ ............. _ ...... ~---r:~~..,;..-~...: ..................... = ~~~~~~~ ... -~ ... - .... = !::==~~~::: .;..;~....;..:....::::

!!!!!!!!!! ============~=== ... .,. .... ______ ..,. . .,. .. ____ ..... _

r:;• !: .r. -~=:-:::::.!! .,. !~i~~.:l 5 . .:..c~~o::~s -. :.::g::..-:::3

·~~ ..... ·-- .. ............... a!=E=~~ .:.!l ..

:!~ .:~::.:=-=..: a a 5a:aa;;~

=:::rz:::::=~:: ... ::!::!!t=c;:::::;; ............ - ................... ~===.!:!:!::!: <>---·--'""g Ea~i£S~E~ -~.;..;.;.:=•..: o>-.------ ... ............................ _ -~- ................. ~E§~~§EEi ..:..:...:..:...:..:~..:::

~~~~~~~~~ .... ............ =-= ..... --- .............. ... ...... -....... ___ ..,. :;: ;:p:; ::p=: ;:: =: ;;:: =: =~==: ........ ==:;:!::::: ~~:i!~=::;;~~~ -~-·-----

... ~--- ............... "";"":":~"':V:-:"'1~ - ... ~ ................. ... ~~~!!p;~::;=:~ ___ .,.. .... _.,. __

!Z!!!!!Za"' ....................... ..... _, .... ____ _ _,.. ... _.,.,. .......... ---------

--•u u- -...... .!:· -- ....... ec• .... -.;= !: :: ... :;:::s.=: ... : ::::-.: ... c .. .:=a:;::ec i!g:~~=~~ t:.:.1il ... :;o·.:.---o B! ::,:;o-~-;t

-= =-=- ....... ~ ..... ;, ... _ .. _ ..... .::. ........... .!!!1 .. = .. ;:: ;;:;:;:;~..,=-= ....

!

i ! ! t

i 6 ~ ~ • ~ ~

~ = ,. " §

! :l :::

; ~ § !< :: ~ 0 = it! § 0::

~ -!:i ;;: ;;: ~

.,;

i

I

I

Page 81: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

n:-an,- sl

!I·!EHIH'JG,·OBlO Iii !TUc:m:n 10.'- nov svtttRliW liD ~ntoa cButoL cum. !O'I'Di suun~ mraa!s :l::iL! LZ - Ufl! 1 !~ !Dtllli SllHliC VOI.'U;£5 PIIDH iU-EI!·!!S-:nc;-DDD1 B:U)

IID BLDa. lUI lct!L "' ~C-~ULE I!IDE_JI! liD&U to.m fiJliiPJD_tD tell> m "' tl!l! ,, .. j:r:t. OVf.~ 2ta:l rur.t C.ULE ,, j:r:c l«l'JliiiDtllllfrnll UHE WWS lEV "' ? 10 SitE JD. SUI LIBG stm nm sm.! SEC m JOL'! JOL! II!Lt - m lml !ml I s IllS) 'I' m

? 235 1.110? !D W-1 m mm 11~ sc o.om o.om !-11UH ·o

:u:t~rt lui h Cl r lill U- 235 UDf BP l!l•l lU l-!U·:H-2iS .a.oo uo a.1 e.E2 ,,,m um ;,ton rJ3 umo lPtma 110 IS! UJ5! Ulll l!O.l 0 0

.u:e C:Dhlt fit Snp !jeet P•i 233 U:DV Bl! UH. li& 1-xn-n-m t.sa 1.40 11.! 0.!1 1.1.1110 !.7255 12.30!1 fll 0.31101 IPLilll 110 ll5 o.lm o.om m.o ~ :.?n ldr 5tr 1·1 hclnsh rh 115 1>:01 Bl W·l !In I-1CNH41·! O.l! o.ss 5.7 D.GG H.S~32 27.!55! l1.IT45 n2 UJOOG 11!&01 Ill 10!! l.ll« Ulll l!l.l 101 <0

115 1>:01 10 ill·! liD H 1100 0.1011 O.lll1 ~ ::>rP Bdr 5tr !·1 Jietthsh i'h llS i!OV lb 1!1·1 Ht ~-m·U•H. 0.11 l.l5 S.i 0.60 U.59U 2i.955! S7.2H5 '1'12 1.5300G Vl9Bn uz 1uo 2.2m c.~m Jn.n ... 0

0 235 DnT BE lal·l liE H 11Gfl 0.1052 G.ll2J - . ..,

.6 !ICL't't lll.st b Ch itr Cprsr ll llS I!Of ID lll·l un l-m:-lHGl/2 l.DD !.&G 11.0 G.!! a.nH 5~USi i.sm 1P!.i1U lHI &3t: u~~ u«.t ~ 0

nt•t Staodpipt lsln Vh" 215 axor JD m-1 11£ I·1Ci'·2H46·!. ro.: o.&G 2s.2m u.1m 2D,2HE rn unoanlnlHA Ill m 1.4!1! G.Oll! • «s.• 0 0.6i l.lii

' ·"' .!Uiulus St111dpipt ld~ fli l3S UOt Jb llH. nc l-ltv·2i-H2-l 0.11 1.10 U.5 0.54 2~.2'H 1U7&! 20.23U t2! 1.111UDC lmtol m 531 l.ltlt .O.A4fl1 Uli.& 403.1

ll!:J H5Gl4A'

:0 'i!F. an 'o COI1? 7D 215 ii!GY Bl Ul-! 11!1 0

tfl!elinJ •tr Prft: hp !·1 Z3S !ltOV !II 1!1·! 18A ll·XU·1HN. 2UIG H.Ofl H:S.-D" O..tE 1.nu e.Bm J.nu m JJ.oom lPJ.msA 12 m D.nu e.tm ta,.4 :t~

li n o.ouz o.tm ! :u .wtore Jul h Circ PUIIf 1~ m II!Ot 5G lliH: !It 1-l!i-ll-101/l ).011 UG l'J.l O.il U2U 5.HH li.!ZH !3l t.OBOOC 1P11i2!1 m !ll l.ll!O 0.1141 l!U .a:ie !:ill. BiJtth 'tui: lgititar ·Zl5 DOT R lll-A IU Q-!!.!E-61-m 1.00 u~ U.S U2 21.11!7 U.llti U.$H~ TlS ~.{21D0 1PL&255 l!i: soo 1.mo um .no.t :cy SpnJ l5ln J!r 135 R!Di BD !H·l 1St 1-m'·lHB·! U"l l.U lG-~ Ur ~:.lil( !5.17&1 l'l'.!Hl T1! 1.01000 lV91ES! m m 1.nm o.m2 m.1 ua.I

:up3o.v-".qz: ,..

:iCi lid: ! bh:. ?h iJii iHOV a& 1!1·1 1! 1-Pcr-l-ll!!-! 0.2~ 0.55 (.l ue H.lm 3i.OS1! f~.Uil<{ ·m U5D09li2S30! Ill HE U&5i a.t!O Jsa.~ 1-ZllU·! -o~ ~a irll 1 tslD VI t 2.3& tllOV 811 U2-1 2li l·Ftv-3·1168-l Q.25 11.55 t.J O.U El.1Ulli.nS11 41.UH !11 U.\OQO 1Vl35Dl l!! m ~.m~ n.IH!i 1u.t !I:-2UU·1 :a,_,¥'"~ Jl:o ~m farll St• snr h S:ta Ce11 1 m J!OT II 11!-l 2D Hcr+ls-&. LDQ .2.!0 11.1 o.,o I!.!m &.mz n.,m T24 n.mac mam. He 11ae 1. ma o.aus 39!.5 l-lSSl!·! u:n f.T- OI

~.: :t Fle~r To: ll!P. ftlth Jsin Vir 11£ iliOI Bl l!l-1 2£ l·!CY-Hl·A l.ltG Ut 1u ~.6f IL!20J s.m1n.!m m e.moo 1Y2iZO! JH 120~ 1.m~ um J~~-5 !·lSSH•! u:[) H· lr'" op. mm ;:301' Edr A lslt. Yh U' 1!0\' D 1!2·! li HCN·136!.·1 U.! D. 15 s~1 a.n u.sm 21.m~ n.21u !;3 ,,moe tfUSoA l11 lll ~.!17! O.lll4 !IO.l 9,~ ~0: !dt ! l,h, fh Hi iiDV B~ 112·1 3~ !·lCH·lltE·! U3 C.B ~.i G.U tUm H.~m li.!HS tl! LlS~Dt lVBiGA m l]& C.SJH C.Ul( ta;.S :u ~::: :t l:f!l Jo 1 fi bir. Vir a~ nov so m-! 30 HCi-3·33-1 H.4ll U.H 04.~ D.IS e.Slli a.HU o.mt 'lSJ uam 1vam 30~ sec o.o40I! o.un no.s lB~A 70\ J:~l2S5l·l.!-llm-i :rs :,.

Hit tc a.aa:1 o.uu :as 11 l~ UOH ~-OGU as

.co~ 1 D!uutiall Lille Vh m Dilf Bll 112-1 U. l-F~·l·Ul 1,,0 Ut z:.o c.u 1c.mz 6.3i3s EAm m o.mcG Im:iii: IU m -um a.ozt5 m.z -OC~ 2 )lm.rttiflli i.illt Jl; lU l!OV !D ill·! 4B 1·1Cf-J-H2 LEI! UD H.o o.u to.,nz ulJs a.m~ t2! umo !.'lJUt U1 1SI! Lm.5 a.f5J( m.5 !! Ctu Jc 3 l1l Ish "' 13E lX1lT £II ll2·1 ~b l-!!;V"+&7·1 H.-t:o n.n nt.o o.u c.sm o.2m o.uar~5s o.m:u 1TH9!il m lCG UtDO O.&US 3~0.5 m.~ 1D\ .l!·ll55J·l.Jt·l·UJ-l :as ·--------------- --··-.. ---·· ·--·· ·--- 11/C 20 um o.mz -- -· --·- ·- --. ----IU--······

H 31i O.OnH G.GOll liS :n~plt !1 l:llt Vlv 23£ I!DY !l! l!l·! S! 1-!C9"-l!l·2l5·! Ul uo: U5 ua suus so.sm n.H~t n1 9.naoG tv2sm H2 m; t.lm o.onr m.7 ll& ::r!r Jid'-'il tG :-er 1E h:ht liT i}! iJIOV De UH SS l·!'C'HJ·Hl·l o.n 2.U 11.00 O.iO :l.lm !S.~Hll1.ltSl ~H G.Ula! lVH:U Ill ll{ {i.sm e.nn m.t ::rdrcge.o. Jiet sr~ ni t!ID'I an U!·! 5Dl l-E:211-·0·!0C .f..l£ 5.2~

::tat spra.t !1 !! ~ em i!, 2!5 lllDi ED llZwl SE l·!CY-ii-125-A ~.n G.53 s.lo t.£o H.sm 47.ms n.11u m 2.!sooo mzae& 1 .. 304 O.£S:ii UUl -m.t -u;o:t>o " ~~i\f~ :11taf s~nr Et 1! bisd: fl't' 23' l!Di i!l ill·l SP l·FCH1·m-A l.ll o.i! s.7o o.so tum n.m; 31.ms U£ l.:sooo 1\'l!OU 112 Hi i.IHU UUl U1.5 ro c n P a~r 'tllrh St Sp-lJ rn: st geli t m IMOY Jll!l·! 0. l·!CY·l·lE·! 1.10 uc 11.! o.D& H.sm a.m.z u.mz %24 a. man umo1 UG uoo l.t2iiD o.nu JU.s !"l551~H h!iS a;~- 3 ~ ~£ S}£ l!lll BJPiJSj Th 23' lXDi n 1!2-l 'D 1-FCV·H+l l.U u~ IS.Q u~ 1um E.Jili um m o.um 1V2HO! I"' JJI D.IU~ C.GUL m.7 •• "-•

B' uov II! Ul·! " 19ZHll I" u; o.ms o.oau Q.:s;:a§ .. ";::c) ' ~C1 Jdt U In ilr iefort Str 2li i!IDI ill Ill·! 7~ 1-fCN~-22-! G.ll t!.!S 5.1~ e.so 46.Ul2 17.!m :n.ms m 2.-zom 1V2ln& U UUI! 1.1m UUl -t04.2 Ill ~g.w~

~ Q m rJ> m 53" CD , 2-. !;: ~ CD

~ <C z <

~-0

~ if 0 <C ~ •

--\9l!CCTD\ s t~mm JDME srunn Tn!.u;r: :: sst or 4UV. ~em uu:n. ;s 1.cwnmor TW: n; &::' !at sm~u; roum. mm 1om. ' WLE tnm trm 1s oma mm Pt.U5 liW mr. u mimi ~! LmrnJ mei 1m

THIS SHEET ADDED BY REV_k_ ·--·~.-- ----- . --· ·---·-·-· ·- ·---· . ·-·· - .,...- ,. __ -

Page 82: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc. STUDY-EEB-WBN-12-001 Attachment 3

WBN-EEB-ED-Q000-999-2007-0002, RO ATIACHMENT 11.4, Page 17 of 26

Required Motor Starting Voltage Page 17 of 26

~ h!! ~~ 1! -~ -

=~=~-•.r.;~-t1 ........ _ 3§2~5 - ~ -·i=!;; =,><Qt:~.=.

u ., ~

§ --a a ~0 a· ~ Q-

'"' 0 ~

f.;.

:1

a § "!

~

~ c :· ;; !: !<: s:::

~ 0 -!'to' :;:

~ /(.'3. ($;t?!Jfl ~ 1'1!5]

~ -:.or: _ ... _.,.. -- ~ -; ::; $3 ~:;;;;: ::i~ E ~ '"" ........... ~- ~

., ~

; ;; s .., '"1~"1""! ""'?--- ~;~~ '""!"'l s 959~ ~..:.N..: ;;;; ~:;::;!::;: ............... ................ '"" .... ___ ..,_...,_...,.,

~q~~-~q~~~~~~~~~~~~~Q -O~Q~-~-90~~0GD0~0-0

55aEE5SE~5-a:a;a~E ii~=assssa~a;::~;;:aE ~~~~~~~~~~~~~~~~

~~~~~~~~~===~~=~~=~~ ::::::::::::::::::::::::::::::::::~:::;:::=::::::::::::::~ -------------------- ---::-------------

~~::.:s: .... ::::.,..,

::;:;:::pq -De:> ...

" ~~ ...... un ........... ..:..~.:...:...

........... ~ ... ~ ... .. Q.,. ...

.!!:E!:!:S !~*·.S ;tie: ~!:!~'iJ

j~g;

~:::~~ GO ol:o"""

~::;~:::J ...,..,...,.,...,

~a ~ ~~aEaa~a~~~=~~~~ -~- ..... ~--~~ .... -~-~~---~~-~~~~~~~~~~~~~~~~~~~~~ ~~~~=~~~~~=~~~~~=c~~~

--~~-~---------~-----~~=~=~~==~~~=~~~~~~~~ ~~~~3~~~~~~~~~~~~~~~: --~->.A-N~~~-~~--~~-N~~

§~3EiEE~~a6S~$E5§~~5E =~~~~~=~=~~~cii~~~;==~ ~~~~~~~~~~~~~~~~~~~~~ oo~~~---~~--~opoo-oo-

~~~~---~-o~----~-~---~~~;~~~~~~;~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~ 0-~~-~--VOM-~--------

-a

. .

= " I

"

Page 83: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

WBN-EEB-ED-Q000-999-2007:0002, RO

.~

.!! "M

. H

.. "

NN

-~ "1~~~""'1":

~~;;i~SS

~~~~~~ Oc::>c:. .......

:=;:~o::==S: ................... _ ...................... EE;EES~ gg~gg ~~~2~ ""':""':"-::"'"::-": = ......... ::: ..... ~~ -

;::::;:::~;:;:

E~~~~a ~"1-;""':"1'"": ...................... """ -~....----::~=-~.:::~ ~==:::~~~ ::::::;::;;:::~"'"' ____ ....... ;;;s;=:;;;a;a gi~~~= . ..; :: ~ 5: ::u::: ~ ..;.,;..:;..;.;.;

~~;:;~~~ ...... .,. .... t:;

.................... i'i"1~""!"'! C>Q"='-~~

4"':"'! :::::: -----~ ---5~5

ATTACHMENT 11.4, · Page .Hfof ·26

Calc. STUDY-EEB-WBN-12-001 Attachment 3 Required Motor Starting Voltage Page 18. of 26

w (Jtf -../ ~Pt(~

"";"'!~C::"'! -- ... ., ... -~::~e:~

...-:-:--: =~~ ---:;:~ c.:~~ ---~~~~~~~~~~~~~~~~~~~~~~~

----~--DDoao-ooeea ____ _

~~~~~~~~~~~~~~~~~~~~~~~ "-OO ________ OG--DO-~--- " " " :;:.= E

ESE .,~ "":. ---;::.::::

~~~ ---.::;:l::: ~~~

-~-~~~ ""':>"' ~--~~s ...::::::..;

' i i I I I

I

I

I

Page 84: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

II ,, ,,

05-lal-!i i

EI-!£1HiS-'!tA'·OHD au A~l'J.CEH£r. 10.5 - ~tor SiUCBGW. An I!DfGi. COU.IIOi. en'!'U.liOM!. SfUr!IG fDUGU ::uu: tl - rrJrt l Met !D:Oi mi':'IIG lDLf!'!S FlO! 1i!I'·!Ea-KI:·l'IOHD02 liS) :;: lR !LOa HI! Am!. "' jiU'IUt 1Di15_1G EOUJ> COKP! t~UI!lD_ID L~!l! ni m mr h .. jiJ: DUB Ito I c.uu: am " jl: !Gtci HD:Oi I!Of4i. UE IDWIS ~ 10 SU£ 10. SUI L!IG :r:r.m suu S712t SIC m

iOt.t TO¥T YOL't .(D

IHOI (m) I s ) (!SI ·g ~5 IUIIII l~j !uk Shtoft tb 231 DDV !I! lJl·! ll! 1-lCT·6NS·B UG Uti 2U G.iD 10.2117 i.I21i l.lll7 Ill o.1mo mma 110 m um c.im 111.1 m.1 '0

:s !ru lilj hi: lDlt ntff Vlr 231 l!O\' JD lll·B 1211·1<'1·!3-lO-B l.lO 1.50 21.0 a.n lO.lH7 !.!liS 1.111! Ill a.zmo IV27alE no. m 1.0011 o.am ~ou 0 0

!S hp lli-E I11ltt fh m wr u lBH 12E l·fCi-&3•H·ii 1.!0 3.5, zu 0.,~ lO.llll i.lw 2.nn n' D.2Jnlll 1U350E IE 1200 l.DlU I!,DIU -10!.7 · !!-lOSIH. n "' '<0 :!t.t Sap !a iBi r.p !·l lll ll!OI II liH 12D l·PCY·&3-7l·l! ll.DO U.(C llLO o.so l.llil U.!i93 !.mt u; 0.01010 llll401 liD lO 0.0!15 1.0021 115.1 I·U3U·!,l-DUU-c U!IS :e 1!/0 lllt O.lll! 4.nc2 K-!Olll-1 :15 0 ZS Ta iCS bops IH fClo' 237 uor 5!1 Ul-E HEHCH3-!H l.EC; !.OC 25.1! o.GD IG.!ll1 U7H I.UU fla a.moa lnJSUE • " lll e.Jm O.GS!l lll.l P-Gim-c ill 0

rs Pap lJ-1 Dotlet lCl' 231 i!OI' In lBl·! ll!.l·P'CV-iS-153-B l.!ll l.SC 2U a.~o lll.2.H'i Lll!! a.1n1 Ut o.moo 1V2JU£ m 1&4 1.f2H o.osos m.1 b 0 IS PIIP Ont it$ LP 2U r. LEG W lJ!OI' JC Uil·E Ui l·PC'i'·U-151-E UC• 3.50 15.0 o.u 1o.un um J.lm m a.won mmt m m 4.Wt o.cm UJ.a 0

iS l!·E Ish fc US1 Sbtf! TIT 211 uor !D Ul-.B HII l·PI:r·U·l1S·B 0.10 2.3~ u.c '·'' lUSRl Ui!l! n.2m !24 uma mJ2o1 f1~· 7U l.,m II.OU~ .113.5" "' ~tat' spar IdE lE IslA YJY 231 liiOF Bl! lJl-5 lU 1-rc.w-rz-2-.s 3.2~ 5.U. JU o.sa 1.nn Ul54 S.!OU m a.tOOIID lTUJO! f!O '4l0 Q.SI45 G~03DS (1{.1 ~111.1 101 ;o

0 ~ Spnr Bdr J.i UlD ilt 23i bOV 5IIlll·! lU l·lei-12-U-! l.9il S.5G li.C DJD 111.2W ti.ll&E a.1111 m U37DO l1HS1! 110 132 C.JII2 o.osu ur.~ ::tilt SIIIF ro spur !Or lB rev 231 !XDY JD l!l-E Hi t·ftV·1J·tS•! 3.20. ~.1G 31.0 a.u l.l!ll 4.UU 5-.HJE tll Q.lODU !YlJDC! nc m n.mJ o.om m.s E.: P.p 1!-l ili llOt Ylr 237 lllllf lB l!H. 15£ H'CY-1HH ll.lJ li.H l.l ue 14.3115 SC.586S H -4:02 '!'! l!.120DU liH15t U1 Ill 1.1m um ln.s m . .s 101 EE il 1! ltpUS fir m m• " lll·E llD 1-ICV·l!·ll·! 1.!0 3.30 lLO 0.51l IG.l!ll i.llli !.ll!7 I!! o.lllot mme 112 i)j UOI! UlDO l!l.J ::it ore lut h Clr Pill lii 231 lHCT JD. lil· li 16! l-rn-!l-1H ].CC uc H.i !.&2 um &.1£11 7 .BGU tl! C.OIOOO lillliO Ill ·m c.ms UJDl (2Ll ;~ &!! tO CO!: 111 m IXOY &~ Ul·E 1m l> ~ul~ Stu.dpipt !sj~ Vh 2ll ll!DllD liH l7E l-W-2E~1U·S Ul 2.10 5.0 "'' 53.11£2 Jl.!Ui 'LU3Q W l.&EBao mm£ I" i5ii 1.121) c.om mA m.; =1 " ?li h~ !·B Labe Dii tap E·! m mv Iii m-e m J·H!t-Hm·& 0-2~ u' 3.5 O.H lS.I&DJ (i.iH.U 5L51Se m ~.ISm IPLUJC!~

,., lOO 1.om O.O!SJ Ul.J .,, '· &n :::eort IllSt b fh itr Cprn 1'! m nov u IB1·i l1P'1 H!.!R~U~JH/1 3.0G uo !S.ii Q,,! t.795li 1.733.) 1-Hj( mm1 110 m o.uus 0,0303 U!.J P!U.!ll JOI·lE mi

~htlilt;- itr Prf~ll Pip !·E 1J1 UD~ n lBl·~ 18! O·H':!-7!-20-E 2D.G~ 15.0.1: uu I!.H LIUE i.W! 1.~2iil 1'51 o.oom m,,m£ ll m U!Tt 0.05t0 tn.J Del !HSUl·l r ~s:

II ll o..1m a,aDOE ">m oz :core lc..st b: Cir.: Pap 1: m tl!rt~ !i!; m-: He 1-xrr:-Jl-31~/i l.GG L21: ]0.! ~-'~ E.mz S.tH..! ~.m~ m ume lPmas IH ll! !.llll 'll.om m .• l -..; ::1 B.lk""J.tiac ~mi l;Unor 2j7 ii!DY ~ lE.l·! l!D 0·!!3~tH i.C6 1.20 12.5 ii.E1 n.l!SE 1um u. tm m LHm IPI.Sm I'' 3H Llm a.6Ui U!.~ ~~ ?l't' il!r Stur I·! !Ulust Vlt m uoi s~ m R£ UE ~-r~-25-Hl·E U£ G.S5 .u Ut u.s·m n.m~ !i.2H~ m r.mao Tnm 112 un !.155:! UU!!1U m ...

B7 001' !S 1~-! 1tE H mo Ul&! ~.lm ?Ef iid:: Star !-!; !:kf!asC. Vh- 2!1 Wl'f I!S l6l·E !lf n-!':V-2Ht·~ us li tt 5.1 n.u u.mi' 11.m~ l7.1H: m i.SJnoc nom ,,.

l'~~ L~m 0.1DS5 JH.~ '" 231 E!DY ~ Ul-1 !af I< ma 0.1DU 0.132:5

:!ti li~r ! Isb Vlv 2l! liOV 8JI lBl-1 ll l-rr:r+l26l·f ~-23 0,55 l.l 0.1~ U.1E3l 31.DS1E t!.UO( 111 i.moo lYntO! 1!2 m l.DHE O.OJillSi.l •·llllH :a~PH-1Z M-l!dt-li-lsif.-ft.v·--- - n&.rm -s; m~; 1~ .,He~-~·llU:·i n.n n.!S !.l ~.&D n.1m 3i.om n.un !ll 9.25000 llUiOi Ill Ht j.IIUS UlSO 3!1.1 --X-21ZU·! -- ---li'JP""""' .... ~ llav re UiP tarb blc. Yll' m mr 11 m·1 2£ 1-!Cf-~ ·1J·1 1.0~ 2.1C u.s 0,£0 JUlol t.9522 u.m1 tH G.Ul&U IY26Jn! 110 me l.llOO 0 .0111 lll.5 H552H U!i5 p 1/.

