Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of...

124
-5Adb6,- 7ooS5 TABLE 1 GEOHETEIC DATA FOR VERTICAL EPLDACEHENT OPTION Design Analyzed (ft) Conceptual Designd (ft) Drift Dimension Width Height Radius of Roof Arch 16 O (4.88m) (6.71m) (2.74m) 16.0 22.0 9 . 5 e 25.0 2.42 Container Borehole Dimensions Depth Diameter 25 . 00 a (7.62m) 2. 42 a (0.74m) Panel Dimensions Waste Standoff from Access Drift Wall Access Drift Width Emplacement Drift Spacing Barrier Pillar Width Panel Width 77 . 5 a 21. 0 112.Oc 63.Oa 1400. Oa (23.62m) (6.40m) (34. 14m) (19.20m) (426.72m) 92.5 21.0 63.0 1400.0 Source references: aMansure and Stinebaugh (1985). bParsons, Brinckerhoff, Quade and Douglas (1985). cMansure and Ortiz (1984). dMacDougall (1986) - Spent Fuel Emplacement eParsons, Brinckerhoff, Quade and Douglas (1986). -27-

Transcript of Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of...

Page 1: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

-5Adb6,- 7ooS5

TABLE 1

GEOHETEIC DATA FOR VERTICAL EPLDACEHENT OPTION

Design Analyzed(ft)

Conceptual Designd(ft)

Drift Dimension

WidthHeightRadius of Roof Arch

16 O(4.88m)(6.71m)(2.74m)

16.022.0

9 . 5 e

25.02.42

Container Borehole Dimensions

DepthDiameter

25 .00a (7.62m)2.42a (0.74m)

Panel Dimensions

Waste Standoff fromAccess Drift Wall

Access Drift WidthEmplacement Drift SpacingBarrier Pillar WidthPanel Width

7 7 .5 a

21. 0112.Oc63.Oa

1400. Oa

(23.62m)(6.40m)(34. 14m)(19.20m)(426.72m)

92.521.0

63.01400.0

Source references:aMansure and Stinebaugh (1985).bParsons, Brinckerhoff, Quade and Douglas (1985).cMansure and Ortiz (1984).dMacDougall (1986) - Spent Fuel EmplacementeParsons, Brinckerhoff, Quade and Douglas (1986).

-27-

Page 2: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

TABLE 2

GEOIMMIC DATA FM HORIZONTAL EMACEKENT OPTION

Design Analyzed Conceptual Designd

(ft) (ft)

Drift Dimension

Width 1 8 .0a (5.49m) 23.0Height 1 3.0a (3.96m) 13.0Radius of Roof Arch 1 0 .2b (3.11m) 14.0

Container Borehole Dimensions

Waste Standoff from EmplacementDrift Centerline 1 1 7 .50a (35.81m) 145.5e k4-

Length 6 8 2 .00a (207.87m) 363.0 ilkDiameter 2 .7 5a (0.84m) 2.5

Panel Dimensions

Panel Width 14 0 0 .Oa (426.72m) 1400.0Panel Depth 9 8 5 . 0 C (300.23m) 748.0

Source references:abansure and Stinebaugh (1985).

bParsons, Brinckerhoff, Quade and Douglas (1985).cHansure and Ortiz (1984).dMacDougall (1986) - Spent Fuel EmplacementeParsons, Brinckerhoff, Quade and Douglas (1986).

-28-

Page 3: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

TABLE 3

DATA FOR~ THERM&L AMD THR~/EI CALANALYSES OF EH(PLACEXERT DRIFTS

Value

Rock MassSpecific Gravitya

Young's HodulusaPoisson's Ratioa

Thermal Conductivitya(25 to 100 deg. C temp range)

2.34 g/cc

15.1 OPa0.2

2.07 W/m-K

Thermal Capacitancea

Thermal Expansiona (*106)

(25 to 200 deg. C temp range)Horiz./Vert. In situ StressbGround Surface Temperaturec

Temperature GradientdRock Matrixa

Unconfined CompressiveStrength of Rock

Tensile Strength

Angle of Internal FrictionJointsa

Joint CohesionJoint Coefficient of Friction

Joint Angle

(Frequently Assumed Value)

2.25 J/cm3 K

10.7C-1

0.55#I 16.0"C

0.0239-C/m

75.4 MPa

-9.0 MPa

29.2

1.0 MPa0.8 (38.7)

90 (Vertical)

References:

aNimick et al. (1984).-bBauer, Holland and Parrish (1985)

cEglinton and Dreicer (1984).dSass and Lachenbruch (1982).

-29-

Page 4: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

TABLE 4

NORMAlIZED COEFFICIENTS FOR THE POWER DECAYFUNCTION FOR PWR AND EBW SPENT FUEL MIX

Normalized Strength, at

Exponential

Components ta _ o xrS t - 8.55 yr

1 0.03120 0.15602

2 0.13920 0.59787

3 0.04920 0.15227

4 0.78270 0.09384

Time Exponent, bi (yr-l)

0.00135

0.01914

0.05188

0.43768

::

aTime, t, is given with respect to time of removal of spent fuelfrom the reactor.

-30-

Page 5: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

TABLE 5

RESULTS OF PRELTMINARY ANALYSES OF THE HORIZONITALEMPIACEMENT OPTION- - DATA. FOR 100 YR AFTER EHPL&ACENT

DescriptionNumber ofSources inHalf Model

FreeSurface

Condition

Temp. atPanel Center

( Scab

Total Initial StressHorizontal Vertical

(mpg) (MPa)

Single Panel

Extended Panel

Three Panels

35 None

Isothermal OnlyFree (1,000 ma)

Free (2,000 m)

12

35 + 10V

NoneIsothermal Only

Free (1,000 m)

None

Isothermal Only

Free (1,000 m)Free (2,000 m)

35.89

35.8935.89

35.89

34.1134.11

34.11

35.9535.95

35.95

35.95

12.2112.49

11.9011.86

13.38

13.83

12.77

4.273.38

3.30

5.81

5.525.07

5.07

13.94

14.40

13.25

13.05

4.08

3.63

3.25

3.24

aThe lengths specified here refer to the extent of theboundary elements used to model the ground surface above

bthe repository, measured from the repository centerline.Ambient Temperature - 23.2-C

-31-

Page 6: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

TABLE 6

TuvMAL ANALYSES PERFORMED USING TIEDOT COMPUTER CODE

Time(Yr)

Time Steps Number ofStepss

Time IncrementFor PoweraDecayFunction (Yr)

VERTICAL EMPL&CEKET

0-1010-3535- 100

0.0050.0100.065

UNVENTILATED

2,0002,5001,000

VENTILATED

1, 0003,6002,5001,300

0.100. 351.00

0-11-10

10-3535-100

0.00100.00250.01000.0500

0.11.03.51.0

HORIZONTAL EMPLACEKENIT

0-1010-3535-100

0.0100.0250.065

UNVENTILATED

1, 0001,0001,000

VENTILATED

0.100.351.00

0-1010- 3535- 100

0.01000.02500.0650

1, 0001,0001,000

0.100.351.00

8The power decay function describing the strength of the heat sources has beentabulated for various times. The strength at any particular time between thetabulation times is determined by interpolating linearly within the appropriatetime increment.

-32 -

Page 7: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

TABLE 7

RESULTS OF THERMAL ANALYSES OF UNVENTILATED VERTICAL EMPLACEMENTDRIFT USING ALTERNATIVE EFFECTIVE THERMAL CONDUCTIVITIES

Drift Perimeter Temperaturls10 Yr After Waste EmplacementEffective Thermal

ConductivityW/m.K Crown (OC)

25 72.2

Midfloor (IC)

77.0

75.9

75.2

Midwall (IC)

74.7

74.7

74.6

50 73.4

100 73.9

a The tabulated values of temperature were obtained by performing analyses,using the DOT code. For each analysis 2,000 time steps of 0.005 yrwere used to reach the total simulation time of 10 yr.

-33-

Page 8: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

TABLE 8

RESULTS OF BOUNDARY-EWEIENT AN~ALYSES OF THE VERTICAL EMPLACDEMENT DRIFT

Ti (yr) 0 3 10 20 35 50 100 150 200

Mo (c )

24idfLoo (cm

14ota Vertical~clur (CM)

c1os=' (CM)

cron stress CM)

.Midflocc Stres QM

C=Ae aMVI CC)

Mtidwa1lTmperatrS (C

-0.078 -0.804 -0.172 -0.041 0.611 1.487 3.528 4.794 5.742

0.507 1.132 0.244 -0.218 -1.102 -2.095 -4.229 -5.474 -6.394

0.429 0.328 0.072 -0.259 -0.491 -0.608 -0.701 -0.680 -0.652

O.1 L

0.230

5.757

0.730

8.453

23.0

23.0

0.244 0.381 0.546 0.653 0.701 0.713 0.677 0.645

0.488

15.790

5.184

8.648

46.1

0.762

25.100

11.1w0

5.87

60.7

1.092

38.840

18.410

2.163

78.8

1.310

44.800

23.150

0.307

92.3

1.402

48.500

25.310

-1.507

99.0

1.436

50.210

26.250

-2.340

104.0

1.355

48.240

25.070

-1.981

102.5

1.290

46.330

23.950

-1.559

100.8

75.4 91.3 104.2 112.9 116.1 114.3 109.9 106.9

23.0 58.6 73.6 90.6 102.1 107.2 109.0 106.1 103.8

flr. fUCWJM~z m~1a~fta1 infC=tia is xovide to clarify thea mwadr of varios Mras 3Ze$

a....z, e1a! t ncrm1 dispalw~t.

b~cueis negative if the dimmtsian !r=Ga5GsS

-34-

Page 9: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

TABLE 9

RESULTS OF FINITE-ELEMENT ANALYSES OF THE VERTICAL EMPIACEMENT DRIFT

EnPlaoenntType adLocation

aQrm Dis-

placement (cm)Midfloor Dis-placement (cm)

