(ATST) Stray and Scattered Light Analysis

140
Advanced Technology Solar Telescope (ATST) Stray and Scattered Light Analysis Geometric Analyses (Tasks 1-6) Prepared for Association of Universities for Research In Astronomy (AURA) Prepared by Scott Ellis Richard N. Pfisterer Photon Engineering, LLC 1 May 2003 Draft Report

Transcript of (ATST) Stray and Scattered Light Analysis

Page 1: (ATST) Stray and Scattered Light Analysis

Advanced Technology Solar Telescope

(ATST) Stray and Scattered Light Analysis

Geometric Analyses (Tasks 1-6)

Prepared for Association of Universities for

Research In Astronomy (AURA)

Prepared by Scott Ellis

Richard N. Pfisterer Photon Engineering, LLC

1 May 2003

Draft Report

Page 2: (ATST) Stray and Scattered Light Analysis

1

1.0 Introduction The purpose of this study is to perform an end-to-end scatter and stray light performance analysis of the baseline optical and mechanical design for the Advanced Technology Solar Telescope (ATST). 2.0 System Model 2.1 Geometry The system model for use with the ASAP optical analysis program was constructed from three sources:

1. ZEMAX prescription that described the optical surfaces that constitute the imaging path to Gregorian and coude focus. This file is listed in Appendix A.

2. Series of IGES files furnished by Mark Warner that describe the mechanical structures of the various subassemblies

3. E-mails and discussions with both Rob Hubbard and Mark Warner The complete ASAP model is listed in Appendix B. We also constructed a parallel FRED models to debug some of the results of the ASAP model. Figures 1 and 2 show the complete ASAP model of the telescope. For clarity the dome has been “turned off” in two of the views.

Figure 1 ASAP Model of ATST

Page 3: (ATST) Stray and Scattered Light Analysis

2

Figure 2 ASAP Model of ATST

2.1.1 Dome Subassembly

Figure 3 Dome Subassembly

Page 4: (ATST) Stray and Scattered Light Analysis

3

Figure 3 shows the dome subassembly that includes the inner and outer walls, wind vents, shutter components, and a cylindrical extension surrounding the incoming optical path called the “snorkel”. The snorkel is centered over the working aperture of the primary mirror. The inner walls of the snorkel and dome are 50% reflective Lambertian scatter surfaces to simulate gray paint on the interior of the dome. 2.1.2 Mount Base Subassembly Figure 4 shows the mount base subassembly that includes the cylindrical telescope base, two supports on which the telescope articulates, and a mount base center post that supports a fold mirror assembly. The dome floor is 30 m in diameter. It is located 4.75 m below the elevation pivot axis and 15 m above the ground. The dome floor is a gray Lambertian scatter surface. All other surfaces have white Lambertian scatter properties. Light to the Coude focus is directed through a cylindrical tube located in the center of the floor.

Figure 4 Mount Base Subassembly

2.1.3 OSS Subassembly The Optical Support Structure (OSS) subassembly is a frame structure that supports the primary and secondary mirrors, as shown in Figure 5. The model allows for the rotation of the OSS about the global X-axis to simulate tracking the sun from the horizon to zenith. The OSS is canted 13.95 degrees from vertical to position it properly relative to the telescope line of sight for zenith pointing. With the exception of the heat shield assembly, all components of the OSS are white Lambertian scattering surfaces.

15 m

4.75 m

30 m

MOUNT BASE CENTER POST (SMALL MIRROR SUPPORTS)

MOUNT BASE

Page 5: (ATST) Stray and Scattered Light Analysis

4

Figure 5 OSS Subassembly

2.1.4 Heat Stop Subassembly The heat stop subassembly is a conical/cylindrical structure located at prime focus whose function is to isolate a nominal 5 arcminute field-of-view and reject (via reflection) all other solar radiation. This structure is shown in Figure 6. The actual field stop aperture is a ring whose inner and outer diameters are 13 and 17 mm in diameter, respectively. The ring and cone are mirrored surfaces that reject out of field sunlight into the open air or to the interior surfaces of the dome. The specular reflectance is 90%. The surfaces have been assigned +/-3 degree RMS local random slope errors to simulate the effect of surface roughness resulting from a precision machined (but not optical) surface finish.

OSS TOP

OSS BOTTOM

OSS SECONDARY SUPPORT

OSS.PRIME FOCUS ASSY (HEAT SHIELD)

OSS.PRIMARY MIRROR CELL

OSS.PRIMARY MIRROR COVER

+Z

+Y

OSS TOP

OSS BOTTOM

OSS SECONDARY SUPPORT

OSS.PRIME FOCUS ASSY (HEAT SHIELD)

OSS.PRIMARY MIRROR CELL

OSS.PRIMARY MIRROR COVER

+Z

+Y

Page 6: (ATST) Stray and Scattered Light Analysis

5

Figure 7 shows the comparison of nominal and actual transmission through the heat stop. In the plane of the optical path, coma from the fast off-axis primary mirror distorts the converging beam such that the full 5 arcminutes FOV is not fully passed.

Figure 6 Heat Stop Subassembly

Figure 7 Transmission of the FOV Through Heat Stop (Blue lines indicates intended ±2.5 arcminute FOV; red curve indicates actual transmission)

Page 7: (ATST) Stray and Scattered Light Analysis

6

2.1.3 Optical Path The optical path of ATST is configured for two selectable operational modes:

1. f/13 (52 m effective focal length) Gregorian; plate scale = 75.63 mm/5 arcminute FOV 2. f/69 Coude (276 m effective focal length); plate scale = 401.43 mm/5 arcminute FOV

Figure 8 shows the optical path of the ATST. Light from the sun entering the telescope passes through a circular entrance aperture and is reflected by the off-axis primary mirror towards the off-axis secondary mirror. The intervening heat stop (not shown in Figure 7) isolates a 5 arcminute FOV. After reflecting off of the secondary mirror, the light passes through a Lyot stop (conjugate to the entrance aperture) and comes to focus at Gregorian focus. If Gregorian focus is not selected, light is deflected by fold mirror M3 towards mirror M4 which is located on one side of the mount base (This defines the rotation axis of the OSS.) Mirror M4 produces a pupil image at deformable mirror M5, which is mounted to the fixed center post on the mount base. Light is then directed downwards (i.e., towards the ground) by fold mirror M6 to Coude focus, which is located on the azimuthal rotation axis of the telescope. Mirrors M1 through M4 all rotate both in elevation with the OSS and azimuthally with Coude. Mirrors M5 and M6 only rotate azimuthally with Coude.

Figure 8 Optical Path

M4 – TRANSFER MIRROR (POWERED)

M3 – FOLD MIRROR

GREGORIAN FOCUS

M6 – FOLD MIRRORM5 – DEFORMABLE MIRROR

TO COUDE FOCUS

COUDE FOCUS

PRIMARY MIRROR

SECONDARY MIRROR

LYOT STOP

ENTRANCE APERTURE

+Z

+Y

+X

+Z

M4 – TRANSFER MIRROR (POWERED)

M3 – FOLD MIRROR

GREGORIAN FOCUS

M6 – FOLD MIRRORM5 – DEFORMABLE MIRROR

TO COUDE FOCUS

COUDE FOCUS

PRIMARY MIRROR

SECONDARY MIRROR

LYOT STOP

ENTRANCE APERTURE

+Z

+Y

+X

+Z

Page 8: (ATST) Stray and Scattered Light Analysis

7

2.2 Specular Coatings 2.2.1 Optical Mirror Coating All mirror surfaces were assigned a specular reflectivity of 1.0 (100%). 2.2.2 Heat Stop Reflecting Surface Per Rob Hubbard’s e-mail dated 18 April 2003, the specular reflectivity of the outer surfaces of the heat stop surface is 0.9 (90%). 2.3 Scatter Models Since this is a study, many of the actual surface treatments have not yet been established. According to the terms of the Statement of Work (SOW), we were directed to assume “realistic surface properties”. Consequently the scatter models used in this study are estimates based upon good engineering practice. 2.3.1 Mirror Surface Scatter Rob Hubbard had proposed (Ref. 1) that fabrication of a primary mirror with an rms roughness of 20 angstroms was not unreasonable and so we used this value for all mirror surfaces. For smooth optical surfaces whose rms roughness is much less than the wavelength of the incident light, the three-term Harvey scatter model is appropriate. The scatter function is given by

( )22

000 1

s

LbBSDF

θ−θ+=θθ

sinsin, (1)

where θ, θ0 = the scatter and specular angles (measured from the local surface normal), b0 = a constant, s = the slope and L = the rollover angle. Lacking specific measured data, we constructed a “reasonable” model based upon the observations that

1. the slope s of the BSDF function is typically on the order of –1 to –2 and so -1.5 is a reasonable average

2. the rollover angle, while too close to specular to be measured on smooth optical surfaces, is believed to be on the order of 0.001 or smaller. Since the extreme proximity to specular is not this issue here and since it has little effect on the TIS, we adopted a value of 0.001 for L.

Page 9: (ATST) Stray and Scattered Light Analysis

8

Knowing the slope s and the rollover angle L, we can obtain a consistent value for b0 in a two- step process. First we use compute the TIS from the desired rms roughness using

22

λσ∆π

=nTIS (2)

where ∆n is the index difference in reflection off of a mirror (=2), and σ = rms roughness. Then we related b0 to the TIS using the equations

10022

s

TIS bs

π≅+

(3)

( )sLbb 1000 = (4) Following this method, we derive a Harvey model for a 20 angstrom rms roughness surface at a wavelength of 1 micron whose coefficients b0, s, L are equal to 1.58, -1.5, and 0.001, respectively. 2.3.2 White Paint White paint is modeled as a simple Lambertian scatterer with a TIS equal to 0.9 (90%). 2.3.3 “Gray” Paint Per Rob Hubbard’s e-mail dated 21 April 2003, this paint is modeled as a Lambertian scatterer with a TIS equal to 0.5 (50%). 2.3.4 Black Paint Per the SOW, the black paint model was to be selected on the basis of “reasonableness”. Martin Black was proposed. Martin Black is not a paint, per se; it is a surface treatment on aluminum. Therefore it cannot be applied to any arbitrary substrate material. Since we do not know what materials will be used in the construction of the telescope structures, we cannot comment on whether or not Martin Black could actually be applied. Pristine Martin Black on aluminum can have a TIS of approximately 1%. A more generally applicable diffuse black paint, Aeroglaze Z306, has a TIS of approximately 3%. Relative to the other unknowns in the analyses, we felt that the differences were not significant and decided to use Martin Black as the “realistic” paint. We constructed the Martin Black BSDF model from measured BRDF data shipped with each installation of ASAP. (The data is contained in the file “apartlib.dat” and it can be found in the ASAP installation\Projects\Examples subdirectory.) The data was extracted and fit to a generic BSDF function. Figure 9 shows the resulting BSDF model.