::ei Ddr s Isb lh 23! IJ!DT n 1u~s l! l·!CY+ll!!-! D,j! 0.75 !.7 0.10 u.sm ~r.,~5~ J7.nH u.i u.metnuae 112 551 l.l!fl D.IH21 3!!.1 Jl-l-41"' i"Ci !dr a JdJI fir 231 UOT .BD l!H! 31 HC'I·l-llli-1 0,33 O.ll l.l 0-60 u.sm lUS!! n .nts m Lmoo m1m 111 551 1.1!5.~ O.O!!S 3!!.1 : W JD 2 F1 ISLI VLY m uav 1!1 1!2-ii 30 HCH·H·o 3:.~~ -tue m.o 0.15 o.mi ~.;m ~.4801 !Sj UOl2i lY!DDDJi JOG !00 c.me MU! m.l lilA 701 !t-!2~53·1.1!·lOSU-! :u

11/C 2C C.OUi O,OOll liS ;;?~~Q 11 3G o.uou o.om :RS to.om-

coco~ 1op J lltteratiol! Liee Jh ll! 1101 II l&l-1 l! l·FCV-l-Ul uo UG 23.! 1.!1 1um ~.Jil1 s.m& '!'1& o.moo Jvlm IU BDt' 1.12!10 o.om JS!I.D l!t££11 101-lE ..... =r :::r oo )l'l~ 4 !n.m.tiOD t.ille Vl Y m 1101 Ill JIH !£ HCV-3-l!! 1.6~ <.00 25.~ O.iG 1o.cm U~!! !.t!U ~[ &.lSSO!I nma tu m l.!SlS 0.0{91 3!i.7 tO ;g_ ~ -1

; Ceo Jc 4 !i Ish Yh m !!!IV n- m-e !0 1-tCV-HU·E U.t~ li.!G m.~ 0.{5 um E.m~ e.m1m o.omc ltJaloE m 110 G.UUC O.DU! !S~.S lEU 101 !!:"1255.H .• IH05ll·A :as 9.:;::;::!.§ II/I lO 0.0021 J.IIC12 ill ::0 ~g.w~

Q m ? fj? m

'f. !lJ

- a :l; ~ !lJ "' ~ - < CP 0 '}'

C/1" iii' 0

"' ~ m

rucm\ $ I!JIIKm! !DfDI! S'!'UTJIC YOtUS: = B5\ OP HOr, ttCEPTIOr£0. $$ ltmti!'r(Ol !I!! IS 1'r U\ st!l~JIG YOLtlt:!:. !XC!P! ID~£D. t CULE £!!WI em IS .&£S1GI L!JC!e ntiS UC rut. u Wl!l!ll 'C!RLE .&liG!! (!2Qa F!tr

THIS SHEET ADDED BY REV~ ·--·----

Page 85: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

~

30--Dd·Jl i~<:-..::o,;n. •.. - ..

::;~;;;~ .:2' "' DI·W·I$-fltHtllCt ;o lnltUDt Hl.i • H!tl SlllfaGW Jll lD'tOt tOIRDL CEIIU liO!Di S:TUJJJC lOflC:ES z rh (fULl u - mt 1 xcc JOTill nur11c toLneu nolf nr-m-xs-no,·oocz lUl m ·ro rh

liD llDCl III lCCn I' 0 UU'lfL! JDa!_IO lliAU com E~IJIPURJO IClD "' Lll "" •• .. iX• Oltl ltol Clnt ClUl ,, ji< HllfOl KOlOlllltol tm I!IWS lP .0 0 •• Sll! "· SUl t!lll. Slut Slnf Sill! 'IC '?

toLt YOU' JDU "·ffl WO) (!.l!) ( $ l !$$1 --"' N

0

12 lO IUOU O.f&U liS 0 ... Brn ea Jd.r ro Ii m 2ll 001 JD Ul·! 51 o-m-21-11-1 O.ll 0.1! 5.7 uc n.sm ll.lll! lr.ms TH t mao mnaa liD Ill< !.Ill! G,Ol1t lJl,7 "' 6

0 Ill 1101 10 IJl-1 51 II ZIOI 1.712! o.Hil 0

C9! ltild.bJ htm. Taln Ill uor 11112-> 5I ~-ltf-10·205•1 O.ll 0.15 2.U o.n 102.1m n.2uo n.nu T9 u.nm nmn II! Ill l.SCIIJ 0.0534 uu -"' .''::o t.rr Qltat li Clr SUP Jlr fll) 231 IIOi ID lll·l lC 1·lCNH1N o.u ua 3.50 uo 75.1103 i5.52U .iD.7DU Ul !.lsacu nun 110 (OJ o.5m o.uu u,.l nc.e 1-Jl.Ul·l . 0

1ll uor n 112-1 lC mou m 10 I.D!ll G.UU l-llllH Catat S;rar 11 11 Sllp Ccuzt tlr 2n l!nY m 1112-! l! J-ra:n-UJ-B O.ll o.u 5.111 u:o tli.5Ull1.tm n.nu n' 2.!SODD lf2lUJ Ill .(12 4,1151 o.ous m.J Cllat Stnr II, 11 )is~ll Th 2Jt wr 111 111-1 " i-lCNH2i·l C.lJ o.n uo -o.u .s.sm 21.UH 11.zm ta 2.f5000 1Y2UOJ 1!2 iOa 1.2fCI a.om us.! ta l'ID w tu am uo n r m llOJ n 112-1 " 1-lCT·lii·IHI t.]U 2.30 11.00 '·" 21.1m u.m1 H.lllt m O.illOillliiOJ Ill m 1.mr o.anl uu m.& 11:1 uu au arn uc ttJ m nor JD 112-1 " l·PCNII·lH·B O.ll o.u Z-'11 UO lU.!Hi U.21U IL.HU ti ll.720011lllUG! IU sn I.nu o.om m.lltU tu c.tat Ill Clr Di:ii lscr lh m DGf !J l!!-l ·10 1-rci·iHU·I 0.13 ua 1.5& D.U lS.ltlll B.UI2 U.10U 112 UlOGG ll127SJ Ill iU l.JJS4 UUii tU.! 4U.5 . ._· )> Ill bDI II !Jl-l lD IV22UI liZ u a.nu l-Oll! lip C.tl n Clr 11 llis• lu Jh 131 lliD1 Jll Ul-1 " 1-!CHH!l-1 O,ll 0.{5 3.!5 IJ.,!iO u.ms sa.sm n.un !J u.nautnma Ill 412 l.OUI II.OUl tOG.! 391,, . ·::j ,,.. llCIIdr 11 Js~ rh ldart str 131 DD1' lD l!l-J II l·l~HNH c.n 0.!5 5.70 ~-" 4'.59Jz u.!555 u.nn m z.mo11nttn u ma Lmt O.lut JH.i m -·· ~· ()

131 DOT ID lJH " Ill 1W l.illl o.un ro;I l.llaf !lal sur Jdr U In ih 2ll !Xnf ID lBH II t~rcNT·U~J 11.n l.10 "LSi a.u Js.un u.om u.tcu m o.tJzno mooai Ill ua t,l.m Utll U(.1 "'"' om Ltt tatlll Ill Cl r Di~h In Yh m u.n u liN ID l·l"•-'T-lll-1 O.ll MD Ut o.,o 15.1113 4l.llll iD.ll!l Ill l.SlDOilllllll Ill m o.ms D-Olllll0.1 402,1 oz . -:" -1

2lt Wt lD 11:·1 " 1121111 Ill 11 o.1m O.Oill f -~~ IJ_p Cab tl Clr lC Dish Jro tlr 2lJ UDT !ID 112·1 lr. J·ltT•SHJN 0.11 D.~s 3.15 t.iO ll.llll ,._lUI 11.41!2 t! ll.lliOI IYliOI Ill m um G.IJ1J (110,1 U3.( !>-L•c cattt 11 cl r oisi Isc n' lllll!DI ID 111•1 ll 1-!CHl-11-1 O.ll O.!l 5.71 0.11 u.sm n.!ll! J!.llll m l.moo 1121111 Ill m l.1211 1.110! Ul.l !11.1 .ttr ~at Ie·tlr Dlsi In Yl• 231 DDt U 112-1 u 1-rcHHi-1 1.33 Q.!S !,ill II.U U.3!U 27.m! l1.1HS Tl5 3.1!Dft Ifl0401 Ill 111 1.om U:l1l lll.l .u15,2 U1 Cata rt Clr 11 Dh~ Iso Yh lll UOi II 11!·1 !I l·!CI•Il•l!l·l l.ll D.ll l.il D.iO lll.llii U.llllll.l!llf! ll.llDID 1Jlllll Ill m o.!!ll l.llll 10l.l!ll0.1

lll UOI BD 112·1 !I 11ll0ll Ill UD UUO a.om t !1p Call n Clr 11 S•t Is~"' lll 1101 ID 112 ·I !! l·fCHHU·J O.IJ G.fS l.H o.u u.mo sa.wa n.mo n n.nm mma Ill lll l.ll!l o.om m.s lll.l ltr Clbl lJ Clr SpJJ lslD Jh Ill UDY 1D lll-1 1011-ICJ·IHl·l O.ll. 0.!5 l. !0 O.U• 11.5!3227.!55! ll.27U Ill 3.7!110 ltlllll Ill Ill 1.1131 o.ll92 IU.t IDl.! !~1Hl3·1

Ltr ~•t 11 Clt Srh tsiD Ylr 211 wr 11 1124 1 101 HCT·If·U·I 0.31 o.n 5.1D- uo u.sm n.m, Jl.ms m U!o:Oilt2UOJ Ill lll 1.1211 UlSI UU tol.G »Hl.fll·l IJP CITI n tl.l 111 DIS ISO l.LT 231 HOY ID 111·! !On I•ICN!-211-1 O,lJ t.~s l.H 0.10 11.5100 ll.llll17.ii!D II 11.12010 lYlllDI Ill us r.~u uus ua.2 3!2.,

231 UGf JD Ul·l 111 1131211 Ill m 11.mo O.OliO

ft Dp Ctltl ft tlr lD Slip bo tl r m uor 11112-1 liiP l·fi:HHU·J D.ll 0.11 l.ll uo u.ms JUJ'~ n.tm n u.uoaa muu Ill lll O.illl o.om m.o 111.1 l.lldg- liEi:lt Slip ldr 1! Ua f 2ll UCY JG 111~1 W HtHHU·l 0:.33 II.JS 5.111 Ull u.sm ll.JSS! l7.2Hs tu !.71001 Inmo Ill 17l Uti~ a.o2u uu -u;o:t>o SUS 1 ClC miDI I lSOTloT all WI ID 111·1 111 11-lC'Hl·liiH 11,3] II.H S.ll I.U u.sm 21.!55' n .~m ns l .1ma mms Ill t5t a.!m M3SI U.J.l ~~sr~ tn C.tol lC Clr sut lh (Ill ~ll llOY ID 112·1 111 1-ICNHOS·I O.ll uc l.ll D.lO 1!.1111 (l.llllll.llll t1l !.75110 111011 Ill m o.am UUl US.l 317.7 1·11113-l ro c n 0

m unt nu2-1 [!J lUDU. Ill '5 o.ma I.IISU I·UIU·l N ::::;· :::T (/)

~ ....... 0~~--1 llpdta!JtD net s 1~ zn oar u lJH; UPl 1·121HHU LU 5.12 Q.~;:;.§ Id lir I Iisch Th !a Clf llr 2ll DOT ID llz.J 12111-m-n .. m 1.1111 2.10 li.GD t.fll li.l!ll !.llllll.ll!l !l! O.llTUD lJllll Ill llll l.lW a.lllt Jll,S Ill

~~ NOw-< UCI fo Clpll Cl f ir ! m uar 11 112-1 Ill I·!Cf·l Hll-l 0.)1 2.11 l2.U a-.n 22-lllt 13.27Jl 11.JG54 tlf O.UUD ltllSU Ill m 1.11!0 o.om m.T ms I

nil JD. lO tDIP 'D lll Ulll II !Jl-J l2D 1-!Cf-11-11-1 1.11 1.30 ll.IO 0.11 ll.!Jlll3.27!lll.!Oll!ll O.lllllltlllll 11! 511 I.U37 o.om m.1 , m [f) m

lll llDY II 1!2·1 m lTUUI Ill !DO O.lllO 0.0071 ·~ '" '" lJIDLII 5!1 llll liT !lll!lll II 111-1 121 l·n:t'·U·lH-1 IU7 1.10 '·" 0.'6 S3.1Ul ll.U!i U.4!Ja U! l.UUI1J91lll Ill llO 1.>110 l.llll Ill.! a-. ::,

ccs 1r 1 ' e Ieht Jsl1 fh Ill 1101 II lll·l llll·rtl·71·1l-l O.l! o.~5 5.1Q 0.00· l&.llllll.!lll ll.lllllll l.!liOO lllllll Ill m a.nu 0.0111 m.z ~ OJ <C !: 2

\Oll<m\ $ Jtnm MMDI SUU'JIG •nnet-= U\ IJ1 UDt. acm JotO. $$ iCWU!tJO! 'l'llt J:i lt ltn STlltliG IOL'IlGE. UCUT IQTU. t Clllit ~!IGtlf DUD IS JIESICI L!UR WS 101 Pnf, t! niJilll cun wm <12u rm if ~ <C S' ro

II

Page 86: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

WBN·E~B~ED-0000-999-2007-0002, RO ATTACHMENT 11.4. Page 21-0f 26

Calc. STUDY-EEB-WBN-12-001 Attachment 3 Required Motor Starting Voltage Page 21 of 26

~1'7'16/f-f}altld #y~]

--:-::-:"":~

!esa$~

5~555 ~e~=~ ~:::=it'ilq ..,.~.,.,.,. .....