Atotal VerticalClosure (cm)

Midwall Dis-placement (cm)MidwallCIOsr (cm)

Unventilated Drift

t-O yr 10 yr 35 yr 100 yr

-0.191 2.330 5.826 10.382

0.235 2.341 5.299 0.9332

0.426 0.011 -0.527 -1.050

-0.113 -0.399 -0.687 -0.791

Ventilated Drift

t-O yr 10 yr

-0.191 1.411

0.235 1.739

0.426 0.328

-0.113 -0.187

35 yr 100 yr

2.482 2.960

2.730 3.225

0.248 0.265

-0.218 -0.204

0.226 0.800 1.374 1.582 0.226 0.374 0.436 0.408

Ccru

stress (v)Midfloorstress (Mpa)MidwallStress (MPa)

Crcwn Temp.( C)MidfloorTemp ( C)MidwallTVVP ( C)

5.75 28.48 47.78 54.28

0.80 10.38 23.13 28.30

8.16 4.99 -1.24 -3.84

23.0 73.4 101.8 108.5

23.0 75.9 103.6 109.3

23.0 74.7 102.8 109.0

5.75 11.23 12.56 11.60

0.80 0.26 2.76 3.55

8.16 6.01 5.05 5.78

23.0 23.0 23.0 23.0

23.0 23.0 23.0 23.0

23.0 23.0 23.0 23.0

dFttors of Safety:crown 7.2Midfloor 43.7Midwall 5.1

1.9 1.34.1 2.17.6 60.8

1.21.8

11.4

7.243.7

5.1

4.083.2

6.6

3.613.77.8

3.911.06.9

The following supplemental information is provided to clarify the meaningof various response measures.

aDisplacements are considered positive if in the positivecaordinate direction.

bClosure is negative if the dimension iicreases.

cStresses are extrapolated to the nodal points using coqztedvalues at the element gauss points an assuming a linearvariation of stress within the element. Caressive stressesare positive.nese are the stns/streh ratios for the rock mss.

Page 10: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

r

TABLE 10

RESULTS OF BOUNDARY-EIMULT ANALYSES OF THE HORIZONTAL EPLTACEMT DRIFT

Tim (Yr) 0 5 10 20 35 50 100 150 200

ment (eu)

Midflom

HKidwali

Clcsu (cm)

Crm strewu (p)

Midflo= Steu (MM)

mi~dwal strim (M)

=M TCUi. ( C)

midfloarTqXratur (C)

Xidwallna!peraLzu (C)

0.149 - 0.225 0.896 1.152 2.093 2.698 4.126 5.068 5.772

0.317 0.032 -0.796 -1.264 -2.341 -3.002 -4.433 -5.326 -5.990

0.466 0.257 0.100 -0.112 -0.24a -0.304 -0.307 -0.258 -0.218

0.036 0.135 0.207 0.304 0.364 0.389 0.385 0.355 0.329

0.072

3.600

-0.749

12.640

23.0

0.270

9.647

3.385

7.448

23.3

0.414

14.380

6.564

3.704

25.0

0.608

21.430

11.130

-1.059

30.6

0.788

26.790

14.410

-3.691

39.0

0.778

29.720

16.070

-4.497

45.8

0.770

32.120

17.080

-3.400

58.9

0.710

31.40

16.350

-1.628

64.5

0.658

30.390

1.5.570

-0.111

67.2

23.0 23.3 25.0 30.7 39.0 45.8 59.0 64.5 67.2

23.0 23.3 25.1 30.8 39.1 46.0 59.0 64.5 67.2

'frA fo11cwirn mplemtal teczzotaio is provided to clarify the mwznirg of varict.9 r~espns

bC~lrme is negative if the diAensia Lgiceases.

-3 6-

Page 11: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

TABLE 11

RESULTS OF FINITE-ELEKqT ANALYSES OF THE HORIZONTAL EKPIACEKENT DRIFT

Ew1acentTypeanLocation

Unventilated Drift

t-0 yr 10 yr 35 yr 100 yr

Ventilated Drift

t-0 yr 10 yr 35 yr 100 yr

aCrown Dis-placement (cm)Midfloor Dis-placamnt (cm)

4rotal VerticalClosure (cm)

Nidwall Dis-placmn (cm)MidwallClosure (cm)

-0.184

0.273

1.410

1.478

3.910

3.638

7.251

6.899

-0.184

0.273

1.419

1.499

0.457 0.068 -0.272 -0.352 0.457 0.080

3.912

3.621

-0.291

-0.399

0.798

7.097

-0.414

-0.459

0.918

-0.036

0.073

-0.224

0.448

-0.397

0.794

-0.453

0.906

-0.036

0.073

-0.222

0.444

C_____

Stress (Na)MidfloorStress (Ma)Midwall(Stress (HPa)

CraJn Tm-erature ( C)MidfloorTem ( C)Midwall5T ( C)

3.81

-0.71

11.84

23.0

23.0

23.0

15.52

7.23

2.58

25.0

25.0

25.0

28.82

15.55

-4.63

38.7

38.7

38.7

36.15

19.37

-5.17

58.3

58.3

58.3

3.81

-0.71

11.84

30.0

30.0

30.0

16.43

7.60

3.24

30.0

30.0

30.0

27.23

14.86

-5.78

30.0

30.0

30.0

30.88

17.21

-8.81

30.0

30.0

30.0

Factors of Safety:Crown 10.4Kidfloor 51.6Midwall 3.7

3.05.8

14.4

1.93.08.1

1.6 10.42.5 51.67.3 3.7

2.95.6

11.6

1.93.16.3

1.82.73.9

The following supplemental information is

of various response measures.

provided to clarify the meaning

Displaceents are considered positive if in the positivecoordinate direction.

bClosue is negative if the dimension increases.

cStresses are extrapolated to the rndal points using ompxtedvalues at the element gauss points and assLmin; a linearvariation of strews within the elecent. Cmpressive stressesare positive.

dmlese are the strenrt1Vstress ratios for the rock mass.

-37-

Page 12: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

it

)1

\r

Figure 1. Design of Drift for Vertical Emplacementof Waste Container of Spent Fuel

-38-

Page 13: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Panel Access/Drift

ii IT 'I

r ,I I

wpdxs

Module design unit ,

Panel width vk ,Barrier pillar width it,Panel access drift width (Drift spacing %AXX

Standoff of first container %from access drift centerline

Source Reference: Mansure and Stinebaugh, 1985

Figure 2. Design Module of Vertical Emplacement Panels

-39-

Page 14: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

18' EXCAVATED WIDTH

Figure 3. Design of Drift for Horizontal Emplacementof Waste Container of Spent Fuel

-40-

Page 15: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Waste Container

Emplacement drift,PO yr ii

r, - Module design unit… ----- I …w Panel widthd Emplacement drift widthg Separation between borehole endsu Borehole spacings Standoff of first container from

emplacement centerline

Source Reference: Mansure and Stinebaugh, 1985

Figure 4. Design Module of Horizontal Emplacement Panels

-41-

Page 16: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

r

0

IaL

10 Surace Elements

,Qift Location Plane of Emplacement Drifts

ISources\ 3Ht~.1t4 a apart 1\ X * __3t19I Nptqe of Repository Model

'3 Sourcesin drift floor

-200 1

-400

200 400 600Mleteri

800 1000 1200

(Above)a) Repository Model

b) Drift Detail andSample Points (left)

I.

tlj

-3 10*0 4 8 12 18

Meters

Figure 5. Boundary-Element Model for Analysis of Vertical Emplacement(a) Complete(b) Drift Detail and Sample Points

-42-

Page 17: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

I

0

10 Surface Elements

Drift Location Plane of Emplacement Holes

35 Sources r- 10 Sources - d

r >Ege of Panel "Nage of Next PanelI _

I'

4i

ID

-200

-400

2o 200 400 600Meters

800 1000 1200

(above)-294

-2g8

a) Repository Model

b) Drift Detail andSample Points (left)

-.. 10 elements

*8 elements

.... ~~ .. .' ment

.\>iements

internalsample point

U'La)-.j

al-302

-306 LC 4

Meters8

Figure 6. Boundary-Element Model for Analysis of Horizontal Emplacement(a) Complete(b) Drift Detail and Sample Points

-43-

Page 18: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

4

aCLr

0)

a

0)

L .

U,)

0 200 400 600 800

Distance from Penel Centerline (m)1000

Figure 7. Thermally Induced Stresses in the Plane of a Single Panel100 Yr After Waste Emplacement in Horizontal Boreholes

-44-

Page 19: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Isothermal, Free Surface

-Om Node I Node 116

Plane ofSymmetry

Plane of andSymmetry Adiabaticand SurfaceAdiabatic at +17.1 T

Surface

, ,

-500 m Node 504 Node 494

Adiabatic Surface, Freeto Displace Horizontally

Figure 8. Finite-Element Model for Analysis of Vertical Emplacement(a) Complete Mesh(b) Details of Mesh around Drift

-45-

Page 20: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Isothermal, Free Surface

-Om Node N Node1 ~~~~~~201

Plane ofSymmetry

-- - ~andPlane of ~~~Adiabatic

Planetof Surface Nodeand at +213.4 m 283Adi abati cSurface Node

r- i Line of _4--Node 317,- i * WastIILine of491x

I_ * _ _ _ - Containers

Node Node-5CO m 651 - -5 79

Adiabatic Surface, Freeto Displace Horizontally

Figure 9. Finite-Element Model for Analysis of Horizontal Emplacement(a) Complete Mesh(b) Details of Mesh around Drift

*

-46-

Page 21: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

L)0

ax

I-

a)

120

100 .

80

60

40

20

00

Figure 10.

50 100 150

Time Since Waste Emplacement (Years)

Boundary-Element Predictions of Wall Temperaturesof the Vertical Emplacement Drift - Unventilated Drift

-47-

Page 22: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

EE

L.

0

U

15

10 .

5'

0

-5 .

-10 0

Figure 11.