Page 10: (ATST) Stray and Scattered Light Analysis

9

Figure 9 Martin Black BSDF Model (after APART data)

Martin Black is applied to only three structures in the model: the edges of entrance aperture and the Lyot stop, and the heat stop inner cone. 2.3.5 Level 400 Particulate Scatter The SOW directed us to consider particulate scatter based upon the Mie theory which describes the intensity distribution produced by a volume of spherical particles with some arbitrary distribution of diameters and complex refractive indices. Since the particle diameters, distribution, and refractive indices are arbitrary, the SOW did not indicate a specific scatter model. The usual approach in this situation is to adopt a standardized distribution such as MIL-STD-1246. MIL-STD-1246A describes a particulate distribution expected in a clean room. The distribution is given by

( ) ( )( ) ( )( )[ ]22 loglog926.0log sCLn −= (5) where n = the number of particles per square foot whose diameter is greater than s microns and CL is the cleanliness level. (Note that these are common or base10 logarithms.) According to the definition, the smallest and largest particles have diameters of 1 micron and CL microns, respectively. There are numerous problems with this commonly used particulate model:

1. No clean room is existence actually demonstrates particulates with this distribution.

Page 11: (ATST) Stray and Scattered Light Analysis

10

2. There is considerable experimental evidence that the 0.926 slope is far too large and that slopes of 0.3 - 0.5 are more realistic.

3. It ignores the presence of particles smaller than 1 micron in diameter. 4. Large particles tend to be ellipsoidal or cylindrical rather than spherical, and

consequently the Mie-based calculation overestimates the scatter. (However we have not seen a Mie formalism based upon elliptical or cylindrical scattering bodies!)

Problems notwithstanding, we followed Rob Hubbard’s lead and constructed a particulate model based upon this distribution. Previously we had written a custom DLL for ASAP that efficiently calculates a BSDF based upon this definition. However in the interests of sharing this ASAP model with other reviewers, we decided instead to model the particulate scatter as the sum of two Harvey scatter functions of the form described in Section 2.3.1. The values of b0, s, and L were scaled from those published by Rob Hubbard (Ref. 1). Since Spyak and Wolfe (Ref. 2) have shown that the scatter from particulates is linear shift-invariant, simulating the Mie scatter with Harvey models is appropriate. Figure 10 shows an excellent agreement between a theoretical BSDF function for level 400 cleanliness and the sum of two Harvey functions.

Figure 10 Level 400 Model Comparison

Note that Rob Hubbard had used a coverage fraction of 0.01% in his calculations; this is equivalent to level 240 which is a reasonable level for a surface immediately after cleaning. However the UKIRT data Rob includes suggests that the accumulated particulates could reach 0.063% coverage at the end of a day; this is equivalent to level 360. For a conservative calculation, we rounded level 360 to level 400 for these analyses. 2.3.6 Heat Stop Reflecting Surface

Page 12: (ATST) Stray and Scattered Light Analysis

11

According to Rob Hubbard’s notes, the surface of the heat stop will be reflecting but not “optically smooth” such that the Harvey scatter model described previously could be employed. Mark Warner suggested that the surface could be machined to a roughness of 32 microinches (0.813 microns) rms. Since this is comparable to the wavelength of light used in these calculations, our feeling was that this would hardly describe a surface with significant specular properties. In discussion with Rob Hubbard, we decided to simulate the rms roughness of the machined surface with a Gaussian slope error similar to what is used to model vacuum metalized reflectors for automobiles and spotlights. In this model, the surface retains its specular properties (90% reflective) but the local surface normal is randomly perturbed according to a Gaussian distribution function with a 3 degree (0.052 radians) slope error. This has the effect of “smearing out” an otherwise perfectly specular reflection. (Another way of thinking about this: a collimated beam incident on the surface would reflect into a cone of light 6 degrees wide.) 2.3.7 Stray Light Calculation Methodology The calculation has been set up so that the mechanical structures are permitted only a single level scatter event, while the optical surfaces are allowed up to second level. The rationale for this approach is to allow a scatter event from a structural object to an optical surface, where a second scatter event may direct light into the imaging field of view. Each optical surface has an importance edge that goes around the periphery of the surface. At a minimum, scatter from any structural element is directed towards every optical surface that has a direct view of the illuminated object. The importance edges for the optical surfaces are generally restricted to images of the focal planes. For example, the primary mirror scatters towards the prime focus, the secondary scatter towards Gregorian focus, the fold mirror M3 scatters towards the virtual image of the Coude plane formed by mirror M4, and so on. There are two other importance edges of note: the top of the tube through the OSS just above Gregorian focus, and the hole in the dome floor leading to Coude focus. These importance edges are added to any surface that are in direct view. This same technique is used for this and all subsequent scatter calculations. 3.0 Source Models 3.1 Sun Model The incident solar radiation was modeled as a planar Lambertian emitter located above the observatory radiating into a solid angle 32 arcminutes wide. The emitter was sized to fully illuminate either the entire dome floor (in the “no dome” case) or the entrance aperture of the snorkel (in the “dome” case). (It is important to note that we were unable to preserve the ray density when illuminating the entire dome floor; there were simply too many rays to trace! Consequently we reduced the sampling whenever the dome was turned off.) According to the SOW, the sun was presumed to have a uniform surface irradiance and so we did not apply any angular apodization to simulate limb darkening effects.

Page 13: (ATST) Stray and Scattered Light Analysis

12

Since there are no dispersive elements in the optical path, it was sufficient to perform all raytracing at a single wavelength of 1 micron. The direct solar irradiance at the surface of the earth was assumed to be 850 W/m2. (The SOW did not give any specific value for the solar constant or the spectral bandwidth to be used in this analysis.) 3.2 Sky Model Astronauts who have walked on the moon tell us that the “sky” is pitch black except in the direction of the sun. Since there are no scattering mechanisms on the moon (because there is no atmosphere), there is a clear and sharp delineation between sun and “sky”. The molecular species comprising the earth’s atmosphere are responsible for Rayleigh scatter which, in turn, is responsible for the blue sky. Consequently our sky is actually a contributor to irradiance at the surface of the earth. The American Society for Testing and Materials (ASTM) has published standardized models for solar and sky spectral distributions (Ref. 3). Of course these distributions are functions of spectral bandwidth, position of the sun in the sky, and so on. Based upon references we’ve used successfully in the past for solar concentrator design work, we assumed that the hemispheric sky irradiance on the surface of the earth was150 W/m2. (The SOW did not give any specific value for the spectral bandwidth to be used in this analysis.) Since there are no dispersive elements in the optical path, it was sufficient to perform all raytracing at a single wavelength of 1 micron. The sky was modeled as a Lambertian hemisphere whose center is located on the ground at the center of the dome mount. A point source located at the center illuminates the hemisphere which, in turn, scatters to the ATST. The TIS of the hemisphere and the seed power contained in the point source were scaled such that the irradiance on the ground was 150 W/m2. 3.3 Snow Model One of the analysis tasks requires the stray light contributions from snow surrounding the mount base. No specific modeling instructions were given in the SOW and so we made the following assumptions:

1. The snow scatters incident light according to a Lambertian scatter distribution with a TIS equal to 0.9 (90%).

2. There is no specular component to the light reflected by the snow. 3. The snow covers an area 400 meters in diameter surrounding the observatory.

The snow was modeled as a Lambertian emitter at ground level with a set of importance edges arranged around the telescope. Since it is not important to the generation of scattered rays how the snow is illuminated, we simply setup an emitter radiating 1000 W/m2 (sum of sun and sky

Page 14: (ATST) Stray and Scattered Light Analysis

13

irradiances) immediately over the snow and launched the rays into the snow. The scattered rays were directed towards the telescope. 3.4 Lake Model One of the analysis tasks requires the stray light contributions from a lake surrounding the mount base. No specific modeling instructions were given in the SOW and so we made the following assumptions:

1. The lake acts like a mirror with 2% reflectivity per the Fresnel reflection calculation for air over a dielectric substrate with a refractive index of 1.33.

2. The lake is deep enough to complete attenuate the transmitted component of the incident light.

3. The surface of the lake is randomly roughened such that an incident ray could be reflected into any arbitrary direction over 2π sr. (We felt that the heights of the waves and ripples were insignificant relative to the propagation distances to the telescope, and so only the randomized direction was important to the model.)

4. There is no scatter component to the light reflected by the lake. 5. The lake covers an area 400 meters in diameter surrounding the observatory.

During our initial attempt at modeling the lake, we implemented the same technique as used to model the snow except that the lake was specular and hence there were no importance edges around the telescope. However the statistics were extremely poor; only a small fraction of the rays reflected by the lake reached the telescope. (The distinction here is that you can “aim” scattered rays via importance edges but you cannot “aim” reflections!) After some thought we concluded that, statistically, the lake is essentially a scaled version of the snow. A ray intersecting the lake is randomly reflected into 2π sr; this looks very much like a ray intersecting the snow and scattering into 2π sr. Taken as a whole, therefore, the lake can be modeled as a 2% Lambertian scattering surface. Since the snow is modeled as a 90% Lambertian scattering surface, our approach to calculating the stray light contributions from the lake is to scale the snow scatter calculations by 45x. 4.0 Analysis Tasks 4.1 Aperture Stop 4.1.1 Task Description Quantify the scattered light contribution from the top and bottom surfaces (The bottom is irradiated by light reflected by M1), and the edge of the entrance aperture stop, assuming realistic surface properties (Martin Black or similar) and edge geometry (details to be provided by ATST). 4.1.2 Analysis

Page 15: (ATST) Stray and Scattered Light Analysis

14

The entrance aperture is modeled as a thin annular disk centered over the off-axis segment of the primary mirror and oriented perpendicular its parent axis. The outer diameter of the disk is 6 m. The size of the inner hole is 4 m in diameter. The front (facing the sky) and back (facing the primary) surfaces are white Lambertian with a reflectivity of 90%. The inside edge is a simple cylinder 12.7 mm long. It is coated with Martin Black. The current location of the entrance aperture places it inside the field of view of the instrument. Illumination of the top of the aperture scatters light directly to the secondary mirror, both through the center and around the periphery of the heat stop assembly. These paths both require only a single scatter event to illuminate the focal plane(s). The aperture obscures about 6%, by area, of the light passing through the aperture and reflected by the primary mirror. The illuminated portion of the back side can scatter light into the field of view only via a second level scatter event from the primary mirror. The edge of the aperture can scatter light both towards both the primary and secondary mirrors. Its small size keeps it from being a significant contributor. As the following figures indicate, scatter from the front side of the aperture generates orders of magnitude more flux at both the Gregorian and Coude foci than either the edge or back surface. The effect of the dome on these contributions is minimal. Variations between the “dome” and “no dome” configurations are more likely due to ray sampling statistics than any real difference in the scattered power reaching the analysis planes.