=

--

~~~~~~7~~~~~~~1~~~~~~~ ~~=~~~~~===~~~~=~==-== =~~~========~~========

li ll

! I

Page 87: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

WBN-EEB-ED-Q000-999-2007 -0002, RO

" ...

....... .-( .................. .... =:6:t===6== ......... .,. ....... .,.All:> ........ -........ _.., ... _ .. c_ ......... s ... see~eee.t! r::o1:n:::===~~

" u

AlTACHMENT 11.4, Pag~ 22 ~~ 26

Calc. STUDY-EEB-WBN-12-001 Attachment 3 Required Motor Starting Voltage Page 22 of 26

~;a=a=~~===!si5s:~sssas~a5~~~e ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

o•~----9--c--•9--o•~--.,.---~-o-

" -..; 5

-~

:q ~ . -"'

~55~55 ~~~~~~ ..................... - ---..-.- .... -~~~~~~ ~--~ .... -~~::~t:t:::: .... - C>.., ""'.,. -~ --

Page 88: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

)

)

')

r~ (J)

(J) :-r ' -- m m

) ,--l

> c 0 iT1

_) 0 [!J -< :D m <

I J

18-Seo-92

~ITDH010 Rl~ ATIAOtfllT 111.& - ~OOV 0010£Bdl HIIIIIJOO ClWJRil. camJ! ltJUR STMTDii \U..TieS (1ra.E l3- llllT 2 Itt OJ!Iil S!AAlll<i \ll1/IB f1111118Hl!HiS-ri06-«<<<Z RIB)

00 a.w: JUJi lmL ex;_rrru: ""'-"' - CliFT EO'JlPID_/11 Ill

fll .. 1<t $<c lll!M 111111! lllll1l TilE I<9WI>;S

NJt. ClM!Il AIR Ctif'l6lll1 It-A 5Mn B<l Ill Chlr Cll Clr "f> A-A fill Bldg Gas Jrbt SYS Fe H EG Trtlt Sys: Jroll Ra Clr fan 8101 5tr tA-A &cblasJ', VJv AFll I aA l'R SPIIHiJ! FNI!t-A Shlttbm Bd Ill e Press Fa1 11-A EROI SlRAlJER 211-A

TliiU!li~ 5crR 2.H

::~~~:~~lilh\ PH Rl £1111 Clr Fam 2A-A laOY lfll Ill 2A EJb fin 2!2-A WI Xflr Ill 2A Exb FID 213-A Elec Bd Ill AIC s, Gil l>o Clldo Ele 84'> It cir "f> IrA

laOY Bd Ill 2A Pr Sal> Fan 2Al-A ..., Xfllf Rl2A EJh Faa2Al"11 Cont R1 Intm lion 400Y ad !11: 28 Pr 5I» Fan ~1-A 4!lal Bd "' 2A Wt Nn 211-A J2SV Vit.Batll::l III Ex Fan 2!n-ll 400Y Bd Ill 2A AIC lllln 211-A 8101 !Om ~ 1111' 211-A

Shtdn &Silo Chlr ?io It-A GilPo>

~ivRalbodflhFn211

NJt. COO AIR II'RSR !HI 1'811<11 a 713 aR FNI 211-l! I'm B~ Gas Jrtll Sys Ftll H

. aAllE!Y 1<11 a m E>ll fNI t-il ER01 Str 211-l! llacbAsh Ylv

E!ICll Sl1lAlJ£I!

Travdil!l Scm 29-B

8101 Stf ll!-il Flush Ylv

12SY Vit Bat b: [Y Elf~~: 2AM SOtdA Xflr Rl ll! Exb Faa :ill2-fl Slltdll X!Jr Ill 29 Elb Fu 293-fl Clldg Ele 84'> It Cir P., !HI

STMl START STMT SEC I'I!.T lilT lilT

(«0) (~lSI ( t ) (U) 107 etA ltli!IID 2A1-A 2A 1-i!!R-32-!H 10.00 26.00 157.s! O.Co 1.!821 0.7711 !.~935 151 0.00318 11t378>1 II 1215 0.2121 0.0781311.£ 107lll.ltli!IID l/ll-A lA 1-i!!R-31·3!11-A 25.00 li.OO !91.C O.U 1.3154 0.5785 1.21V T5J O.OOW. 2R.IIIlM 1$ 364 0.))90 0.0257 3117.8 IWFA!l. '1117 aA IDif w 2M-A l1 2-fiiR-.lH~-A so.oo 62.«1 304.0 o.n 0.81J6 0.:3232 o.am TS& o.oom 2Ft..37.csA 11: so o.m.c Ml38 «n.o 380.1 sot 7.4 tVfl FAlL 207 W \9R II> 2Al'"'l\ .(II HTR-30-200-A J,((l .f.lD V.O 0.53 9.8363 5.2133 8.~12" T32 D.l!X.IllO ztl77Q. itO SlG 0.6191 0,0353 0.3 3$,4 90t 1.05 2([] C:M rolf 00 2/ih\ 4£ 2:-fCV..£1-9/r-A 0.33 0.75 5.19 OM (5.8&89 27~4 36,,'951 TU (,72000 2Y~ 18 21'98 2.3755 O.l'll3l98.9 207 WI YiHT to 2Al-A ~ MTR-'JH84-A 15.00 20.20 1!!S.2 0.49 1..5236 1.2366 2.1999 148 0.00325 zt31S1A 18 210 ~.1783 0.01'8 ~21.9 397.8 'JfJ1 Ill. 1m liD 2Al-A Ill HI1Hl-6l-< 3.00 4.00 :18.0 0.&2 9.1850 5.1lil07 7.1!10 133 G.ceooo 2IU601A Ill 17l 0.37!3 G.QUI.!I.S lJJ7lll.lm 110 2Al-A EB 1-lf!R-67-lA-A 3.00 6.00 ~.1 o.!2 a.em 5.-ml ;.ml 136 o.D55011 211.l!lll 11 1100 o.70!2 0.1313 380.7 75t 1!J7 rY. Y00 00 2Al-14 69 110 798 1.0m O..OS6J 'Zf1 etA WfT In 2Al~ 6C ~ 5.00 6.00 41.1 0.&1 6.(618 3.'1546 5.1104133 D.03W ~ · fZ 2100 U481 0.1292.313,6 1m 2111 r.u ma 1n 2A1-A ~ 110 ?&I 1.0314 o.0539 'JfJ1 w 1m BD 2M-A "' 1-fC\1-&7-if!-A o:n 0.10 5:n o.lol ~.8!8917.521136.6951111 1.11000 l'I3!00A " 1790 2.31&7 0.1"' m.o 207 CM YEKf IIJ 2A1"11 7!1 2-tllR-JN87-A 0.33 0.00 5.2 0.62 51.07'33 Jl.6654 40.072Z TV Z.2ll500 2R..356IlA 112 31.8 U8l1 O.D2C UU '¥:11 aA miT 1Il2Al-A ffl 2-!IR-lJ-l'l-4-A 3.00 4.00 2!15 O.M 10.4m7 6.13616 7.8189 l32. 0.111000 zumA t10 26.2 0.3S37 0.0185 42£,9 402.1 1m: 2.4 107WI'EI!TIIlllll-A 8: 2-111R-311-2SIH 3.00 UO 17.1 G.!il 1.0917 6.!!57 7.lll0131 O.ll71002ll.liSIA 112 1JlO 1.1300 0.0153<2U 1m lJJHIA ltli!IID 2M-A Ill 2-l!IR-30-2100-! 3.00 UO 17 .I 0.07 U'fEI 6.«57 7 .lllO 131 O.ll7!00 <ru8l71 112 1JlO 0..300 0.0153 UU 1m 107 CIA ltli!IID lAb\ B'JIIITR-n-118/5-A !.11 3.90 !1.0 0.62 8.S!J! S.lllo 6.7118 l!UI25A 18 !50 0.5519 O.OOi <21.0 1JJ7 aA ~ m 2Al.-A 99: amt-31-128/1-1\ zo.oo 25.00 157.9 0.46 1.68:20 o.77r! 1.4934 151 o..onte 2Pl..tOOOA 12 5% 0.1212 o.o367 uo.6 207 OA VOO" Ell :2Al'l1 58 18 SO O.IJ425 0.0035 lJJ7lli.I'EIIT liD 2Al-A 9: 2-l!IR-31....,_. 3.00 UO 18.0 6.62 !.ISSO S.llSOJ 7.«20 131 O.ll7100 11'1.1470! 110 171 0.3!99 0.01!3421.8 201 C&A varr eo 2Al"!\ w HTR-30-ZSOH 3.00 •.Co 27.4 o.fJ 9.&m r:..«l1 7..2J'i0" rn o.o11oo ~ 112 m M8S9 o.om 421.9 107 ClA ltli!IID 2Al-A lfl 0-iiHHlH 1.40 1.80 5.1 US ~9J817 31.968137.37<8 l!Ullll\ 110 518 0.6993 0.83!5 411.7 201 aA varr B112Al-A tlA 2-lfTR--JHJS---ft a.oo uo za.o o.62 'J.•aso s.sao7 7.«20 rn o.onoo ~ no :a1 0.3375 o.ot761.27.7 207CIA VOO 1m 2Al--A llt HlR-31-m-A 10.00 12.00 78.9 n.S3 J.3b60 l.fil40 l.SS« T« 0.01214 2ft~~ ClO SOO 0.6150 0.0353 JaSI.S i!J1 W \eJf 1D 2Al--A I2A 2-KIR-31-2SS-A. 0.33 0.00 5.2 0.62 5t.0133 31.£6.5' ~O.Oi22 T11 2.20500 Zt3.57M IU 3Z2 0,6W 0,014& 1.24.5 107 ClA 1m liD 2Al-A llC 2-l!IR-31-m-A 15.00 21.00 111.0 6.19 2.3m l.ll1l l.lliSJ 119 0.00571l!tllllll>l 18 :18S 02<28 0.010H!U 1JJ7 aA \9T !D 211-A liJ. HITJKN37'"l\ (0.!:0 •9.80 290.0 0.38 0.9158 0.3e 0.8C71 TS. 0.0020.2 2Pl.396GA H/0 ZlOO O.llli! 0.06JO 366.1 201 llA YEHi ro 2A1-tl 131 .wo 758 o.oszz o.GCM 'JfJ1 lli.I'EIIT liD 2Al-<\ 131'1 tH!lR-31·3513-A 2.00 ~.V 12.5 0.62 11.2l05 13.1l2B 16.6700 l!\37701 110 ISO 0.6075 0.0317 UlJ

t..so us 20.0 0.62 13.2791 B.2331J to.usa m D-.23700 2PI..36Z1 ttz 6.50 1..ms o.0491 .o&.t

10'HIA ltli!IID 181-il 2A 01illl·3l-8H 10.00 17.00 157.m 0.!£ 1.081! O.mJ U!lS lSI 0.0031Ul379S8 1!10 1750 O.ll!O 0.1050 391.0 209 ~ ~ 00 281"8 2C Hffi!o-lH97-B 3.00 4.ll 26.70 0.&2 1L~ U611 7 .9:Mll34 0.07100 2St31ZlB liD 436 0.5886 O.mT Q1.2 3W .2 109 CIA 1m 80 181·8 ll 2-lffil-30-151-il SO.IIO Q.OO 301.0 0.17 G.B730 G.l232 0.8116156 O.IIOilU\.176111 12 350 0.0747 0.01!S ~16.1 392.~ 2091lA VEHT 1D 2Bl-B 4A !Hffi!-ll-27-11 2.00 2.70 "22.0 0.60 12.011'1 7.2431 9.6575 W 0.23100 :!I\..2S959 112 39ti 0.8$7 O.Oll4 -Us.& 2111 C&A '100" B) 281-S ~E l·f!ViHM-il 0.33 o.JS $..79 0.6!1 45..8689 27.5214 36.6951114 4.J20CO 2Vm6B 18 3184. 2.7032 0.11..(5 l%.9 209 Ill. ltllll!llm-il 1£ 2-fCY-67-!Iltrll 112 10 o.0115 o.oooa 2M w VEKr BD m-a LB Z-HTR"67-tce-a l.oo 6.oo 3:1.1 ua e.sm s.tJ4t 6.m .. l36 o.ossoo 2Ft39200 u 2100 o.7062. o.tlZl E.o 209 CIA 1m liD lm-ll !I! 2-!!1R-£7-li!Hl 110 1<!0 I.!SlS 0.1022 209 C&A \tliT BD 281-i 6C 2-HTR-£7-m·B S.OO 6.80 U.l O.lrl 6.4618 US46 5.I104l313 O.D3483 ~408 12 ZlOO M481 11".12'12 Jn.S 209 a1. 1m ro ll!l-il 11: 2-lffiHJ·4S!·8 .s 1059 o.am o.om 209 CIA 1m liD ll!l-il 6E !-fcv-<7·101H! 0.33 0.15 SJO 0.!0 16.S93227.1l59 37.17~ ll4 UlJJOO 2Y.l988ll IS 325& 2.76!3 0.22'JS :197.2 209 CIA 1m liD 1111-il 6E 1f<H7-100i! 111 10 0.0215 0.0001! 109 CIA 1m liD 181-il 78 1-111R·l!·28i-ll 0.33 0.80 5.2 0.!2 5!.07:ll31.665410.0722ll1 2.20500 1IUSOSI! Ill 280 0.6010 0.0114125.0 109 w ltllllll181-il a: 1-f!IR-:.2•!H 1.110 uo 21.1 0.01 9.6917 6.4157 1.mo rn o.1111110 ll'l:18li8 112 1JlO o.uoo 0.0153 Ul.6 209 aA mrr oo 281-!1 m 2-Hi!i-l'r249HI J.oo uo 27.4 o.67 9.6'?27 6.4457 7.2390 rn o.onoo 2R2B62B nz va 0.3827 U136 426.1 209 Cltl ~ ID 28H IE CHJR--3J.~J.29tl-B 20.!'0 25.00 157.9 0.46 U820 0.7737 1.4934 151 O.OIIJlB 2Fl3980B 12 5(6 O.U&.S 0,0336 412.5 109 CIA ltli!IID 291-il 1£ 18 so 0.0425 0,0035

-···---·--, -----

"' llOt

all llOt

NPfAil I'-014SI!-A Ill' FAil

F-!4692-A .s:

I'-OblJJ2-\l F·l06ll-<\, lElAS Rll f-1061<-A, lElAS Rll

f-!0611-A F-111614-A

~-1!-13173-A )t-13213--A IH97IO-A f-llliH

"U;tl):>() ~.2~~ m c n fl N ::::;· ::::; (/) w~~-1 ~~aa ~9.w-;<

Q m ·- ~ m [JJ

(Q a.. :i; 0 [JJ

--..! <0 ~ < 0 :s if

<0 ~ m

Page 89: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

')

f-! '::r (/)

.l (/)

::r .) m m

-I 0 >

0 n -:J n;

Ci

i) c• -< --'-•

,) m :c 0 r J

; l i

IIJf-!EB-li>-TIOHOiO RiO ATII<III'lif ID.! - lOO'I !llllOI<JiR r<lllllliR llll11<!l. <El<llR 111!1111 SJ!Ril!l; 11!.111<5 {!NU l3 • 1!ill lltC JmiR S!Ml'Jiii IILIN<S FRIJilll!HEE-liS-TIC6--0002 RIS)

oo_nru

Elec ad b AIC Sys Oil Pip 100'1 B4 R> lA Pr "" '"lAHI Silt® Xf1r Rl 2B E.rh fan au-a Pen Rll E1 737 Ch Fan 2H 400Y &i h. 2B Pr !iSJ Fn 21!2-B l2SY Vit llltllo Ill flfaa ll!1-l! Collt. Rl lnLlie Jloa IOO'IIId R> 2B AIC Alu 1!1-B IOO'IIId R> 28 A1C C.nd 28-6 Efi Trtlt srs H Rl tlr Fu Ellll Sen 10s11 Po> 28-B

Do lA1I itJY Hood E1h Fao DG lfn\ 9Wll Fli! h\ Do lin\ llibl Oil Circ liP 1 EK oo oo ax 2AI • 2AZ srp 'U Do lfn\ Dar !Ill FO Xfr Po> H Dg 2ft-A rm: LuheDil tire PIP A llg Rl 2H Pnl Y!nt. Fom ,... mo rue 110 I!! EX fM Dg a-11 Air Cprsr 2 09 2tn\ lllffler Ill Ezh Fan

Og 2H 1m LubeOil Circ PIP 8 00 2tn\ rM EXH FM 2-A Do lA-A lube Oil Circ Po> 2 8f Dii 9li l« 2A1 1 2A2 9Jl 1Jl.V Do 2H II!Ylni fll Xff Po> 2-11 Og 2/rA Air Cprsr 1

Og 211-i Rtry Hood &:b Fan DGlS-ei!!~fNim Dg 2&-9 l.ube Oil tire ~ l Ell DG flfG Sl' II.Y fRm lllR lB Do 28-B Oar Till fO Xfr Po> 1-B Dg M tm l.tileOH Cirt PIIJI A 09 Rl 2B-B Pal V!llt fag _ 09 3HI ~tm Elec 8tf Ra £r: Fall Do 28-e Air epm 2 D9 2fr-B lllffle: Rl Erh Fall

O!l 213-BIIJr lltellil Cin: PIP B DG 2IH! I!! DP. Fll< 2-B Do 1!1-B lJio Oil tire P., 2 EMlti B1i StP 'A.V FRCillm 2A OS' 26-illlar TDk ro J.fr Pap HI llg Bld9 Fuol Oil Xfr /lp 1)g 2IH! Air Cprsr 1

Ill) llOC!< Hill lttE!. C(Hlf EMPIOJiJ Ill

FU 11<: jk JmiR 11111111 lllTIR Tll£ !flW<S STMT STMT STMT SEC 11!.1 1'11.1\'ii.T

(4<0){115){ s I(") 209 CIA \lliT 00 28!-fi llf11!!1R-3l·l2!/J-6 3.00 3.90 31.0 0.62 8.S67l l.Jll! 6.7210 <l'l3S300 18 119 O.l&ll O.D316 lli.S 209 Wt \fHI' oo 2a1~a lj( 2-lfn!.-JJ--46.3-il 3.00 u& 2S.o u2 9 . .«1$0 s...eao1 1.wo rn o.onoo 2PI.348JB 110 200 0.2100 o.Dl41-429.a 209 C&A 'r'CHT m 2111-ll 90 c-trrR:-:»-2W..£ 3,00 4.40 27.4 0.07 9.£9Z7 £.«57 1.2390 J'3.l 0.07100 ZUS7Ce: 112 150 0.3225 0,0115 427.9 rot 200QAVOO&l21i!-B 9E 2-lfiR-:ft-1'35-B 3.00 ~.00 2U tl.&& 111'J048 7.1311 B.ilnll? OJOOOOZUIDJB liD 3(1J 0.~90 0.02.COU4.5Ml0Asct 2..4 209 CM \'EJfT ED 281-f. lCS 2iml-31-ID-B 3.fKI ".£0 28.0 0.62 !1.4850 5..8007 7.4420 J3.l 0.071tXI2PI.J(9$ JIO l56 0.2106 0.0110 .&ll.fi 209 CIA \!llf 110 28H lOC 2-llm-31·2S6-S 0.33 0.00 5.1 0.62 51.0733 31~ 40.0722 111 2~ lll.l57!11 112 116 0.5719 0.020H25.2 209 CIA 'Dr 812111-5 lOFl \HH0-12H 1.40 1.90 5.4 0.65 49.1817 31.')68137.37411 2P1.331'39 110 482 US07 0.00 .t36.0

JH327h\

20'1 CIA \!ll[ Ill 2111-6 llB 1-l!IR-31-475-B 20.00 25.00 112.0 0.16 1.8703 0.9603 1.6607 Tll 0.00318ll'l!0700 Ia 20) 0.2111 0.0197 .to!.£ 2!19 CM Dr fD 281-£1 11C 2-MTR-31·289'-B 20.00 25.00 14l.O M£ l.S703 O.S&Ol J.UII7 TSl UOJIB 2PLA0908 18 2£6 0.2l58 O.Q188 .W.l 209 CIA miT Ill .,1-B ll51-l!IR-30-207-B 3.00 •• 10 27.0 t.l3 1.836l 5.2133 B.Jnl 132 0.10000 ll'l3l01B 110 3/iJ 0.4955 O.OlSH24.9 !00.8 011 209 CIA \llfT 00 281-6 lll2-IITHNl7-B 10.00 49.00 290.0 0.39 0.9l-58 O.JISO 0.8171 ~ 0.0020221U9059 2-1/0 2100 0.1QO 0.0630 359.1 151

/II>Flll /II> fAll

l.ll'i

209 a.t \100 fl) all-il 13) HmhSJ-.1.47-R WI! 103i' D.Cin4 0.0638

221 D&.. Jl!l. m 2A1-A 2A 2-HTII·l.H56-1\ o.n 2.20 9.J uz 211.&495 17.J61J n . .oas T2S o~soo F\.2S8.SA 112 100 o..21oo o.oon us.1 2ll !IQ.I<JI. 00 lAb\ 1B 1-l!IR-l1-448-A 15.00 1!.5<1 119.4 0... 2.20! 1.0!91 !.!553149 o.llll7l !1263&1 " )0 0.059l 0.0011 432.1 108.3

170 G.3655 0,0130 .t2t.5 111 OS.II/1. !lliAl-.1 1)1 2-ti!R-91-Al-A l.OO 1.70 IS.O 0.62 17.711'illo.!m 0.8911!24 0.£3200 R2737A 112 221 ~NIX 1112Al--ll 311 z..mr-67-Gl.-A 0.13 0.39 2.60 0.60 11)2.1C66 61..28BQ 81.7!13 18 13.95000 R216M 112 160 0.3«0 0.0122 403.7 380.8

lED 0.34CO 0.0122 U1.0 2ll !IQ.II/1. !lllAl-A l> 2-tiiR-18-55-A 1.00 1.85 ll.3 0.62 23.5«4 11.5975 l8 •• 1ll12! 0.12100 R27lOI 112 22l ta. HlX !D 2A1-A 4B MI11-SHCPA--A 0.75 1.27 11.5 0.75 23.094017.320515..2753 T23 O.mxKJR.3J2U. 112 221 0!1. riJ1. Ill lA!-A 411 1-l!IR-30-492-11 l!.OO 2Ml 119.1 0.19 2.2Ul 1.099! 1.9553 T!B II.IIC62S 11311&\ 18 221 a&. 0 ID iAl-A € 2-ffm-.»-®--A 2.00 2.70 ZZ.6 0.62 llJlZ2. 1.29S& 9.2365 l29 0.23700 Ft2S2SA 110

60 0.129G O.OM6 U6.? Ill o.UO! o.OO'I2 w .o 40U 9ll 0.1215 0,.0063 431..6-

221 os. n !D ?AI-11 M ·HrrHHO s.oo 1.10 H..S o.62 s.969S 3.7011 U836 rn o.Q2818 Pl2205 ru 100 0.2150 0.0077 42S.HOU 52 0.1118 0.0040 Ul.b .W .I lll Da.IIJX Ill lAl-A 6A 1-l!IR-30-464 l.SO 2.65 20.0 0,62 13.2791 8.2338 IO.UIIl128 0.295110 !122!2 Ill

222 D&.. N.IX 00 W.-A 222 DSt IIJX 110 lA2-A 222 D!i. lUI Ill 2A2-A 222 DSli<JI. 110 lA2-A 222 D!i.IIJX Ill lA2-A 222 !IQ. (jJX Ill lA2-A

2A l-iffR--132--N:flih~ 0.75 1.27 11,5 0~ 23.1l'940 17.:320515..2.753 t23 O.OOilOO ft332:i.\ tl2 28 2-111!<-30-lSl-A l!.oo I! .SO 118.1 11.11 2.213! 1.<m1 1.!.153 m o.oosn MilA 18

116 O~)IH 0.0135 423.! 100 0.0349 0.0071 ou 405.&. 180 O.ll70 O,O!ll ll!J a> 211111-BHH 1.00 2.G5 U.S 0.62 21.1956 13.1113 16.6301 12! 0.12100 I'Ll138A Ill

lA 2-FtV-67-<8-A 0.13 o.B'l 2.60 o.60 to:z.u.,; 6l.2SSO 81.nn ra 13.'15000 it21SlA 112 100 0.215<1 0.0017101.1 39U 188 0.3870 O.D138 138.5 ;n l-li!R-!B-51-.1 1.00 1.es u~ o.62 n.w. 11.5975 !9.4730 12! o.121oo !WllA 112

SA .HriR-BN40 5.00 7.25 ~.0 0.£>2 5.7735 3.5796 .t.5299 T39 O.~al ft22JD 112 B2 0.1763 O.D063 429.7 105~

223 D!:l. NJJ. m 2Bl-9 2A z-KIR-:rHsa~ 0.33 t.co 10.0 0.62 26.SSStt&.>l660 20.8375 na 1.87500 PL2S95B m ra. rm.. ro 2BI'il 26 2-KiR--»-450-B ts.oo 19.50 us.• o.49 2.201 urm 1.9553 T49 o.MSn PL267-48 m DSL ""!ll281-B " HJR-BHl-B 1.00 us 1.1 o.62 33.66os 20.861526.1101 121 o.moo IW<lB lllll!t l<l! !lllSl-6 30 2-f~l-<7-B OJ3 0.31 2.60 0.60 102J'l! 61.29&) 81.7!7318 13.95000 Pl2!0011 223 DSt Ill( Ill 281-B l> 211111-1&-SS-B 1.00 US !U 0.62 ll.SIIUI.li>S J8,47JO 121 0.!2100 lt27:Jal mIG. AUX 11121n"fi 4B 2-lfilHHC.PJr-B o.7S 1.11 tu o.75 23.09~0 17.321l5 15.1753 TZl o.BDOCG Pl33U!I 2Z3 09. N1J. S12S.H 49: 'HJR-JIH~"B lS.OO 20,00 llU 0.49 2.2431 1.0991 1.9553 T.ta 0.008(;) ~ 223 D!i. Mill 00 lfll-B " 1-l!IR-JO-<OH 2.00 2.70 22.6 0.62 !1.7722 7.2988 9.2J!S Ill 0.23700 fi.253SI! 223 D!i. .. w lfll-B SA 2-ltn!-112-271 lJ>o 1.10 «~ o.62 s.m1 3.7002 1.6826 m o.ll187B !Ul2S 223 !&. Ia 1':0 21!]-8 61! 2-HTR-~ 1..50 2.65 20.0 (I,Q. 13.2791 8.23'30 10.411!8 T29 0.23700 FUZS5

224 os. AUX m 2BZ-8 2A z-KTR-.sz--m-£ 0.75 1.21 u.s o.7S n.o'm 17.3205 Th.11Sl w 0.'8001» JUJVB 221 1l!t 1111. Ill ll!1-l! 28 2-li!R-30-151-B Jl.OO 19..10 118.1 0.19 2.2131 l.II'J'!1 1.1553 119 0.0017ll'll6938 224 !&. 181. eD Z!l-i 2b z-KIHH2-& 1.00 2.05 11.3 0.&2 2:1.5o!H 14.Sm 18.030 T26 U!JOO A.VUI 224 fa lliX 113 2B:H 3A HCH"HS--E 11.13 0.39 2.60 MO 102.1.(66 Sl.Z880 SJ.717J 18 1l.9SOOG iUIS7B Z24 ~WI 00 2nH ~ 2-Hir.lB--5(-B 1.00 1.85 11.3 0,62 23.544< 1(.597$ lB,<I?l:l 126 O.W:OO ruJJ2B 22C 112../LIX BD2EH: ~8 fHITRalH 79J 11.00 63.5 0.51 U82! Z..38411 l.(lM lQ 0.01563 Ft1460 221 !Ill 1111. 00 21!2-9 5A l-!lllHll-270 5.00 l.l5 «.S 0.62 S.96Sl 3.1002 UB26 139 0.01878 ltll3ll

112 200 o.mo o.o1S3 416.5 18 120 (1,1019 O.OOEIS ~28.2 4a3.9

112 160 0.3410 0.0122 IJJJ 112 162 O.Jial U12! 103] :m~ 112 m ~.l1u o.o1.33 .oo.6 112 60 0.1290 0.004& 426 .. 9 " JSO o.1211 o.otos m.1 ~1.o

no 1so 11..21125 o.ruco m.&_ 112 122 o.2!23 o.OO'iJ 12£..1 ~.1 112 110 D.l720 0.0061 0!.5 107.0

112 17! 0~71H 0.0135 423 •• te m o.0968 o.ooeo 428.a ~0-4..4

112 180 0.3870 0.0138 430.5 m 1.26 o.mn o.OO% ~03., 112 1110 •~ o.Ol38 "'-'· 110 100 O.ll50 O.Oiili. UJ.4 m 115 o.2m o.oooa m.o ~02.1

I: ! ,, I' I.

-~-

Page 90: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc. STUDY-EEB-WBN-12-001 Attachment 3

WBN-EEB-ED-Q000-999-2007-0002, RO ATTACHMENT 11.4, Page 25 of 26.

Required Motor Starting Voltage Page 25 of26_ . '· ...

I ~h !. !2niil~ sniil~ !ilUil! ~

§~*~mm §~m~§~$~~Na§~~~ro~~a~a ~~~~~am

=~~;~~ ;=~e~==~~aaaea;~~a==~ ~~ea~=a

~~~~~~ ~~ li~~~~~~~~~~~~~~m~ ~~~~~~ ~~ ~~~~~~~~~~~~~~~~~ OQOCO~ N~ Q~O~~OO~ONNNN~N~N

~es5~~ ~~ ~~P~~~~~~~~P~~~~~

~~~~~~ ~~-~~~~~~~~~~~~~~~~~~ N~~~~~ ~~ re~~~~~~~~~~R~~~~~o

~~~··· -~ t~-~~~···~···~·~·~ --~~~~ ~~ ~~~~~n-~~~~~~~~~~o

~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~ NN~~~~ ~~ ~~~~~~~~~~~~~~~~~0

~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~ oooooo 00 oooooooooooooooooc

~~~~~~~~~~~~~~~~~~ ~~~~ -o-oO-NC~OOOoOOOO~ C~OO

~~~~~~~~~~~~~~~~~~ ~8~~ oooo~o-oooooooooo~ ~~00

.•

I e9:·

Page 91: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

.,

.. ;

_)

)

)

)

'

lli>HE!H\TU£<-0010 RIO AUI<llm !OJ,- 400V SIIIJOI<M llfl "'!til ttl!JliCl C!1i11R tiJTtll STMTlllG \'ll.TAS!JS (IA!l£ 13- U<TI l•lt< I!J1lll Sllllfll< VII.IW FRa1 lBHEHii-!1116-<1002 Rl!)

00 .EliXX ti1H Nm..

" il> IMJJ Rtol ClaE ClaE lie J'Xf: llllllllllltlllllltlllll£ mwiiS SllE Ill. Sl2E 1$ Slllll STORr Slllll sa:

I'll! l'll.ll'lll («0)(!15)( 1 )(nJ

O:S HI C Disch Vlv lolldr 8 brulus 5pr lsln Vlv

l2B IH'Ohl7-ll2-B 0.67 1.911 7.56 0.60 31.1298 21.077'1 lS.10381ll 0.6J200 21'2J'JIB Jlf 2-fCY-20·24-B 0.£7 2.00 lh.O 0.60 16.59!l8 9.95!3 13.2191 124 0.63200 llmiJ ~ 2fC'H7-H7-B 0.70 2.:30 12.00 li.60 2Z.1318 13.279! 17~ 126 ~.421.00 2V24288 Ill 2-fcv-~11-B O.ll 0.!5 5.1l1 0,60 ~J932 27.!559 37.l115ll6 2.!5000 2'12511!11

1!2 312 0.73l'J 0.02!2 429.5 ~-1 IW.IE

Splr Ilk 2fl To tkU 1A Islu Vlv O:S HI B l C Inlet Isla Vlv R!il: HI a Wr Inlat Vlv WP 2W2ffi T& c-s nru Iso v O:S "->5 2A-A 1 o lHlsb Yl v 191 He B Rbl Hlfr lsb Vlv tts tlr El ; C Mlet Ish Vlv

14EI2-FCY-7G-J-8 O.ll 0.9S .5.70 0.60 ~.5932 27.9559 37.276 JU 2.9SOOO 2Y2f&a 140 2-ftY-7(1-29-S 0,33 0.95 5.70 G.60 .f6.S932 27.9559 31.27'5 U6 2.,500oi 2'm32B liE 2-ftv-71>-39-B 0.!7 !.!ll 7 .Y. 0.60 3SJ298 21.077'1 28.!nl! 121 O.l3200 N32200

Ill Ill 112 Ill 112 Ill

1~ 2-ftY-70-75-fl 0.33 0.75 5.70 0.60 46.5932 27.9559 37.27~5 114 U2000 M9700 112. lBA5 Rll

• I:C!P 2Milll! lo C-5 lnlt Jso Y . RfR HJ: B-B !MU~t Vlv

212 11!11110 lB2-II 212 mtl'l m lB2-II lU RfflV Ill 2B2-fl 242 R!IJII llll82-ll 2<2 11!111110 282·8 2t2 IMJY liD 2HH: 24211!111 m 1Bl-B 2.&2 RltlV 00 2BH m II!IW lllllBl-B m 001 m 1Bl-B 2~2 EMW !II 2BZ"if 212 ""' llll 282-B 242 ""' llll 282-B 2.u Rim' m 2B2-B 2-tl fMN ID 2BH

ISS 2-Fcv-7o-I96-B O.ll 0.95 S.ro 0.60 15.5912 17 .l55'1 :J7 .l115 116 2.ll000 ?1218lll Ill lSD 2-f't\1-Jn-.18-B 0..&7 U!l 7 .S& t1.60 3.5.1298 21.0-n! 28.1038 J24 MJlOO 2Y2S«S IU l!l' 2-FCV~7o-1s:HI 0.33 0.95 5.70 0.60 U...S932 '0 .'iS5'137.27~S TIIi 2.9SCOO m556S Ill

700 2.3891. o.GSi'a m.-t 191 1.0621 0.0378 121-' ;n 1.229!1 0.0438.416.3 3S6 0.8299 0.0295 .Ct8.6 566 1.2169 0.0433 416.4 566 t.216l 0.0<13 llS.S 704 1.513& 0.0539 lOS.O 306 OJ869 0.02!0 418.8 570 1.2255 0.0136 llS.7 410 1.4105 0.0360 4l7 .s 560 1.2040 O.OilS llS.9 416 0.1194 0.03!8 118.2 SQ. 1.1~ 0.0425 416.5 l1ll 0,0313 O.OUIIZl,O

TE!AS R11

'...-{ ';E (/)

(/) :I m nl ,-I ' J> 0 0 rn 0 OJ -< :n

·m ~

CCSP 2lW:2!Ii Ta..t-5 Illll Iso V !IPC5 HI S.IY l!lr Isla Ylv ctSP 2Ml:2BB h c -s ruu 1st~ v 400Y Bd Rl 2B Alt Q!rsr Z!i-B

1/asU Gas Cprsr Pig B

~~ caM!R rm1 NJJ Ill. 2

l6A 2-fCY-~76-B 0.£7 uo 7.56 0.60 35.1298 2l.077'l 1i.l038 114 0.6l200 2'I15SOil 112 VA o-rcv-~!94-ll 0.33 O.l5 5.70 0.60 46.59!2 27.95Sl !7.2715 716 2.ll000l'/2SHB Ill 178 2'-FtY-n-29-il 0.33 M5 5.70 0.60 %.5'132 27.9559 37.2745116 2.'15000 2'i253rB 112 180 HfTR·li~«7-S' 75.00 90,00 526.2 0.33: 0..5m7 0.1U6 0,411>4 ZU!600 1Z

25.00 )).00 197.~ O.t3 1.3& 0.5785 1.2W T53 0.00226 2Pl5460 16 040 0.341& 0.0.:(2 379..3

5.00 1.21 15.0 o.6l s.ms J.ll% 1.sm rugs uo '116 1.3176 o.Ob88 378.1 7.50 91/J 60.0 OS! ~ • .(264 2..5230 3.636'3 tn 0.01008 2PL390l I~ UBG O.flm O.O'OH 398.5

TE!AS R11

Iii' fAIL

FAII.m lm-lE

6Alllllll:l<-i')

........... , ·--··· ·-- -••• -··- ·- -.,, .. ,_- ••• --·-• ..._ ..- , .. .._ -·--•-... .- ,...,.,..,.,.,_....,... • ~·"'r•no-nt '"""'~" ....-;-or.,on;no,..,.,. "'",...,.... ~ ........ _,.., __ .,, _ _. • ··~·-

------ ... ~~~~-

1.[) 0

Page 92: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calculation No.: WBNEEBEDQ199901 0001

ATTACHMENT 11.9 JOG Review Plan

Calc STUDY-EEB-WBN-12-001 Attachment 4

Required Voltage 89-10 MOV's- Unit 1 Page 1 of 9 Page1 of11

Mechanical Degraded Voltage Time Requirements for GL 89-10 MOVs

Q ~

"' liiw ~ !ll e ~ ~~~ .2 0

~ > c ,eO,! ., iii 0 ~ ~ _o o O..e» > ~ u~z > ~ -~ .J 'E ~l.t)Ql 0~ C'

"' !="..;~ ~ Comments (also, see Notes Section) > 1- ao .. ss OtoC c = 388.3

0-FCV-067-0144 B ss CtoO 0 = 388.3 Steady State Voltage · ·

0 CtoO 0 = 395.1 0-FCV-067-0152 B ss OtoC c =414 Need Best avail Voltage at t=O sec from Sl

ss OtoC c =429.9 0-FCV-067-0205 A ss CtoO 0 =429.9 Steady State Voltage

ss OtoC c =428.9 0-FCV-067-0208 B ss Cto 0 0=428.9 Steady State Voltage

ss Oto C c = 440.9 0-FCV-070-0194 B ss Cto 0 0=440.9 Steady State Voltage

ss Oto C c = 439.1 0-FCV-070-01 97 A ss Cto 0 0 = 439.1 Steady State Voltage

ss OtoC C=414 1-FCV-001-0015 A ss CtoO 0 =414 Steady State Voltage

ss OtoC C=414 1-FCV-001-0016 A ss CtoO 0=414 Steady State Voltage

ss OtoC c = 408.1 1-FCV-001-0017 A ss CtoO 0 = 408.1 Steady State Voltage

ss OtoC c = 413.3 1-FCV-001-0018 B ss CtoO 0 = 413.3 Steady State Voltage

0 CtoO 0 = 90.49 1-FCV-001-0051 s ss OtoC c = 90.49 125 V DC Motor, Need Best Avail Voltage at T=O sec from Sl

0 Oto C C=322 4 OtoC c = 389.5 Need 70% Voltage at t=O sec, Need Best Avail Voltage at t=4 sec forward from St (normally

1-FCV-003-0033 A ss CtoO 0 =414 open MOV). Need SS voltage for non-safety related opening stroke.

Motor Brake (1-FCV-003-0033) A 0 energize 368 Needs 80% of 460 voltage@ T=O

0 OtoC c = 322 4 OtoC c = 381.5 Need 70% Voltage at t=O sec, Need Best Avail Voltage at t=4 sec forward from SJ (normally

1-FCV-003-0047 B ss CtoO 0=414 open MOV). Need SS voltage for non-safety related opening stroke.

Motor Brake (1-FCV-003-0047) B 0 energize 368 Needs 80% of 460 voltage@ T=O

Page 93: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calculation No.: WBNEEBEDQ199901 0001

ATTACHMENT 11.9 JOG Review Plan

Calc STUDY-EE8-W8N-12-001 Attachment 4

Required Voltage 89-10 MOV's- Unit 1 Page 2 of 9 Page 2 of 11

Mechanical Degraded Voltage Time Requirements for GL 89-10 MOVs

ci ~

"' iii <I) c l!! E"' .2 0

"" > 0 0 ~ "' "' " ~ 0 ~ iij ::.oo 0 w ~ "'"' > c u~z > c ·s ...1

~ :}l&O~ 0~ C' :; w Comments (also, see Notes Section) t=:..;oo ::!Eu "' 0 OtoC C= 322 4 OtoC c = 377.0 Need 70% Voltage at t=O sec, Need Best Avail Voltage at t=4 sec forward from Sl (normally

1-FCV-00~087 A ss CtoO 0 = 403.0 open MOV). Need SS voltage for non-safety related opening stroke.