50 100 150

Time Since Emplacement (Years)

Boundary-Element Predictions of Vertical andHorizontal Closures of the Vertical EmplacementDrift - Unventilated Drift

-48-

Page 23: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

60

50

CD

coco

U)

L

C

C"

C

I-

40

30

20

10

0 -

-10 -0 50 100 150

Time Since Emplacement (Years)200

Figure 12. Boundary-Element Predictions of Tangential Stressesat Selected Points Around the Vertical EmplacementDrift - Unventilated Drift

-49-

Page 24: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Drift at time of Excavation Vertical Emplacement

4--X aPrincipal Stress

Scale (MPa)

1* .~ ~ ~ ~ ~~lo 50

+

After lOO1rs, Unventilated

meters +meters 510

Figure 13. Boundary-Elemant Predictions of Principal Stresses inthe Vicinity of the Vertical Emplacement Drift -Unventilated Drift

-50-

Page 25: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure 14. Boundary-Element Predictions of Tangential StressDistribution Around the Vertical EmplacementDrift - Unventilated Drift

-51-

Page 26: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

;

Drift at time of Excavation Vertical Emplacement

Ratio of Matrix StrengthI;;\\ to Computed Stress

E

After 1OOyrs, Unventilated

Key

Matrix Ratio

R 1.0B 3.0C 5.0O 7. 0E 9.0

5 10meters

Figure 15. Boundary-Element Predictions of the Ratio Between theMatrix Strength and Stress Around the VerticalEmplacement Drift - Unventilated Drift

Page 27: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure 16. Boundary-Element Predictions of the Ratio Between the

Joint Strength and Stress Around the VerticalEmplacement Drift - Unventilated Drift

-53-

Page 28: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

I

Drift at time of Excavation Vertical Emplacement

Temperature Change

(C)

,No ChangeI' at Instant of

Excavation

After 10OUrs, Unventilated After IOOyrs, Ventilated

Fixed at.+7 Deg. C/

motors 10 0 16

5 to 10 l

Figure 17. Finite-Element Predictions of the Temperature Changein the Vicinity of the Vertical Emplacement Drift100 Yr After Waste Emplacement

-54-

Page 29: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure 18. Finite-Element Predictions of the Principal Stressesin the Vicinity of the Vertical Emplacement Drift

-55-

Page 30: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Ratio of Matrix Strengthto Computed Stress

Figure 19. Finite-Element Predictions of the Ratio Between MatrixStrength and Stress Around the Vertical Emplacement Drift

-56-

Page 31: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Ratio of Joint ShearStrength to ComputedShear Stress on a Set

of Vertical Joints

U Region of potentialjoint activation

Figure 20. Finite-Element Predictions of the Ratio Between JointStrength and Stress Around the Vertical Emplacement Drift

-57-

Page 32: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure 21. Boundary-Element Predictions of the Ratio Between JointStrength and Stress Around an Unventilated VerticalEmplacement Drift, at Times up to 100 Yr AfterWaste Emplacement

-58-

Page 33: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

U0

L-

a)

Ea)

120

100

80.

60 -

40

20

0F

Figure 22.

1

50 100 150 200

rime Since Waste Emplacement (Years)

Boundary-Element Predictions of Wall Temperaturesof the Horizontal Emplacement Drift - Unventilated Drift

-59-

Page 34: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

A-,

g<

-5 5

-10 -

Figre20

Figure 23.

50 100 150

Time Since Waste Emplacement (Years)

Boundary-Element Predictions of Vertical and HorizontalClosures of the Horizontal Emplacement Drift - UnventilatedDrift

-60-

Page 35: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

0~

C,,

(0)

L.

4-p

0')

0)Ca

Time Since Waste Emplacement (Years)

Figure 24. Boundary-Element Predictions of TangentialStresses at Selected Points Around theHorizontal Emplacement Drift - Unventilated Drift

-61-

Page 36: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

I

Drift at time of Excavation Horizontal Emplacement

Principal Stress

Scale (MPa)

, ++ +N1~~~ ++

After lOOyrs. Unventilated

trS -4-r

meters 36

Figure 25. Boundary-Element Predictions of Principal Stressesin the Vicinity of the Horizontal EmplacementDrift - Unventilated Drift

-62 -

Page 37: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Tangential Stresses

Scale (MPa)

0 50

Figure 26. Boundary-Element Predictions of Tangential StressDistribution Around the Horizontal EmplacementDrift - Unventilated Drift

-63-

Page 38: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure 27. Boundary-Element Predictions of the Ratio Between theMatrix Strength and Stress Around the HorizontalEmplacement Drift - Unventilated Drift

-64-

Page 39: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Ratio of Joint ShearStrength to ComputedShear Stress on a Set

of Vertical Joints

I Region of potentialjoint activation

Key

Joint Ratio

AaC0E

1.03.05.07.09.0

Figure 28. Boundary-Element Predictions of the Ratio Between theJoint Strength and Stress Around the HorizontalEmplacement Drift - Unventilated Drift

-65-

Page 40: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure 29. Finite-Element Predictions of the Temperature Changesin the Vicinity of the Horizontal Emplacement Drift100 Yr After Waste Emplacement

-66-

Page 41: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

4 + Principal Stress

/

Scale (MPa)

0 50+

4I1-

i

Sp

3Z

/ -A

Figure 30. Finite-Element Predictions of the Principal Stressesin the Vicinity of the Horizontal Emplacement Drift

-67-

Page 42: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure 31. Finite-Element Predictions of the Ratio Between MatrixStrength and Stress Around the Horizontal Emplacement Drift

-68-

Page 43: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Ratio of Joint ShearStrength to ComputedShear Stress on a Set

of Vertical Joints

I Region of potentialjoint activation

Figure 32. Finite-Element Predictions of the Ratio Between JointStrength and Stress Around the Horizontal Emplacement Drift

-69-

Page 44: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

20

15S

10I

E1-E

L_

0

C-

5

0

Finite element resultof wall to wall closure

<\ ~Boundary el ement predi cti onXY ~~of wall to wall closure

< ~~Boundary element prediction\/ ~of roof to f I oor cl osure

Finite element resultof roof to floor closure x

-5

-10

-150 20 40

Time Since Waste50 80

Emplacement (Years)100

Figure 33. Comparison of Closure Histories For the Drift withNo Ventilation, Computed Using Boundary-Element andFinite-Element Models: Vertical Emplacement

-, I-

Page 45: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

15

Finite element resultof wall to wall closure

10+

A_

Ea)

L..

Ct

5 - \ Boundary element predictionof wall to wall closure

Boundary element predictionof roof to floor closure

/ /

0 -

A

-5 I Finite element resultof roof to floor closure

x

-100 20

Time Since40 60 80 100

Waste Emplacement (Years)

Figure 34. Comparison of Closure Histories for the Drift WithNo Ventilation, Computed Using Boundary-Element andFinite-Element Models: Horizontal Emplacement

.-71-

Page 46: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Reaion in which lointshear strenath is exceeded

Inedaserhrzontalstes

fnllnwinn w~qtp omn1~rpmpntC\ . _,, .............. ., ..__iZ .--- l w~- ,l

Figure 35. Temperature Histories for Point in theInterior of the Rock Mass

-72 -

Page 47: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

SAND86-7005

REFERENCE THERMAL AND THERMAL/MECHANICAL ANALYSES OF DRIFTSFOR VERTICAL AND HORIZONTAL EMPLACEMENTOF NUCLEAR WASTE IN A REPOSITORY IN TUFF

C.M. St. JohnJ.F.T. Agapito and Associates, Inc.

Please replace pages 72, 73, and 74 in your copy of this reportwith the attached new pages. Thank you.

Page 48: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Drift centerline

I If Prp-pAqtinn inint n1nnP!;. .- --.- - O- gJ-a p r

Region in which jointshear strenoth is exceeded

s ncreased horizontal stressfollowing waste emplacement

Figure 35. Conceptual Interpretation of the Development of Regionsin which the Shear Stress on Vertical Joints Exceedstheir Shear Strength

-72-

Page 49: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

120

U0

a)L:3

L-a)D.E-wD

Time Since Waste Emplacement (Years)

Figure 36. Temperature Histories for Point in theInterior of the Rock Mass

-73-

Page 50: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

20.0

c 15.0 -0-

Co,coa)L-.

an 10.0

0.0

C0

S.>N05.0

0.0 -

Figure 37.

Time Since Waste Emplacement (Years)

Approximate Histories of the Horizontal Stresses towhich the Waste Emplacement Drifts are Subjected

-74-

Page 51: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

III

I

120 -

100 .

U 80

a)

X 60 .L-

a)

0

Figure 36.

20 40 60 80 100

Time Since Waste Emplacement (Years)

Approximate Histories of the Horizontal Stresses towhich the Waste Emplacement Drifts are Subjected

-73-

Page 52: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

-

20.0

Vei- I

X 15.0

enZ:

to I

(n 10.0 Ir_(0

0 5.0

0.0 0

Figure 37.

Time Since Waste Emplacement (Years)

Conceptual Interpretation of the Development of Regionsin which the Shear Stress on Vertical Joints Exceedstheir Shear Strength

- 74-

Page 53: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

APPENDIX A

BOUNDARY-ELEIENT ANALYSES OF VERTICAL EXPIACENT

A-1

Page 54: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure A.1 Boundary-Element Predictions of Principal Stresses in theVicinity of the Vertical Emplacement Drift, at Times up to100 Yr After Waste Emplacement - Unventilated Drift

A-2

Page 55: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure A.2 Boundary-Element Predictions of Tangential StressDistribution Around the Vertical Emplacement Drift,at Times up to 100 Yr After Waste Emplacement -Unventilated Drift

A-3

Page 56: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure A.3 Boundary-Element Predictions of the Ratio Between the MatrixStrength and Stress Around the Vertical Emplacement Drift, atTimes up to 100 Yr After Waste Emplacement - Unventilated Drift

A-4

Page 57: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure A.4 Boundary-Element Predictions of the Ratio Between theJoint Strength and Stress Around the Vertical EmplacementDrift, at Times up to 100 Yr After Waste Emplacement -Unventilated Drift

A-5/A-6

Page 58: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

APPENDIX B

FINITE-ELEXENT ANALYSES OF VERTICAL EKPIACEHENT

B-1

Page 59: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure B.la Finite-Element Prediction of Deformations in the Vicinityof the Vertical Emplacement Drift, at Times up to 100 YrAfter Waste Emplacement - Unventilated Case. (Thedisplacement scale is magnified 20 times relative to thegeometric scale. Deformed rock is shown with the solidlines. The deformations are measured relative to thepre-excavation state.)