Page 16: (ATST) Stray and Scattered Light Analysis

15

Figure 11 Scatter to Gregorian focus from the entrance aperture without the dome. Object 133 is the front surface of the aperture. Object 139 is the secondary mirror reflector.

GREGORIAN FOCUS, NO DOME ********************** SCATTER FROM APERTURE STOP ********************** ANGLE FROM ZENITH = 0 DEGREES FOCUS POSITION (0=GREGORIAN, 1=COUDE) = 0 LYOT STOP INNER APERTURE RADIUS = 260 mm LEVEL 1 SCATTER FROM FRONT SURFACE = 1.8E-4 W (497 RAYS) LEVEL 2 SCATTER FROM FRONT SURFACE = 1.5E-7 W (30500 RAYS) LEVEL 1 SCATTER FROM INSIDE EDGE = 0 W (0 RAYS) LEVEL 2 SCATTER FROM INSIDE EDGE = 4.E-12 W (162 RAYS) LEVEL 1 SCATTER FROM BACK SURFACE = 0 W (0 RAYS) LEVEL 2 SCATTER FROM BACK SURFACE = 1.3E-7 W (18318 RAYS) TOTAL SCATTERED POWER FROM EP APERTURE = 1.80883E-4 W ************************************************************************ LIST OF MOST SIGNIFICANT SCATTER PATHS FOR SOURCE 1 (SOLAR DIRECT) OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 1 321 1.5872E-04 97.6266 -3 142 139 -133.002 0.000 2 8 3.5898E-06 2.2080 -5 142 139 -133.002 0.000 6 11495 1.1468E-07 0.0705 -3 142 139 -139.001 -133.001 0.000 LIST OF MOST SIGNIFICANT SCATTER PATHS FOR SOURCE 2 (INDIRECT SKY) OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 1 168 1.8275E-05 99.8497 -3 142 139 -133.002 0.000 5 6737 1.3277E-08 0.0725 -3 142 139 -139.001 -133.001 0.000

Page 17: (ATST) Stray and Scattered Light Analysis

16

Figure 12 Scatter to Coude focus from the entrance aperture without the dome. Object 133 is the front surface of the aperture. Object 134 is the back surface of the aperture. Object 136 is the primary mirror reflector. Object 139 is the secondary mirror reflector.

COUDE FOCUS, NO DOME ********************** SCATTER FROM APERTURE STOP ********************** ANGLE FROM ZENITH = 0 DEGREES FOCUS POSITION (0=GREGORIAN, 1=COUDE) = 1 LEVEL 1 SCATTER FROM FRONT SURFACE = 1.6E-4 W (466 RAYS) LEVEL 2 SCATTER FROM FRONT SURFACE = 3.1E-7 W (38986 RAYS) LEVEL 1 SCATTER FROM INSIDE EDGE = 0 W (0 RAYS) LEVEL 2 SCATTER FROM INSIDE EDGE = 3.E-12 W (111 RAYS) LEVEL 1 SCATTER FROM BACK SURFACE = 0 W (0 RAYS) LEVEL 2 SCATTER FROM BACK SURFACE = 2.3E-7 W (17937 RAYS) TOTAL SCATTERED POWER FROM EP APERTURE = 1.65634E-4 W ************************************************************************ LIST OF MOST SIGNIFICANT SCATTER PATHS FOR SOURCE 1 (SOLAR DIRECT) OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 1 295 1.4564E-04 98.8296 -8 158 152 -133.002 0.000 2 3 1.2234E-06 0.8302 -10 158 152 -133.002 0.000 11 6 1.5822E-07 0.1074 -10 158 152 -136.002 -134.001 0.000 LIST OF MOST SIGNIFICANT SCATTER PATHS FOR SOURCE 2 (INDIRECT SKY) OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 1 168 1.8230E-05 99.7670 -8 158 152 -133.002 0.000 4 6449 1.2605E-08 0.0690 -8 158 152 -139.001 -133.001 0.000

Page 18: (ATST) Stray and Scattered Light Analysis

17

Figure 13 Scatter to Gregorian focus from the entrance aperture with the dome. Object 165 is the front surface of the aperture. Object 166 is the back surface of the aperture. Object 168 is the primary mirror reflector.

GREGORIAN FOCUS, WITH DOME ********************** SCATTER FROM APERTURE STOP ********************** ANGLE FROM ZENITH = 0 DEGREES FOCUS POSITION (0=GREGORIAN, 1=COUDE) = 0 LYOT STOP INNER APERTURE RADIUS = 260 mm LEVEL 1 SCATTER FROM FRONT SURFACE = 1.6E-4 W (700 RAYS) LEVEL 2 SCATTER FROM FRONT SURFACE = 3.5E-8 W (10611 RAYS) LEVEL 1 SCATTER FROM INSIDE EDGE = 0 W (0 RAYS) LEVEL 2 SCATTER FROM INSIDE EDGE = 4.E-12 W (243 RAYS) LEVEL 1 SCATTER FROM BACK SURFACE = 0 W (0 RAYS) LEVEL 2 SCATTER FROM BACK SURFACE = 1.6E-7 W (17841 RAYS) TOTAL SCATTERED POWER FROM EP APERTURE = 1.64501E-4 W ************************************************************************ LIST OF MOST SIGNIFICANT SCATTER PATHS FOR SOURCE 1 (SOLAR DIRECT) OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 1 657 1.6182E-04 98.8244 -3 174 171 -165.002 0.000 2 8 1.7284E-06 1.0556 -5 174 171 -165.002 0.000 13 12 9.7789E-08 0.0597 -5 174 171 -168.002 -166.001 0.000 LIST OF MOST SIGNIFICANT SCATTER PATHS FOR SOURCE 2 (INDIRECT SKY) OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 1 35 7.6003E-07 99.8805 -3 174 171 -165.002 0.000 3 1316 3.9262E-10 0.0516 -5 174 171 -168.001 -166.001 0.000

Page 19: (ATST) Stray and Scattered Light Analysis

18

Figure 14 Scatter to Coude focus from the entrance aperture with the dome. Object 165 is the front surface of the aperture. Object 171 is the secondary mirror reflector. Object 181 is reflecting surface of mirror 5.

COUDE FOCUS, WITH DOME ********************** SCATTER FROM APERTURE STOP ********************** ANGLE FROM ZENITH = 0 DEGREES FOCUS POSITION (0=GREGORIAN, 1=COUDE) = 1 LYOT STOP INNER APERTURE RADIUS = 260 mm LEVEL 1 SCATTER FROM FRONT SURFACE = 1.5E-4 W (669 RAYS) LEVEL 2 SCATTER FROM FRONT SURFACE = 1.7E-7 W (30269 RAYS) LEVEL 1 SCATTER FROM INSIDE EDGE = 0 W (0 RAYS) LEVEL 2 SCATTER FROM INSIDE EDGE = 4.E-12 W (247 RAYS) LEVEL 1 SCATTER FROM BACK SURFACE = 0 W (0 RAYS) LEVEL 2 SCATTER FROM BACK SURFACE = 5.4E-8 W (17698 RAYS) TOTAL SCATTERED POWER FROM EP APERTURE = 1.58673E-4 W ************************************************************************ LIST OF MOST SIGNIFICANT SCATTER PATHS FOR SOURCE 1 (SOLAR DIRECT) OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 1 633 1.5604E-04 98.7200 -8 190 184 -165.002 0.000 2 8 1.7970E-06 1.1369 -10 190 184 -165.002 0.000 8 6118 6.5698E-08 0.0416 -8 190 184 -181.001 -165.002 0.000 LIST OF MOST SIGNIFICANT SCATTER PATHS FOR SOURCE 2 (INDIRECT SKY) OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 1 28 6.1100E-07 99.7818 -8 190 184 -165.002 0.000 2 943 3.7333E-10 0.0610 -8 190 184 -171.001 -165.001 0.000

Page 20: (ATST) Stray and Scattered Light Analysis

19

4.2 Heat Stop and Trap 4.2.1 Task Description Quantify the scattered light contribution from the heat stop, including the aperture edge, and the light trap surface, assuming realistic surface properties and edge geometry (to be provided by the ATST project) of the stop and trap. Compare the scatter from the inside of the heat trap to the “no-trap” option of dumping the diverted light into the dome and surrounding structures. 4.2.2 Analysis Per the instructions of Rob Hubbard, the “no-trap” option was eliminated from this task. What remained was an assessment of a reflecting conical heat shield that directs light out of the field of view to either the open air or to the internal walls of a dome. As discussed earlier, the conical reflector and leading edge of the heat shield are machined specular and are 90% reflective. Small perturbations to the local slope simulate errors due to the residual roughness of the surfaces. Additionally, the specular surfaces have a MIL-STD-1246A contamination model (CL 400) applied to them as well. These two effects direct light into a larger angle set than that of a purely specular process allows, thereby increasing the number of objects illuminated in reflection and increasing the likelihood of generating scattered rays that can reach either of the detector planes.

Figure 15 The yellow dots indicate what the Gregorian focus sees.

As the following figures indicate, the Gregorian focus is, by many orders of magnitude, more susceptible to stray light than is the Coude focus. The difference between the two has to do primarily with what the detectors can see, i.e. the critical objects. Gregorian focus is much more exposed. It sees substantial portions of the OSS top structure, which are directly illuminated by specular reflections from the heat shield (Figure 15). Conversely, the Coude focus does not have

Page 21: (ATST) Stray and Scattered Light Analysis

20

a direct view to the top of the OSS, so multiple level scatter events are required for light reflected from the heat shield to reach the focal plane.

Figure 16 Scatter to Gregorian focus from the heat shield without the dome. Object 58 is the reflective front edge of the heat shield. Object 59 is the reflective conical surface on the heat shield. Object 87 is the cylindrical tube that passes through the OSS support arms. Object 15 is the dome floor. Object 41 is one of the vertical support arms for the top of the OSS structure. Object 133 is the top side of the entrance aperture.