Motor Brake (1-FCV-003·0087) A 0 energize 368 Needs 80% of 460 voltage@ T=O

0 Oto C c = 322 4 Oto C c = 381.5 Need 70% Voltage at t=O sec, Need Best Avail Voltage at t=4 sec forward from Sl (normally

1-FCV-003-01 00 B ss Cto 0 0=414 open MOV). Need SS voltage for non-safety related opening stroke.

Motor Brake (1-FCV-003-0t 00) B 0 energize 368 Needs 80% of 460 voltage@ T=O

ss CtoO 0 = 383.6 t-FCV-00~116A A ss OtoC c = 383.6 Steady State Voltage

ss CtoO 0 = 383.6 1-FCV-003-01168 A ss OtoC c = 383.6 Steady State Voltage

ss CtoO 0 = 381.9 1-FCV-003-0126A 8 ss OtoC c = 381.9 Steady State Voltage

ss CtoO 0= 382 1-FCV-003-01268 8 ss OtoC C=382 Steady State Voltage

ss CtoO 0 = 386.3 1-FCV-003-0136A A ss OtoC c = 386.3 Steady State Voltage

ss CtoO 0 = 386.3 1-FCV-003-01368 A ss OtoC c = 386.3 Steady State Voltage

ss CtoO 0 = 384.5 1-FCV-003-0179A 8 ss OtoC c = 384.5 Steady State Voltage

ss CtoO 0 = 384.5 1-FCV-003-01798 8 ss OtoC c = 384.5 Steady State Voltage

0 OtoC C=322 5 OtoC c =403.5 Need 70% Voltage at t=O sec, Need Best Avail Voltage at t=S sec forward from Sl (Normally

1-FCV-026-0240 A ss CtoO 0 = 427.2 open MOV).

0 OtoC c = 322 5 Oto C c = 409.7 Need 70% Voltage at t=O sec, Need Best Avail Voltage at t=5 Sec forward from Sl (Normally

1-FCV-026-0243 A ss CtoO 0=422.4 open MOV).

0 OtoC c = 322 5 OtoC c = 386.6 Need 70% Voltage at t=O sec Need Best Avail Voltage at t=S sec forward from Sl (Normally

1-FCV-062-0061 8 ss CtoO 0 = 393.7 open MOV).

Page 94: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc STUDY-EEB-WBN-12-001 Attachment 4

Required Voltage 89-10 MOV's- Unit 1 3

f 9 Calculation No.: ATTACHMENT 11.9 Page 3 off1~ge o

WBNEEBEDQ1999010001 JOG Review Plan Mechanical Degraded Voltage Time Requirements for GL 89-10 MOVs

0 .. "'

iii"' c ~ E"' ~ :> Q 0 ---"' " iii .t:: 0-,! 0 ..

~ U'~~ 0. "' :l .5 > c I~

~.0111 Q. "' :; i:'" .. ~ ::;;3 .1! COOVnents (also, see Notes Section)

0 OtoC C=322 5 OtoC C= 381.1 Need 70% Voltage at 1=0 sec, Need Best Avail Voltage att=S seo forward from Sl (Normally

1-FCV-062-0063 A ss Ctoo 0 = 409.2 open MOV).

0 OtoC c = 322 5 OtoC c =414 Need 70% Voltage at t=O sec, Need Best Avail Voltage at t=5 sec faward from Sl (Nonnalty

1-FCV-062-0090 A ss CtoO 0=414 open MOV).

0 OtoC C= 322 5 OtoC C=414 Need 70% Voltage at t=O sec, Need Best Avail Voltage at t=5 sec forward from Sl (Normally

1-FCV-062-()091 B ss CtoO 0=414 openMOV).

ss CtoO 0 = 407.5 1-FCV-062-0138 B ss OtoC c =407.5 Steady State VoHage

ss OtoC c = 413.5 1-FCV-063-0001 A ss CtoO 0 = 413.5 steady State Voltage

ss OtoC c = 400.5 1-FCV-063-0003 A ss CtoO 0 = 400.5 Steady State Voltage

ss OtoC c = 390 1-FCV-063-0004 B ss CtoO 0=390 Steady State Voltage

ss Otoc c = 399.5 1-FCV-063-0005 B ss CtoO 0=399.5 Steady State Voltage .

ss CtoO 0 = 401.1 1-FCV-063-0006 B ss OtoC c- 401.1 Steady State Voltage

ss Ctoo 0=403.5 1-FCV-063-0007 A ss OtoC c = 403.5 Steady State Voltage

ss CtoO 0=429.8 1-FCV-063-0008 A ss OtoC c = 429.8 Steady Slate Vott"1)e ·.

ss ctoo 0 =415.7 1-FCV-063-0011 B ss OtoC c = 415.7 Steady Stale Vottage

ss OtoC c = 401.4 1-FCV-063-0022 B ss CtoO 0=401.4 Steady State Voltage

0 CtoO 0 = 361.8 Need Best avail Voltage at t=O sec from Sl for opening stroke, need steady state for cJoslng 1-FCV-063-0025 B ss OtoC C=414 stroke.

Page 95: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calculation No.: WBNEEBEDQ199901 0001

ATTACHMENT 11.9 JOG Review Plan

Calc STUDY·EEB·WBN-12-001 Attachment 4

Required Voltage 89·10 MOV's ·Unit 1 Page 4 of 9 Page4of11

Mechanical Degraded Voltage Time Requirements for GL 89-10 MOVs

0 ~

"' a; !I) c !!! 0 0 E"' "' > c 0 ~ " -~ .,

iii .:::O~ 0 ~ .~ -"' 0 O.e> :; c ~~z > c " ·~ !~$ 0 ~ .,.

~ :.n'3 ~ Comments (also, see Notes Section) ... ...... !1) "' 0 CtoO 0 = 343.4 Temporary minimum requirment in support of DCN 52837 Stage 2. Need Best avail

1-FCV-063-0026 A ss OtoC c = 414 Voltage at t=O sec from Sl for opening stroke, need steady state for closing stroke.

0 CtoO 0=370 Long tenn minimum requinnent in support of DCN 52837 Stage 3. Need Best avail ss OtoC c = 414 Voltage at t=O sec from Sl for opening stroke, need steady state for closing stroke.

ss OtoC C=403 1-FCV-063-0047 A ss Ctoo 0 =403 Steady State Voltage

ss OtoC c = 418.8 1-FCV-063-0048 B ss Cto 0 0 = 418.8 Steady State Voltage

ss CtoO 0 = 404.3 1-FCV-063-0072 A ss OtoC c =404.3 Steady State Voltage

ss CtoO 0 = 408.7 1-FCV-063-0073 B ss OtoC c = 408.7 Steady State Voltage

ss CtoO 0 = 419.6 1-FCV-063-0093 A ss OtoC c = 419.6 Steady State Voltage

ss CtoO 0 = 418.2 1-FCV-063-0094 B ss OtoC c = 418.2 Steady State Voltage

ss OtoC c = 405.8 1-FCV-063-0152 A ss CtoO c = 405.8 Steady State Voltage

ss OtoC c = 405.8 1-FCV-063-0153 B ss CtoO 0 =405.8 Steady State Voltage

ss CtoO 0=412.7 1-FCV-063-0156 A ss OtoC c = 412.7 Steady State Voltage

ss CtoO 0-414 1-FCV-063-0157 B ss OtoC c = 414 Steady State Voltage

ss CtoO 0 = 396.7 1-FCV-063.0172 B ss Oto C c = 396.7 Steady State Voltage

ss OtoC c = 390.7 1-FCV-063-0175 B ss CtoO 0 "'390.7 Steady State Voltage

0 OtoC c "'322 5 Oto c C=395.1 Need 70% Voltage at t=O sec, Need Best Avail Voltage at t=5 sec forward from Sl (Normally

1-FCV-067-0083 8 ss CtoO 0 =404.3 open MOV).

Page 96: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc STUDY-EEB-WBN-12-001 Attachment 4

Calculation No.: ATTACHMENT 11.9 Required Voltage 89-10 MOV's- Unit 1 Page 5 of 9 Page5of11 WBNEEBEDQ1999010001 JOG Review Plan

Mechanical Degraded Voltage Time Requirements for GL 89-10 MOVs

0 " "' c;;"' .. c ~ E"' ~ >

Q 0 ~ ~ ~ "C

iii -=~~ 0 " e .,_, > c u~z > c '9 ..J

~ ~u;Ql o2! ,.

<t t='..;~ ~ Comments (also, see Notes Section} > :.o

0 OtoC c = 322 5 OtoC c = 392.4 Need 70% Voltage at t=O sec, Need Best Avail Voltage at t=5 sec fotward from Sl (Normally

1-FCV-067-0087 A ss CtoO 0 = 399.6 open MOV).

0 Oto C c = 322 5 Oto C c = 392.2 Need 70% Voltage at t=O sec, Need Best Avail Voltage at t=S sec forward from Sl (Normally

1-FCV-067-0088 B ss CtoO 0-401.3 open MOV).

0 OtoC C= 322 5 OtoC c = 386.7 Need 70% Voltage at t=O sec, Need Best Avail Voltage at t=S sec forward from Sl (Normally

1-FCV-067-0089 A ss Cto 0 0 = 393.6 open MOV).

0 OtoC c = 322 5 OtoC c = 392.4 Need 70% Voltage at t=O sec, Need Best Avail Voltage at t=S sec forward from Sl (Normally

1-FCV-067-0091 B ss CtoO 0-401.5 open MOV).

0 OtoC C=322 5 OtoC c = 391.6 Need 70% Voltage at t=O sec, Need Best Avail Voltage at t=S sec forward from Sl (Nonnally

1-FCV-067-0095 A ss CtoO 0-398.5 open MOV).

0 OtoC c =322 5 OtoC c = 392.8 Need 70% Voltage at t=O sec, Need Best Avail Voltage at t=S sec forward from Sl (Normally

1-FCV-067-0096 B ss CtoO 0-401.9 open MOV). 0 OtoC C-322 5 OtoC c = 385.9 Need 70% Voltage at t=O sec, Need Best Avail Voltage at t=S sec forward from Sl (Normally

1-FCV-067-0097 A ss CtoO 0=393 open MOV).

0 OtoC C=322 5 OtoC c = 393.9 Need 70% Voltage at t=O sec, Need Best Avail Voltage at t=S sec forward from Sl (Normally

1-FCV-067-0099 A ss CtoO 0 =401.2 open MOV).

0 OtoC c = 322 5 OtoC C=388 Need 70% Voltage at t=O sec, Need Best A van Voltage at t=5 sec forward from Sl (Normally

1-FCV-067-01 03 B ss CtoO 0 =397 open MOV).

0 OtoC C=322 5 OtoC c = 394.3 Need 70% Voltage at t=O sec, Need Best Avail Voltage at t=S sec forward from sr (Normally

1-FCV-067-0104 A ss CtoO 0- 401.6 open MOV). 0 OtoC c -322 5 OtoC C=383.1 Need 70% Voltage at t=O sec, Need Best Avail Voltage at t=S sec forward from Sl (Normally

1-FCV-067-0105 B ss CtoO 0-392 open MOV).

0 OtoC c = 322 5 OtoC c = 395.3 Need 70% Voltage at t=O sec, Need Best Avail Voltage at t=S sec forward from Sl (Normally

1-FCV-067-01 07 A ss CtoO 0 = 402.7 open MOV).

Page 97: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calculation No.: WBNEEBEDQ199901 0001

ATTACHMENT 11.9 JOG Review Plan

Calc STUDY·EEB·WBN-12·001 Attachment 4

Required Voltage 89·10 MOV's ·Unit 1 Page 6 of 9 Page6of11

Mechanical Degraded Voltage Time Requirements for GL 89-10 MOVs

0 m "' <iiUJ c ~ EUJ ~ >

0 0 ~ 0 0 ., iii J::O,! o m ~ (J~~ a.., > c > c ·s ..J

~ :}itt$"41 0~

.,. § j:"...:-~ m Comments {also, see Notes Section) :.o "'

0 Oto C C=322 5 Oto C c = 389.4 Need 70% Voltage at t=O sec, Need Best Avail Voltage at t=S sec forward from Sl (Normally

1-FCV-067-0t 11 B ss Cto 0 0 = 398.5 open MOV).

0 OtoC c = 322 5 OtoC c = 395.7 Need 70% Voltage at t=O sec, Need Best Avail Voltage at t=5 sec forward from Sl (Normally

1-FCV-067.(]112 A ss Cto o 0 = 403.1 open MOV).

0 OtoC C= 322 5 OtoC c = 384.3 Need 70% Voltage at t=O sec, Need Best Avail Voltage at t=S sec forward from Sl (Normally

1-FCV-067-0113 B ss CtoO 0 = 393.2 open MOV).

ss CtoO 0 =436.3 1-FCV-067 .(]123 B ss OtoC c =436.3 Steady State Voltage

ss CtoO 0 = 433.0 1-FCV-067-0124 B ss OtoC c =433.0 Steady State Voltage

ss CtoO 0 = 438.2 1-FCV-067-0125 A ss OtoC c- 438.2 Steady State Voltage

ss CtoO 0 = 435.3 1-FCV-067-0126 A ss OtoC c =435.3 Steady State Voltage

ss CtoO 0 = 388.4 1-FCV-067-0143 A ss OtoC c = 388.4 Steady State Voltage

ss Cto 0 0=431 1-FCV-067.(]146 A ss OtoC c = 431 Steady State Voltage

ss CtoO 0 = 399.9 1-FCV-068-0332 B ss OtoC c = 399.9 Steady State Voltage

ss Cto 0 0=412 1-FCV-068-0333 A ss Oto C c = 412 Steady State Voltage

0 Oto C C=322 5 Oto C c = 391 Need 70% Voltage at t=O sec, Need Best Avail Voltage at t=5 sec forward from Sl (Normally

1-FCV-070.0087 B ss CtoO 0 =403.6 open MOV).

0 Oto C c = 322 5 OtoC c = 391.0 Need 70% Voltage at t=O sec, Need Best Avail Voltage at t=5 sec forward from Sl (Normally

1·FCV.Q70·0089 B ss CtoO 0 = 426.4 open MOV).

Page 98: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calculation No.: WBNEEBEDQ1999010001

0

ia:z E,j;

~ _g 0

i~~ ~ .. e -!2."!.

0 5

1-FCV~070-0090 A ss 0 5

1-FCV-07().0092 A ss 0 5

hFCV-070-0100 A ss 0

12 1-FCV-070-0133 A ss

D 12

1-FCV-070-0134 9 ss D 5

1 ·FCV-070-0140 9 ss 0 5

1·FCV-070-0143 A ss ss

1-FCV-070-0153 8 ss ss

1-FCV-070-0156 A ss ss

1-FCV-070-0183 A ss ss

1-FCV-070-0215 A ss 5

1-FCV-072-0002 8 ss 10

1-FCV-072-0013 B ss ss

1-FCV-072-0021 B ss

ATTACHMENT 11.9 JOG Review Plan

Calc STUDY-EEB-WBN-12-001 Attachment 4

Required Voltage 89~10 MOV's ~Unit 1 Page7of11

Page 7 of9

Mechanical Degraded Voltage Time Requirements for GL 89·10 MOVs

• "' " l! 0 :'l " • .., 0 • .~ .... ~! = [ Comments lalso. see Notes Section\

otoc C=322 OtoC c = 398.5 Need 70% Voltage at t-::0 sec, Need Best Avail Voltage at t=S sec forward from Sl (Nonnally open ctoo 0 =405.8 MOVl.

OloC C= 322 otoc C=400.6 Need 70% Voltage at t=O seo, Need Best Avail Voltage at t=S seoforward from Sl (Normally open CtoO 0=428.0 MOV).

OloC C=322 OtoC c =393.4 Need 70% Voltage at t=O seo, Need Best Avail Voltage at t=S sec forward from Sl (Normally open CtoO 0 =416.6 MOV):

otoc C=322 OtoC C=414 Need 70% Voltage at t-::0 seo, Need best Avail Voltage at t=12 sec folward from Sl (Normally Open ctoo 0=414 MOV)

otoc C=322 otoc C=414 Need 70% Voltage att=O sec, Need best A'lail Vottage at t=12 sec forward from Sl (Normalty Open ctoo 0=414 MOV)

otoc C=322 OtoC c = 391.9 Need 70% Voltage at t=O sec, Need Best Avail Voltage at t=5 sec forward from Sl (Normally open CloO 0=427.4 MOV).

OtoC c =322 OtoC c = 398.5 Need 70% Voltage at t=O sec, Need Best Avail Voltage at t=5 sec forward from S! (Normally open CtoO 0 =425.7 MOV).

CtoO 0 = 391.0 steady State Voltage; Active safety function is to operate from close/throttle positlorl to open otoc c = 391.0 position.

CtoO 0=434.8 OtoC C•434.8 Stead\/ state Voltage

otoc c = 395.1 CtoO 0= 395.1 Steadv State Voltage

OtoC C= 395.4 ctoo 0= 395.4 Steadv State Voltaoe

ctoo 0 = 412.7 OtoC C=415 Time Delay added per CX:::N 52834, need best avail Voltaae at t=5 sec from Sl

ctoo 0=414 Need Best Avail Voltage at t= 10 sec from Sl (MOV Will not get a signal to open until after time OloC C=414 delav per DCN 52834\

OtoC C=402.2 ctoo 0=402.2 steady State Voltaoe

This Page Revised and Replaced by R73

Page 99: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calculation No.: WBNEEBEDQ199901 0001

Calc STUDY-EEB·WBN-12·001 Attachment 4

ATTACHMENT 11.9 Required Voltage 8g·10 MOV"s. Unit 1Page 8 of 9 JOG Review Plan Page 8 of 11

Mechanical Degraded Voltage Time Requirements for GL 89-10 MOVs

0 ~

"' iii"' ~ .l!! .!2 0 E"' ~ >

0 0 ~ 00 "0 iii J::O,!

0 "' ~ fJ"~~ """' :; ~ > ~ ·s ~ !~~ 0"' "" ;; :di "' Comments (also, see Notes Section) ...... "' "'

ss OtoC c = 400.2 1-FCV-072-0022 A ss CtoO 0 = 400.2 Steady State Voltage

10 Cto o 0=414 Need Best Avail Voltage att= 10 sec from S! (MOVwill not get a signal to open until after time 1-FCV-072.0034 A ss OtoC c = 414 delay per DCN 52834)

5 CtoO 0 = 411.3 1-FCV-072-0039 A ss OtoC C=415 Time Delay added per DCN 52834, need best avail Voltage at t=S sec from S!

ss CtoO 0= 405.7 1-FCV-072-0040 A ss OtoC c = 405.7 Steady State Voltage

ss CtoO 0 =396 1-FCV-072.0041 B ss OtoC c =396 Steady State Voltage

ss CtoO 0 =414 1-FCV-072.0044 A ss OtoC c = 414 Steady State Voltage

ss Ctoo 0=414 1-FCV-072-0045 B ss OtoC c = 414 Steady State Voltage

ss OtoC 0=414 1-FCV-074-0001 A ss CtoO C=414 Steady State Voltage

ss CtoO 0=414 1-FCV-074-0002 B ss OtoC c =414 Steady State Voltage

ss OtoC c =424.2 1-FCV-074-0003 A ss CtoO 0=424.2 Steady State Voltage

ss OtoC c = 414 1-FCV-074-0008 A ss CtoO 0 =414 Steady State Voltage

ss OtoC c = 419.4 1-FCV-074-0009 B ss CtoO 0 = 419.4 Steady State Voltage

0 CtoO 0 = 345.4 1·FCV.07 4-0012 A ss OtoC c = 393.7 Need Best avail Voltage at t=O ~ec from Sl (OPEN); and ss (CLOSED)

ss OtoC c = 422.3 1-FCV-074-0021 B ss CtoO 0 =422.3 Steady State Voltage

0 CtoO 0 = 347.2 1-FCV-074-0024 B ss OtoC c = 383.8 Need Best avail Voltage at t=O sec from Sl (OPEN); and SS (CLOSED)

ss OtoC c =394.6 1-FCV-074-0033 A ss CtoO 0 = 394.6 Steady State Voltage

Page 100: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calculation No.: ATTACHMENT 11.9 WBNEEBEDQ1999010001 JOG Review Plan

Calc STUDY-EEB-WBN-12-001 Attachment 4

Required Voltage 89-10 MOV's- Unit 1 Page 9 of 11

Mechanical Degraded Voltage Time Requirements for GL 89-10 MOVs

., see Notes Section)

ss OtoC C=383 B SS C to 0 0 = 383 S!MdV State Vott;,ge

OtoC <.:=322

Pago9 of9

0

_A ss C ~ ~ ~ ~ :~:·3 ~~:0% Voltage at t=O sec, Need Best Avail Voltage at t=5 sec forward frOm Sl (Normally open

·.

0

B SS

UtoG G=322

C ~ ~ ~ ~ !1~:6 ~~~~0% Voltage at t=O sec, Naed Best Avail Voltage at t=5 sec furward from Sl (Normally open

0 CtoO 0=363 A SS OtoC C=409.3 Needl

o ctoo 0•343 B SS 0 to C IC • 393.3 Need Best' t t=O sec from Sl

!Noles: i1) Ti1e IMOVlseoualtoor ,of460V(414v)

1 In Design Standard t for voltages 90% actor is 1.0 li.e. no' lis required at 90% or above). I be no lmoact to any l i r aslono as 90% of 460 v (414 v) is IT!•t.

2) Required voltage I atT = 0, r=4, T=' orr= 10 ~·the 1 avelablevoltaae from · i I to anv time forward dulino the : If a 4 l l and

VQ~age droppod at 5 sec, then the I ' should be used to bound deoraded voltage. 3) For t are open . I upon recelvin~ Sl signal the reouired voltage at T = 0 Is only

70% of 460 v_(322 v) until the valve becomes loaded. MOl l pressure I and ' i 1 for· oioaded.

A 70% startlno voltaoe is based on I l in 1

in Vendor Manual '

Page 101: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

ETAP Node ID MDV

RHR Sys lsln Vlv 235-5B 1-FCV-74-1-A (2.6HP)

RCS Press Relief FCV 235-60 1-FCV-68-333-A (1.9HP)

RHR Hx A To CVCS Chrgr Pmp 235-llB 1-FCV-63-8-A (1.9HP)

SIS Pmp lA-A Inlet Vlv 235-12A 1-FCV-63-47-A (1.9HP)

SIS To RCS Loops 2&3 FCV 235-120 1-FCV-63-93-A (1.6 HP)

SIS Pmp lA-A Outlet FCV 235-12E 1-FCV-63-152-A (1.9HP)

SIS Pmp Out RCS Lp 1&3 Hot Leg 235-13A 1-FCV-63-156-A (1.9HP)

Cntmt Sump To Spray Hdr 1A FCV 235-13B 1-FCV-72-44-A (3.2HP)

RHR Spray Hdr 1A lsln Vlv 235-14A 1-FCV-72-40-A (1.9HP)

RHR Hx 1A Bypass Vlv 235-14E 1-FCV-74-33-A (2HP)

Up Cntmt Clr 1A Disc lso Vlv 236-90 1-FCV-67-295 (0.13HP)

AFWP Turb Stm Sup Fm Stm Gen 1 236-20 1-FCV-1-15-A (1HP)

Cntmt Spray Hx 1A Sup Cant Vlv 236-SE 1-FCV-67-125-A (0.33HP)

Cntmt Spray Hx 1A Disch Vlv 236-SF 1-FCV-67-126-A (0.33HP)

AFWP Turb St Sp!y Frm St gen 4 236-6A 1-FCV-1-16-A (1HP)

RHR Sys lsln Bypass Vlv 236-60 1-FCV-74-8-A (1.6HP)

Cmpnt Clg Hx A Disch Cant Vlv 236-llA 1-FCV-67-146-A (0.3HP)

SFPCS Hx Sply Hdr lsln Vlv 236-178 0-FCV-70-197-A (0.3HP)

SIS Pmp Inlet To CVCS Chrg Pmp 235-11A 1-FCV-63-7-A (1.9HP)

Cntmt Sump To RHR Pmp A-A 235-128 1-FCV-63-72-A (13HP)

SS&Con AirCpsr Sup Hdr A I so V 236-12B 0-FCV-67-205-A (0.33.9HP)

RHR Hx A-A Outlet Vlv 236-16E 1-FCV-70-156-A (0.33.9HP)

RHR PMP 1A-A INLET FCV 203-70 1-FCV-74-3-A (5.2HP)

RWSTTO SPRAY HDR 1A FCV 203-7E 1-FCV-72-22-A (3.2HP)

Available Voltage

(New Analysis)

Value from SS

90.74*

89.20*

87.48

88.18*

88.65

88.48*

89.28*

90.33*

87.66

85.27

81.98

92.47*

92.51*

92.19*

92.52*

90.99*

87.97

89.63

88.21 *

85.00

86.86

87.86

90.31

85.27

lA BOARDS

TimefromSI Signal

(SS =steady state)

ss ss ss ss ss ss ss ss ss ss

Not 89-10

ss ss ss

ss ss ss ss 55

55

55

55

55

55

New Design

Margin (using new Voltages}

(open)

13.30%

19.90%

13.20%

19.60%

18.60%

29.50%

15.40%

35.50%

75.20%

79.30%

28.96%

14.50%

24.40%

24.40%

14.50%

17.50%

13.50%

28.10%

9.40%

21.50%

78.40%

24.40%

125.80%

273.70%

* Calculated voltage considering Hammer Blow feature (using SO% LRC during unseating)

Calc STUOY-EEB-WBN-12-001

Attachment 4 Required Voltage 89-10 MOV's- Unit 1

Page 10 of 11

New Design

Margin (using new Voltages) (closed)

Comments**

18.80% Acceptable Margin

15.80% Acceptable Margin

124.60% Acceptable Margin

16.10% Acceptable Margin

140.30% Acceptable Margin

39.40% Acceptable Margin

15.90% Acceptable Margin

105.93% Acceptable Margin

121.90% Acceptable Margin

45.10% Acceptable Margin

28.96% Acceptable Margin

35.40% Acceptable Margin

24AO% Acceptable Margin

24.40% Acceptable Margin

35.40% Acceptable Margin

42.40% Acceptable Margin

13.50% Acceptable Margin

28.10% Acceptable Margin

105.40% Acceptable Margin

1781.80% Acceptable Margin

78.40% Acceptable Margin

24.40% Acceptable Margin

2250.80% Acceptable Margin

266.60% Acceptable Margin

R2

**Calculated voltages based on the new analysis have been reviewed and are considered acceptable based· on the available margin