3-2

Page 60: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure B.lb Finite-Element Prediction of Deformations in the Vicinityof the Vertical Emplacement Drift, at Times up to 100 YrAfter Waste Emplacement - Ventilated Case. (The displacementscale is magnified 20 times relative to the geometric scale.Deformed rock is shown with the solid lines. The deformationsare measured relative to the pre-excavation state.)

B-3

Page 61: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure B.2a Finite-Element Predictions of the Temperature Changes (0C)in the Vicinity of the Vertical Emplacement Drift, at Timesup to 100 Yr After Waste Emplacement - Unventilated Case

B-4

Page 62: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure B.2b Finite-Element Predictions of the Temperature Changes (°C)

in the Vicinity of the Vertical Emplacement Drift, at Timesup to 100 Yr After Waste Emplacement - Ventilated Case

B-5

Page 63: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure B.3a Finite-Element Predictions of the Principal Stresses inthe Vicinity of the Vertical Emplacement Drift, at Timesup to 100 Yr After Waste Emplacement - Unventilated Case

B-6

Page 64: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Drift at time of Excavation After 1OUrs, Ventilated

.I . Ak + X A-

MPa

X * no k 0 50PRINCIPAL STRESS

+ ~~~~+

I /~~~~~~I

After 35yrs, Ventilated After 1OOyrs, Ventilated

m t . .

5 10 0 5 l 0meters

Figure B.3b Finite-Element Predictions of the Principal Stresses inthe Vicinity of the Vertical Emplacement Drift, at Timesup to 100 Yr After Waste Emplacement - Ventilated Case

B-7

Page 65: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure 3.4a Finite-Element Predictions of the Ratio Between Matrix

Strength and Stress Around the Vertical EmplacementDrift, at Times up to 100 Yr After Waste Emplacement -Unventilated Case

B-8

Page 66: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure B.4b Finite-Element Predictions of the Ratio Between MatrixStrength and Stress Around the Vertical Emplacement Drift,at Times up to 100 Yr After Waste Emplacement -Ventilated Case

B-9

Page 67: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure B.5a Finite-Element Predictions of the Ratio Between JointStrength and Stress Around the Vertical EmplacementDrift, at Times up to 100 Yr After Waste Emplacement -Unventilated Case

B-10

Page 68: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure B.5b Finite-Element Predictions of the Ratio Between JointStrength and Stress Around the Vertical EmplacementDrift, at Times up to 100 Yr After Waste Emplacement -Ventilated Case

B-11/B-12

Page 69: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

I

Page 70: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

APPENDIX C

BOUNDARY-ELE2IENT ANALYSES OF HORIZONTAL EKPIACEKENT

C-1

Page 71: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Drift at time of Excavation After 1ours, Unventilated

0 50T\ \ ) .~\> ark ok PRINCIPAL STRESS

r ~ ++ +

it~~ I \+ AA

~~~~~~~~~-~ -- X A- r

After 35grs, Unventilated After 1OOrs, Unventilated

r _r

. - 3 6 -

__- r- v --- Fr

3 6 0 3 6meters

Figure CA. Boundary-Element Predictions of Principal Stressesin the Vicinity of the Horizontal Emplacement Drift,at Times up to 100 Yr After Waste Emplacement -Unventilated Drift

C-2

Page 72: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure C.2 Boundary-Element Predictions of Tangential StressDistribution Around the Horizontal EmplacementDrift, at Times up to 100 Yr After WasteEmplacement - Unventilated Drift

C-3

Page 73: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure C.3 Boundary-Element Predictions of the Ratio Between theMatrix Strength and Stress Around the HorizontalEmplacement Drift, at Times up to 100 Yr After WasteEmplacement - Unventilated Drift

C-4

Page 74: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure C.4 Boundary-Element Predictions of the Ratio Between theJoint Strength and Stress Around the HorizontalEmplacement Drift, at Times up to 100 Yr After WasteEmplacement - Unventilated Drift

C-5/C-6

Page 75: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

APPENDIX D

FINITE-ELEHENT ANALYSES OF HORIZONTAL EMPIACEXENT

D-1

Page 76: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure D.la Finite-Element Prediction of Deformations in the Vicinityof the Horizontal Emplacement Drift, at Times up to 100Yr After Waste Emplacement - Unventilated Case. (Thedisplacement scale is magnified 20 times relative to thegeometric scale. Deformed rock is shown with the solidlines. The deformations are measured relative to thepre-excavation state.)

D-2

Page 77: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure D.lb Finite-Element Prediction of Deformations in the Vicinityof the Horizontal Emplacement Drift, at Times up to 100Yr After Waste Emplacement - Ventilated Case. (Thedisplacement scale is magnified 20 times relative to thegeometric scale. Deformed rock is shown with the solidlines. The deformations are measured relative to thepre-excavation state.)

D-3

Page 78: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure D.2a Finite-Element Predictions of the Temperature Changes (SC)in the Vicinity of the Drift for the Horizontal EmplacementDrift, at Times up to 100 Yr After Waste Emplacement -Unventilated Case

D-4

Page 79: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure D.2b Finite-Element Predictions of the Temperature Changes (°C)in the Far-Field of the Horizontal Emplacement Drift, atTimes up to 100 Yr After Waste Emplacement - Unventilated Case

D-5

Page 80: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure D.2c Finite-Element Predictions of the Temperature Changes (0C)in the Vicinity of the Drift for the Horizontal EmplacementDrift, at Times up to 100 Yr After Waste Emplacement -Ventilated Case

D-6

Page 81: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure D.2d Finite-Element Predictions of the Temperature Changes (OC)

in the Far-Field of the Horizontal Emplacement Drift, at

Times up to 100 Yr After Waste Emplacement - Ventilated Case

D-7

Page 82: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure D.3a Finite-Element Predictions of the Principal Stresses in

the Vicinity of the Horizontal Emplacement Drift, at Times

up to 100 Yr After Waste Emplacement - Unventilated Case

D-8

Page 83: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure D.3b Finite-Element Predictions of the Principal Stresses inthe Vicinity of the Horizontal Emplacement Drift, at Times

up to 100 Yr After Waste Emplacement - Ventilated Case

D-9

Page 84: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure D.4a Finite-Element Predictions of the Ratio Between Matrix Strengthand Stress Around the Horizontal Emplacement Drift, at Times upto 100 Yr After Waste Emplacement - Unventilated Case

D-10

Page 85: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure D.4b Finite-Element Predictions of the Ratio Between Matrix Strengthand Stress Around the Horizontal Emplacement Drift, at Times upto 100 Yr After Waste Emplacement - Ventilated Case

D-l1

Page 86: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure D.5a Finite-Element Predictions of the Ratio Between Joint Strengthand Stress Around the Horizontal Emplacement Drift, at Times upto 100 Yr After Waste Emplacement - Unventilated Case

D-12

Page 87: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Figure D.5b Finite-Element Predictions of the Ratio Between Joint Strengthand Stress Around the Horizontal Emplacement Drift, at Times upto 100 Yr After Waste Emplacement - Ventilated Case

D-13/D-14

Page 88: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

APPENDIX E

ME0O: NANSURE, A.J.,

BALLOWABLE THERMAL LOADING AS A FUNCTION OF WASTE AGEO

E-1

Page 89: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Sandia National Laboratoriesdate: 2/13/1985 Albuquerque, New Mexico 87185

to: Hill, 6311

from: A.J. Mansure, 6314

subject: Allowable Thermal Loading as a Function of Waste Age

INTRODUCTION:

During the unit evaluation calculations were done to determinethe allowable thermal loading and demonstrate that this loadingdid not have any adverse far-field effects (Johnstone, 1984).Based on that study 57 kW/acre has been used as a baseline forcalculations and for design of the underground facility layout.The unit evaluation assumed 10 year out of the reactor spentfuel. Thermal decay curves used during the unit evaluation weretaken from Kissner (1978).

The criteria used to determine the allowable thermal loading inthe unit evaluation was that the drift floor temperature shouldnot exceed QO0oC for vertical emplacement. That criteria wasnot based upon any firm requirement for ventilation or retrieval.In addition the vertical emplacement floor temperature isdependent upon such things as drift thermal loading (kilowattsper meter of drift or the output of the canisters divided by thespacing between the boreholes) and upon the standoff between thecanister and the drift floor. Further, the same allowablethermal load was used for horizontal and vertical emplacementalthough horizontal emplacement drift temperatures are expectedto be much lower than vertical emplacement drift temperaturesbecause of larger standoffs between the waste and the drift forhorizontal emplacement. Thus the allowable thermal load is beingreevaluated.

This memorandum considers the effect of waste age on allowablethermal loading. O'Brien and Shirley (1984) analyzed bothconstant initial areal power densities and "constant boreholespacings" for wastes of different ages. They found that"constant borehole spacing" gave nearly the same areal energydeposition for waste ages 5 to 30 years, where as, constantinitial areal power density resulted in greatly different arealenergy densities. They thus recommended emplacement at "constantborehole spacing". (Their recommendation is for fixed packagesize, ie. number of assemblies per package.)