GREGORIAN FOCUS, NO DOME ********************** SCATTER FROM HEAT SHIELD ************************ ANGLE FROM ZENITH = 0 DEGREES FOCUS POSITION (0=GREGORIAN, 1=COUDE) = 0 LYOT STOP INNER APERTURE RADIUS = 260 mm LEVEL 1 SCATTER FROM FRONT EDGE = 1.4E-6 W (8 RAYS) LEVEL 2 SCATTER FROM FRONT EDGE = 2.4E-9 W (7242 RAYS) LEVEL 1 SCATTER FROM OUTER CONE = 1.7E-5 W (562 RAYS) LEVEL 2 SCATTER FROM OUTER CONE = 7.8E-8 W (57750 RAYS) LEVEL 1 SCATTER FROM INNER CONE = 0 W (0 RAYS) LEVEL 2 SCATTER FROM INNER CONE = 2.E-10 W (50 RAYS) TOTAL SCATTERED POWER FROM HEAT SHIELD = 1.89636E-5 W ************************************************************************ LIST OF MOST SIGNIFICANT SCATTER PATHS FOR SOURCE 1 (SOLAR DIRECT) OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 1 561 1.7458E-05 92.1358 -3 142 59 -59.002 0.000 2 8 1.4191E-06 7.4897 -3 142 58 -58.002 0.000 5 45167 1.7223E-08 0.0909 -4 142 87 -87.001 -59.002 0.000 LIST OF MOST SIGNIFICANT SCATTER PATHS FOR SOURCE 2 (INDIRECT SKY) OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 41 16 5.5242E-09 35.1804 -3 142 59 -59.002 -70.001 0.000 1 1 5.2997E-09 33.7507 -3 142 59 -59.002 0.000 13 16 1.8475E-09 11.7654 -3 142 59 -59.002 -15.002 0.000 9 88 7.9190E-10 5.0432 -3 142 59 -59.002 -41.001 0.000 5 681 7.2316E-10 4.6054 -3 142 59 -59.002 -133.001 0.000 3 79 2.7158E-10 1.7295 -3 142 59 -59.002 -39.001 0.000 24 67 1.6760E-10 1.0674 -3 142 59 -59.002 -74.001 0.000 34 31 1.6534E-10 1.0529 -3 142 59 -59.002 -73.001 0.000 23 60 1.6177E-10 1.0302 -3 142 59 -59.002 -75.001 0.000

Page 22: (ATST) Stray and Scattered Light Analysis

21

Figure 17 Scatter to Coude focus from the heat shield without the dome. Object 58 is the reflective front edge of the heat shield. Object 59 is the reflective conical surface on the heat shield. Objects 136 and 145 are the reflecting surfaces of the primary mirror and mirror M3, respectively.

COUDE FOCUS, NO DOME ********************** SCATTER FROM HEAT SHIELD ************************ ANGLE FROM ZENITH = 0 DEGREES FOCUS POSITION (0=GREGORIAN, 1=COUDE) = 1 LYOT STOP INNER APERTURE RADIUS = 260 mm LEVEL 1 SCATTER FROM FRONT EDGE = 0 W (0 RAYS) LEVEL 2 SCATTER FROM FRONT EDGE = 5.E-11 W (1734 RAYS) LEVEL 1 SCATTER FROM OUTER CONE = 0 W (0 RAYS) LEVEL 2 SCATTER FROM OUTER CONE = 6.E-11 W (5989 RAYS) LEVEL 1 SCATTER FROM INNER CONE = 0 W (0 RAYS) LEVEL 2 SCATTER FROM INNER CONE = 1.E-10 W (46 RAYS) TOTAL SCATTERED POWER FROM HEAT SHIELD = 2.4242E-10 W ************************************************************************ LIST OF MOST SIGNIFICANT SCATTER PATHS FOR SOURCE 1 (SOLAR DIRECT) OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 4 1729 5.0690E-11 41.9866 -10 158 152 -136.001 -58.001 0.000 3 50 4.8631E-11 40.2811 -10 158 152 -136.002 -59.001 0.000 5 1 8.0418E-12 6.6610 -10 158 152 -136.002 -58.001 0.000 1 5502 6.6078E-12 5.4732 -10 158 152 -136.001 -59.001 0.000 2 437 6.5389E-12 5.4162 -8 158 152 -145.001 -59.002 0.000 6 4 2.1963E-13 0.1819 -8 158 152 -145.001 -58.002 0.000 LIST OF MOST SIGNIFICANT SCATTER PATHS FOR SOURCE 2 (INDIRECT SKY) OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... NONE

Page 23: (ATST) Stray and Scattered Light Analysis

22

Figure 18 Scatter to Gregorian focus from the heat shield with the dome. Object 90 is the reflective front edge of the heat shield. Object 91 is the reflective conical surface on the heat shield. Object 119 is the cylindrical tube that passes through the OSS support arms. Object 47 is the dome floor. Object 2 is one of the wind vents. Object 165 is the top side of the entrance aperture.

GREGORIAN FOCUS, WITH DOME ********************** SCATTER FROM HEAT SHIELD ************************ ANGLE FROM ZENITH = 0 DEGREES FOCUS POSITION (0=GREGORIAN, 1=COUDE) = 0 LYOT STOP INNER APERTURE RADIUS = 260 mm LEVEL 1 SCATTER FROM FRONT EDGE = 1.3E-6 W (14 RAYS) LEVEL 2 SCATTER FROM FRONT EDGE = 2.5E-9 W (9662 RAYS) LEVEL 1 SCATTER FROM OUTER CONE = 1.6E-5 W (1090 RAYS) LEVEL 2 SCATTER FROM OUTER CONE = 4.5E-8 W (103426 RAYS) LEVEL 1 SCATTER FROM INNER CONE = 0 W (0 RAYS) LEVEL 2 SCATTER FROM INNER CONE = 0 W (0 RAYS) TOTAL SCATTERED POWER FROM HEAT SHIELD = 1.80618E-5 W ************************************************************************ LIST OF MOST SIGNIFICANT SCATTER PATHS FOR SOURCE 1 (SOLAR DIRECT) OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 1 1090 1.6667E-05 92.2799 -3 174 91 -91.002 0.000 2 14 1.3465E-06 7.4550 -3 174 90 -90.002 0.000 3 91042 1.7304E-08 0.0958 -4 174 119 -119.001 -91.002 0.000 LIST OF MOST SIGNIFICANT SCATTER PATHS FOR SOURCE 2 (INDIRECT SKY) OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 44 14 4.5540E-10 74.7551 -3 174 91 -91.002 -47.002 0.000 4 655 2.2883E-11 3.7563 -3 174 91 -91.002 -2.001 0.000 22 104 2.1225E-11 3.4842 -3 174 91 -91.002 -165.001 0.000 13 388 1.5238E-11 2.5013 -3 174 91 -91.002 -4.001 0.000 19 24 1.2483E-11 2.0491 -3 174 91 -91.002 -71.001 0.000 12 162 9.1044E-12 1.4945 -3 174 91 -91.002 -1.003 0.000 2 1755 7.6694E-12 1.2589 -3 174 91 -91.002 -1.001 0.000 3 1824 7.2131E-12 1.1841 -3 174 91 -91.002 -3.001 0.000 10 193 4.8428E-12 0.7950 -3 174 91 -91.002 -13.001 0.000

Page 24: (ATST) Stray and Scattered Light Analysis

23

Figure 19 Scatter to Coude focus from the heat shield with the dome. Object 90 is the reflective front edge of the heat shield. Object 91 is the reflective conical surface on the heat shield. Objects 168 and 177 are the reflecting surfaces of the primary mirror and mirror M3, respectively.

COUDE FOCUS, WITH DOME ********************** SCATTER FROM HEAT SHIELD ************************ ANGLE FROM ZENITH = 0 DEGREES FOCUS POSITION (0=GREGORIAN, 1=COUDE) = 1 LYOT STOP INNER APERTURE RADIUS = 260 mm LEVEL 1 SCATTER FROM FRONT EDGE = 0 W (0 RAYS) LEVEL 2 SCATTER FROM FRONT EDGE = 1.E-10 W (3866 RAYS) LEVEL 1 SCATTER FROM OUTER CONE = 0 W (0 RAYS) LEVEL 2 SCATTER FROM OUTER CONE = 5.E-11 W (1053 RAYS) LEVEL 1 SCATTER FROM INNER CONE = 0 W (0 RAYS) LEVEL 2 SCATTER FROM INNER CONE = 0 W (0 RAYS) TOTAL SCATTERED POWER FROM HEAT SHIELD = 2.2492E-10 W ************************************************************************ LIST OF MOST SIGNIFICANT SCATTER PATHS FOR SOURCE 1 (SOLAR DIRECT) OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 3 3864 1.5565E-10 69.1985 -10 190 184 -168.001 -90.001 0.000 1 107 5.1778E-11 23.0200 -10 190 184 -168.002 -91.001 0.000 4 2 9.9593E-12 4.4278 -10 190 184 -168.002 -90.001 0.000 2 932 7.5289E-12 3.3473 -8 190 184 -177.001 -91.002 0.000 5 14 1.4283E-14 0.0063 -10 190 184 -168.001 -91.001 0.000 LIST OF MOST SIGNIFICANT SCATTER PATHS FOR SOURCE 2 (INDIRECT SKY) OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... NONE

Page 25: (ATST) Stray and Scattered Light Analysis

24

4.3 Lyot Stop at P1 4.3.1 Task Description Quantify the scattered light contribution from the edge and front surface of the Lyot stop located at P1 below the secondary, assuming realistic surface properties and edge geometry (to be provided by the ATST project). Analyze the effectiveness of this stop to mitigate the stray light from the edge of the entrance-aperture stop over a small range of undersized diameters. 4.3.2 Analysis The Lyot stop is located between the secondary mirror and Gregorian focus. Its location is coincident with the best image of the entrance aperture. Like the entrance aperture, the top and bottom surfaces are white Lambertian and the inner edge is treated with Martin Black.

Page 26: (ATST) Stray and Scattered Light Analysis

25

Figure 20 Scatter to Gregorian focus from the Lyot stop without the dome. Object 155 is the front surface of the Lyot stop. Object 156 is the back surface of the Lyot stop. Object 157 is the inside edge of the Lyot stop aperture. Object 139 is the reflecting surface of the secondary mirror. Object 87 is the tube that passes through the OSS support structure between the secondary mirror and fold mirror M3.