This page revised and replaced by R2

Page 102: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

ETAP Node ID

205-70

237-5E

237-9B

237-llB

237-13A

237-138

237-130

237-140

237-14E

238-2E

238-5F

238-5E

205-7E

237-10A

237-108

237-11A

237-12B

237-120

237-14A

238-3A

238-170

237-150

1B BOARDS Available New New Voltage Design Design

(New Analysis)

Time from Sl Margin (using Value Signal (SS = new Margin (using

MOV from SS steady state) Voltages) new Voltages) (open) (closed)

RHR PMP 18-B INLET FCV 1-FCV-74-21-B (5.2HP) 91.00 ss 107.10% 1705.70% RCS Press Relief Flow Cant Vlv 1-FCV-68-332-B {1.9HP) 88.06* ss >21.7% >13.5% RHR To RCS H.L. 1&3 Flow lso V 1-FCV-63-172-B (2.6HP) 85.99 ss 59.20% 87.40% RHR Hx B To SIS Pmp 1-FCV-63-11-B (2HP) 85.71 55 8.90% 124.60% SIS Pmp 18-B Outlet FCV 1-FCV-63-153-B (1.9HP) 88.75'* 55 19.90% 30.10% SIS PMP OUT RCS LP 2& 4 H. LEG 1-FCV-63-157*8 (1.9HP) 91.36* ss 11.10% 11.50% SIS 18*8 Dsh To RWST Shtff Vlv 1-FCV-63-175-8 (0.7HP) 84.70 ss 977.40% 77.10% RHR Spray Hdr 18 lsln Vlv 1-FCV-72-41-B (1.9HP) 85.82 ss 66.90% 111.40%

Cntmt Sump To Spray Hdr 18 FCV 1-FCV-72-45-B (3.2HP) 89.68* 55 3.30% 57.00% St Flow To AFWP Turb lsln Vlv 1-FCV-1-18-8 (1HP) 92.50* 55 95.80% 18.20% Cntmt Spray Hx 18 Disch Vlv 1-FCV-67-124-8 (0.33HP) 91.73* ss 24.40% 24.40%

Cntt Spray Hx 18 Sup Cont Vlv 1-FCV-67-123-B (0.33HP) 92.08* 55 24.40% 24.40%

RWSTTO SPRAY HDR 18 Vlv 1-FCV-72-22-8 (3.3HP) 86.79 55 291.10% 283.70%

SIS 1A-A DSH TO RWST SHTFF VLV 1-FCV-63-4-B (0.7HP) 84.57 ss 943.70% 76.10%

RWST To SIS Pump Flow Cont Vlv 1-FCV-63-5-B (1.9HP) 88.02* ss 17.30% 38.60%

SIS PMP INLTTO CVCS CHRG PMP 1-FCV-63-6-B (1.9HP) 88.21 * ss 11.30% 118.70% SIS Pmp 18-8 Inlet Vlv 1-FCV-63-48-8 (1.9HP) 90.23* ss 39.00% 46.60% CNTMT SUMP TO RHR PMP 8-8 1-FCV*63-73-8 (13HP) 88.03 ss 17.40% 2117.00% Cntmt Spray Hdr 18 Jsln Vlv 1-FCV-72-2-B (3.2HP) 92.86* 5s 10.40% 359.00% ERCW Hdr B lsln Vlv 1-FCV-3-179A-B (0.33HP) 83.46 ss 22.10% 19.00% CCS HX B ERCW BYPASS FCV 0-FCV-67-144-B (0.13HP) 82.00 55 110.40% 112.00% RHR Hx 18 Bypass Vlv 1-FCV-74-35-B (1.9HP) 81.00 ss 64.30% 37.80%

* Calculated voltage considering Hammer Blow feature (using 50% LRC during unseating)

Calc STUOY-EEB-WBN-12-001 Attachment 4

Required Voltage 89-10 MOV's- Unit 1 Page 11 of 11

Comments**

Acceptable Margin

Acceptable Margin

Acceptable Margin

Acceptable Margin

Acceptable Margin

Acceptable Margin

Acceptable Margin

Acceptable Margin

Acceptable Margin

Acceptable Margin

Acceptable Margin

Acceptable Margin

Acceptable Margin

Acceptable Margin

Acceptable Margin

Acceptable Margin

Acceptable Margin

Acceptable Margin

Acceptable Margin

Acceptable Margin

Acceptable Margin R2

Acceptable Margin

**Calculated voltages based on the new analysis have been reviewed and are considered acceptable based on the available margin.

This page revised and replaced by R2

Page 103: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

AiJXIUAAY POWER SYSTEM ANALYSIS WBN-EEB·ED0000-999-2007·0002, ATTACHMENT11.5

<i iii c e ~

Q !:z ~~ ~ ~- !~ i~

2·FCV-1-15 ss either

2-FCV-1-16 ss either

2-FCV-1-17 · ss Otoc

2·FCV-1-18 ss OtoC

2-FCV-1-51 0 CleO

2-FCV..S-33 4 Otoc

· 2-FCV-3-47 4 OtoC

2-FCV-3-87 4 OtoC

2-FCV...S-100 4 OtoC

2-FCV-3-116A , ss CtoO

2-FCV-3-1168 ss CloO

2·FCV-3-126A ss CleO

2-FCV-3-1268 ss CtoO

2-FCV-3-136A ss CtoO

2-FCV-3-136B ss CleO

2·FCV·3·179A ss CtoO .

2-FCV-3·1798 ss CtoO

2-FCV-26-240 6 OtoC

2-FCV-26-243 6 OloC

2-FCV-62-61 5 OtoC

2-FCV-62-63 5 OtoC

2-FCV·62·90 5 OtoC

· 2·FCV-62-91 5 OtoC

Calc. STUDY-EEB-WBN-12-001 Attachment 5 Required Voltage 89-10 rvJOVs- Unit 2

WBN Unl12 GL 89-10 Required Voltage Vs Time

Page 1 of 8 Page 6

c § ~ !1

~ 0 8 ~ j.!!~ ~- ..

l!!~· ~]t ~ ·- ~ n Comments ~~~h ~~!~ 0=415 0=428.3

Steatly State Voltage 0=415 20 0=428.3 0-415 0=428.2

Steady State Voltage 0=415 20 0=428.2 0=415 0=428.3

Steady S1ate Voltage 0=415 16 0-428.3 0-415 0=423.3

Steady State Voltage 0=415 16 o-423.3 Not 0=90V

125 VDC Motor, NSed Best Avail Voltage atT=O sec from Sl evaluated 16 c,;90V Need 70% Voltage at t=O sec, Need Best Avail Voltage at t-4sec from Sl {5.75 sec

0-390.3 0=414 stroke time), Based on review of dP test MOV could become dP loaded just before 5 sec. C- 415. 6.5 0=414 Need 70% Voltage at 1=0 sec, Need Best Avail Voltage at t=4 sec from Sl (5.75 sec

0-390.3 0=414 stroke time). BaSed on review of dP test MOV could become dP loaded just before 5 sec •. o- 415. 6.5 0=414 Need 70% Voltage at 1-D sen, Need Best Avail Voltage at t-4 sec from Sl (5.75 sec

0-376.9 0=414 stroke time). Based on review of d~ ~st MOV could become d~ loaded just before 5 sec. o- 415. 6.5 0-414 Need 70% Voltage at t==O sec, Need Best Avail Voltage at too4 sec from Sl (5.75 sec o- 390.3 0=414 stroke time). Based on review of dP test MOV could become dP loaded just before 5 sse. o- 415. 6.5 0-414

0=415 0=413.3 Steady State Voltage 0=415. 10 o- 413.3

0-415 0= 41:i.2 Steady State Voltage 0=415. 10 0= 413.2

0=408 0=406.1 Steady State Voltage 0=408 10 0=406.1

0=408 0=406.1 Steady State Voltage 0=408 10 0=406.1

0=415 0= 412.2 Steady State Voltage C=415. 15 0= 412.2

0=415 0= 412.3 Steady State Voltage 0= 415. 15 0=412.3

0=405 0=409 Steady State Voltage 0=405. 15 0=409

0=.405 0=409 Steady State Voltage 0-405. 15 0=409 Need 70% Voltage at t=O sec, Need Best Avail Voltage at t=5 sec from Sl (6.21 sec 0=408.7 0=430.6 strqke time) 0=401.3 20 0-406,9

Need 70% Voltage at 1=0 sec, Need Best Avail Voltage at 1=5 sec from Sl (6.21 sec 0=408.7 0=426.5 sfroke time) 0= 401.3 20 0=403 Need 70% Voltage at t=O sec, Need Best Avail Voltage at t=5 sec from Sl {5.25 sec 0=415 0= 401.2 stroke time) C=340. 10 0= 401.2

Need 70% Voltage at t=O sec, Need Best A vall Voltage at t=5 sec from Sl (5.25 sec 0=405 0=380.5. stroke time) 0=378.5. 10 o= 38o:5 Need 70% Voltage at t=O sec, Need Best Avail Voltage at t=5 sec from Sl (8.80 sec 0=415 0=414 stroke time) 0-415. 10 C=414 Need 70% Voltage at 1=0 sec, Need Best Avail Voltage at 1=5 sec from Sl (8.25 sac 0=415 0=414 stroke time) 0=415. 10 0=414

This Page Added by Rev. 20

Page 104: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

AUXIUARY POWER SYSTEM ANAlYSIS WBN-EEB-EDQ000-999-2007-0002, ATIACHMENT 11.5

0 ii c E I Q ,g., Ill

~ n >g. ;: ifi

2-LCV-62-132 5 OtoC

2-LCV ·62·1 33 5 OtoC

2-LCV-62-135 0 CtoO

2-LCV-62·136 0 CtoO

2-FCV-62-138 ss CtoO

2·FCV·63·001 ss OtoC

2·FCV·63.Q03 ss Otoc

2-FCV-63-004 ss OtoC

2-FCV-63-005 ss OtoC

2-FCV-63-006 ss CtoO

2-FCV-63·007 ss Ctoo

2-FCV-63-006 ss CtoO

2-FCV-63-011 ss CtoO

2-FCV-63-022 ss OtoC

2-FCV-63-025 0 CtoO

2-FCV-63·026 0 CtoO

2-FCV-63-047 ss OtoC

2-FCV-63-048 ss OtoC Open

2-FCV·63·067 ss Only

2·FCV-63-072 ss CtoO

2-FCV-63-073 ss CtoO Open

2-FCV-63-080 ss Only

2-FCV-63·093 ss either

2-FCV-63·094 ss either

WE!N Unit2 GL 89-10 Required Voltage Vs Time

Commenls

Calc. STUDY-EEB-WBN-12-001 AttachmEJ,nt 5 Required Voltage 89-10 MOVs- Unit 2 Page 2 ofB · Page 7

15 s :;; :;; js-f ~ ,tsi 0 i = ~'i?!

~a~ .1!10 ~di . H

Need 70% Voltage at t=O sec, Need Best Avail Voltage at t=5 sec from Sl {5.25 sec 0;390 0='417.8 stroke Ume) C;322 10 C;394.7

Need 70% Voltage at t=O sec, Need Best A vall Voltage at t:=5 sec from sr (5,25 sec 0=390 0;418.7 stroke t!me) C=334 10 C=394.7

o=4o1.8 0=320.0 Need Best avail Voltage at t=O sec from Sl C=409.3 15 C;396.3

0=376.3 0=342.9 Need Best avail Voltage at t=O sec from Sl C= 411.3 15 C=413.0

0=384 0=421.4 Steady Slate Voltage C=384 6 C= 421.4

0=413.5 0=364.2 Sleady State Voltage C= 413.5 60 C-362.2

0;401 0;426.3 Steady State Voltage C=401 10 C;426.3

. 0= 390 0; 416.4 Steady State Voltage C=390 10 C=416.4

0=395 0=404.4 Steady State Voltage C-395 14 C-404.4

. 0=395 0=396.7 Steady State Voltage C=395 10 C=396.7

0=399 0=396.5 Steady State Voltage . C=399 10 C=396.5

0=415 0=430.7 Steady State Volfage C=415 28 C=430.7

0=415 0=429.6 Steady State Voltage C=415 28 C-429.6

0=407 0=408.6 Steady State Voltage C=407 17· C=408.6

0=415 0=414 Need Best avail Voltage at t-O sec from Sl C=415 12 C=414

0=415 0=414 Need Best avail Voltage at t=O sec 1r0m Sl C= 41.5 12 C=414

0=400 0= 385.6 Steady State Voltage . C=400. 15 C=395.6

0=415 0=408.2 Steady State Voltage C=415 15 C=408.2

Steady State Vollage 105 0=322

0=415 0=410 Steady State Voltage c =415 60 C-410

0=415 0=420 Steady State Voltage C=415 60 C-420

.

Steady State Voltage 105 0=322

0=415 0=451.1 steady State Voltage C=415 40 C=451.1

0=415 0=451.8 Steady State Voltage C-415 40 C-451.8

This Page Added by Rev. 20

Page 105: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

AUXIUARY POWER SYSTEM ANALYSIS WBN~EEB·EDQOOQ-999·2007.Q002,

ATTACHMENT11.5

.; iii c E

Q 2 .Q ,g,. ig, ~ -I! > c

~ ~tl Open

2-FCV-63·098 ss Only Open

2-FCV-63-118 ss Only

2-FCV-63-:152 ss OtoC

2-FCV-63·153 ss OtoC

2-FCV-63-156 ss CtoO

2-FCV-63·157 ss CtoO

2-FCV-63-172 ss either

2-FCV-63-175 ss OtoC

1-FCV-67-66 0 CtoO

1-FCV-87·67 0 CtoO

2-FCV-67·66 0 CtoO

2-FCV-67-67 0 ctoo

2·FCV-Ei7·B3 5 OtoC

2·FCV·67·67 5 OtoC

2-FCV-67-86. 5 Otoc

2·FCV·67·89 5 OtoC

2-FCV-67-91 5 OtoC

2-FCV-67-95 5 OtoC

2-FCV-67-96 5 OtoC

2-FCV-67·97 5 OtoC

2-FCV-67-99 5 OtoC

2-FCV-67-103 5 otoc

2·FCV·67·104 5 OtoC

2-FCV-67-105 5 OtoC

Calc. STUDY-EEB-WBN-12-001 Attachment 5 Required Voltage 89-10 MOVs- Unit 2

WBNUnlt2GL89·10 Required Voltage Vs Time

Page 3 of 8 Page a

c c 0 ,g =

Js~ ! js~ t= oi!~ 0 i ~

~iH u ~ >·- .. Comments .. ~h

0=322 Steady State Voltage 105

0=322 Steady State Voltage 105

0=415 0=414.6 !3teady Slate Voltage . C=415 15 c = 414.6

0=415 0 =415.7 Steady State Voltage 0=415 15 0=415.7

0=415 0=414.4 Steady State Voltage 0-415 17 0= 414.4

0=415 0=428.6 Steady State Voltage 0-415 17 0-428.6

0=394 0=395.2 Steady State Voltage 0=394 120 0=395.2

0=400 0 =419.5 Steady State Voltag-e . 0-400 10 0 = 419.5

. 0=362.4 Need best voltage at T"" 0 Sees from Sl 66 0 =362.4

0 = 361.9 Need best voltage at T= 0 Sees from Sl 66 0-361.9

0= 360.8 Need best voltage at T- 0 Sees from Sf 66 0=360.8

0= 363.8 Need best voltage at T = 0 Sees from Sl 66 0=363.8 Need 70% Voltage at t=O & best a vall at 1=5 sac (Normally Open Elutterfly Valve, 132.135 0=415 0=434.8 sec stroke tl~J~e) 0-364 66 0=410.1 Need 70% Voltage at t=O & best avail at t=5 se:c (Normally Open Butterfly Valve, 62.65 0=415 0=431.5 sec stroke time) 0=362 66 0=407 Need 79% Voltage at lo::O & best avail at t=5 sec (Normally Opefl sutttlrtly Valve, 62.65 0=415 0=422.5 sec stroke time) 0=340 66 0-402.6 Need 70% Voltage at 1=0 & best avail at~ sec (Normally Open Butterfly Valve, 62.65 0=415 0=322 sec stroke time) 0=322 66 0=322 Need 70% Vollage at 1=0 & best avail at t=5 sec (Normally Open Butterfly Valve, 62.65 0=415 0=433.9 sec stroke lime) 0=364 66 0=409.3 Need 7o% Voltage at t=O & best avail at t=5 sec (Normally Open Butterfly Valve, 62.65 0=415 0=430.7. sec stroke time) 0-361 66 0 = 406.1 Need 70% Voltage at 1=0 & best avall at t::5 sec (Normally Open Butterfly Valve, 62.65 0=415 0=423 sec stroke time} 0=341 66 0 = 403.1 Need 70% Voltage at 1=0 & best avail at 1=5 sec (Normally Open Butterlly Valve, 62.65 0=393.0 0=322 sec stroke time) C=385.9 66 C=322 Need 70% Voltage at t=O & best av'all at t-5 sec (Normally Open Butterfly Valve, 62.65 0=415 0=422.5 sec stroke time) 0-340 66 0=402.6 Nee"d 70% Voltage at t=O & best avail at t=S sea (Normally Open Butterfly Valve, 62.65 0=415 0 =422.4 sea stroke time) 0=340 66 0=402.6

· Need '70% Voltage at t=O & best ava!l at t-=5 sec (Normally Open Buttarl!y Valve, 62.65 0=415 . 0=441.7 sec stroke time) · 0-370 66 0 =416.6 Need 70% Voltage at t=O & best avail a11=5 sec (Normally Open Butterfly Valve, 62.65 0=415 0=322 sec stroke tfme) 0=329 66 0=322

This Page Added by Rev. 20

Page 106: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

AUXILIARY POWER SYSTEM ANALYSIS WBN~EEB-EDQ000·999-2007-Q002, AITACHMENT11.5

d ;j:j c

~ 0

= ~ • I~

0.

~ .... u l='u>"

2-FCV-67-107 5 OtoC

2-FCV-67-111 5 ·otoc

2·FCV·67-112 5 OtoC

2-FCV-67-113 5 OtoC

2-FCV-67-123 ss CtoO

2-FCV-67·124 ss CtoO

2-FCV-67-125 ss. CtoO

2-FCV-67-126 ss CtoO

2-FCV-87-130 0 OtoC

2-FCV-87-131 0 OtoC

2-FCV-67·133 0 OtoC

2-FCV-67-134 0 otoc

2-FCV-87-138 0 Otoo

2·FCV-67·139 0 OtoC

2-FCV-67-141 0 Otoc

2-FCV-67-142 0 OtoC

2·FCV·67·143 ss either

2-FCV-67-295 0 Otoc

2-FCV-67·296 0 OtoC

2-FCV-67-297 0 OtoC

2-FCV·87-298 0 OtoC

2-FCV-67-146 ss eith.er

2-FCV-68·3~2 ss either

2-FCV-69-333 ss either

Calc. STUDY-EEB-WBN-12-001 Attachment 5 Required Voltage 89-10 MOVs- Unit 2

WBN Unit 2 GL 89-10 Required Voltage Vs Time

Page 4 of 8 Page g

c c • ~ !i jsl • l!l.s g e . .. ·l!~ I= :a 1·§!

c:=-::s.s~ IU ~> ·- ... Sil~ z~h Comments

Need 70% Voltage at t=O & best avail at~ sec (Normally Open Butterfly Valv~. 62.65 0=415 0 = 424.1 sec stroke time) 0=342 66 0-404.1

Need 70% Voltage at t=O & best avail at 1::5 sec (Normally Open Buttertly Valve, 62.65 0=415 0=424.3 see stroke time} 0=342 66 0 = 404.4. Need 70% Voltage at t=O & best avail at t=5 se~ (Normally Open Butterfly Valve, 62.65 0=415 0=434.8 sec stroke time) 0=364 66 0=410.1 Need 70% Voltage at 1=0 & best avail at 1=5 sec (Normally Open Butterfly Valve, 62.65 0=393.2 0=322 sec stroke time) 0=388.1 66 0=322

0=415 0=436.3 Steady State Voltage 0=415 70 0=436.3

0=415 0=433 Steady State Voltage 0=415 70 0=433

0=415 0=441.8 Steady State Voltage 0=415 70 0 = 441.8

0=415 0=439.4 Steady State Voltage C=415 70 0=439.4

0=322 Need best voltage at T = 0 $ecs !rom Sl 66 0=322

0=322 Need best voltage atT = 0 Sees from Sl 68 o-322

0=322 Need best voltage at T = 0 Sees from Sl 66 C=322

0=322 Need bast voltage at T = 0 Sees from Sl 66 0=322

0=322 Need best voltage at T = 0 Sees from Sl 66 0=322

0=322 Need best voltage at T"" 0 Sees from Sl 66 0=322

0=322 Need best voltage at T = 0 Sees from Sl 66 0=322.

o = :i22 Need best voltage at T = 0 Sees !rom Sl 66 0=322

0=415 0=418.8 Steady State Vollage 0=415 180 0=418.8

0=322 Need best voltage at T = 0 Sees from Sl 66 0-322

0=322 Need best voltage at T- 0 Sees from Sl 66 0=322

0=322 Need best voltage at T = 0 Sees from Sl 66 0=322

0=322 Need best voltage at T = o Sees from Sl 66 0=322

0=415 0=435.9 Steady State Voltage C=415 60 0=435.9

0=407 0=408.6 st®dY State Voltage C-407 20 0-408.6

0=415 0=418.7 Steady State Voltage C=415 20 0=418.7

This Page Added by Rev. 20

Page 107: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

AUXILIARY POWER SYSTEM ANALYSIS WBN·EEB·ED0000·999·200HI002, ATTACHMENT 11.5

Q

~ ~ E

g !!ll • w ~g,

~ h >. o,l! ; - . '"'

2-FCV-70-087 5 OtoC

2-FCV-70·089 5 OtoC

2-FCV-70·090 5 OtoC

2-FCV-70-092 5 OtoC

2--FCV-70-100 5 OtoC

2-FCV-70-133 5 OtoC

2-FCV-70-134 5 Otoc

2·FCV·70·140 5 OtoC

2-FCV-70-143 6 o to c

1·FCV·70·153 ss CtoO

2-FCV-70·153 ss CtoO

2-FCV-70-156 ss OtoO

2-FCV-70-183 ss OtoC

2·FCV·70·215 ss OtoC

2..fCV·72·2 5 CtoO

2-FCV-72-13 10 Ctoo

2-FCV-72-21 $S OtoC

2·FCV·72·22 ss OtoC

2·FCV-72-34 10 CtoO

2-FCV-72-39 5 CtoO

2-FCV-72-40 ss CtoO

2-FCV-72-41 ss CtoO

2·FCV·72·44 ss CtoO

2·FCV·72-45 ss CtoO

Calc. STUDY-EEB·WBN-12·001 Attachment 5 Required Voltage 89-10 MOVs- Unit 2

WBN Unit 2 GL89·10 Required Voltage Vs Time

Page 5 of 8 Page 10

• 6 0

" .. &ojg

~ &s -~

s~ .. .s .. 0 ~-~ 1U ~~g

94J~ ~ ·l~ Comments oil! r~ z" -~ Need 70%.Voltage att=O.sec, Need Best Avail Voltage at to::S sec from Sl (24.04sec 0=403.6 0=441.6 stroke time) 0=396.2 66 0=420.8 Need 70% Voltage at t=O & best avail at t::5 sec (Normally Open BuHerfly Valve, 62.65 0=400 0=406 sec stroke time) 0=348 66 C=386.9 Need 70% Voltage at 1::0 s"ec, Need Best Avail Voltage at t=s sec from Sl {24.04 sec 0=415 0=436.1 stroke time) 0=365 66 0= 411.3 Need 70% Voltage at t=o & best avail att=5 sec {Normally Open Butterfly Valve, 62.65 0=415 0=449.2 sao stroke time) C-376 66 0=423.7 Need 70% Voltage at t=O & best avail at t=5 sec (Normally Qpen Butterfly Valve, 62.65 0=392.5 0=442.7 sec stroke time) 0-385.4 66 0= 417.5 Need 70% Voltage at 1=0 sec, Need Best Avail Voltage at 1=5 sec from Sl (1 a.e sec 0= 395.5 0=424.6 stroke time) 0=415 66 0=400.4 Neect 70% Voltage at 1=0 sec, Need Best Avail Voltage at t::5 sec from Sl (16.8 sec 0=415 0=419.8 stroke time) 0-415 66 0= 400.1 Need 70% VOltage at t=O & best avail at t=s sec (Normally Open Butterfly Valve, 62.85 0=415 0=422.6 sec stroke time) 0=327 66 0=402.7 Need 70% Voltage at 1=0 & best avail at t=S sec (Normally Closed Butterfly Val~e, will 0=415 0=432.7 close 11 opened, 62.65 sec stroke time. No opening accident requirement) C=383 66 0= 408.1

0= 416.76 Steady State Voltage 90 0= 416.76

0=434.2 Steady State Voltage 90 0=434.2

0=415 0=443.3 Steady State Voltage 0=415 90 0-443.3

0=415 0=425 Steady State Voltage 0-415 · 30 0-425

. 0=415 0=425.7 Steady State Voltage 0-415 30 0=425.7

0=415 0= 398.1 Need Best avail Voltage at t=O sec from St 0-415 28 0= 398.1 Need 70% Voltage att=O sec, Need Best Avail Voltage at 1=10 sec from Sl {10 sec time 0=410 0=396 delay) 0-415 10 0-396

0..415 0=423.7 Steady State Voltage 0-415 15 0-423.7

0=402 0=406 Steady State Voltage 0-402 15 0=406 -Need 70% Voltage at 1=0 sec, Need Best Avail Voltage at 1=10 sec from Sl (10 sec time 0=404 0=390.8 delay) 0=404 10 0=390.8

0=415 0=399 Need Besl"avall ~oltage att=O sec from Sl 0=415 28 0-399

0=415 0=427.6 Steady S1ate Voltage 0= 415. 15 0=427.6

0=415 0=427.6 Steady State Voltage 0=415. 15 0=427.6

0=400 0=405.4 Steady State Voltage 0-400. 20 0=405.4

0=400 0=412.8 Steady State Voltage 0-400. 20 0= 412.8

This Page Added by Rev. 20

Page 108: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc. STUDY-EEB-WBN-12-001 Attachment 5 Required Voltage 89-10 MOVs- Unit 2

AUXILIARY POWER SYSTEM ANALYSIS WBN-EEB-EDQOOG-999-2007.0002, ATTACHMENT 11.5

WBN Unit 2 GL 89·10 Required Voltage Vs Time

Page 6of8 Page11

" • • ~ • ~ ~ E ,g &s 8 ~ &o~ e !II! ·~ s]o. I=

:l~ - . c;]• w u 0 > n c>'3.!1! ifl>·- ~ :J h iSH~ .E ~~ :; - . Comments zso: . 0=415 0=414

2·FCV-74-01 ss OtoC Steady State Voltage C= 415. 120 C=414 C=415 0=414

2·FCV·74-02 ss Ctoo Steady State Voltage C= 415. 120 C=414 C=358 0=356.7

2·FCV·74·03 ss OtoC Steady State Voltage 0=358 60 C-356.7 0=415 0=425.8

2-FCV-74-08 ss Otoc Stea(iy State Voltage C-415. 120 C-425.8 0=415 0= 423.7

2·FCV-74-09 ss OtoC Steady State Voltage C-415. 120 C= 423.7 0=386.6 0=337.3

2·FCV·74·12 0 CtoO Need Best avail Voltage at t=O sec from Sl C-415 15 C=394.6 0=392 0=393.3

2·FCV·74-21 ss OtoC Steady State Voltage C=392 60 0=393.3 0=376.8 0=341.1

2-FCV-74-24 0 Ctoo Need Best avail Voltage at 1=0 sec from Sl C=415 15 0=387.2 0=405 0=410

2-FCV·74..S3 ss OtoC Steady State Voltage 0-405 15 C=410 0=385 0=386.6

2-FCV-74·35 ss OtoC Steady State Volta-ge C-385 15 C-386.6

Notes: 1 The maximum r:eOuired voltBOeforaOV GL 89-10 MOV Is equal to orabove90% of460 V (414 V).