E-2

Page 90: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

BASIS FOR COMPARING THERMOMECHANICAL EFFECTS OF WASTE OFDIFFERENT AGES

It has been assumed that far-field thermomechanical effects arethe determining factor for the allowable thermal load. Surfaceuplift can be used as an indicator of thermomechanical effects.Surface uplift peaks at about two thousand years (see Figure 1,Brandshaug, 1983). Thus for waste that is not 10 years out ofthe reactor to produce the same thermomechanical effects as tenyear old SF, it should be emplaced at an initial areal powerdensity that results in approximately the same accumulated arealenergy deposition through 2000 years. The allowable initialpower density as a function of waste age (for a given burnup) isthus determined by

2) 400 Z°o°

Pa ) Na(t)dt = 57(kW/acre)) N10(t)dt (1)

Al twhere Pa is the initial power density of waste of age A atemplacement, Na is the normalized power function for waste ofage A, and N10 is the normalized power function for waste of age10 years.

These integrals were evaluated numerically by fitting each pairof data points with an exponential so the normalized energybetween any two times is given by

(Nl-N2)*(T2-Tl)/ln(Nl/N2)

The accuracy of this approach for evaluating the integrals wasassessed by comparing to a trapezoidal integration (which wouldsystematically lead to an over estimation). The trapezoidalintegration was 1.1% higher.

The assumption that the integrals should be evaluated through2000 years was checked by also evaluating them through 1000years. When the initial power density was calculated with thatassumption, the allowable power density was 100.7% or less ofthe initial power density determined using 2000 years.

ALLOWABLE THERMAL LOADING

The data for determining the allowable initial power density wastaken from the GR (DOE, 1984). That data is not the same as usedin the unit evaluation which came from Kissner (1978). Ingeneral the data in the GR does not decay as fast as the dataused in the unit evaluation (see Table 1). Therefore, the righthand side of equation 1 was evaluated using the data from Kissner(1978) to insure the amount of energy deposited in 2000 years wasno more than that used in the unit evaluation.

Using the data in Table 1 the allowable initial power densityPa was calculated using equation 1. Values determined aresummarized in Table 2 and Figure 2.

Most of the increased allowable thermal loading for younger

E-3

Page 91: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

waste in Figure 2 is due to the higher thermal output per MTU ofyounger waste. The point made by Figure 2 is not to emplaceyounger waste so as to deposit more energy per acre, but tocompensate for the higher initial outputs of younger waste so asto achieve the same energy density. O'Brien and Shirley (1984)suggest that the way to achieve almost constant energy densityis "constant borehole spacing". That of course assumesseveral other variables such as the number of assemblies percanister are constant. A better way to express that same conceptis constant assemblies per acre rather than "constant boreholespacing."

The number of assemblies per acre can be determined from theallowable initial thermal loading according to

I 2300u#0

ASSMB*(MTU/assmb)*P(A)] Na(c)dt (57kW/acre) N1O(t)dt

where ASSMB is the number of assemblies allowed per acre,(MTU/assmb) is the number of MTU per assembly (-.4614 for PWR and-.1833 for BWR, O'grien, 1985), and P(A) is the power per MTU atage A.

Table 2 gives the number of assemblies per acre allowed foraverage age and burnup spent fuel (average burnups are 33,000MWD/MTU for PWR and 27,5000 MWD/MTU for BWR, O'Brien, 1985). Incontrast to allowable initial power density, the number ofassemblies per acre is relatively constant and decreases withwaste age at emplacement. This is because the younger waste overtime produces more energy and so has to be spread out farther.This measure of allowable thermal loading may also be reasonablefor high burnup fuel (Mansure, 1985).

E-4

Page 92: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Table 1. Data used to evaluate allowable initial power densityI Unit I GR data

Year iEvaluationl PWR BWRI * I ** * ** *

56789

101618202530405060708090

100110200300400500600700800900

10002000

1

.75.681.622.525.449.387

.301

.238

.137

.108

.0919

.0806.0711.0633.0569.0514.0466.0247

179815341375127011961140949.2907.6870.5790.7723.1612.2524.8454.8398.5352.9315.8285.6

160.1126.4107.593.79

1.833.796.764.694.634.537.46.399.35.31.277.251

.14

.111V .0943.0823

1380119310791004951.5911.3772.7741.5713. 5651.9598.9510.6440.1383.5337.7300.5270.2245.5

142.1113.597.1985.03

1.848.814.783.715.657.56.483.421.371.33.297.27

.156

.125..107.0933

.0547

.02954.71 .048 49.929.18 .025 26.81

________________________________________________________________

* Data normalized to 10 year old output.** Watts/MTU

E-5

Page 93: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Table 2. ALLOWABLE LOADING................ ................................................

I -kW/acre- I -assemblies/acre-YEAR I PWR BWR | PWR BWR

____-___________________________________________________________5 84.6 73.8 102 2916 72.8 64.3 103 2947 65.8 58.5 104 2968 61.2 54.8 104 2989 58.0 52.3 105 300

10 55.6 50.3 106 30111 53.6 48.7 106 30312 52.1 47.5 107 30413 50.9 46.4 108 30614 49.8 45.6 108 30815 48.9 44.8 109 30916 48.0 44.1 110 31117 47.2 43.4 110 31318 46.5 42.8 . 111 31419 45.8 42.2 111 31620 45.1 41.6 112 31721 44.4 41.0 113 31922 43.8 40.5 113 32023 43.2 39.9 114 32224 42.5 39.4 114 32325 41.9 38.8 115 32426 41.3 38.3 115 32627 40.7 37.8 115 32728 40.1 37.3 116 32829 39.5 36.7 1i6 32930 39.0 36.2 117 330

E-6

Page 94: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

References

Brandshaug, T., NNWSI Unit Evaluation at Yucca Mountain, NevadaTest Site: Far-Field Thermal/Rock Mechanics Analysis, RE/SPECInc., RSI-0209,. 1984

Department of Energy, Generic Requirements for a Mined GeologicDisposal System, Appendix B, ORG/B-2, Sep. 1984.

Johnstone, J.K., R.R. Peters, and P.F. Gnirk, Unit Evaluation atYucca Mountain, Nevada Test Site, Summary Report andRecommendations, SAND83-0372, 1894.

Kissner, Nuclear Waste Projections and Source Term Data for FY1977, Y/OWI/TM-34 Office of Waste Isolation, Oak Ridge, TN, 1978.

Mansure, A.J., Effect of High Burnup Fuel on Underground FacilityDesign, Memo to R. Hill (6311) 2/13/1985b.

O'Brien, P.D. and C5S. Shirley, The Effect of Waste Age on theDesign of a Geologic Repository, Waste Management '84, Vol. I,1984.

O'Brien, P.D., Reference Nuclear Waste Descriptions for aGeologic Repository at Yucca Mountain, Nevada, SAND84-1848, inpreparation, 1985.

E-7

Page 95: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

Distribution:

6310 T.O. Hunter6311 L.W. Scully6312 F.W. Bingham6314 J.R. Tillerson /File6311 H.R. MacDougall6311 P.D. O'Brien6311 C.G. Shirley6314 B. Ehgartner6314 A.J. Mansure6314 R.E. Stinebaugh6330 NNWSICF

E-8

Page 96: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

0

so

E

~30

Co

10 100 1000 10,000 100,000

TIME (yr)

Figure 1. Surface Uplift for 10 Year Old SF Emplaced in theTopopah Spring Member at 57 kW/acre (Brandshaug, 1983)