GREGORIAN FOCUS, NO DOME ********************** SCATTER FROM LYOT STOP ************************ ANGLE FROM ZENITH = 0 DEGREES FOCUS POSITION (0=GREGORIAN, 1=COUDE) = 0 LYOT STOP INNER APERTURE RADIUS = 260 mm LEVEL 1 SCATTER FROM FRONT SURFACE = 0 W (0 RAYS) LEVEL 2 SCATTER FROM FRONT SURFACE = 2.8E-6 W (3606 RAYS) LEVEL 1 SCATTER FROM INSIDE EDGE = 1.4E-7 W (2 RAYS) LEVEL 2 SCATTER FROM INSIDE EDGE = 1.E-10 W (393 RAYS) LEVEL 1 SCATTER FROM BACK SURFACE = 6.9E-5 W (2 RAYS) LEVEL 2 SCATTER FROM BACK SURFACE = 1.1E-8 W (153 RAYS) TOTAL SCATTERED POWER FROM LYOT STOP = 7.20614E-5 W ************************************************************************ LIST OF MOST SIGNIFICANT SCATTER PATHS FOR SOURCE 1 (SOLAR DIRECT) OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 2 3447 2.8911E-06 95.2346 -5 142 139 -139.001 -155.001 0.000 1 2 1.4435E-07 4.7549 -4 142 157 -157.003 0.000 4 134 1.5528E-10 0.0051 -5 142 87 -87.001 -157.003 0.000 LIST OF MOST SIGNIFICANT SCATTER PATHS FOR SOURCE 2 (INDIRECT SKY) OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 1 2 6.9011E-05 99.9785 -3 142 156 -156.003 0.000 5 34 1.1194E-08 0.0162 -4 142 87 -87.001 -156.003 0.000 2 62 3.5528E-09 0.0051 -3 142 139 -139.001 -155.001 0.000

Page 27: (ATST) Stray and Scattered Light Analysis

26

Figure 21 Scatter to Coude focus from the Lyot stop without the dome. Object 155 is the front surface of the Lyot stop. Object 156 is the back surface of the Lyot stop. Object 157 is the inside edge of the Lyot stop aperture. Objects 136, 139, and 152 are the reflecting surfaces for the primary mirror, secondary mirror, secondary mirror, and fold mirror M6, respectively.

COUDE FOCUS, NO DOME ********************** SCATTER FROM LYOT STOP ************************ ANGLE FROM ZENITH = 0 DEGREES FOCUS POSITION (0=GREGORIAN, 1=COUDE) = 0 LYOT STOP INNER APERTURE RADIUS = 260 mm LEVEL 1 SCATTER FROM FRONT SURFACE = 0 W (0 RAYS) LEVEL 2 SCATTER FROM FRONT SURFACE = 2.6E-6 W (3298 RAYS) LEVEL 1 SCATTER FROM INSIDE EDGE = 1.2E-6 W (11 RAYS) LEVEL 2 SCATTER FROM INSIDE EDGE = 1.1E-9 W (1035 RAYS) LEVEL 1 SCATTER FROM BACK SURFACE = 0 W (0 RAYS) LEVEL 2 SCATTER FROM BACK SURFACE = 4.E-11 W (119 RAYS) TOTAL SCATTERED POWER FROM LYOT STOP = 3.89216E-6 W ************************************************************************ LIST OF MOST SIGNIFICANT SCATTER PATHS FOR SOURCE 1 (SOLAR DIRECT) OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 2 3189 2.6476E-06 68.0623 -10 158 152 -139.001 -155.001 0.000 1 11 1.2411E-06 31.9062 -9 158 152 -157.003 0.000 7 103 4.8918E-10 0.0126 -9 158 152 -152.001 -157.003 0.000 LIST OF MOST SIGNIFICANT SCATTER PATHS FOR SOURCE 2 (INDIRECT SKY) OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 2 38 2.1296E-09 96.6425 -8 158 152 -139.001 -155.001 0.000 3 119 4.9199E-11 2.2327 -10 158 152 -136.001 -156.001 0.000 1 50 2.4788E-11 1.1249 -10 158 152 -136.001 -155.001 0.000

Page 28: (ATST) Stray and Scattered Light Analysis

27

Figure 22 Scatter to Gregorian focus from the Lyot stop with the dome. Object 187 is the front surface of the Lyot stop. Object 188 is the back surface of the Lyot stop. Object 189 is the inside edge of the Lyot stop aperture. Object 171 is the reflecting surface of the secondary mirror. Object 119 is the tube that passes through the OSS support structure between the secondary mirror and fold mirror M3.

GREGORIAN FOCUS, WITH DOME ********************** SCATTER FROM LYOT STOP ************************ ANGLE FROM ZENITH = 0 DEGREES FOCUS POSITION (0=GREGORIAN, 1=COUDE) = 0 LYOT STOP INNER APERTURE RADIUS = 260 mm LEVEL 1 SCATTER FROM FRONT SURFACE = 0 W (0 RAYS) LEVEL 2 SCATTER FROM FRONT SURFACE = 3.1E-6 W (7461 RAYS) LEVEL 1 SCATTER FROM INSIDE EDGE = 5.1E-7 W (11 RAYS) LEVEL 2 SCATTER FROM INSIDE EDGE = 1.E-10 W (483 RAYS) LEVEL 1 SCATTER FROM BACK SURFACE = 1.3E-5 W (2 RAYS) LEVEL 2 SCATTER FROM BACK SURFACE = 8.0E-9 W (315 RAYS) TOTAL SCATTERED POWER FROM LYOT STOP = 1.72490E-5 W ************************************************************************ LIST OF MOST SIGNIFICANT SCATTER PATHS FOR SOURCE 1 (SOLAR DIRECT) OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 2 7377 3.1018E-06 85.7878 -5 174 171 -171.001 -187.001 0.000 1 11 5.1369E-07 14.2072 -4 174 189 -189.003 0.000 6 159 1.3966E-10 0.0039 -5 174 119 -119.001 -189.003 0.000 LIST OF MOST SIGNIFICANT SCATTER PATHS FOR SOURCE 2 (INDIRECT SKY) OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 1 2 1.3625E-05 99.9383 -3 174 188 -188.003 0.000 3 69 7.7436E-09 0.0568 -4 174 119 -119.001 -188.003 0.000

Page 29: (ATST) Stray and Scattered Light Analysis

28

Figure 23 Scatter to Coude focus from the Lyot stop with the dome. Object 187 is the front surface of the Lyot stop. Object 188 is the back surface of the Lyot stop. Object 189 is the inside edge of the Lyot stop aperture. Objects 168, 171, 177, 184 are the reflecting surfaces for the primary mirror, secondary mirror, fold mirror M3, and fold mirror M6, respectively.

COUDE FOCUS, WITH DOME ********************** SCATTER FROM LYOT STOP ************************ ANGLE FROM ZENITH = 0 DEGREES FOCUS POSITION (0=GREGORIAN, 1=COUDE) = 0 LYOT STOP INNER APERTURE RADIUS = 260 mm LEVEL 1 SCATTER FROM FRONT SURFACE = 0 W (0 RAYS) LEVEL 2 SCATTER FROM FRONT SURFACE = 2.8E-6 W (6710 RAYS) LEVEL 1 SCATTER FROM INSIDE EDGE = 4.4E-7 W (8 RAYS) LEVEL 2 SCATTER FROM INSIDE EDGE = 5.E-10 W (620 RAYS) LEVEL 1 SCATTER FROM BACK SURFACE = 0 W (0 RAYS) LEVEL 2 SCATTER FROM BACK SURFACE = 2.E-10 W (252 RAYS) TOTAL SCATTERED POWER FROM LYOT STOP = 3.28762E-6 W ************************************************************************ LIST OF MOST SIGNIFICANT SCATTER PATHS FOR SOURCE 1 (SOLAR DIRECT) OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 2 6649 2.8417E-06 86.4515 -10 190 184 -171.001 -187.001 0.000 1 8 4.4481E-07 13.5323 -9 190 184 -189.003 0.000 6 77 2.0174E-10 0.0061 -9 190 184 -184.001 -189.003 0.000 LIST OF MOST SIGNIFICANT SCATTER PATHS FOR SOURCE 2 (INDIRECT SKY) OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 5 20 2.0950E-10 33.3434 -10 190 184 -171.001 -187.001 0.000 2 20 1.7124E-10 27.2542 -8 190 184 -177.001 -188.003 0.000 4 18 1.3574E-10 21.6045 -8 190 184 -171.001 -187.001 0.000 3 10 9.2315E-11 14.6926 -7 190 184 -177.001 -188.003 0.000 1 222 1.9511E-11 3.1054 -10 190 184 -168.001 -188.001 0.000

Page 30: (ATST) Stray and Scattered Light Analysis

29

4.3.3 Stray Light Control w/Lyot Stop Since the Lyot stop is conjugate to the entrance aperture, undersizing the Lyot stop clear aperture has the effect of projecting a mask onto the entrance aperture. Properly sized, the Lyot stop can completely prevent the scatter from the entrance aperture from reaching the Gregorian focus. However this level of obstruction usually involves vignetting the imaging rays as well. Figure 20 shows a plot of the amount of level 1 scatter from the entrance aperture that reaches Gregorian focus as the semidiameter of the Lyot stop is varied from 190 to 280 mm. In this calculation, the entrance aperture and primary mirror are illuminated by solar radiation, and the entrance aperture is allowed to scatter to Gregorian focus. At a semidiameter of approximately 212 mm, scatter begins to leak into the FOV. By the time the semidiameter reaches 240 mm, scatter from the entrance aperture reaches a constant level.

Figure 24 Calculation of Stray Light Reaching Gregorian Focus as a Function of Lyot Stop Clear Aperture

Figure 21 shows the same calculation from the point of view of Gregorian focus. In this calculation, the Gregorian focal plane is treated as an emitter radiating into the Lyot stop aperture and we’re looking at the raytrace backwards to the entrance aperture and the primary mirror. When the semidiameter is 190 mm, the footprint of the beam is well within the entrance aperture. At a semidiameter of approximately 212 mm, Gregorian focus can just see the edge of the entrance aperture. At the nominal semidiameter of 260 mm, the entrance aperture vignettes the

Page 31: (ATST) Stray and Scattered Light Analysis

30

view of the primary mirror. At still greater apertures, Gregorian focus can see almost all the way around the entrance aperture.