Guidance given In Design Standard DS-M1 8.2.21 states that for voltages 90% or gr8ater the voltaae factor Is 1.0 (I.a. no d00radatlon Is required at 90% or above). Therefore, there will be no.imoact to anv Mechanical MOV calculations as loi1C as 90% of 460 V (414 V) Is achieved.

2) Renulredvoltage forMOVs atT= o, T =4, T=5 arT= 10 sec Is the minimum avallablevoltaQe from the time specified to anv time forward durinathe Sf. Examole: If a 4 sec voltage was requested and voltage dropped at 5 sec, then the lower 5 sec voltaae should be used to bound degraded voltaQe.

3l For MOVs that are onen and oo closed upon receiving an Sl sianal, the required voltage at T = 0 is onlv 70% of 460 V f322 V) until the valve becomes loaded. MOVATs differential pressure test traces I were reviewed and conservative bounding times were determined for when the MOV becomes loaded. A 70% startinn voltage is based on auldance provided in Limitorque Technical Update 98..01 In Vendor Manual WBN-VTD-L200·0460.

The vohages listed In thl.s Attachment,must be met or exceeded. ~ -::::::r .#~.// / ..k7J',t<.4 £. ./. ..; .... _/ I

Prepared By; 7? Date: ·Reviewed BY: :.:;;.- ' Date: ,q I.Pm.-A ..S'-' M. Jl!_ I

I I I I

This Page Added by Rev. 20

Page 109: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

2A BOARDS Available New Voltage Design

(New Analysis) TlmefromSI

Signal Margin ETAP Value (SS =steady (using new

NodeiD MOV from SS state) Voltages) (open)

=-ws :2: FGll 63 3 o !9.711P) &&3± &<; -SIS PR'lfllRlet Ts G''GS bRFg PFflfl ~ • FCH 63 7 • ('-9HPI ~ &<; ;!()

=-±4€ > FCH 70 33 0 (±.9HPj ~ &<; :<Q

RHR I-IH 0. Te G' 'G€ GRFgr PR'Ifl =-w! > FC'' 63 8 A (±.911Pj ~ &<; H

RWSTTs S13ra 1 11Eir2o FG" B9-9l' 2 Ffll 72: 22 o {3.211Pj = &<; = SIS PR'IJ3 20 "IRletHJ ~ > FCH 63 <7 ' ('-911Pj +&fl!l &<; -.m; Te RGS bssf3s 2&3 rev ~ HCH 63 93 ' (±.611Pj = &<; -m; PR'IJ3 20 "G~:~tlet rev ~ 2 FGH 63 Hi2 o {±.911Pj - &<; ;!()

SIS PR'II3 G1:1t RGS I:.J3 1&3 Het leg B9-HA 2 rGlt63 Hi€i o {1.911P) ~ &<; ;!,!;

RCS Press Relief FCV 239-60 2-FCV-68-333-A (1.9HP) 85.43 ss 22

eRtFAt 51:1FAJ3 Te 5J3F8 1 II Elr 2" FGl/ ~ 2 FGH 72 4 q ~ {3.2HP) &;! &<; ±+

RIIR 613ra·1 HEir 20 !siR HI =-w>. 2 FCH 72 49 o {1.9HP) 86£ &<; -Cntmt Spray Hdr 2A lsln Vlv 239-13E 2-rCV-72-39-A (3.2HP) 79.41 5 sec 18.5

CCS HX B ERCW BYPASS reV 240-15A 2-rCV-67-143-A {0.13HP) 78.67 ss 222

RHR Hx A-A Outlet Vlv 240-16E 2-FCV-70-156-A {0.33HP) 89.51 ss 14

Sample Hx Hdr Outlet Vlv 240-17A 2-FCV-70-183-A (0.13HP) 86.06 ss 134

E:RClAIIIEir o !siR lll · ~ 2 rell 3 1±60 o {9.2511P) = &<; 99

I:RCW IIEir o !siR "I · ~ 2 rev 3 11€iB o {9.2511Pl . ~ &<; 8e

ArWP T~:~r9 5tFA 61:113 FFA: Stffi GeR 1 ~ 2 Fell 115 f. {11-IPj ~ &<; ;!&

StFie. Te o FWP T1:1r8 Iss Vlv ~ 2 re11117 o {111Pj ~ &<; 8£

HlCw IIEir o IslA 111 _..., 2 rev 3 136 o o {9.3311P) ~ &<; ;!.;! ERCW IIEir o IslA HI ·

~ 2 rCH 3 1368 o {9.3311P) ~ &<; ;!.;! Sample Hx I sin Vlv

240-SA 2-rCV-70-215-A (0.13HP) 86.16 ss 227 Cntmt Spray Hx 2A Sup Cant Vlv

240-SE 2-rCV-67-125-A (0.33HP) 89.4 ss 14 Cntmt Spray Hx 2A Disch Vlv

240-SF 2-rCV-67-126-A (0.33HP) 88.91 ss 14 APAIP T1:1r8 StFA 51:113 rffi Stffi GeR 4

~ 2 FCH 1 16 0 {1!!Pj ~ &<; ;!& Cmpnt Clg Hx A Disch Cant Vlv

240-llA 2-rCV-67-146-A {0.33HP) 88.48 ss 9.4

* Cale:~:~lateEI eltage eeAsiEI eriRg II a FA FAer Ble••r feat1:1re { ~:~siRg 59°~ LRC el~:~riRg I:IRSeatiAg)

New Design

Margin (using new Voltages) (closed)

4+,8

8+

<jg

= = ;le

~

;!g

;!&

19

#

~

162.5

270

14

147 --'Ia

;!()

4;!

4;!

231

14

14

;;±

9.4

Calc STUDY-EEB-WBN-12-001 Attachment 5

Required Voltage 89-10 MOV's- Unit 2 Page 7 of 8

Comments**

oe;eej3ta81e ~qargiR

oeeefi!tal:lle pqargiR

Oeeej3ta131e ~qargiR

.Oeeef!ta131e ~4argiR

c.eeeJ3ta81e P4argiR

c. eeeJ3ta8le MaFgiA R2

o eeeJ3ta8le MaFgiR

o eeeJ3taBie MaFgiA

c. EE9J3ta91e MaFgiA

Acceptable Margin

!leeef!taBie pqaFgiA

!leeef!taBie pqargiA

Acceptable Margin

Acceptable Margin Butterfly Valve &

Acceptable Margin

Acceptable Margin

o,eeeJ3taBie MargiA

AEE9J3ta91e MaFgiA

C.eeeJ3taBie MargiA R2

<\eeeJ3taBie MaFgiA

AeeeJ3taBie MaFgiA

Aeee[3tal31e P4aFgiA

Acceptable Margin Butterfly Valve &

Acceptable Margin Butterfly Valve &

Acceptable Margin

Aeee[3ta91e ~qargiR R2

Acceptable Margin

I R2

**Calculated voltages based on the new analysis have been reviewed and are considered acceptable based on the available margin.

This page revised and replaced by R2

Page 110: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

2B BOARDS

Available New Voltage Design

(New Analysis) Time from 51

Signal Margin ETAP Value from (55= steady (using new

NodeiD MOV 55 state) Voltages) (open)

R,.,HTsSj3ra 1 l!elr2B FGV ~ 2 FGH 72 2± B {3.3 A13) = .. = RCS Press Relief FCV 241-5E 2-FCV-68-332-B (2 hp} 83.26 55 29

RIIR Te RGS II. b. ±&3 Flew Iss V ~ 2 FG!l 63 ±72: B {2:.6 A13) &Q,±± .. 4!;

SIS 28 B 9sATe RWSTSAtf'f'll ~ > "'' 63 o 818.66 ''I 84,47 .. -R.WST Te SIS PI:IFA!3 FCV ~ > "'" 63 s 8 I>R•I &h8 .. 4!;

RWSTTe Sj3Fa) lo!elr2:B FG'l ~ 2 FG'l 72: 2:± B {3.2 R13) ~ .. -SIS PFA!3 IAietTe QlC£ CArg PFAJ3 ~ , FCH 63 6 8 I> ''I 8lh!4 .. ±a

RHR HH B te SIS PFA!3 ~ 2: FGll 63 H B {2 R13) ge,ge .. ~

SIS PFA!3 2:8 8 lA Iet HI ~ , FCH 63 ,, B I> ''I ~ .. =

CRtFAt SI:IFAJ3 Te RllR PFAJ3 B B ~ , FCH 63 73 B IH> ''I 9!),3.7 .. ~

SIS Te RCS LeeJ3s ± & q FG'l ~ > FCH 63 90 B IH R•l 9hB .. = SIS PFA!3 2:8 8 01:1tlet FG'l ~ , FCH 63 '53 8 I> '•I ~ .. ;!Q

SIS J3FAI3 Ol:lt RCS LJ3 2:&q I let leg ~ 2: FCil 63 ±57 8 {2 A13) &eM .. ~

SIS 2:8 B 9sR te R'}l£TSA#f Ill ~ > FCH 63 '75 8 18.66 R•l 8'k&7 .. -Cntmt Spray Hdr 28 !sin Vlv 241-14A 2-FCV-72-2-B (3.2 hp) 85.35 55 28

RI!R SPR¥' H9R 2:8 ISQ!::HJ:..Il ~ 2: FCH 72 4;1: B {2 A13) ~ .. !lQ

CAtFA 51:119'1!3 Te SJ3ra 1 Heir 2:8 FCH ~ > FCH 73 05 B 13.3 '•I = .. :,:;.

RI!R llll2B ByJ3assVf: ~ 2: FC!l 74 35 B {2: A13) = .. ;!Q

SIS BereA IAj TaAI< SA1:1tef'fHI ~ > FCH 63 >5 B 1'.9 A,) ~ ;.see ~

RHR Pmp 28-8 Min Flow Vlv 241-15B 2-FCV-74-24-8 {0.1 hp) 71.67 0 sec 290.2

ERCW Heir B IslA HI ~ , "" 3 ,,8 8 18.67 ''l ll3,G6 .. &&

StF!eo Te 0 fwp T1:1r8 IslA! ll = HGV ' '8 8 I>R•l 99,84.! .. &<; ERCW llelr 8 !siR HI

~ 2 FCil 3 ±:;zgo 8 {IB3 A13) ~ !;!; ~ ERCW Heir B !siR VI'>

~ > FC" 3 >798 8 18.33 '•l ~ .. ~

Cntmt Spray Hx 28 Sup Cont Vlv 242-5E 2-FCV-67-123-B 10.33 hpj 89.15 55 14

Cntmt Spray Hx 28 Sup Disch Vlv 242-5F 2-FCV-67-124-B (0.33 hp} 88.5 55 14

SFPCS Hx Sply Hdr I sin Vlv 242-17A 0-FCV-70-194-B (0.33HP) 92.18* 55 28.10%

RHR Hx B-B Outlet Vlv 242-15E 2-FCV-70-153-B (0.33HP) 85 55

"' Calculated voltage considering Hammer Blow feature (using 50% LRC during unseating)

New Design

Margin (using new Voltages) (closed)

= 17

99

w

B

;!§Q

&& -4G

;>,GOO

±9

;!9

2,6

4&

185 -~

;!9

<4,7

48.5

= ;!Q

gg

69

14

14

28.10%

Calc STUDY-EEB-WBN-12-001 Attachment 5

Required Voltage 89-10 MOV's- Unit 2 Page 8 of 8

Comments**

t~eeeJ3taBie MargiA

Acceptable Margin

t1 eeeJ3taBie MargiA

l\eeeJ3taBie Mar.giA

AeeeJ3taBie ~qar.giA

Aeee13taBie ~qar.giR

AeeeJ3taBie ~qar.giR R 2

AeeeJ3ta131e ~qar.giR

AeeeJ3ta131e ~qar.giA

AeeeJ3ta131e ~qaF§iA

AeeeJ3taBie ~4argiR

l\eeeJ3taBie ~4argiA

o eeeJ3taBie MargiA

o,eeeJ3tal31e MargiA

Acceptable Margin

l\eeeJ3taBie Mar.giR

AeeeJ3taBie MaF§iR R 2

AeeeJ3taBie ~4argiA

AeeeJ3taBie ~4argiA

Acceptable Margin

Oeeej3ta131e ~4argiR

Cleeej3ta131e ~4ar.giR R2

oeeej3ta131e ~4ar.giR

oeeef!ta131e ~4argiA Butterfly Valve &

Acceptable Margin Butterfly Valve &

Acceptable Margin

Acceptable Margin

Acceptable Margin I R2

**Calculated voltages based on the new analysis have been reviewed and are considered acceptable based on the available margin.

This page revised and replaced by R2

Page 111: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc STUDY-EEB-WBN-12-001 Attachment 5

Requlred Voltage 89M10 MOVs-Un'1t 2 PageS A

MOVUNIDs Minimum Voltage Required in Mechanical Calculations

2-FCV-01-015 (T = SS) 2-FCV-01-016 (T = SS) 2-FCV-01-017 (T = SS) 2-FCV-01-018 (T = SS) 2-FCV-03-116A (T = SS) 2-FCV-03-1168 (T = SS) 2-FCV-03-126A (T = SS) 2-FCV-03-1268 (T = SS) 2-FCV-03-136A (T = SS) 2-FCV-03-1368 (T = SS) 2-FCV-03-179A (T = SS) 2-FCV-03-1798 (T = SS)

PREPARER: N.R. 8ezwada

r-1-l<-B.~t~~ O'f-fo,('-f

414 414 414 414 376 376 373 373 375 374 376 376

CHECKER:

~~:~ ., q)to/t'{

This page added by R2

Page 112: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc STUDY-EEB-WBN-12-001 Attachment 5

Required Voltage 89-10 MOVs-Unit 2 Page 8 B

MOVUN!Ds Minimum Voltage Required in Mechanical Calculations

2-FCV-62-061 2-FCV-62-063 2-FCV-62-090 (T = 0 sees) 2-FCV-62-090 (T = 5 sees) 2-FCV-62-091 (T = 0 sees) 2-FCV-62-091 (T = 5 sees} 2-FCV-62-138 2-LCV-62-132 2-LCV-62-133 2-LCV-62-135 2-LCV-62-136

PREPARER: Mark R.

~""'--..,.

366 345 322 414 322 414 391 354 360 372 355

CHECKER:

jr::r~ ~·yr-r. tzlto/JY

This page added by R2

Page 113: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc STUDY-EEB-WBN-12-001 Attachment 5

Required Voltage 89-10 MOVs-Unit 2 Page 8C

MOVUNIDs Minimum Voltage Required in Mechanical Calculations

2-FCV-63-1 2-FCV-63-3 2-FCV-63-4 2-FCV-63-5 2-FCV-63-6 2-FCV-63-7 2-FCV-63-8 2-FCV-63-11 2-FCV-63-22 2-FCV-63-47 2-FCV-63-48 2-FCV-63-67 2-FCV-63-72 2-FCV-63-73 2-FCV-63-80 2-FCV-63-93 2-FCV-63-94 2-FCV-63-98 2-FCV-63-118 2-FCV-63-152 2-FCV-63-153 2-FCV-63-156 2-FCV-63-157 2-FCV-63-172 2-FCV-63-175 2-FCV-63-25 2-FCV-63-26 2-FCV-63-25 2-FCV-63-26

PREPARER: Mark R. Johnson

##~~~

413 386 379 367 360 361 392 390 383 351 371 401 413 407 406 411 411 394 401 389 390 377 371 359 381 414 (Test Condition) 414 (Test Condition) 372 (Accident Condition) 365 (Accident Condition)

CHECKER:

~ !1}1/IJ

This page added by R2

Page 114: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calc STUDY-EEB-WBN-12-001 Attachment 5

Required Voltage 89-10 MOVs-Unit 2 Page 8'1:>

MOVUN!Ds Miniml.Jm Voltage Required in Mechanical Calculations

2-FCV-72-021 (T = 5 sees) 2-FCV-72-022 (T = 5 sees) 2-FCV-72-040 (T = 5 sees) 2-FCV-72-041 (T = 5 sees) 2-FCV-72-044 (T = 5 sees) 2-FCV-72-045 (T = 5 sees) 2-FCV-74-033 (T = 5 sees) 2-FCV-74-035 (T = 5 sees)

385 392 389 401 368 384 373 351

CHECKER:

~z/u/rf

This page added by R2

Page 115: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

_ ....... "· : ~~ '} .... _

~;.,.-' -~--i;_ . ~- ~.s···

.. : ~-' ... ..... -~.

GOULDS FIJ·'!cP3 \NC NUCL~AR DI~!S!ON; ROUTE se~EcA FaLLs. ~r.14 1~1~n I

Calc. STUDY-EEB-WBN-12-001 Attachment 6 Page 1 of 12

..,. ... .. ".··:-~·>

,. ' ·,:

WBN-VTD-Rl65-0140

11 1:•::: r:~:·~---~::-:: ;.::i'ng.<.: or~ b c~r.o:~ta::t,;:.a ... ,nh ·t··a;: s~?::iH.: :~ =--=~·..:~:.:::.1:::~·::;. ~;:.·::1:-:£"~ ':.;lpi"ovcti~' .::r •~~':3-..:?;::fc•Jad *Nit;, l/~-~i·H:-:!io:;:::; •~ :;:;;.;t-:l~ri:-:n ~lcztt;-:::1.";:.·=~ _:rncc2d with iMinU:.=c;;:t:ro. i.~cdi:icct:cr.::;: ::::·:nth::: c~:l.i.:Jcr c-: w::t!i-:~Hon;; !'i1tJ~:.:- dt:7!nfi ot eft:;.• drcv:ing c~:1:c·rcl i.:~/ :·-.1::.c:l~ h! G ~~rkJ ·:::.ztltj3 rmd/c; ~:u~:r.c~t .!oiny. 7~ :;:;c{:t:·~b !>i1~;:;,7\ir:·:: ;c::~d..:i:l;"'!I?::'J:"::l'H-d :-wbp :n:~~~ h.') ~:::;ce:!•t::d ~i··.Va!?H;;!:llcus;~ :;.:: l:r~c:; ~-~:c-r ...

'i!:.:o ~:;::i;J.:-:~o::r -~:;o·::n -;..:; ~~::-:~ I

N229729

l";.c~."':':"J"1i"'lr:!''.~ - ... '·· .. -~- ' ·-----l ~n •. ... 10 r\ llS :;:.r;;'lj. J' ....

<

]. 7 70 DP

~ ;{,~f:~!:; LLT r.n·\ t1' :~ • __ ,., ........ i·IEiA

60 i~f.lY:

t!'!-:-: :; -~ ;;";'jC:: ---- ...... ...,.~"·'-'-•"'"

I £~~:;~:;~~: ~·~~:i:;~~~:·i~:~:~~ i~~ , shi~::::::-;·,; t;:::ky. . - . ._,·:··

------· ln I~----------

--,~~~--~--~-~~- ..

l ()

j r >0 r.u < ~a.

:---. ,-~ '<. = :-!.. zz t:::lc::t ~-> .>,"S. .....

l ':· .-. '

a

1 ~ :::: ....... .,

BEST AVAiLABLE COPY

S\':~,\GUSf. l~. :).

--::I ,-: ..__ .. '.

1

=-~:.:.::::."..:!:"~.--=.;:.:..-=- ... =-==-..==:·.":".~;::-.~=-===-..:...::..=--==--::;;:--==.::...-=-=~=-"'----.:----=---=~; ·.::=-.;:.=~ --..;.:...-:...::::.~-:..-:

··:.::J--; .. : '':''.·•.-.:"; .:.·-·:;::r:.--·J .·.:_:.:·:·: :: ·: .-:·.:,.~: :: .... :..·.:z::·_:..ri::::·:.::·:-:·:-!i'.::;~.- .. .,_,.:ir.::.·;:·:..· •. -:· .·:.·:::;;;;:::- ... :·-:~ .-._, :''" s-:.. ,;-:-.":- ·y_-.. ,_ - ••• • ·-: ~ : • -; 1; : ..... :~ !.-;. :: - -, . :! ·;· ~·. ·j !; -:-.t .-· :-:.::• :~·. T.':!': ;:~-c~:·a' ... :·.~: ~·f;:.·~ ,:-1 ::: ·• --:~: ':-: 1 fs : -·. . ... ~ .•

-.- '. --- ·~ ....

Page 116: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

)

Calc. STUDY-EEB-WBN-12-001 Attachment 6 Page 2 of 12

Westinghouse Electric Corporation BUFFALO, H.Y.

WBN-VTD-Rl65-0140

Ooie 11/5/74 Putcha••r GOULDS PU:·!PS 004883 Stoc< O•du No. _....J..7_,3_,C.L7.:;4-"0,.S~2~----

SY-44883 G.O. No._..:..:......:...:..::=---- 100 H. P. _..;::..:_:o_ ___ V o It 2 230/460 Phoso __,3::.._ __ _ Closs _ _;B:__ lru.ulotlon

"••••••u• FR.404TS TBDP SQ CAGE Um fiTR ' ' . . . Polu 4 R PM 1770 Cyd... 60 I 1 ' 2 I 3 COWWEHtS

I I I I ..&.mp•t•s Per T•rminol o1 no load 460 Volts I 27.13 ' Wttrta Input ot no load 11691. I Stator R.$. (T·T} at 75• C ·ohms I .1323 I Startinv Winding Rn. at 75" C • ollma I I Rotor R••· (h•t rings} at 75" C ·ohm a I J LOSSES IN WATTS AT FULL LOAD I I Strey l,.0<1<l Lon 11012 Stator !2 R Lon 12795 I Rofgri2 R Lou 11180

/1080 Fric:tion aqd Win doc;• l,.ou 440 ; ! ~ Effid•ncy • Full L"od 92 ---r • * Load 93.1 '

• ¥.1: Load 93.2 I I I

~ Pow•r Foc:tor ~ull Load 89.4 _j__ ' l

· * Load 88.7 I I 183.9 '

~"~e~M_•_,_F~u_U~L~o_o~d--~~---------------~2.L7k2 ____ ~-------~-------t-------------------------------~A~m~o~·~··~·~P~··~T~o,7m~-~·~t~l~u~l!~l~c~o~d----------------,'~1~1J~,~8~2~~~~------~---------4- -----------------------------t~,--tf­~K~w_;~n~p~~~·•~Fu~l~l~lc~o~d--~--~----------------~~~8~1~ •• 1.1 __ ~[--------~------t------------------------------~-----1-Amp•ru p•r inm-~otar locked 460 V 1646.7 I I ~K=W:.:.:;"'n'-;p~u"'t,_"--./R;'-'o~t.;.;o::•~l'--o,_,c~k-;•dt~~~~~~~~':'_~~~~~~~~~i-'~-'2_-:1~5'~~~-=---+---:-:-:-:-:_t.;:-:-:-:-:-:~~;-:-:-:-:::-::-:-:-:-:::-:::::::::~;;!l~':;h­~·x. :""··volts botw•;",'\"': +~------r-------1-· ------------------~....:::Cj-~-iji-oc. mpa P•r uno CJt u •• ;-FuU Lood' Torqu• {F.L.T.) in lb. ft. 29/i., ' ' -Max. Torq1,0e in'!=:. Gf F.L. T. 215.7 t= I .... ~ · ... ·~ Starting Torqv• in!). of F.L.T. 168.6 I .... _. ;: ....

TEMPERATURE TESTS

II~~ -+ ·''-: :~ .Q~K~----4--------~-------L~----------_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-~+,.~-=-~-~~~== ,_ :.-~~

----L------~---4----------------~~--

End Pl<1yTut•d

LonQth of Tnt in hovr' '7 ,5 -------L---------------------------Volh ; !t_Q_Q__~.:_ ______ ,r ______

1 ______________________ _

~ Hormol Full Load Amp. __j_lQO ! I Tomp. Riu ShJtor Copper by Res. ---- ]78.--- j _______ \ _____ --'------------------ -----in de9t••• C 'Storor Iron I I Q _l--! ____ j ________ +---------------------P-=-':--"'------------r±.;. __ _

Roror Copper I \

Rotor Iron ! ~·---- -~-~------+--------------------Room t•mp•ro1v,. in ·c ~ 1_6_ ____ !_ ______ ·+-----i-------------------------

-+------i----+-------l-----------------·- -----f-

REPORT OF TESfS CN INDUCTION MO-:'"C:::Z:-,

Page 117: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

w :::1 0

) tz! 0 1-

~

}

Calc. STUDY-EEB-WBN-12-001 Attachment 6 Page 3 of 12

SPEED - TORQUE CURVE

WBN-VTD-G200-0l90 (

f,l·r XuAJ<-,:rr c I' /1 ~'7::,() (..j?:;-!f @?_ .-' .;;<;;;l /c·c- .,-

100% TORQUE a_;:,Jj.f3 FT. LBS.

E-2126 1007. SPEED = /7So R. P. M.

100

90

80

70

60

50

40

30

20

10

0

J I 2 )f :.· ~

I --- '

Jl /

/ / v

_;I v /~

v ...

~ /• v iJ ~ 0 ' '10 20 30 40 50 60 70 80 90 100

% SPE!El)

PUMI? MODEL • -3 </),'_;)

n!PELLER DWG. fF • f'CJ-~1:::,-

PUMP sizE - J' X!o-;.;;J.._J;t/

lliPELI.ER PATT. fJ - s;;:<.?'J·.:,-

IHPEILER DL~!ETER - /::_-,:; ''

100% TORQUE a ~~25Q R. P. M.