Page 97: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

ALLOWABLE THERMAL LOADING

mI-

40

0UiGo

0

0Wit-

Qo

Nco

04

~0C,

.............................. ............. ........ .................... ......... . ........ .......

~~~~~~~~~~~~............ .... i' . _- -- -..... ........ ............ ......i5x .. ..............

- . - . - S S S - * - Sn - . - -

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0

WASTE AGE AT EMPLACEMENT

Figure 2. Allowable Initial Power Density

Page 98: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

APPENDIX F

MEO: EANSURE, A.J. AND R.E. STIINEBAUGH,

wHEMORANIDUH OF RECORD OF INSTRUCTIONS FOR THERMAL DESIGN

ANALYSIS AND PERFORMANCE ASSESSMENT IAYOUT.'

F-1

Page 99: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

OEC 11 19��

DEC 1 aSandia National LaboratoriesP.O. Box 5800Albuquerque, NM 87185

Date: 4/18/1985

To: R. Hill, 6311

From: A.J. Mansure and R.E. Stinebaugh, 6314 AIM RE5Subject: Memorandum of Record of Instructions for ThermalDesign, Analysis, and Performance Assessment of Layout, Version I

This memo establishes reference design parameters to be used inthermal, thermomechanical, and hydrologic calculations. Suchparameters include both underground facility design criteriaparameters (canister diameter) and the results of the designprocess (drift dimensions).

Parameters that establish the reference design are presented inthis memo in three sections:

1) section one contains underground facility designcriteria parameters (this section will be superceded bythe Functional Design Criteria when it is published).Many of the numbers in this section such as boreholediameter are important to calculations.

2) section two contains guidance to the undergroundfacility design A&E. This section does not containparameters that are to be used in calculations. Itis included in this memo for completeness of documentationof the reference design.

3) section three contains layout dimensions establishedby Parsons Brinkerhoff. These dimensions constitutethe current and reference design and should be used incalculations.

1. Design Criteria Parameters

The following criteria are to be used establishing boreholespacings and the layout of the underground facility to ensurethermal conditions are satisfactory.

1.1 Temperature:- borehole wall temperature for spent fuel is not to

exceed 220 deg. centigrade for all times- temperature one meter from the borehole wall is not

to exceed 200 deg. centigrade for all times- horizontal emplacement drift rock wall temperature (long

borehole case) is not to significantly exceed 50 deg.centigrade at 50 years for spent fuel

- vertical emplacement access drift rock wall temperature(panel access drift) is not to significantly exceed 50deg. centigrade at 50 years for spent fuel

F-2

Page 100: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

1.2 Waste Package, Equipment, and Facility Dimensions:

1.2.1 Spent Fuel- canister diameter 26"- canister length 15 ft.

1.2.1.1 horizontal borehole- diameter 3311- length approximately 682 ft- liner id 31"- liner thickness .5"- dolly length 16.5 ft.- unencumbered drift dimensions (dimensions dictated

by equipment clearences are included) see attachedFigure 1.

- minimum borehole spacing for emplacement 8 ft.

1.2.1.2 vertical borehole- diameter 29" (counter bored above canister)- counter bore diameter 34"- depth 25 ft.- bottom 14 ft. (not lined)- unencumbered drift dimensions (dimensions dicated by

equipment clearences are included) seeattached Figure 2

- minimum borehole spacing for mining and emplacemen7.5 ft.

1.2.2 DHLW & WVHLW- canister diameter 26"- canister length 10 ft.

1.2.2.1 horizontal borehole- diameter 33"- maximum length approximately 682 ft.- dolly length 11.5 ft.- liner id 31"- liner thickness .5"- unencumbered drift dimensions (dimensions dictatedby equipment clearences are included) see attached3

- minimum borehole spacing for emplacement 8 ft.

1.2.2.2 vertical borehole- diameter 29"- depth 20 ft.- unencumbered drift dimensions (dimensions dictated

by equipment clearences are included) see attachedFigure 4

- minimum borehole spacing for mining and emplacement5 ft.

1.3 High burnup fuel emplaced at e uivalent assemblies per acreas average burnup fuel (Mansure, 1985a).

1.4 Overall thermal loading (assemblies per acre or initialkilowatts per acre) for SF is to be equivalent to 57 kW/acre - 10

* F-3

Page 101: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

year old waste (Johnstone, 1984) as described in "AllowableThermal Loading as a Function of Waste Age" (Mansure, 1985b).Overall thermal loading for DHLW --- TBD---?

1.5 SF thermal decay characteristics should be based on thedecay functions given in "Thermal Decay Curves for PWR and BWR SFWaste" (Mansure, 1985c). DHLW thermal decay characteristicsshould be based on the decay functions given by Peters (1983).

1.6 Rock properties: project baseline rock properties are givenin "Recommended Matrix and Rock-Mass Bulk, Mechanical, andThermal Properties for Thermomechanical Stratigraphy of YuccaMountain" (Nimick, et. al. 1984). Thermal conductivity and heatcapacity used do not have to agree with values in that report butshould be traceable to that document and a clear argument shouldbe developed as to how properties used result in a conservativedesign.

1.7 SF canister initial thermal outputs, age, and number peryear should be as given in O'Brien (1985) case II.

1.8 Unless otherwise justified pillar space between drifts thatare not continuously maintained (access drifts, ie. P/B paneldrifts) should be about four times the drift width.

1.9 Determination (calculation) of thermal loading should bebased upon P/B module drawings (see attached Figures 5 & 6).

2. Underground Facility Design Guidance

The above criteria result in the following design guidance forspent fuel. Should these design guidance be inconsistent withthe criteria and good design practice SNL should be advised.

2.1 For horizontal emplacement a 115' standoff will achieve the50 deg. centigrade at 50 years objective for both PWR and BWRindependent of canister output, is for all waste ages andborehole spacings, as long as allowable loadings (Mansure, 1985b)are adhered to. Standoff used for horizontal emplacement shouldbe about this distance.

2.2 For horizontal emplacement the hottest borehole wallconditions result from 8.55 year old PWR canisters. This is theyoungest aged for which PWR can have 6 assemblies per canisterand still meet the 3.4 kW/canister loading limit presently beingassumed for design of the canister (O'Brien, 1985). For this agePWR and canister output, the borehole wall and rock temperatureat 1 meter calculated are 212 and 168 deg. centigrade. Theborehole spacing used in this calculation is 36 meters. Thisborehole spacing is based upon the above criteria and thestandoff in 2.1. Thus for horizontal emplacement the presentcriteria, especially the canister output and the dolly length,result in thermal conditions that automatically satisfy 1.1,borehole wall and 1 meter temperature, if 1.4, 1.9 and2.1 are adhered to. Therefore adequate data and analysis exist toproceed with the horizontal layout using 1.9 to establishborehole spacing.

F-4

Page 102: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

2.3 Vertical emplacement is much more complex thermally thanhorizontal emplacement. For vertical emplacement it is possibleto violate borehole wall temperature. Adequate analysis have notbeen done to delineate how to establish vertical emplacementborehole and drift spacing.

2.4 Vertical emplacement drift temperature calculations haveshown the following:

- For the same standoff between the waste and the panelaccess drifts, waste of varying age emplaced at theallowable thermal loading (Mansure, 1985b) results inessentially the same drift temperature at 50 years.

- For the same standoff between the waste and the panelaccess drifts, waste emplaced at the same loading but withdifferent borehole and emplacement drift spacingsresults in essentially the same drift temperature at50 years.

Based upon these two facts, it is reasonable to use the samestandoff (actual standoff will vary slightly to keep number ofboreholes an integer) for all waste ages and to determine thisstandoff prior to determining borehole spacing. This isconvenient since borehole spacing is dependent upon driftspacing.

2.5 For Vertical emplacement, panel access drift temperature isdependent not only upon the standoff between the waste and thedrift, but also the pillar between the drifts. If the pillar isvery small, then the standoff must be bigger to compensate. The'tradeoff is not one to one, but if the the sum of twice thestandoff, twice the drift width and the width of the pillar isconstant, then the temperature only varies a few degrees.Minimizing the pillar width does not necessarily result in theminimum mining. Recommended dimensions are about 23.75m forboth the standoff and the pillar width. This makes the pillarabout 4 times the drift width for a 6.25m drift and makes thepillar width equal to the standoff.

3. Reference Layout Dimensions

Current layout dimensions that result from the above criteriaand guidance have been established by P/B. These are summarizedbelow and should be used in design analysis and performanceassessment.