Lyot Stop Semidiameter = 212 mm: Rays just clear Entrance Aperture

Lyot Stop Semidiameter = 260 mm: Rays vignetted by Entrance Aperture

Lyot Stop Semidiameter = 190 mm: Rays underfill clear Entrance Aperture

Lyot Stop Semidiameter = 280 mm: Rays vignetted by Entrance Aperture

Figure 25 Beam Footprints from the Point of View of Gregorian Focus as a Function of Lyot Stop Clear Aperture

Page 32: (ATST) Stray and Scattered Light Analysis

31

4.4 The Open Dome Telescope and Baffles 4.4.1 Task Description Assuming a snorkel-style dome enclosure with wind vents (details have been provided), provide a rough order of magnitude estimate of the stray light contributions from the sky, external surroundings (a lake or snow covered ground), the observatory floor, and the inside of the dome. Consider both Gregorian and coude foci. If the contribution is important, investigate baffling strategies to mitigate these sources. Examples include baffling vanes, tube or box structures extending toward the secondary mirror, and any baffles around the secondary mirror that may be useful. Only general recommendations for shapes and sizes are needed at this time. This task quantifies the level of concern when not completely enclosing the entire path from the heat stop to coude to allow for easy flushing with ambient air, cleaning and servicing. 4.4.2 Analysis This analysis examines the effectiveness of the dome at reducing the scatter contributions to both Gregorian and Coude foci, from distant objects outside of the telescope as well as those inside the dome enclosure that would otherwise be in full view of the sun and the sky. Only zenith pointing has been considered, which is very likely a “best-case” scenario since the primary mirror and entrance aperture are facing upwards. As a reference point, it is useful to consider the scatter contributions from only the optical surfaces; these contributions for both Gregorian and Coude optical paths are listed in Figure 26. We would expect that the “total direct power” in these two cases would be identical, however they are different by less than 2%. The ray statistics involved in these calculations prevent an exact agreement. This will be evident in all the following ASAP calculations. All other things being equal, we expect that the mirrors optically closer to the image plane will show higher scatter contributions because the projected solid angles of the image plane from these mirrors are larger; we observe this in the Coude path. Why the primary and secondary mirrors should contribute nearly equal amounts of scatter is less obvious. Consider the paraxial radiometric transfer equation

Ω= BSDFPP sc (6) where Pc = power scattered to collector, Ps = power incident on scattering surface, BSDF = scattering function , and Ω = projected solid angle of collector. Since we’ve assigned the same scatter models to all mirrors, the BSDFs are identical. If we assume that the power incident on the primary mirror is unity, then the power incident on the secondary mirror must be (5 arcminutes/32 arcminutes) smaller; this factor is equal to 2.45e-2. The projected solid angle subtended by the Gregorian focus relative to the primary mirror is approximately equal to (area of heat stop aperture)/(distance from primary mirror to heat stop aperture) or 2.07e-6 sr. The

Page 33: (ATST) Stray and Scattered Light Analysis

32

projected solid angle of Gregorian focus relative to the secondary mirror is approximately equal to (area of Gregorian focus)/(distance from secondary mirror to Gregorian focus) or 6.41e-5 sr. Multiplying everything together, we get

(1)(BSDF)(2.07e-6) ≈ (2.45e-2)(BSDF)(6.41e-5) (7a) 2.07e-6 ≈ 1.57e-6 (7b)

which is good agreement for such a crude calculation. Therefore the primary and secondary mirrors contribute equal amounts of stray light because the solid angles and incident powers balance each other out. Under these conditions, the signal-to-noise ratio (SNR) is approximately 4460 for the Gregorian optical path and approximately 869 for the Coude optical path. It is important to note that these are “best-case” results because we’ve excluded everything but the optical surfaces. Figures 27 and 28 show the results of the stray light analysis of the entire ATST including the dome, shutter, snorkel, etc for both Gregorian and Coude foci for direct solar and indirect sky illumination. Despite the somewhat different total powers reported for first level scatter (comparing Figure 26 with Figures 27 and 28), the analyses show that the scatter from the optical surfaces far exceeds the contribution from any other structure. (The reason for the apparent discrepancy between first level scatter powers is ray sampling: it is much more time consuming to trace a dense distribution of rays over the area of the entire ATST than it is to trace the same density of rays over the primary mirror aperture. In the interests of time, we were forced to reduce the ray density for the complete calculation and the result is the variation in total direct and scatter power shown in these figures.) Ray statistics not withstanding, we can still draw conclusions from these results.

1. The mirror surfaces are the major cause of stray light. 2. The Coude optical path shows a greater amount of stray light because more directly

illuminated mirror surfaces are involved. 3. The mount structure, entrance aperture, Lyot stop are comparatively minor contributors. 4. Scatter from indirect sky illumination is negligible compared to the scatter from direct

solar illumination in the Coude optical path. 5. Scatter from indirect sky illumination is an order of magnitude below the scatter from

direct solar illumination in the Gregorian optical path because the Gregorian focus is more exposed.

6. Light reflected off of the heat stop that is then scattered by the dome is not significant. 7. Additional baffles are probably not necessary, at least when the telescope pointing

upwards towards zenith. In order to make a stronger statement about the need for additional baffles, we would have to analyze the system for several telescope positions over the intended range of motion.

Page 34: (ATST) Stray and Scattered Light Analysis

33

Figure 26 Scatter Contributions from Optical Surfaces (Note that Gregorian focus is located between the secondary mirror and fold mirror 1; this is why there are no contributions from the mirrors in the optical path after the secondary mirror in the upper table.)

This calculation assumes a Cleanliness Level 400 contamination model and 20 Angstrom RMS surface roughness. Only solar direct illumination is considered. ************* LEVEL 1 SCATTER FROM OPTICS TO GREGORIAN ***************** NUMBER OF SOURCE RAYS = 100000 TOTAL INCIDENT POWER = 10681.4 W (850 W/m^2) SUN AOI (LINE OF SIGHT OFFSET) = 0 degrees TOTAL DIRECT POWER (NO SCATTER) = 234.137 W (2192 RAYS) M1 --> PRIMARY MIRROR = 2.6E-2 W (578353 RAYS) M2 --> SECONDARY MIRROR = 2.6E-2 W (10626 RAYS) M3 --> FOLD MIRROR 1 = 0 W (0 RAYS) M4 --> TRANSFER MIRROR = 0 W (0 RAYS) M5 --> FOLD MIRROR 2 [DM] = 0 W (0 RAYS) M6 --> FOLD MIRROR 3 = 0 W (0 RAYS) TOTAL SCATTERED POWER FROM OPTICS ONLY = 5.252859999E-2 W ************************************************************************ *************** LEVEL 1 SCATTER FROM OPTICS TO COUDE ******************* NUMBER OF SOURCE RAYS = 100000 TOTAL INCIDENT POWER = 10681.4 W (850 W/m^2) SUN AOI (LINE OF SIGHT OFFSET) = 0 degrees TOTAL DIRECT POWER (NO SCATTER) = 230.078 W (2154 RAYS) M1 --> PRIMARY MIRROR = 2.5E-2 W (566991 RAYS) M2 --> SECONDARY MIRROR = 2.5E-2 W (10118 RAYS) M3 --> FOLD MIRROR 1 = 1.5E-2 W (18275 RAYS) M4 --> TRANSFER MIRROR = 4.9E-3 W (8217 RAYS) M5 --> FOLD MIRROR 2 [DM] = 9.8E-2 W (21348 RAYS) M6 --> FOLD MIRROR 3 = 9.5E-2 W (21350 RAYS) TOTAL SCATTERED POWER FROM OPTICS ONLY = .26485183 W ************************************************************************

Page 35: (ATST) Stray and Scattered Light Analysis

34

Figure 27 Results of Stray Light Analyses of Complete ATST including Dome, Shutter, Snorkel, etc. Multiple occurrences of a scattering object in the list indicate that the object can scatter light to the image plane via multiple scatter paths.

GREGORIAN FOCUS, WITH DOME *************************** SUMMARY DATA ******************************* ANGLE FROM ZENITH = 0 DEGREES DOME SETTING (0 = OFF, 1 = ON) = 1 ANALYSIS TASK (0=DIRECT, 1=LAKE, 2=SNOW) = 0 FOCUS POSITION (0=GREGORIAN, 1=COUDE) = 0 LYOT STOP INNER APERTURE RADIUS = 260 mm ======================================================================== TOTAL DIRECT POWER (NO SCATTER) = 264.365 W TOTAL SCATTERED POWER (LEVEL 1) = 8.16787E-2 W SCATTERED POWER FROM SUN = 7.684E-2 SCATTERED POWER FROM SKY = 4.836E-3 TOTAL SCATTERED POWER (LEVEL 2) = 2.24352E-5 W ************************************************************************ LIST OF MOST SIGNIFICANT LEVEL 1 PATHS FOR SOURCE 1 (SOLAR DIRECT) =================================================== OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 3 564 3.168E-02 41.226 -3 174 171 Secondary Mirror 1 25050 2.603E-02 33.877 -3 174 171 Primary Mirror 5 9 1.895E-02 24.660 -3 174 171 Primary Mirror 4 657 1.618E-04 0.211 -3 174 171 Entrance Aperture Front 2 1090 1.667E-05 0.022 -3 174 91 Heat Stop Outer Cone 8 8 1.728E-06 0.002 -5 174 171 Entrance Aperture Front 6 14 1.346E-06 0.002 -3 174 90 Heat Stop Edge ------------------------ 9 27765 7.684E-02 LIST OF MOST SIGNIFICANT LEVEL 1 PATHS FOR SOURCE 2 (INDIRECT SKY) =================================================== OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 9 3 4.766E-03 98.570 -2 174 47 Mount Base 5 1 2.217E-05 0.459 -3 174 171 Primary Mirror 4 3 1.767E-05 0.365 -3 174 97 OSS Frame 6 2 1.362E-05 0.282 -3 174 188 Lyot Stop Back 7 2 1.015E-05 0.210 -3 174 97 OSS Frame 8 1 3.362E-06 0.070 -3 174 78 Secondary Mirror Frame 1 936 1.408E-06 0.029 -3 174 171 Primary Mirror 2 35 7.600E-07 0.016 -3 174 171 Entrance Aperture Front ------------------------ 9 988 4.836E-03

Page 36: (ATST) Stray and Scattered Light Analysis

35

Figure 28 Results of Stray Light Analyses of Complete ATST including Dome, Shutter, Snorkel, etc. Multiple occurrences of a scattering object in the list indicate that the object can scatter light to the image plane via multiple scatter paths.