Notes: A. H. p. is the shut-off H. P. at 1007. speed ~ith the rated iQPeller diameter.

B. Sleeve Bearing starting point is 157. not 107..

Y .. ~ I """ 7.. __ ':_·· _~ .:_/_::J __ .... B.- ri WBN REV 0 WBN PAGE g·--- 5

Page 118: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

II~ .;;p

/l.lotm !D :Vhr2

Calc. STUDY-EEB-WBN-12-001 Attachment 6 Page4of12

r=--------

.: I

1•111

I '•,, \

·, '

"

\ 'i±o~o'<;-'-~~~~--,,'-s:-~-------.~,~o--------~::!-)_-~~~~~--1-o ·'

tyo Slip

1_----------------~------------___J

Page 119: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

'·,,I "r.jul·

I I~ ~,

Calc. STUDY-EEB-WBN-12-001 Attachment 6 Page 5 of 12

ltiO !If' \I..;(,;._\

"·t:-------;r.-------:.,------"7:"""------± 10() 75 5U ::!.,'> /J

(x. Slip

.. !'!

Page 120: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

-< ,; ;; .E 1l .-' 'i ~ N > > :;; N

;;;

CONTAJ1Jfi18\.JT A1r2 !2sn..lt2-AJ r-,~N lA -ll, 1- Mr(C- o3c,- 6035 ·A

WBN-VTD-R165-0110 ---------'-.../ .___,

RELlA N c E ELECTRIC COMPANY

24701 Euclid Avenue, Cleveland, Ohio 44117 Calc. STUDY-EEB-WBN-12-001 Attachment 6

REPORT OF ROUTINE TESTS

Induction Motor

Purchaser Joy Manufacturing Co. 338 South Broadway

Page 6 of 12

Date of Test

New Philadelphia, Ohio 44663 Manufacturer's Order No. . . _I XF :-88~;3~6 ....

The air gap~ condition of bearings and rotor balance were examined and found to be sati2~tory. ~

Purchaser's Order No. . , . NA2~.36_ ..... .

Engineer /? b~---· P. Licurs~ Jr. WBN REV_c~-­

WBN PAGE___., .... ~.o:....__

Hp

100

Typo

p

Serial Number

NAMEPLATE DATA

ServicE! Rpm Phase Factor Hertz VoUs Ampere5

1.0 1786 3 60 460 115

Temp Risa) (mbient Tern~ Time Design Code Let1nr Framo by Method and Insulation for locked

lndie<lt<:>.d Cl= Rating Letter Kva/Hp

444TCZ - 50°C/H i; Cont. - J

TEST CHARACTER \STICS No Lo.d Lockod Rotor [Single Pha:;e) Wound @ High-

1 ---r--.---,-;;--:-.--+--,---'-IT:,:h'T'"::::':;-P-"h'::::"'rlc_-,--1 Rntor potential t" Am• Am- Open Cir· Test Volb Hert:z Rpm 1 --·res Volts Hertz 1 ocre.~ uit Volt, Voltage

Oa te of

Test 1---J.-_____Jf----J._:_-+·= ~·+---+-+--~'-1--l----F':..:..::::+-'="-t-- ... A-1 460 60 1799~0. 5 460 60 869 - 2000 , 7·6-77:

A-2 460 60 1799 1.5 230 60 414 - 2000 I ?-7=7;:

\--:..:.A ·...:.3~_4:..:.6:.:::o-t---:6:.:::o--.:t-:1.!..79:..:9:j.:..:.1.:... :...:1 i--+-=2~3o+...:.6:.:o-+4.:..:1-=2+--t--l----t-=z-'--oo:co~_U- 77 ; i-..:A::.·_:.:_4-1_:.:_4~6~0-l-~6~0~+1.!.7-"9"'912-!l-'.c:4'+----f-'2"'3;c0"-+-'6"'o"-f:4:!..LI '--1 +--+--+------+"'"'" 20=00'--i 7_-} :-7.Z.l 1---+-+---+-IL-+-+--+--+--t--1-+-+--t---·--!

' ·---~ i

;

i---+--+---+--+--+--+--+--t--r-----1--t--+-·-~-:~----1 --1

!

Notes: -:::Type RN insulation. @For 60 seconds.

Data on rest from .. , ... ~~~~~ ......... motoiS. {thi~orduplkatc} ~

Approved by ... !!f.-d..-..... :.-- .... , Data (Eng•n!!er)

Issued: 8-12-77 P. Licurs, Jr. 13

D .J .G.

1

' ~ l j ' ,. :

i I ! 1 f

r

Page 121: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

RE~.S.O. lXF-882396 FRAME 444TCZ HP 100 TYPE p PHASE/HERTZ 3/60

RPM VOLTS AMPS DUTY

Calc. STUDY-EEB-WBN-12-001 · Attachment 6

7 at 12

1786 &.F. 1.0 460 NEMADE51GN 115 CODE LETTER

Cont. ENCLOSURE J

TEAO AMB°C/IN5UL 50/H * E/S 597617

14 --------

WBN-VTD-Rl65-01!0

ROTOR 604882-lRJ TEST S.C. 1XF-882396 TESTDATE 7-6-77 STATOR RES.Iiii26°C .06439

OHMS (BElWEEN LINES)

V2.9593-000 ISSUE DATE 8-22-77

Page 122: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

· 6YF882998 CONTRACT #81 K5-829093,CHG. #1 FOR: WATTS BAR NUCLEAR PLANT HVAC EQUIPMENT

EJ'Zcw 1'Mv, Sqze.a-J '15-ES

i- Wllf2.- 001- 04-4S-B TRAVELING WATER SCREENS

SPECIAL DATA SHEET

a. Manufacturer RELIANCE ELECTRIC COMPANY

b. Application TRAVELING WATER SCREENS

Calc. STUDY-EEB-WBN-12-001 Attachment 6 Page 8 of 12

c. Rated horsepower _s _______________________ _

d. Service factor __ 1_._15-----------------------; -

e. Rated voltage ___ 4_6_0 ___________ ;_· --~---------

f. Full load current per phase at the applicable rated voltage

6.8 AMPERES

g. Locked rotor current at the applicable rated voltage

41.1 AMPERES

h. Locked rotor power factor at rated voltage 61.2%

• i. Full load current per phase at 80% of motor rated voltage

8.8AMPERES

J. Locked rotor current at 80% of motor rated voltage

30.6 AMPERES

k. Locked rotor withstand time at rated voltage starting from ambient temperature

(3-ph motors only) 20SECONDS

l. Locked rotor withstand time at rated voltage starting from rated temperature

(3-ph motors only) 8SECONDS

m. Efficiency at 1 00"/o, 75% and 50% of rated horsepower

n.

82.3%, 82.9%, 82.5%

Power factor at 100%, 75% and 50"/o rated horsepower

____ :=_83, .. 9%, 79.8% 70.6%

MOTOR NOT SUITABLE FOR CONTINUOUS OPERATION AT 80% VOLTAGE.

v/ A 713 i3M ... 81- 8?.'10'12 ~ 'fF d8Z-'i18

Njf' lis

Page 123: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

··--

Calc. STUDY-EEB-WBN-12-001 Attachment 6 Page 9 of 12

ElliS AND WATTS ' . . CINCINNATJ;'OHIO 45244

,,1

DOCUMENT N 0. ____.JN"-'0""0"'-5"-'5-'-"4'--------- REVISION 0 4/28/86

ISSUE NO. ------

TIT.LE: NUCLEAR ENVIRONMENTAL QUAL! FICATION REPORT FOR '

50 HP - 1800 RPM MOTOR

PART NO. __________ _

PART NAME---------

. / t : --,// /-PREPARED BY: r1.?-v'. 1 ( ... >YJ r~y. . . K.Z. · anky

ENGINEE~ING APPROc;;VAL' :~F~z: O.A. APPROVAL: ~\24 -

R. R. Schertler

Tennessee Valley Authority Watts Bar Generating Station Contract No. 85PM8-451609

. ,· /.:' . /··f(-:-1 I

DATE

DOCUMENT NO. N0055-4

PAGE ___,_1 __ _

Page 124: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

1 I ' i I I I I

( [·

"-~ ( " ·:0 .... "' "' N ..... "' ::;:

Calc. STUDY-EEB-WBN-12-001 -- ----------- - ---------------- ~~~~~;~:~- - -- -- ---6-..;ii-oF·r-E s 1-T -ri:-; 5~Bc

REPORT OF TEST-INDUCTION MOTOR

PURCHASER ELLIS & WATTS .

TYPE FRAME

iCOG6B 326T

RATED H.P.

50

FULL LOAD

R.P.M.

1770

RATirlG

VOLTS

480

PH

MANUFACTURERS ORDER NO.

PURCHASERS ORDER NQ .

HZ. FULL LOAD

AMPERES

3 60 56 5

6-150206

76013

SERVICE THlE

FACTOR RATING 1.15 CONT.

i r--------=~:~~~------.--------=~~~~~-----------------0 CONDITIONS OF TEST -· TENPERATURE RISE-DEG. C

ROTOR r HOURS

RUN

LINE

VOLTS

I LINE

STATOR COOLINGI----.-------t---.----i

WINDINGS WINDINGS (CROSS

AIR C~;t (CROSS OUT THREE} ~~~E OUT B~NE} AMPERES DEG. C ~I BV RESISTANCE METHOD I' RESISTANCE COUPLE Mn~ll METHoo

COLLECTOF I RINGS ' sv EMBEDDED OETESr~~"" ··~·~·· sv THE~~o-METHOD BV THERMOCOUPLE u~~~~~u METHOD METER

BV THERMOMETER ""'"vu METHOD

3.5 4fl3 65.7 21 . 68 108.8 ----- ------- ---------

CHARACTERISTICS

SLIP-PERCENT AMPERES

RUNNING LIGHT ROTOR

BETWEEN RINGS

SECONDARY VOLTS AT ST AI lOST! L L

SECONDARY AMPERES PER -

RING AT FULL LOAD

1.53 17.4 . 159

TORQUE AND STARTING CURRENT HIGH-POTENTIAL TESTS TORQUE L9~KED_ROTORTORQUE START!HG CURRENT VOLTS A-C FOR I SEC.

LBS. AT I FT. RADIUS LBS. AT I FT:_IlJI~~~S AMPERES (LOCKED ROTOR} r--~rii~_:_:_~.:...:.:..:...:lfr~F:__--WlTH-~ VOLTS APPLIED WITH-% VOLTS APPLIED :>II'IUK ROTOR

341.0 LB-FT 218-99, 2% 334 .7-99. ~ · 2400 ------------------

EFFICIENCIES AND POWER FACTOR

EFFICIENCY ~t.KI..t.N POWER FACTOR,_ FULL LOAD 3/4_ LOAD 1/2_ LOAD FULL LOAD 3/4 LOAD 1/2 LOAD

93.1 91.9 94.0 83.4 81.8 75.8 NOTES: DATA FROM TEST ON THIS MOTOR. Irl ACCORDANCE \o!ITH IEEE 112-1984

(THIS OR DUPLICATE) FORM A-2. Tl<l> OAH fOI l!ffiiN~: ONlY UHLO: OTH!IW11( !PfC.,I!O

I

Page 125: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

' \

·····-··-.... - ..... . ·-. -·-~·-~---rt: El .., n O.!l.~f/'';7

?'J ~L 'd a

Page 126: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

j 1 ! I 1 l j l

! I ' l I

'.

.. ! . •

. ·. :

'

N c-; ..._ N __,_ C:-,..,

flURCHA!)(R

I '

'

I Is

::c 0.. a::

---' . l.L

Cl U'>

co <.0 '-" 0 u

w "->-1--

:::1 ~~

0 1--::_) .c:: l.L

w co -> "" w

~ t:; w ~

"" ::c ex:

~ N 1-c:: '--' ..._ w U'l s a:

0 OJ ....

:_...: ~ 1----' a >

1-- ~ LL. -t:: U'l 5 "" 0 --' :>.:

. c._ .... Cl

co 0 <T

w a:: w :::> ::::> </) c Cl a:: --' 0 w 1- w ---' u._

~ >-1--:::> 0

:I:

LO . "' V') LO (/)

ex: --' u

V') Cl "-:..:-: 1-< "" 5 ---' V1 u._ ~

Calc. STUDY-EEB-WBN-12-001 Attachment 6 Page 12 of 12 tJ ~ T :, t: F Tf ~. i _ _9_]: 1 6-fHj ________ _

.'A A t J l r ..: ~ (. T tl ~ E R 5 () ~ [l f R tl () _. _ _§: _15_9?,06 ----n;~C H ~ SER S C~~l" NO. __ .}_6013 ELL! S & WATTS ·-•· ---------------------------------------------- - -----

;::•cE:c:, :-, :, FULL-LO,~D

EEmEBlS~~~~s I I I I I I ~,

1-+-+-l--1---l I I I L I .. • -r,q-=t--fl-l !-+1 +-;'----+--+-++-1 I I J_ J __!_ ' ;LL!.±,-·t . ....!. I

I J I I I I ' ' } 1 I I j · ;_u__1 _ji._LJ I -LJ-+-t-H f-TJ~--,iT i-,T~-~-i\;-U _ --n I 1 I ' !Til J I o

:ru ~--!lFh-fllt=P+' rFF\T 1 - r.: ·J:::.~:Jj-- ~~ .J .. , --;- ~---~-- -,--, . ' I I I 'I ,---, ' I r1 I 1 1 ! I · · 1 I\ I I • ---j. '--·

I I I 1 I I I 1 'i. 1 'I I I l I TTll t...J.J_J I I I I , I\ I • \ I I II I -r-r-t/ §5 f--1 i I 1 I I I I I I I I I I I

I I I I I I _l I

1\

0

"' '\

0 "'

' i2 Cl

e:: Cl

' .,.

i

I I 0

' M

0 I N

I II I ! ' i 0

I II -I I I I I ! I I I I v I I

~ I I i J /1 I ' I _il_ 0

0 0 0 0 0 0 Cl U"> Cl "' Cl U"> Cl U'> M ,..., N N ~ ~

Tl-"!', \lo\TA f('P' iHO:f.N([ Q•ll~ UHlfSS oq .. t~Wl!d Hf~.tfHC'- BF:I:UE I:l ;·; OF FULL LC1~D

r~EP/,RfDBYE~c-· '"\ ., • ~ ,.. I -A P? ROVED B Y./..i '"'-- ---- 'tJ ~ ~.~ r,aa: h~_ ,;'_t(',!o•) B32E0!\-050-73l-SO lJ 02 86 J.· .. ' ,..., . ..,, _.,_s-,.,.ffi•·'ll.,.,.o:.;_f ________________ _ C. . .\ f E _____ -__ :, ___________ ,:·..i1£U:l . .'. · ~.: . - SHEET 1 0 F

-- ... -----·· ----------------- ··--------- ··---------- ------ ····---------- ---

Page 127: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calculation: WBN-EEB-MS-TI06-0029

ATTACHMENT 7 STUDY-EEB-WBN-12-001, RO Page 1

11

5.2. d Lel(el Undervoltage (Degraded Voltage) Relay Reset Setpoint

An upp r boundary should also be established for the reset setting of the degraded voltage lay. The tightest possible tolerance should be employed between the nominal opout and reset setpoints. The upper boundary of the reset selling should be equal t the nominal setpoint plus all tolerances from any errors in accordance with Technical In !ruction Tl-28 (Ref. 2.13). Margin should exist between the upper boundary oft e reset setting and the safety bus voltage equivalent to having the minimum allo ble switchyard voltage during anticipated worst-case system operating conditions. If o eration of the auxiliary power system under normal design transient (starting) conditi s, with the safety-related bus voltage equivalent to having the minimum allowab switchyard voltage determines that the bus voltage drops below the dropout setting, th it must recover above the upper boundary of the reset setting prior to the lower bo ndary of the time delay selected in section 5.4.

The safety bus voltage associated with the upper boundary of the reset setting are evaluated to ensure ad uate operation of the auxiliary power system under steady-state (starting) condition and recovery (running) voltage conditions. The acceptance criteria and means of eval ation is as follows:

5.2.1. Induction malo starting analyses were performed at 6672V which bounds the operational I it of the degraded voltage relay reset setting upper boundary, 6681 Section 3.9) to ensure that motors and motor-operated valves (MOVs) ha adequate starting voltage as specified in section 3.8. Using 6672V provi s conservative results for motor starting.

5.2.2. All static loads are ev luated to ensure adequate operating voltages as specified in section 3.

5.3. Second Level Undervoltage (Degraded

The long time delay specified in NRC Branch echnical Position PSB-1 is not used at WBN.

5.4. Second Level Undervoltage (Degraded Voltage)- Short Time Delay

5.4.1. The upper boundary of the time delay selecte should be less than the safety analysis time allowed for the emergency diesel enerators to come up to rated speed and voltage and be ready to accept load. The lower boundary of the time delay should be greater than the time it take the safety bus voltage to recover above the upper boundary of the degrade voltage relay reset setting established in Section 5.2. The nominal setpoint sh uld be selected considering all errors in accordance with Technical I !ruction Tl-28 (reference 2.13).

5.4.2. The scenario evaluated for the short time delay is an Sl concurrent with the degraded voltage condition such that a block start attempt is made. A determination is made of the time permitted to allow voltage to return above the degraded voltage relay setpoint reset limit under block start transient conditions

R31

R31

Page 128: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calculation: WBN-EEB-MS-TI06-0029

ATTACHMENT 7 STUDY-EEB-WBN-12-001, RO Page 2

12 and still assure a subsequent start on the diesel if the voltage fails to recover, thus, making this a start-start evaluation.

5.4.3. To evaluate the effect of the starting currents during the start-start scenario, the effect on overcurrent protective devices are considered. The board voltages at the onset of the event are, considered normal and are taken from Reference 2.2. The degraded voltage condition presumes that the voltage does not recover but remains below the degraded voltage relay setpoint subjecting the Sl initiated motors to starting currents for the time delay selected and then sequence onto the emergency diesel generators. The design calculated worst-case transient voltage dip during the accident loading sequence (from reference 2.2) is used. This is conservative, because a lower voltage would produce less starting current for the motors.

5.4.4. Loads evaluated for this condition are safety-related loads required for Unit 1 which would be actuated for an Sl. Load types considered are motor loads, vendor package loads, 120VAC motor control circuits, and MCC 120VAC distribution panel loads. The acceptance criteria and means of evaluation is as follows:

5.4.4.1. Motor loads are evaluated to determine the effect of the start-start heating of the overcurrent protective devices, such that starting on the diesel without tripping can be assured.

5.4.4.1.1. 6.9kV Switchgear Breakers- Motors fed from 6.9kV shutdown boards do not require analysis for starting immediately after running at degraded voltage. Overcurrent relays derive their input from current transformers. When power is lost, the relays reset to their normal state.

5.4.4.1.2. 480V Switchgear Breakers- Motors supplied from the 480V Shutdown Boards do not require analysis for starting immediately after running at degraded voltage. Amptector solid state overcurrent protective devices obtain their input from the current transformers. When the power is lost, the protective devices reset to their normal state.

5.4.4, 1.3. 480V MCC breakers feeding static loads -These loads are constant impedance loads and will have reduced current requirements at a degraded voltage, and therefore the reduced heating effect would not challenge their applicable protective devices.

5.4.4.1.4. 480V MCC protective devices feeding MOV's - Thermal Overload Relays (TOL's) used in accident initiated MOV circuits have their trip function bypassed during an accident. The magnetic-only circuit breakers are set above the locked-rotor current of the MOV's and would not be affected by the operation of the MOV. Therefore the protective device heating effects during a degraded voltage for MOV's are not evaluated.

5.4.4.1.5. 480V MCC protective devices feeding motor loads- Motor protective devices consist of a TOL in conjunction with a magnetic-only circuit breaker. The magnetic-only circuit

Page 129: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calculation: WBN-EEB-MS-TI06-0029

ATTACHMENT 7 STUDY-EEB-WBN-12-001, RO Page 3 13

breakers are set above the locked-rotor current of the motor and would not be affected and therefore not analyzed.

The TOL's were evaluated as follows: The minimum terminal voltage of the enveloping safety-related MCC motor was determined from Reference 2.2. The minimum starting voltage at motor 203-12B is calculated as follows:

%Vst@ 432 = 83.77% of 480V %Vst@ 380 = 83.77% • 380 =73.69%

432 Vst = 73.69% • 480 = 353.71V

100

This is based on worst case voltage of 380V at t=O for 480V C&A Vent Board 1A 1-A with a grid voltage drop from 164kV to 153kV, concurrent with an Sl accident.

For added margin, for conservatism 320 volts was used in this evaluation. Next, ETAP PowerStation was used to model a typical low voltage MCC motor in order to determine the total starting time during a degraded voltage event. The total starting time consists of an attempted start at a degraded voltage of 320 volts plus a re-start at rated 460 volts when applied to the diesel generator. The ETAP default dynamic model for a low voltage 50 HP motor was used as the typical WBN MCC motor. The 50 HP model has a higher power factor and efficiency than the smaller motor models. This produces a higher "%Start Load" for the connected mechanical load resulting in slower acceleration. In order to determine a conservatism value for the motor inertia constant "H", the motor acceleration simulation was performed several times at 80% rated voltage until it was found that an "H" value of 0. 7 produced a 5 second acceleration time. The results of this simulation are given in output file LV-H-7 (Attachment 1 ). Using this typical motor data, a simple three bus system was modeled which could be used to switch the motor from degraded voltage to rated voltage at a specified time (see Attachment 2).

Two cases were analyzed using this model. In the first case, the load was conservatively tripped from degraded voltage at 6 seconds and re-started at rated voltage at 1 0 seconds. This was conservative in that the load is given 4 seconds to slow down before it is re-energized at 10 seconds. In the second case, the load was tripped at 11.5 seconds and immediately re-started at rated voltage. The results of these cases are given in output files LV-ACC-1 and LV-ACC-2 (Attachment 2 and 3). Both acceleration cases show that a typical low voltage MCC motor will be fully accelerated in 12 seconds.

Page 130: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calculation: WBN-EEB-MS-TI06-0029

ATTACHMENT? STUDY-EEB-WBN-12-001, RO Page4

14

5.4.4.1.6. A generic review of MCC thermal overload (TOL) devices were evaluated to determine if they could trip during the 12 seconds of motor acceleration. The motor draws a reduced starting current during the degraded voltage period. For conservatism. the decay of starting current during motor acceleration has been ignored. For the ITE TOLs installed at WBN on safety-related loads, a starting current of 638% will trip the TOL in 12 seconds (see Reference 2.3). This is based on the TOL tripping in 12 seconds based on 555% of TOL 100% trip amps, which is a miriimum of 115% of the motor current. The characteristic curve for size 0, 1 and 2 starters were conservatively used, since the current vs time for size 3 and 4 starters are significantly higher. Additionally, since the accident has just occurred, the equipment ambient temperatures are not elevated to 40°C, and there is an additional margin of 115% in the TOL trip time (see Reference 2.3). Therefore, at a reduced ambient temperature, the TOL would trip in 12 seconds for a starting current of 734%. Due to the reduced starting voltage available at the motors during the degraded condition, a voltage of 1% less than the minimum starting voltage of 85% will be conservatively used. This is based on reference 2.2 for the design calculated worst-case transient voltage dip during the accident loading sequence. This is conservative, because a lower voltage would produce less starting current for the motors. Therefore, this would be equivalent to a motor starting current of 851%. Therefore, the analysis will evaluate all TOL's for class 1 E motors that start for an accident that have motor starting current greater than 850% of full load current.

5.4.4.1. 7. Protective devices should also be evaluated for the 460V safety-related loads that operate during non-accident conditions. The evaluation should consider that the safety bus voltage is equivalent to operation at the lower boundary of the degraded voltage relay dropout The protective devices should be evaluated to ensure that operation of the safety-related loads can be sustained indefinitely at this voltage without protective device trip.

5.4.4.2. Sl actuated medium voltage motor loads are evaluated to ensure that their thermal damage limits are not exceeded during the start-start event.

This was determined not to be an issue. The medium voltage motors can start with 80 percent of motor rated voltage of 6600V (i.e. 76.5% of 6900Vin ETAP). During the start-start scenario the voltage can not drop below 86% without actuating the loss-of-voltage relays, which will trip the offsite supply in no more than 1.14 seconds. Therefore the available voltages at the medium voltage motors will be adequate to ensure starting and accelerating of these loads and will not challenge the motor thermal limits during starting.

Page 131: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Calculation: WBN-EEB-MS-TI06-0029

ATTACHMENT 7 STUDY-EEB-WBN-12-001, RO Page 5 15

5.4.4.3. 120VAC control power transformer (CPT) fuse time characteristics are evaluated to determine if the fuse could blow when carrying rated inrush current of the starter and any other normally energized devices for the safety analysis time from 5.4.1 above. See reference 2.7.

5.4.4.4. MCC 120VAC distribution panel. Fuse time characteristics are evaluated to determine if the fuses melt during the start attempts. It is considered that circuit components required to pick-up during starting will be at inrush conditions.

5.5. Loss-of- oltage (LOV) Relay Setpoint

The loss o voltage (LOV) relays are an integral part of the degraded voltage protection scheme, an their setting and time delay should be selected to limit the magnitude and duration of d raded voltage the safety buses will encounter. The LOV relay nominal setpoint and a sociated time delays should be selected considering all errors in accordance wit Technical Instruction Tl-28 (Ref. 2.13).

5.5.1. The LOV r lay voltage setpoint upper boundary should be established to be less than, h some margin, the safety bus voltage equivalent to the design calculated w st-case transient voltage dip during the accident loading sequence. T is setpoint should also be less than the TPS calculated security boundary volta e which is based on the grid voltage that is one failure away from failure (see eference 2.11 ).

5.5.2. The LOV relay volt ge selpoint lower limit is selected by evaluating operation of the auxiliary power stem under steady-state (running) conditions, with the 6.9-kV Shutdown Board oltage as low as possible while keeping all connected safely- related motor I ads above their stall voltage (greater than 70.7 percent of rated motor voltage r NEMA Design "B" motors, see assumption 4.6 ). The lower limit must also be realer than the 6.9kV Shutdown Board voltage equivalent to having the I west switchyard voltage that could be sustained without instability or collap (see reference 2.11 ).

5.5.3. The lower boundary of the L V voltage relay time delay should be long enough to ride through short-circuits a d other short time system transients (lightning strikes, switching transients, et ), taking into account the total sensing and clearing limes for the above typ of events. The time delay upper boundary should be less than the safety an ysis time allowed for loss of voltage detection.