3.1 Excavated dimensions for spent fuel

3.1.1 - horizontal emplacement- standoff 102 ft.- panel width 1400 ft.- number of canisters per borehole 35- emplacement drift width 18 ft.- emplacement drift height 13 ft.- alcove face to face distance 31 ft. (a equipment

criteria number)

3.1.2 - vertical emplacement

F-5

Page 103: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

- standoff 77.5 ft.- barrier pillar width 63 ft.- mid panel drift width 16 ft.- mid panel drift height 22 ft..;- emplacement drift width 16 ft.- emplacement drift height 22 ft.- access drift width 21 ft.- access drift height 14 ft.- panel width 1400 ft.

3.2 Excavated dimensions for DHLW and WVHLW

3.2.1 - horizontal emplacement- standoff -TBD- (10 to 102 ft.)- module width varies (up to 700 ft.)- number of canisters per borehole -TBD-- emplacement drift width 26 ft. *- emplacement drift height 13 ft.

3.2.2 - vertical emplacement(double row of boreholes with 7' between rows and5' between boreholes in a row)- standoff -TBD-- barrier pillar width 40 ft. *- emplacement drift width 16 ft.- emplacement drift height 18 ft.- access drift width 21 ft.- access drift height 13 ft.- panel width varies (up to '700 ft.)

* Subject to thermostructural review.

F-6

Page 104: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

References

Johnstone, J.K., R.R. Peters, and P.F. Gnirk, Unit Evaluationat Yucca Mountain Nevade Test Site: Summary Report andRecommendation, Sandia National Laboratory, SAND83-0372, 1984

Mansure, A.J., Effect of High Burnup Fuel on UndergroundFacility Design, memo to R. Hill, 2/13/1985a

Mansure, A.J., Allowable Thermal Loading as a.Function of WasteAge, memo to R. Hill, 2/13/1985b

Mansure, A.J., Thermal Decay Curves for PWR and BWR SF Waste,memo to R. Hill, 2/13/1985c

Nimick, F.B., S.J. Bauer, and J.R. Tillerson, Recommended Matrixand Rock-Mass Bulk, Mechanical and Thermal Properties forThermomechanical Stratigraphy of Yucca Mountain, Version I, SNLADept. 6310 Keystone Document Number 6310-85-1, 1984

O'Brien, P.D., Reference Nuclear Waste Descriptions for aGeologic Repository at Yucca Mountain, Nevada, SAND84-1818, inpreparation, 1985.

Peters, R.R., Thermal Response to Emplacement of Nuclear Wastein Long, Horizontal Boreholes, SAND82-2497, 1983.

F-7

Page 105: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

MINING REQUIREMENTS FOR HORIZONTAL EMPLACEMENT OF SPENT FUEL

,-, - A ', 0 I / S ~~ - I

I

STORASF DRIFTX EE SHEET Zl

STORAGE ALCOVE(SEE SHEET 3)

i

I--,~~~,.

FI6LIRE ISHEET I OF 3

F-8

Page 106: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

STORAGE DRIFT

UNENCUMBERED AREA

14 FEET

CONFIGURATION OUTSIDE OFUNENCUMBERED AREA IS OPTIONAL

FIGURE ISHEET 2 OF 3

F-9

Page 107: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

'I

STORAGE ALCOVE

NO ENCROACHMENT LINE4 PLACES. SHAPE BEYONDTHIS LINE OPTIONAL

UNENCUMBERED AREA---MUSTCLEAR lIFT X 26FT X SFTRETANGULAR VOLUME RESTINGON FLOOR OF DRIFT

T1FIL8FT VERTICAL SURFACEON BOTH RIBS FOR 8FTDIMENSION SHOWN IN PLANVIEW. CENTERED ON BOREHOLE

FLAT FLOOR

FIGURE ISHEET 3 OF 3

F-10

Page 108: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

A.

MINING REOUIREMENTS FOR VERTICAL EMPLACEMENT OF SPENT FUEL

UNENCUMBERED AREA(CONTINUOUS)

FLAT FLOOR

SECTION A-A

FIGURE 2

F-il

Page 109: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

I

II

. I

MINING REQUIREMENTS FOR HORIZONTAL EMPLACEMENT OF OHLU AND WVHLW

-_____A A -

8FT

UNENCUMBERED AREA--MUST8FT VERTICAL SURFACE / CLEAR IIFT X 'ZFT X 8FTON BOTH RIBS FOR 8FT -. RETANGULAR SOLID SETTINGDIMENSION SHOWN IN PLAN ON FLOOR (CENTERED ONVIEW. CENTERED ON BOREHOLE EMPLACEMENT HOLES)

FLAT FLOOR 2 F

SECTION A-A CONFIGURATION OUTSIDE OFUNENCUMBERED AREA OPTIONAL

14FT

FLAT FLOOR SECTION B-B

FIGURE 3

F- 12

Page 110: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

p

MINING REQUIREMENTS FOR VERTICAL EMPLACEMENT OF OHIW AiNn WVHI.W

4FT MINIMUM DIMENSIONINBOARD OF FLAT SURFACE

UNENCUMBERED AREA---(CONTINUOUS THROUGHSTORAGE DRIFT)

- 14FT FLAT FLOOR(CONTINUOUS THROUGH

STORAGF DRIFT)

FI6URE 4

F-13

Page 111: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

*nC)cmm

tn

] _I

-ITI

id LmI FE

L. ^

1::

- L SPENT FUELCANISTERS t IL

I00zInC)C

z

'1

m-Url-

0m

z-4a

n'-Iam-4

* -F0

0z-r

I-

; WI I

I

MODULE DESIGN UNIT

CHO- CANISTER HEAT OUTPUTW - PANEL WIDTH

y - HOLE SPACINGn - NUMBER OF SPENT FUEL

CANISTERS PER HOLES - STANDOFF TO EMPLACEMENT DRIFT

ApI = CHO - 2 n -k

y . W

W = d + 9 + 2 (s + n-a )

d9k

- EMPLACEMENT DRIFT WIDTH- SEPARATION BETWEEN HOLE ENDS

- 43.560 FT 2/ACRE

a - CANISTER LENGTH(INCLUDING DOLLY ASSEMBLY)

Page 112: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

a 4

m

0z

-n

C,

n >

0

mr.'IV

0mmz

-4

-4

-S..

m

-4

0o

P -i i. .

I IdT ilmlmltL.

It F- bWiIAl I lial11....

I an

IlS

W r NM

- - - - - - - - - - - - - - - - - - - - - - - I

__,~~~~~~~~ _ _ _I _

Iii __ 11 1 "11 llE. 0 0 - . #.. . * *. a . .* * * S * p . . . . * * a , , . . .... t - . . . . . .

.. . . . . ... *** S... * .. , _ . **S*SS - ... ....

. . . . . . .- 'I.- . -- -- - . . m- 6

rn d

~iim~iriIE PLACEMENT DRIFTS

I31" ..... ..... e ..... _ . .............. ..... ....... " . .411-11ilr FIMfiE51 15-PANEL ACC

MID PANEL DRIFT

"ESS DRIFT>

I- 1400'= WI.- - - z

I

L MODULE DESIGN UNIT

CHO CANISTER HEAT OUTPUT

"I

a HOLE SPACINGy DRIFT SPACINGn NUMBER OF SPENT FUEL

CANISTERS pI M DUS STANDOFF TO PANEL ACCESS DRIFT

Wpdmnk

PANEL WIDTHBARRIER PILLAR WIDTHPANEL ACCESS DRIFT WIDTHMID PANEL DRIFT WIDTH43,560 FT21ACRE

APD a CHO- n *ky a W

I/ 'o(

Page 113: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

t

Page 114: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

APPENDIX G

COMPARISON OF STUDY DATA VITH MUWSI REFERENCE INFORMATION BASE

G-1

Page 115: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

IIGUUZ GA.

mAERA PROPEMT DAM&

Material Property Value Used RIB Valuea RIB Reference

Density 2.34 g/cc

Thermal Conductivity 2.07 W/mK

Heat Capacity 2.25 J/cm!K

Coefficient ofThermal Expansion 10.7*l0-6K'1

Elastic Modulus 15.1 GPa

Poisson's Ratio 0.2

,Uniaxial Strength(Matrix) 75.4 MP&

Tensile Strength(Matrix) -9.0 MPa

Friction Angle(Matrix) 29.2

Cohesion (Joint) 1.0 MPa

Friction Coefficient(Joint) 0.8

2.34

2.07

2.25

10.7

15.1

0.2

g/cc

W/mk (25-100-C)

J/ca!K (25-1OOC)

(25-200-C)

GPa

1/2/1/5/1-3

1/3/1/6/1-5

1/3/1/6/1-5

1/3/1/6/1-5

1/3/1/7/1-6

1/3/1/78/1-6

1/3/1/7/1-6

1/3/1/7/1-6

1/3/1/7/1-6

1/3/1/8/1-2

1/3/1/8/1-2

75.4 MPa

-9.0 MPa

29.2

1.0 MPa

0.8

Refarence:Zeuch and Eatough, 1986 - TS2 Data, 80% Saturated.

G-2

Page 116: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

FIGURE G.2a

GEOMETRIC DAIA FOR VERTICAL E2UIACEMENT OPTION

Geometric Parameter Value Used RIB Value (ft) RIB Reference

Drift Dimension

WidthHeightRadius of Roof Arch

16.0822.0a

9. Ob

(4.88m)(6.71m)(2.74m)

16. Od

22.Od9 Se

2/2/1/1-172/2/1/1-17

Container Borehole Dimensions

DepthDiameter

25. 0082.42a

(7. 62m)(O. 74m)

25.00d2.42d

2/2/1/1-172/2/1/1-17

Panel Dimensions of

Waste Standoff fromAccess Drift WallAccess Drift WidthEmplacement DriftSpacing

Barrier Pillar WidthPanel Width

77.5a

21. 08

63.Oa1400. Oa

(23..62m)(6.40m)

(34. 14m)(19.20m)(426.72m)

77.5d

21.Od

112.Od63.Od

100.0Od

2/2/1/1-172/2/1/1-17

2/2/1/1-172/2/1/1-172/2/1/1-17

Source references:aMansure and Stinebaugh (1985).bParsons, Brinckerhoff, Quade and Douglas (1985).CMansure and Ortiz (1984).dMansure and Stinebaugh (1985).eParsons, Brinckerhoff, Quade and Douglas (1985).

G-3

Page 117: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

FIGURE G.2b

GEOMETRIC DATA FOR VERTICAL EHPLACENET OPTION

Geometric Parameter Value Used RIB Value (ft) RIB Referencep1

Emplacement Drift Dimension

WidthHeightRadius of Roof Arch

18.Oa13. Oa

10 . 2b

(5.49m)(3.96m)(3.11m)

18.Od3. d9. 5e

2/2/1/1-152/2/1/1-15

Container Borehole Dimensions

Waste Standoff FromEmplacement DriftLengthDiameter

682 .00'a(35.81m)(207.87m))(0.84m)

S

2 .75d

2/2/1/1-152/2/1/1-152/2/1/1-15

Panel Dimensions

Panel WidthPanel Depth

1400. 00a

985. Oc(426.72m)(300.23m) 748 .0e

2/2/1/1-15

Source references:aiansure and Stinebaugh (1985).bParsons Brinckerhoff, Quade and Douglas (1985).CMansure and Ortiz (1984).Mansure and Stinebaugh (1985).

eParsons Brinckerhoff, Quade and Douglas (1985).

G-4

Page 118: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

APPENDIX H

DISTRIEDTog LjST

6

H-1

Page 119: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

4

DISTRIBUTION LIST

ChiefRepository Projects BranchDivision of Waste ManagementU.S. Nuclear Regulatory CommissionWashington, DC 20555

Document Control CenterDivision of Waste ManagementU.S. Nuclear Regulatory CommissionWashington, DC 20555

NTS Section LeaderRepository Project BranchDivision of Waste ManagementU.S. Nuclear Regulatory CommissionWashington, DC 20555

SAIC-T&MSS Library (2)Science Applications

International Corporation101 Convention Center DriveSuite 407Las Vegas, 2V 89109

ONWI LibraryBattelle Columbus LaboratoryOffice of Nuclear Waste Isolation505 King AvenueColumbus, OH 43201

Department of ComprehensivePlanning

Clark County225 Bridger Avenue, 7th FloorLas Vegas, NV 89155

Lincoln County CommissionLincoln CountyP.O. Box 90Pioche, NV 89043

Community Planning andDevelopment

City of North Las VegasP.O. Box 4086North Las Vegas, NV 89030