COUDE FOCUS, WITH DOME *************************** SUMMARY DATA ******************************* ANGLE FROM ZENITH = 0 DEGREES DOME SETTING (0 = OFF, 1 = ON) = 1 ANALYSIS TASK (0=DIRECT, 1=LAKE, 2=SNOW) = 0 FOCUS POSITION (0=GREGORIAN, 1=COUDE) = 1 LYOT STOP INNER APERTURE RADIUS = 260 mm ======================================================================== TOTAL DIRECT POWER (NO SCATTER) = 252.348 W TOTAL SCATTERED POWER (LEVEL 1) = .323496 W SCATTERED POWER FROM SUN = .323 SCATTERED POWER FROM SKY = 6.064E-5 TOTAL SCATTERED POWER (LEVEL 2) = 1.61814E-4 W ************************************************************************ LIST OF MOST SIGNIFICANT LEVEL 1 PATHS FOR SOURCE 1 (SOLAR DIRECT) =================================================== OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 6 1033 1.060E-01 32.769 -8 190 184 Mirror M6 5 1030 1.041E-01 32.178 -8 190 184 Mirror M5 2 527 2.905E-02 8.981 -8 190 184 Secondary Mirror 1 24438 2.541E-02 7.856 -8 190 184 Primary Mirror 12 11 2.262E-02 6.994 -8 190 184 Primary Mirror 3 900 1.864E-02 5.762 -8 190 184 Mirror M3 4 463 7.115E-03 2.200 -8 190 184 Mirror M4 10 58 4.747E-03 1.468 -7 190 184 Mirror M5 11 57 4.511E-03 1.395 -7 190 184 Mirror M6 14 32 7.917E-04 0.245 -7 190 184 Mirror M3 15 45 3.346E-04 0.103 -7 190 184 Mirror M4 7 633 1.560E-04 0.048 -8 190 184 Entrance Aperture Front ------------------------ 15 29563 3.234E-01 LIST OF MOST SIGNIFICANT LEVEL 1 PATHS FOR SOURCE 2 (INDIRECT SKY) =================================================== OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 3 60 5.822E-05 96.018 -2 190 46 Mount Base 1 903 1.332E-06 2.196 -8 190 184 Primary Mirror 2 28 6.110E-07 1.008 -8 190 184 Entrance Aperture Front 5 1 4.719E-07 0.778 -8 190 184 Primary Mirror ------------------------ 5 996 6.064E-05

Page 37: (ATST) Stray and Scattered Light Analysis

36

4.4.3 Stray Light Contributions from Lake and Snow with Dome With the dome in place, light scattered by the snow can reach the telescope structure only through the six open windows arranged about the base of the dome structure, as shown in Figure 29. Consequently there is considerable shading (obscuration) of the telescope structure.

Figure 29 With the Dome in Place, Scattered Light from the Snow can only reach the Telescope through the Dome Windows

Figure 30 shows the results of the stray light analysis for snow illumination only; no solar or sky illumination of the telescope is included in this calculation. We did this to make it easier to identify the effects of different illumination sources. The calculation identified a handful of first-level scatter paths to Gregorian and Coude foci, but none of these paths involved any of the mirror surfaces; only telescope structures are involved. Therefore it is not surprising that the total scattered power is less than that of the mirrors, approximately 100x smaller. There are hundreds of second-level scatter paths to Gregorian and Coude foci. Rather than trying to list them all in Figure 30, we included the raw ASAP output in Appendix D. (In order to identify the scattering objects, the ASAP names are given in Appendix C.)

Page 38: (ATST) Stray and Scattered Light Analysis

37

We can draw the following conclusions from this analysis:

1. Only a small portion of the telescope structure illuminated by the snow when the dome is in place.

2. Only telescope structure can be illuminated through the windows in the dome. 3. The amount of stray light reaching Gregorian and Coude foci are 100x smaller than the

scattered light from direct illumination of the mirrors. 4. There is very little difference between the amounts of scattered power reaching Gregorian

focus compared to that reaching Coude focus because no direct illumination of the mirrors is involved. (See Section 4.4.2)

5. Results for lake illumination would be 45x smaller than the results for snow illumination. (See Section 3.4)

GREGORIAN FOCUS, WITH DOME *************************** SUMMARY DATA ******************************* ANGLE FROM ZENITH = 0 DEGREES DOME SETTING (0 = OFF, 1 = ON) = 1 ANALYSIS TASK (0=DIRECT, 1=LAKE, 2=SNOW) = 2 FOCUS POSITION (0=GREGORIAN, 1=COUDE) = 0 LYOT STOP INNER APERTURE RADIUS = 260 mm ======================================================================== TOTAL DIRECT POWER (NO SCATTER) = 0 W TOTAL SCATTERED POWER (LEVEL 1) = 6.34383E-4 W TOTAL SCATTERED POWER (LEVEL 2) = 8.40959E-6 W ************************************************************************ COUDE FOCUS, WITH DOME *************************** SUMMARY DATA ******************************* ANGLE FROM ZENITH = 0 DEGREES DOME SETTING (0 = OFF, 1 = ON) = 1 ANALYSIS TASK (0=DIRECT, 1=LAKE, 2=SNOW) = 2 FOCUS POSITION (0=GREGORIAN, 1=COUDE) = 1 LYOT STOP INNER APERTURE RADIUS = 260 mm ======================================================================== TOTAL DIRECT POWER (NO SCATTER) = 0 W TOTAL SCATTERED POWER (LEVEL 1) = 1.81633E-4 W TOTAL SCATTERED POWER (LEVEL 2) = 1.64977E-5 W ************************************************************************

Figure 30 Results of Stray Light Analyses of Complete ATST including Dome, Shutter, Snorkel, etc. for Snow Illumination. Results for lake illumination would be 45x smaller (See Section 3.4).

Page 39: (ATST) Stray and Scattered Light Analysis

38

4.5 The Non-Enclosure or “Dome-less” Solution 4.5.1 Task Description Similar to the analysis performed in Task 3.4, provide a rough order of magnitude estimate for the stray light impact under the assumption that there is no dome at all, and that the sun, sky and ground reflections irradiate the telescope and structure and observing floor. 4.5.2 Analysis This analysis examines the impact of eliminating the dome on the scatter contributions to both Gregorian and Coude foci, from distant objects outside of the telescope. Only zenith pointing has been considered, which is very likely a “best-case” scenario since the primary mirror and entrance aperture are facing upwards. Figures 31 and 32 show the results of the stray light analysis of the entire ATST excluding the dome, shutter, snorkel, etc for both Gregorian and Coude foci for direct solar and indirect sky illumination. In both cases, again we see that the mirrors are the most significant stray light contributors and that the telescope structures contribute orders of magnitude less stray light. We can draw the following conclusions from this analysis:

1. The mirror surfaces are the major cause of stray light. 2. The Coude optical path shows a greater amount of stray light because more directly

illuminated mirror surfaces are involved. 3. The mount structure, entrance aperture, Lyot stop are comparatively minor contributors. 4. Scatter from indirect sky illumination is negligible compared to the scatter from direct

solar illumination in the Coude optical path. 5. Scatter from indirect sky illumination is approximately an order of magnitude below the

scatter from direct solar illumination in the Gregorian optical path because the Gregorian focus is more exposed.

6. Additional baffles are probably not necessary, at least when the telescope pointing upwards towards zenith. In order to make a stronger statement about the need for additional baffles, we would have to analyze the system for several telescope positions over the intended range of motion.

Page 40: (ATST) Stray and Scattered Light Analysis

39

Figure 31 Results of Stray Light Analyses of Complete ATST excluding Dome, Shutter, Snorkel, etc. Multiple occurrences of a scattering object in the list indicate that the object can scatter light to the image plane via multiple scatter paths.

GREGORIAN FOCUS, NO DOME *************************** SUMMARY DATA ******************************* ANGLE FROM ZENITH = 0 DEGREES DOME SETTING (0 = OFF, 1 = ON) = 0 ANALYSIS TASK (0=DIRECT, 1=LAKE, 2=SNOW) = 0 FOCUS POSITION (0=GREGORIAN, 1=COUDE) = 0 LYOT STOP INNER APERTURE RADIUS = 260 mm ======================================================================== TOTAL DIRECT POWER (NO SCATTER) = 240.332 W TOTAL SCATTERED POWER (LEVEL 1) = 7.25177E-2 W SCATTERED POWER FROM SUN = 7.154E-2 SCATTERED POWER FROM SKY = 9.749E-4 TOTAL SCATTERED POWER (LEVEL 2) = 1.47176E-4 W ************************************************************************ LIST OF MOST SIGNIFICANT LEVEL 1 PATHS FOR SOURCE 1 (DIRECT SOLAR) =================================================== OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 2 234 2.597E-02 36.302 -3 142 139 Secondary Mirror 1 12421 2.554E-02 35.703 -3 142 139 Primary Mirror 3 5 1.985E-02 27.742 -3 142 139 Primary Mirror 5 321 1.587E-04 0.222 -3 142 139 Entrance Aperture Front 4 561 1.746E-05 0.024 -3 142 59 Heat Stop Outer Cone 8 8 3.590E-06 0.005 -5 142 139 Entrance Aperture Front 6 8 1.419E-06 0.002 -3 142 58 Heat Stop Edge ------------------------ 9 13714 7.154E-02 LIST OF MOST SIGNIFICANT LEVEL 1 PATHS FOR SOURCE 2 (INDIRECT SKY) =================================================== OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 3 11 6.291E-04 64.525 -3 142 145 OSS Frame 8 13 1.619E-04 16.611 -2 142 87 Passthrough 9 2 6.901E-05 7.078 -3 142 156 Lyot Stop Back 6 1 5.453E-05 5.593 -2 142 72 Secondary Mirror Frame 10 1 2.924E-05 2.999 -3 142 65 OSS Frame 2 168 1.827E-05 1.874 -3 142 139 Entrance Aperture Front 7 1 9.567E-06 0.981 -3 142 72 Secondary Mirror Frame 1 6872 2.709E-06 0.278 -3 142 139 Primary Mirror 4 3 5.808E-07 0.060 -3 142 139 Primary Mirror ------------------------ 10 7073 9.749E-04

Page 41: (ATST) Stray and Scattered Light Analysis

40

Figure 32 Results of Stray Light Analyses of Complete ATST excluding Dome, Shutter, Snorkel, etc. Multiple occurrences of a scattering object in the list indicate that the object can scatter light to the image plane via multiple scatter paths.