6. SUMMARY OF RESULTS

6.1. Degraded Voltage Relay Drop Out Setpoint

6.1.1. Table 1 in Section 9.0, shows the minimum calculated steady-state operating voltage for the boards when the 6.9kV Shutdown Boards are operating at the degraded voltage dropout lower boundary of 6555V. All 6.9kV switchgear and R31 480V switchgear voltages are equal to or greater than the ANSI C84.1 voltage range B service voltages of 6560V (5V difference is considered insignificant) and 440V, respectilvely, And 480V mccs are equal to or greater than the ANSI C84.1 voltage range B utilization voltages of 432V.

Page 132: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

ATTACHMENT 7 STUDY-EEB-WBN-12-001, RO

Calculation: WBN-EEB-MS-TI06-0029 Pages 18 not need to be started during a time of voltage degradation. Therefore, the voltage is considered acceptable under those conditions.

Note 2 - Percent Required starting voltages were obtained from Att 10.7 of Ref 2.6 of Calculation WBN-EEB-EDQ1999-01 0001 (Ref 2.2).

6.3 Degraded Voltage Time Delays

6.3.1. Motor Protective Device Evaluation

Per section 5.4.4.1, the only issue requiring evaluation was TOL's protecting safety-related motors that start for an accident. The generic evaluation of TOL's, in section 5.4.4.1.6, showed that only motors having locked rotor current in excess of 850% would have to be evaluated further. A review of the WBN ETAP database, showed that the following motors in Table Ill have a locked rotor current greater than 850% and start for an accident:

Tbllll L kdRt C tS a e - oc e o or urren ummary ID Name Percent

203-128 Cant Bldg Emerg Press Fan A-A 882 203-2A Cant Bldg Emerg Air CU Fan A-A 902 205-11A Cant Bldq Emerq Press Fan B-B 882 205-2A Cant Bldg Em Air Clnup Fan B-B 902

An evaluation of those four loads show that their TOL's are set at 115% (see reference 2.3). Therefore they would not be an issue, because it would increase their tolerance for tripping an additional 115%.

6.3.2. Fuse Evaluation for 120VAC CPT Circuits and MCC 120VAC Distribution Panel loads

During the start-start scenario, MCC bus voltages are below the levels used in verifying adequate voltage in previous calculations. Control circuits for motors being started, or other loads being energized, may be at a sustained inrush for the duration of the start attempt (6 seconds) before going to the diesels. Consequently fuses for these circuits must be verified to not actuate for this condition.

Calculation WBNEEBMSTI020019 (Ref. 2.4) and its reference calculation WBPEVAR8909006, were reviewed to identify the typical circuit configurations, their worst case burden during inrush, and the fuse size and type presently required . The current for each circuit was calculated for the burden at rated voltage.

Calculation WBNEEBMSTI020020 (Ref. 2.5) was reviewed to identify the worst case inrush at rated voltage on each MCC 120VAC distribution panel. Each panel uses the same size and type fuse.

The inrush currents were then compared with the fuse melting time-current characteristic to determine the melt times. The results are tabulated in Tables 2, 3 and 4 in section 9.0. Use of inrush currents calculated at rated voltage is conservative for constant impedance devices as the current at degraded voltages will be less. The acceptance pass-fail criteria required for melting time is 12 seconds. From a review of Tables 2, 3, and 4 all fuses will carry inrush current for at least 12 seconds and are considered acceptable.

Page 133: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

ATIACHMENT7 STUDY-EEB-WBN-12-001, RO

Calculation: WBN-EEB-MS-TI06-0029 Page 7 19

6.5

6.3.3. Non-Accident Degraded Voltage- Motor Protective Device Evaluation

Operation of safety-related loads with the 6.9kV Shutdown Board voltage operating at the lower boundary of the degraded voltage relay, 6555V, will not cause tripping of protective devices. Static loads are not considered, since operation at lower voltage results in less current. The evaluation was based on the following:

6.6kV Motors- The voltage at the boards is 6555V (95% of nominal). The increased motor current would be approximately 105% of nominal. All of the protective relays are set to alarm only for overloads above 125% of nominal. Therefore, operation at the lower boundary of the degraded voltage relay dropout setting would not trip the motors.

480V switchgear motors - The lowest voltage at the 480V Shutdown Boards would be 437 volts (Ref Table 1 ). The increased motor current would be approximately 11 0% of normal. All of the switchgear breakers are set above 115% of nominal, and most above 125% of nominal. Therefore, operation at the lower boundary of the degraded voltage relay dropout setting would not trip the motors.

480V mcc motors - The lowest voltage at the 480V mccs would be 432 volts (Ref Table 1). The increased motor current would be approximately 110% of normal. All of the TOLs are set above 115% of nominal, and most above 125% of nominal. All motor breakers are magnetic only, and are not an issue. Therefore, operation at the lower boundary of the degraded voltage relay dropout setting would not trip the motors.

6.3.4. The upper limit for the time delay is 11.5 seconds, which is the maximum total time allowed for loss of voltage detection and emergency diesel generator start in the WBN safety analysis as documented in the FSAR. Based on the above evaluations, it has been determined that protective devices will not trip prior to 12 seconds for operation at a degraded voltage for a period of time, disconnection from offsite power, and reconnection to the emergency diesel generators.

The bounding motor starting analysis from reference 2.2, assumes the plant being in a normal operating mode, with the grid at its expected grid schedule voltage of 165kV, followed by an accident concurrent with the grid falling to a voltage of 153kV. For this unlikely conservative drop in the grid, the degraded voltage relays can be reset in approximately 6 seconds. For conservatism and margin, the lower limit for the time delay is 8.5 seconds.

Loss of Voltage (LO~Iay Setpoint and Time Delay

6.5.1. The LOV relay uppe nalyticallimits were determined to be 6072 volts, which is the minimum voltage during any expected starting transient from reference 2.2 and 6560 volts which the lowest 6.9kV Shutdown Board voltage when the grid is degraded down to the ecurity boundary voltage of 141kV. See section 5.5.1. The upper boundary of e LOV relay is 6072 volts from reference 2.20. The current LOV setpoint meets criteria in section 5.5.1. Table IV shows the 6.9kV Shutdown Board voltages hen the grid is degraded down to the security boundary voltage of 141kV.

I R31

I R31

I R31

I R31

I R32

I R32

Page 134: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

ATTACHMENT 7 STUDY-EEB-WBN-12-001, RO Page 8

Calculation: WBN-EEB-MS-TI06-0029, R33

1.0 PURPOSE

The purpose of this appendix is as follows:

APPENDIX B PAGE 1

• Evaluate impact of the degraded voltage on the protective devices of safety related components and devices. This includes loads fed from 6.9kV and 480V switchgear, 480V MCCs, 120V CPT circuits and MCC 120VAC distribution panels. The equipment powered from Unit 2 boards required to support Unit 1 has been already analyzed in the main body of this calculation and therefore, not · reviewed in this appendix. ·

• Ensure the duration of the degraded voltage at a given voltage level does not result in thermal degradation or damage of any required equipment.

• Verify that the existing setting of degraded voltage and loss of voltage relays, as stated in the main body, are acceptable for Unit 2

Analysis to verify adequacy of start and running voltages under degraded voltage conditions and stall voltage analysis is performed in calculation EDQ00099920070002 (Ref. 2.1 ).

2.0 SOURCES OF DESIGN INPUT/REFERENCES

References listed in Section 2.0 of the main body of this calculation, except references 2.2, 2.3, and 2.4, are also applicable to this appendix. Additional·references are as follows:

2.1 Calculation EDQ000-999-2007-0002, R18- Auxiliary Power System Analysis

2.2 Calculation EDQ002-999-2008-0004, R 12 - 480V Class 1 E Protection, Coordination and TOL Heater Calculation- Unit 2

2.3 Calculation EDQ002-999-2008-0003, R4 -120VAC Class 1E MCC Control Circuit Voltage Analysis and Transformer Sizing

2.4 Calculation EDQ002-999-2008-0016, R2- 6.9kV Protection and Coordination Calculation- Unit 2

2.5 Calculation WBNEEBMSTI070018, R80 -120VAC Protection, Coordination and Short Circuit Study

3.0 Design Input and Requirements

3.1 Thermal overload heaters data is obtained from Appendix 8 of Reference 2.2.

3.2 MCC control circuit loads data is taken from Ref. 2.3.

3.3 Degraded Voltage and Loss of Voltage relays Setpoint (Sec 3.9 and Figure 8.3 of the main body)

Degraded Voltage Relay (27DAT, 27DBT, 27DCT) Setpoint (Nominal) 6600V Allowable Value: Dropout- 6570V Pickup- 6672V

Page 135: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

ATTACHMENT 7 STUDY-EEB-WBN-12-001, RO Page 9

Calculation: WBN-EEB-MS-TI06-0029, R33 APPENDIX B PAGE2

Analytical Limit: Dropout- 6555V Pickup- 6681V

Loss of Voltage Relay (27LVA, 27LVB, 27LVC) Setpoint (Nominal) 6000V Allowable Value: Analytical Limit:

Dropout- 5967 .6V Dropout- 5934V

Pickup- 6036V Pickup - 6072V

4.0 DOCUMENTATION OF ASSUMPTIONS AND JUSTIFICATION

Assumptions and justification listed in Sections 4.1 through 4.5 in the main body of this calculation are also applicable to this appendix. These are repeated below:

4.1 The resistive loads do not require protective device analysis for degraded voltage.

Justification: For a degraded voltage condition, the current for constant impedance devices decreases. Decreased current reduces the cumulative heating effect on thermal overloads, fuses or circuit breakers.

4.2 Motor operated valves do not require protective device analysis for degraded voltage.

Justification: The operation of the valve motors is intermittent and their overload relays are bypassed during accident conditions. Therefore the heating effect has no impact on this analysis.

4.3 Motors supplied from the 480V Shutdown Boards do not require protective device analysis for starting immediately after running at degraded voltage.

Justification: Amptector solid state overcurrent protective devices obtain their input from the current transformers. When the power is lost, the protective devices reset to their normal state.

4.4 Motors fed from 6.9kV shutdown boards do not require protective device analysis for starting immediately after running at degraded voltage.

Justification: Overcurrent relays derive their input from current transformers. When power is lost, the relays reset to their normal state.

4.5 A five second acceleration time is assumed for motors with no acceleration time.

Justification: IEEE-384-1977 (Ref. 2.18 of the main body), provides a typical motor acceleration time range from 2.5 to 4 seconds. Using 5 seconds is conservative.

5.0 COMPUTATIONS AND ANALYSIS

5.1 Degraded Voltage and Loss of Voltage Relays Settings

Degraded Voltage and Loss of Voltage relay setpoints are determined in the main body of this calculation and the currently installed settings are documented in Section 3.3 & Figure 8.3. These setting are reviewed to verify their acceptability for Unit 2 as follow:

5.1.1 Degraded Voltage relay

Page 136: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

ATTACHMENT 7 STUDY-EEB-WBN-12-001, RO Page 10

Calculation: WBN-EEB-MS-TI06-0029, R33 APPENDIX B PAGE3

From the auxiliary power system voltage analysis performed in Ref. 2.1, it is seen that under the worst case scenario of an accident with grid dropping from normal 164kV to the minimum of 153kV, the voltage on the 6.9kV shutdown boards will fall below the relay dropout level at t=O+ second but recovers to a level above the relay reset value in s 5 seconds {Alt. 11 .3.b of Ref. 2.1 ). The minimum time to reset the degraded voltage relay so as not to· isolate the shutdown boards from the offsite power is 8.5 second (Figure 8.3).

Also as per the analysis performed in Ref. 2. 1, it is verified that all safety related equipment and devices will have adequate starting and running voltage under the degraded voltage reset and dropout conditions respectively, after the proposed modifications in Section 12.0 of Ref. 2.1 are implemented.

5.1 .2 Loss of Voltage relay From the auxiliary power system voltage analysis performed in Ref. 2.1, it is seen that under the worst case scenario of an accident with grid dropping from normal164kV to the minimum of 153kV, the worst case voltage on the 6.9kV shutdown boards at t=O+ second is 88.85% of nominal voltage {Alt. 11 .3.b of Ref. 2.1) which is above the loss of voltage relay nominal setting of 87% (Figure 8.3).

Based on the above, the degraded voltage and loss of voltage relays existing settings, listed in Section 3.3, are acceptable for Unit 2.

5.2 Effect of the starting currents during the Start-Start scenario on the overcurrent protective devices

5.2. 1 The effect of starting currents during Start-Start scenario on overcurrent protective devices for safety related loads required for Unit 1 which would be actuated for an S I are evaluated in Sections 5.4.3 and 5.4.4 in the main body of this calculation. Load types considered are motor loads, Static loads, 120VAC motor control circuits, and MCC 120VAC distribution panel loads. The evaluation performed in Sections 5.4.3 and 5.4.4 in the main body of this calculation is typical and, therefore, also applicable for Unit 2 loads except for the TOLs since the TOLs for Unit 2 loads have been replaced with new TOLs model AR supplied by Square D (Appendix 8 of Ref. 2.2). Unit 2 TOL evaluation is performed in Section 5.2.2 below.

5.2.2 Based on a worst case analysis performed for a 50 HP motor in Section 5.4.4. 1.5 in the main body of this calculation, it was determined that a

· typical low voltage MCC motor will fully accelerate in 12 seconds during start-start scenario. This analysis is also applicable for Unit 2 based on similarity of U1 and U2 equipment. A generic review of U2 MCC TOL devices (Square D type AR) is

·performed to determine if they could trip during the 12 seconds of motor acceleration. The motor draws a reduced starting current during the degraded voltage period. Since the motor starting analysis is performed with the worst case voltage dip of 320V at the bus, the reduced starting current is 70% (320/460) of the rated locked rotor current. For the replacement Square D type AR TOLs installed at WBN Unit 2 on safety-related loads, a starting current of 525% will trip the TOL in 12 seconds

Page 137: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

ATIACHMENT7 STUDY-EEB-WBN-12-001, RO Page 11

Calculation: WBN-EEB-MS-TI06-0029, R33 APPENDIXB PAGE4

(see TOL Time-Current charactiristics in Appendix 8 of Reference 2.2). The characteristic curve for size 0, 1 starters was conservatively used, since the current vs time for size 2, 3 and 4starters are higher. Additionally, since the accident has just occurred, the equipment ambient temperatures are not elevated to 4o•c, and there is an additional margin of 115% in the TOL trip time (see Reference 2.2). Therefore, at a reduced ambient temperature, the TOL would trip in 12 seconds for a starting current of 604% (525x1.15). The maximum motor starting current that would yield 604% at degraded voltage is 863% (604/0. 7). Therefore, the analysis evaluates all TOL's for class 1 E motors that start for an accident that have motor starting current greater than 850% of full load current.

5.2.3 Protective devices are also evaluated for the 6.6kV and 460V safety-related motors that operate during non-accident conditions. The evaluation considers that the safety bus voltage is equivalent to operation at the lower boundary of the degraded voltage relay dropout The protective devices are evaluated to ensure that operation of the safety-related loads can be sustained indefinitely at this voltage without protective device trip.

6.6kV Motors - The lowest voltage at the boards is 6555V (95% of nominal 6900V). The increased motor current would be approximately 1 05% of nominal. All of the protective relays are set 115% nominal and most at 125% of nominal motor current (Ref. 2.4). The protective relay (51) is set to alarm only. Therefore, operation at the lower boundary of the degraded voltage relay dropout setting would not trip the motors.

480V switchgear motors - The lowest voltage at the 480V Shutdown Boards would be 441 volts or approximately 92% (Attachment 11.3.a of Ref. 2.1 ). The increased motor current would be approximately 110% of normal. All of the switchgear breakers for motors are set above 125% of nominal (Ref. 2.2). Therefore, operation at the lower boundary of the degraded voltage relay dropout setting would not trip the motors.

480V mcc motors - The lowest voltage at the 480V mccs would be 437 volts or approximately 91% (Attachment 11.3.a of Ref. 2.1 ). The increased motor current would be approximately 11 0% of normal. TOLs are set above 115% of nominal for motors with SF 1.0 and above 125% of nominal for motors with SF 1.15 (Ref. 2.2). All motor breakers are magnetic only, and are not an issue. Therefore, operation at the lower boundary of the degraded voltage relay dropout setting would not trip the motors.

5.2.4 Sl actuated medium voltage (6.6kV) motor loads are evaluated to ensure that their thermal damage limits are not exceeded during the start-start event.

This was determined not to be an issue. The medium voltage motors can start with 80 percent of motor rated voltage of 6600V (i.e. 76.5% of 6900V in ETAP). During the start-start scenario the 6.9kV bus voltage cannot drop below 87% (Section 3.3) without actuating the Joss-of-voltage relays, which will trip the offsite supply in no more than 1.14 seconds (Figure 8.3). Therefore, the available voltages at the medium

Page 138: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

ATIACHMENT7 STUDY-EEB-WBN-12-001, RO Page 12

Calculation: WBN-EEB-MS-TI06-0029, R33 APPENDIX B PAGE5

voltage motors will be adequate to ensure starting and accelerating of these loads and will not challenge the motor thermal limits during starting.

5.2.5 120VAC control power transformer (CPT) fuse time characteristics are evaluated to determine if the fuse could blow when carrying rated inrush current of the starter and any other normally energized devices for the safety analysis time of 11.5 seconds (upper boundary of the degraded voltage relay time delay, Figure 8.3) or 12 seconds in the start-start scenario.

During the start-start scenario, MCC bus voltages are below the levels used in verifying adequate voltage in control circuit voltage drop calculation. Control circuits for motors being started, or other loads being energized, may be at a sustained inrush for the duration of the start attempt (6 seconds) before going to the diesels. Consequently fuses for these circuits must be verified to not actuate for this condition.

Calculation EDQ00299920080003 (Appendices J and K of Ref. 2.3) was reviewed to identify the typical circuit configurations, their worst case burden during inrush, and the fuse size and presently installed fuses of type TRM. The current for each circuit was calculated for the burden at rated voltage.

The inrush currents were then compared with the fuse melting time-current characteristic (page 8 of this appendix) to determine the melt times. The results are tabulated in Tables B-1 and B-2. Use of inrush currents calculated at rated voltage is conservative for constant impedance devices as the current at degraded voltages will be less. The acceptance pass-fail criteria required for melting time is 12 seconds. From a review of Table B-1 all fuses will carry inrush current for at least 12 seconds and are considered acceptable.

5.2.6 MCC 120VAC distribution panel fuse time characteristics are evaluated to determine if the fuses melt during the start attempts. It is considered that circuit components required to pick-up <luring starting will be at inrush conditions.

Calculation WBNEEBMSTI020020 (Attachment 10.1, 10.2 of R15 of Ref. 2.5 in the main body of this calculation) was reviewed to identify the worst case inrush at rated voltage on each MCC 120VAC distribution panel. Each panel uses KTK type fuses of the 5 amps size. From a review of Table B-2 all fuses will carry inrush current for at least 12 seconds and are considered acceptable.

6.0 SUMMARY OF RESULTS

Based on Section 5.0, following is the summary of results:

6.1 Degraded Voltage Relay and Loss of Voltage relay Setpoint

Existing setpoints for the degraded voltage relay and loss of voltage relay are acceptable.

Page 139: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

ATTACHMENT 7 STUDY-EEB-WBN-12-001, RO Page 13

Calculation: WBN-EEB-MS-TI06-0029, R33

6.2 Protective Device Evaluation

6.2.1 Motors Actuated by S I Signal

APPENDIX 8 PAGE6

As discussed in Section 5.2.1, there is no adverse effect of the start-start heating on the overcurrent devices on the safety related motors which would be actuated by safety injection signal and powered from safety related 6.9kV and 480V switchgears and 480V MCCs under the degraded voltage conditions.

6.2.2 Non-Accident Safety Related Motors

Based on te analysis in Section 5.2.3, operation of safety-related loads with the 6.9kV Shutdown Board voltage operating at the lower boundary of the degraded voltage relay, 6555V, will not cause tripping of protective devices. Static loads (constant impedance) are not considered, since operation at lower voltage results in less current.

6.2.3 TOL Evaluation

The generic evaluation of TOL's in Section 5.2.2, showed that only motors having locked rotor current in excess of 850% would have to be evaluated further. A review of the WBN ETAP database (Ref. 2.1) showed ·that there are no motors with a locked rotor current greater than 850% and start for an accident.

6.2.4 Fuse Evaluation for MCCs 120VAC CPT Circuits and 120VAC Distribution Panel Loads

Based on Sections 5.2.5 and 5.2.6, fuses for aii120VAC CPT Circuits and 120VAC Distribution Panel loads are acceptable and will not blow or melt during the 12 seconds criteria during a start-start scenario.

6.3 The upper boundary limit for the time delay is 11.5 seconds (Figure 8.3), which is the maximum total time allowed for loss of voltage detection and emergency diesel generator start. Based on the above evaluations, it has been determined that protective devices will not trip prior to 12 seconds for start-start operation of motors at a degraded voltage at which time disconnection from offsite power and reconnection to the emergency diesel generators occurs.

7.0 CONCLUSIONS

The above analyses have demonstrated that in the event of degraded voltage conditions, all safety related loads required for safe shutdown of the unit will be available and perform their intended safety function.

Page 140: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

ATTACHMENT 7 STUDY-EEB-WBN-12-001, RO Page 14

Acceleration of Typical Class 1E Motors ( @ 80% MRV)

Appendix No. Attachment 1

·-

Calc. No. WBN-EEB-MS-TI06-0029 Rev. 29 Sheet No. 1 of _ ___,16,__ __

Page 141: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

One-Line Diagram

Ul 99999 MVAsc

!-dip

0.48 kV

CBS )

Z4

CB6 )

LV-MTR

0.48 kV

Mtrl 50 HP

ATTACHMENT 7 STUDY-EEB-WBN-12-001, RO Page 15

OLVl

U4 99999 MVAsc

Bus9

0.48 kV CB7

)

Z6

CBS

NO

Appendix No. Attachment 1 Calc. No. WBN-EEB-MS-TI06-0029 Rev. 29 Sheet No. 2 of 1-6--

page 1 09:43:29 May 26, 2000 Project File: DVMotorAcc

Page 142: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Project: Location: Contract: Engineer:

"'

... '

•,

-!lt:"l

Project File: DVMotorAcc

Output Report: Mtrl@80%

ATTACHMENT 7 STUDY-EEB-WBN-12-001, RO Page 16

Motor Slip

Appendix No. Attachment 1

·•

Calc. No. WBN-EEB-MS-TI06-0029 Rev. 29 Sheet No. 3 of 16

May 26, 2000

"

Page 143: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

- ·--

ATIACHMENT7 STUDY-EEB-WBN-12-001, RO Page 17

Acceleration of Typical Class lE Motors; Motor Voltage at 320 V Diesel Generator Breaker Close @ 10 Sec.

Appendix No. Attachment 2

•.

Calc. No. WBN-EEB-MS-TI06-0029 Rev. 29 Sheet No. 1 of _ ...... 23"----

Page 144: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

:)ne-Line Diagram

T-dip

0.48 kV

Z4

:.N-MTR

0.48 kV

Mtrl 50 HP

ATTACHMENT 7 STUDY-EEB-WBN-12-001, RO Page 18

OLVl

Bus9

0.48 kV

Z6

Appendix No. Attachment 2 Calc. No. WBN-EEB-MS-TI06-0029 Rev. 29 Sheet No. 2 of 23

page 1 09:47:29 May 26, 2000 Project File: DVMotorAcc

Page 145: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Project: Location: Contract: Engineer:

• 1 l .,

-lftrl

Project File: DVMotorAcc

Output Report: DV-Casel

ATTACHMENT 7 STUDY-EEB-WBN-12-001, RO Page 19

M•chlne Connected 61111 Vol~ge

Appendix No. Attachment 2

May 26, 2000

Calc. No. WBN-EEB-MS-TI06-0029 Rev. 29 Sheet No. 3 of 23

Page 146: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Project: Location: Contract: Engineer:

-Hori

"'

"

Project File: DVMotorAcc

Output Report: DV-Casel

ATTACHMENT 7 STUDY-EEB-WBN-12-001, RO Page 20

May 26, 2000

MllehlneSIIp

" •. ,. "

Appendix No. Attachment 2 Calc. No. WBN-EEB-MS-TI06-0029 Rev. 29 Sheet No. 4 of 23

Page 147: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

ATTACHMENT 7 STUDY-EEB-WBN-12-001, RO Page 21

Acceleration of Typical Class 1E Motors; Motor Voltage at 320 V Diesel Generator Breaker Close @ 11 .5 Sec.

Appendix No. Attachment 3 Calc. No. WBN-EEB-MS-TI06-0029 Rev. 29 Sheet No. 1 of _ __,2'"'3,___ __

Page 148: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

One-Line Diagram Ul

99999 MVAsc

V-dip

0.48 kV

CBS )

Z4

CB6 )

LV-MTR

0. 48 kV

Mtrl 50 HP

ATTACHMENT 7 STUDY-EEB-WBN-12-001, RO Page 22

OLVl U4

99999 MVAsc

Bus9

0.48 kV CB7

)

Z6

CBS 1'.

NO

Appendix No. Attachment 3 Calc. No. WBN-EEB-MS-1106-0029 Rev. 29 Sheet No. 2 of 23

page 1 09:47:29 May 26, 2000 Project File: DVMotorAcc -- ''$ ..... _...,. __ ~- ~----

Page 149: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

Project: Location: Contract: Engineer:

"'

"'

s . " i ' " '

"

-~,

Project File: DVMotorAcc

Output Report: DV-Case2

ATIACHMENT7 STUDY-EEB-WBN-12-001, RO Page 23

Appendix No. Attachment 3

May 26, 2000

Calc. No. WBN-EEB-MS-TI06-0029 Rev. 29 Sheet No. 3 of 23

Page 150: ATTN: Document Control Desk U.S. Nuclear …motor starting transient studies are based on the dropout voltage value of DVR and time delay, (2) the steady-state voltage drop studies

ATTACHMENT 7 STUDY-EEB-WBN-12-001, RO Page 24

Project: May 26, 2000 Location: Contract: Engineer:

Madl!neSllp

-l!t1'l

"'

•oo

"

• •" '

~

" \ ' • ' • • " " ., ,. " l'ia• /S.,_.)

Project File: DVMotorAcc

Output Report: DV-Case2 -

Appendix No. Attachment 3 Calc. No. WBN-EEB-MS-TI06-0029 Rev. ~ Sheet No. 4 of 23