City ManagerCity of HendersonHenderson, NV 89015

Planning DepartmentNye CountyP.O. Box 153Tonopah, NV 89049

Economic DevelopmentDepartment

City of Las Vegas400 East Stewart AvenueLas Vegas, NV 89101

Director of Community PlanningCity of Boulder CityP.O. Box 367Boulder City, NV 89005

Technical Information CenterRoy F. Weston, Inc.955 L'Enfant Plaza, SouthwestSuite 800Washington, DC 20024

Commission of theEuropean Communities

200 Rue de la LoiB-1049 BrusselsBELGIUM

D. H. Alexander (RW-232)Office of Civilian Radioactive

Waste ManagementU.S. Department of EnergyForrestal BuildingWashington, DC 20585

Eric AndersonMountain West Research-Southwest, Inc.398 South Mill Avenue, Suite 300Tempe, AZ 85281

p

F

H-2

Page 120: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

J. H. AnttonenDeputy Assistant Manager for

Commercial Nuclear WasteBasalt Waste Isolation Project OfficeU.S. Department of EnergyP.O. Box 550Richland, WA 99352

Timothy G. BarbourScience Applications

International Corporation1626 Cole Boulevard, Suite 270Golden, CO 80401

E. P. BinnallField Systems Group LeaderBuilding 50B/4235Lawrence Berkeley LaboratoryBerkeley, CA 94720

R. J. Bianey (RW-22)Office of Geologic RepositoriesU.S. Department of EnergyForrestal BuildingWashington, DC 20585

P. M. Bodin (12)Office of Public AffairsU.S. Department of EnergyP.O. Box 14100Las Vegas, NV 89114

E. S. Burton (RW-25)Siting DivisionOffice of Geologic RepositoriesU.S. Department of EnergyForrestal BuildingWashington, DC 20585

Flo ButlerLos Alamos Technical Associates1650 Trinity DriveLos Alamos, New Mexico 87544

B. W. ChurchDirectorHealth Physics DivisionU.S. Department of EnergyP.O. Box 14100Las Vegas, NV 89114

C. R. Cooley (RW-24)Geosciences & Technology DivisionOffice of Geologic RepositoriesU.S. Department of EnergyForrestal BuildingWashington, DC 20585

J. A. CrossManagerLas Vegas BranchFenix & Scisson, Inc.P.O. Box 14308Mail Stop 514Las Vegas, NV 89114

H. D. CunninghamGeneral ManagerReynolds Electrical &

Engineering Co., Inc.P.O. Box 14400Mail Stop 555Las Vegas, NV 89114

Neal Duncan (RW-44)Office of Policy, Integration, and

OutreachU.S. Department of EnergyForrestal BuildingWashington. DC 20585

J. J. Fiore (RW-221)Office of Civilian RadioactiveWaste Management

U.S. Department of EnergyForrestal BuildingWashington, DC 20585

V. J. Cassella (RW-222)Office of Civilian RadioactiveWaste Management

U.S. Department of EnergyForrestal BuildingWashington, DC 20585

John FordhamDesert Research InstituteWater Resources CenterP.O. Box 60220Reno, NV 89506

Judy Foremaster (5)City of CalienteP.O. Box 158Caliente, NV 89008

H-3

Page 121: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

D. L. FraserGeneral ManagerReynolds Electrical & Engineering

Co., Inc.P.O. Box 14400Mail Stop 555Las Vegas, NV 89114-4400

M. W. Frei (RW-231)Office of Civilian RadioactiveWaste Management

U.S. Department of EnergyForrestal BuildingWashington, DC 20585

B. G. Gale (RV-223)Office of Civilian Radioactive

Waste ManagementU.S. Department of EnergyForrestal BuildingWashington, DC 20585

R. W. Gale (RW-40)Office of Civilian RadioactiveWaste Management

U.S. Department of EnergyForrestal BuildingWashington, DC 20585

V. M. GlanzmanU.S. Geological Survey913 Federal CenterP.O. Box 25046Denver, CO 80225

Vincent GongTechnical Project Officer for NNWSIReynolds Electrical & Engineering

Co., Inc.P.O. Box 14400Mail Stop 615Las Vegas, NV 89114-4400

A. E. GurrolaCeneral ManagerEnergy Support DivisionHolmes & Narver, Inc.P.O. Box 14340Mail Stop 580Las Vegas, NV 89114

R. HarigParsons Brinkerhoff Quads &

Douglas, Inc.1625 Van Ness AvenueSan Francisco, CA 94109-3678

Roger HartItasca Consulting Group, Inc.P.O. Box 14806Minneapolis, Minnesota 55414

T. HayExecutive AssistantOffice of the GovernorState of NevadaCapitol ComplexCarson City, NV 89710

L. R. Hayes (3)Technical Project Officer for NNWSIU.S. Geological Survey421 Federal CenterP.O. Box 25046Denver, CO 80225

W. M. HewittProgram ManagerRoy F. Weston, Inc.955 L'Enfant Plaza, SouthwestSuite 800Washington, DC 20024

T. H. Isaacs (RV-22)Office of Civilian Radioactive

Waste ManagementU.S. Department of EnergyForrestal BuildingWashington, DC 20585

Allen Jelacic (RW-233)Office of Civilian RadioactiveWaste Management

U.S. Department of EnergyForrestal BuildingWashington, DC 20585

H-4

Page 122: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

C. H. JohnsonTechnical Program ManagerNuclear Waste Project OfficeState of NevadaEvergreen Center, Suite 2521802 North Carson StreetCarson City, NV 89701

S. H. Kale (RW-20)Office of Civilian Radioactive

Waste ManagementU.S. Department of EnergyForrestal BuildingWashington, DC 20585

B. J. King (2)LibrarianBasalt Waste Isolation Project

LibraryRockwell Hanford OperationsP.O. Box 800Richland, WA 99352

Cy Klingsberg (RW-24)Office of Geologic RepositoriesGeosciences and Technology DivisionU.S. Department of EnergyForrestal BuildingWashington, DC 20585

J. P. Knight (RW-24)Office of Civilian Radioactive

Waste ManagementU.S. Department of EnergyForrestal BuildingWashington, DC 20585

T. P. Longo (RW-25)Office of Geologic RepositoriesU.S. Department of EnergyForrestal BuildingWashington, DC 20585

R. R. Loux, Jr. (3)Executive DirectorNuclear Waste Project OfficeState of NevadaEvergreen Center, Suite 2521802 North Carson StreetCarson City, NV 89701

S. A. MannManagerCrystalline Rock Project OfficeU.S. Department of Energy9800 South Cass AvenueArgonne, IL 60439

Dr. Martin MifflinDesert Research InstituteWater Resources Center2505 Chandler AvenueSuite 1Las Vegas, NV 89120

D. F. MillerDirectorOffice of Public AffairsU.S. Department of EnergyP.O. Box 14100Las Vegas, NV 89114

R. Lindsay MundellU.S. Bureau of MinesDenver Federal CenterP.O. Box 25086Building 20Denver, Colorado 80225

S. D. MurphyTechnical Project OfficerFenix & Scisson, Inc.P.O. Box 15408Mail Stop 514Las Vegas, NV 89114

for NNWSI

J. 0. NeffManagerSalt Repository Project OfficeU.S. Department of Energy505 King AvenueColumbus, OH 43201

D. C. Newton (RW-23)Engineering & Licensing DivisionOffice of Geologic RepositoriesU.S. Department of EnergyForrestal BuildingWashington, DC 20585

H-5

Page 123: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

N. A. NormanProject ManagerBechtel National Inc.P.O. Box 3965San Francisco, CA 94119

D. T. Oakley (4)Technical Project Officer for NNWSILos Alamos National LaboratoryP.O. Box 1663Mail Stop F-619Los Alamos, NM 87545

0. L. OlsonManagerBasalt Waste Isolation Project OfficeRichland Operations OfficeU.S. Department of EnergyP.O. Box 550Richland, WA 99352

Gerald Parker (RW-241)Office of Civilian Radioactive

Waste ManagementU.S. Department of EnergyForrestal BuildingWashington, DC 20585

David K. ParrishRE/SPEC Inc.3815 Eubank, N.E.Albuquerque, NM 87191

J. P. PedalinoTechnical Project Officer for NNWSIHolmes & Narvar, Inc.P.O. Box 14340Mail Stop 605Las Vegas, NV 89114

P. T. PrastholtNRC Site Representative1050 East Flamingo RoadSuits 319Las Vegas, NV 89109

W. J. Purcell (RW-20)Associate DirectorOffice of Civilian Radioactive

Waste ManagementU.S. Department of EnergyForrestal BuildingWashington, DC 20585

L. D. Ramspott (3)Technical Project Officer for NNWSILawrence Livermore National

LaboratoryP. 0. Box 808Mail Stop L-204Livermore, CA 94550

J. R. RolloDeputy Assistant Director

for Engineering GeologyU.S. Geological Survey106 National Center12201 Sunrise Valley DriveReston, VA 22092

B. C. Rusche (RW-1)DirectorOffice of Civilian Radioactive

Waste ManagementU.S. Department of EnergyForrestal BuildingWashington, DC 20585

J. E. Shaheen (RW-44)Outreach ProgramsOffice of Policy, Integration and

OutreachU.S. Department of EnergyForrestal BuildingWashington, DC 20585

Dr. Madan M. SinghPresidentEngineers International, Inc.98 East Naperville RoadWestmont, IL 60559-1595

H-6

Page 124: Attatchments from SAND86-7005, 'Nevada Nuclear Waste ... · table 7 results of thermal analyses of unventilated vertical emplacement drift using alternative effective thermal conductivities

c

M. E. SpaethTechnical Project Officer for NNWSIScience ApplicationsInternational Corporation

101 Convention Center DriveSuite 407Las Vegas, NV 89109

Christopher M. St. JohnJ.F.T. Agapito Associates, Inc.27520 Hawthorne Blvd., Suite 295Rolling Hills Estates, CA 90274

Ralph Stein (RW-23)Office of Civilian RadioactiveWaste Management

U.S. Department of EnergyForrestal BuildingWashington, DC 20585

K. Street, Jr.Lawrence Livermore National

LaboratoryP. 0. Box 808Mail Stop L-209Livermore, CA 94550

W. S. TwenhofelConsultantScience Applications

International Corp.820 Estes StreetLakewood, CO 89215

D. L. Vieth (4)DirectorWaste Management Project OfficeU.S. Department of EnergyP.O. Box 14100Las Vegas, NV 89114

J.S. WrightTechnical Project Officer for NNWSIWaste Technology Services DivisionWestinghouse Electric CorporationNevada OperationsP.O. Box 708Mail Stop 703Mercury, NV 89023

6300 R. W. Lynch6310 T. 0. Hunter6310 NNWSICF6310 71/12462/04/Q26311 L. W. Scully6311 C. Mora6311 V. Hinkel (2)6312 F. W. Bingham6313 T. E. Blejwas6314 J. R. Tillerson6314 B. L. Ehgartner6314 A. J. Mansure6315 S. Sinnock6315 M. J. Eatough6332 WNT Library (20)6430 N. R. Ortiz8024 P. W. Dean3141 S. A. Landenberger (5)3151 W. L. Garner (3)3154-3 C. H. Dalin (28)

for DOE/OSTI

H-7/H-8