COUDE FOCUS, NO DOME *************************** SUMMARY DATA ******************************* ANGLE FROM ZENITH = 0 DEGREES DOME SETTING (0 = OFF, 1 = ON) = 0 ANALYSIS TASK (0=DIRECT, 1=LAKE, 2=SNOW) = 0 FOCUS POSITION (0=GREGORIAN, 1=COUDE) = 1 LYOT STOP INNER APERTURE RADIUS = 260 mm ======================================================================== TOTAL DIRECT POWER (NO SCATTER) = 235.525 W TOTAL SCATTERED POWER (LEVEL 1) = .314968 W SCATTERED POWER FROM SUN = .315 SCATTERED POWER FROM SKY = 3.423E-4 TOTAL SCATTERED POWER (LEVEL 2) = 1.91175E-4 W ************************************************************************ LIST OF MOST SIGNIFICANT LEVEL 1 PATHS FOR SOURCE 1 (DIRECT SOLAR) =================================================== OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 5 483 1.043E-01 33.157 -8 158 152 Mirror M6 4 472 9.393E-02 29.855 -8 158 152 Mirror M5 9 9 4.153E-02 13.200 -8 158 152 Primary Mirror 2 236 2.682E-02 8.525 -8 158 152 Secondary Mirror 1 12168 2.502E-02 7.952 -8 158 152 Primary Mirror 3 407 1.505E-02 4.785 -8 158 152 Mirror M3 6 158 4.992E-03 1.587 -8 158 152 Mirror M4 11 8 1.443E-03 0.459 -7 158 152 Mirror M5 12 9 1.364E-03 0.434 -7 158 152 Mirror M6 8 295 1.456E-04 0.046 -8 158 152 Entrance Aperture Front ------------------------ 13 14376 3.146E-01 LIST OF MOST SIGNIFICANT LEVEL 1 PATHS FOR SOURCE 2 (INDIRECT SKY) =================================================== OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 4 49 2.425E-04 70.847 -2 158 14 Mount Base 2 7 2.969E-05 8.673 -2 158 85 OSS Bottom 6 3 2.486E-05 7.264 -2 158 25 Mirror mount Center Post 3 168 1.823E-05 5.326 -8 158 152 Entrance Aperture Front 9 2 9.101E-06 2.659 -2 158 84 OSS Bottom 8 1 9.039E-06 2.641 -3 158 25 Mirror Mount Center Post 10 1 4.935E-06 1.442 -2 158 22 Mirror Mount Center Post 1 6901 2.843E-06 0.831 -8 158 152 Primary Mirror 5 4 8.317E-07 0.243 -8 158 152 Primary Mirror 7 10 2.574E-07 0.075 -3 158 152 Mirror M5 ------------------------ 10 7146 3.423E-04

Page 42: (ATST) Stray and Scattered Light Analysis

41

5.4.3 Stray Light Contributions from Lake and Snow without Dome With the dome in place, light scattered by the snow can reach the telescope structure only through the six open windows arranged about the base of the dome structure, as shown in Figure 29. Consequently there is considerable shading (obscuration) of the telescope structure. Figure 33 shows the results of the stray light analysis for snow illumination only; no solar or sky illumination of the telescope is included in this calculation. We did this to make it easier to identify the effects of different illumination sources. The calculation identified several dozen first-level scatter paths to Gregorian and Coude foci, but none of these paths involved any of the mirror surfaces; only telescope structures are involved. (It is important to note that the Lyot stop was illuminated in this case. Since the Lyot stop is directly viewed by Gregorian focus, we may want to review this result if there are any changes to the Lyot stop or its paint.) However with all of the telescope structure illuminated from beneath, the total scattered power from the structures is 2 orders of magnitude higher without the dome in the Gregorian case and 1 order of magnitude higher in the Coude case, compared to those amounts when the dome is present. There are hundreds of second-level scatter paths to Gregorian and Coude foci. Rather than trying to list them all in Figure 33, we included the raw ASAP output in Appendix E. (In order to identify the scattering objects, the ASAP names are given in Appendix C.) We can draw the following conclusions from this analysis:

1. The entire telescope structure illuminated by the snow when the dome is not present. The secondary mirror is the most significant optic that is illuminated by the snow when the dome is not present.

2. There are no significant contributors. The total amount of stray light is the summation of individual contributions from dozens of structures.

3. The amount of stray light reaching Gregorian focus is comparable to that of the scattered light from direct illumination of the mirrors by the sun and sky.

4. The amount of stray light from the snow reaching Coude focus is an order of magnitude higher when the dome is not present compared to the amount of stray light when the dome is present. However this must be kept in perspective: the total scatter from the snow when the dome is not present is still 2 orders of magnitude below the mirror scatter under the same conditions.

5. Results for lake illumination would be 45x smaller than the results for snow illumination. (See Section 3.4)

Page 43: (ATST) Stray and Scattered Light Analysis

42

GREGORIAN FOCUS, NO DOME *************************** SUMMARY DATA ******************************* ANGLE FROM ZENITH = 0 DEGREES DOME SETTING (0 = OFF, 1 = ON) = 0 ANALYSIS TASK (0=DIRECT, 1=LAKE, 2=SNOW) = 2 FOCUS POSITION (0=GREGORIAN, 1=COUDE) = 0 LYOT STOP INNER APERTURE RADIUS = 260 mm ======================================================================== TOTAL DIRECT POWER (NO SCATTER) = 0 W TOTAL SCATTERED POWER (LEVEL 1) = 1.07283E-2 W TOTAL SCATTERED POWER (LEVEL 2) = 3.32951E-5 W ************************************************************************ COUDE FOCUS, NO DOME *************************** SUMMARY DATA ******************************* ANGLE FROM ZENITH = 0 DEGREES DOME SETTING (0 = OFF, 1 = ON) = 0 ANALYSIS TASK (0=DIRECT, 1=LAKE, 2=SNOW) = 2 FOCUS POSITION (0=GREGORIAN, 1=COUDE) = 1 LYOT STOP INNER APERTURE RADIUS = 260 mm ======================================================================== TOTAL DIRECT POWER (NO SCATTER) = 0 W TOTAL SCATTERED POWER (LEVEL 1) = 1.13659E-3 W TOTAL SCATTERED POWER (LEVEL 2) = 3.06851E-5 W ************************************************************************

Figure 33 Results of Stray Light Analyses of Complete ATST excluding Dome, Shutter, Snorkel, etc. for Snow Illumination. Results for lake illumination would be 45x smaller (See Section 3.4).

Page 44: (ATST) Stray and Scattered Light Analysis

43

5.0 Recommendations and Conclusions Figure 34 summarizes the stray light results from Figures 27 through 33: Dome Direct Power sun, sky sun, sky, snow sun, sky, lake Gregorian 264.40 0.0817 0.0823 0.0817 Coude 253.34 0.3237 0.3238 0.3237 No Dome Direct Power sun, sky sun, sky, snow sun, sky, lake Gregorian 240.33 0.0727 0.0834 0.0729 Coude 253.34 0.3151 0.3163 0.3151 Figure 34 Summary Stray Light Levels. All powers in units of watts.

As discussed in Section 4.4.2, ray sampling is an issue with large systems composed of complicated structures being illuminated by large areas. With the dome removed, we had to reduce the ray sampling in order to complete the calculations in a reasonable period of time. (This accounts for the counterintuitive result that the total scatter is slightly less when the dome is not present.) However based upon numerous test runs with various samplings, we believe that these results are indicative of how the actual hardware will perform. Consequently we must conclude that there is not a significant difference between the ”dome” and “no dome” configurations, at least in this specific modeling instance. Other recommendations and conclusions, subject to the assumptions put forth in previous sections:

1. Scatter levels at Gregorian and Coude foci are dominated by first-level scatter paths from the mirror surfaces.

2. The only options for reducing the scatter contributions from the mirrors are to reduce the

rms surface roughnesses and/or keep the mirror surfaces cleaner.

a. It is probably not feasible to consider the fabrication of the large primary and secondary mirrors with roughnesses much less than the baseline 20 angstroms rms.

b. It might be possible to fabricate lower roughness fold mirrors (specifically mirrors M4, M5, and M6) but the challenge will be to keep them clean.

3. Gregorian and Coude foci can see the entrance aperture provided that the Lyot stop has a

clear semidiameter larger than 212 mm. However the entrance aperture is a much less significant stray light contributor compared to those of the mirror surfaces. (We could

Page 45: (ATST) Stray and Scattered Light Analysis

44

also make a broader statement that there is probably little incentive to do anything to the entrance aperture to reduce its stray light contributions; they are simply not significant.)

4. The Lyot stop, despite being exposed to illumination from the ground, is not a significant

stray light contributor.

5. The heat stop located at prime focus is not a stray light significant contributor.

6. The OSS frame structure is not a significant stray light contributor.

7. There is very little difference between the total scatter contributions from the sun and sky between the “dome” and “no dome” cases because the scatter is dominated by contributions from the mirrors and the mirrors are more or less equally illuminated in both cases.

8. Since mirror surface scatter dominates, additional baffling around the Lyot stop, heat

stop, etc does not appear to be justified, at least for the telescope pointing towards zenith.

9. All stray light calculations were performed with the telescope pointing to zenith. Considering the stray light mechanisms present in this system, these calculations are probably representative of the performance at any other orientation except when the telescope is pointed such that the primary mirror is directly illuminated by the snow. In that case, we expect a higher stray light level.

10. While the lake is a significantly lesser contributor than the snow, the total stray light

levels shown in Figure 34 do not make a case for one environment being “better” than the other.

6.0 References

1. Hubbard, R., “M1 Microroughness and Dust Contamination”, Advanced Technology Solar Telescope Project Documentation, Technical Note No. 0013, Rev. C, October 2002.

2. Spyak, P. and Wolfe, W., “Scatter from Particulate Contaminated Mirrors”, Optical

Engineering, Vol. 31, No. 8, pp. 1746-1784, August 1992.

3. ASTM E 891, “Terrestrial Direct Normal Solar Spectral Irradiance for Air Mass 1.5” 7.0 Acknowledgements ASAP is a proprietary product of Breault Research Organization, Inc., Tucson, AZ. FRED is a proprietary product of Photon Engineering, LLC, Tucson, AZ. ZEMAX is a proprietary product of ZEMAX Development Corporation, San Diego, CA.

Page 46: (ATST) Stray and Scattered Light Analysis

45

Appendix A ZEMAX Prescription VERS 20812 2948 MODE SEQ NAME ATST f 69coude feed NOTE 1 Off-Axis f/2.0 NOTE 2 NOTE 3 UNIT MM NW NWC ENPD 4000 PUPD 10000 4000 GFAC 0 0 GCAT schott misc RAIM 1.0E-8 2 1 1 0 1 PUSH 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0 SDMA 0.000000000000E+000 1 0.000000000000E+000 FTYP 0 ROPD 2 PICB 1 XFLD 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 1.000000000000E-002 2.500000000000E-002 -1.000000000000E-002 -2.500000000000E-002 0.000000000000E+000 0.000000000000E+000 3.540000000000E-002 YFLD 0.000000000000E+000 1.000000000000E-002 2.500000000000E-002 -1.000000000000E-002 -2.500000000000E-002 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 3.540000000000E-002 -3.540000000000E-002 0.000000000000E+000 FWGT 1.000000000000E+000 1.010000000000E+000 1.010000000000E+000 1.010000000000E+000 1.010000000000E+000 1.010000000000E+000 1.010000000000E+000 1.010000000000E+000 1.010000000000E+000 1.000000000000E+000 1.000000000000E+000 1.000000000000E+000 WAVL 5.500000000000E-001 WWGT 1.000000000000E+000 PWAV 1 POLS 1 0.000000000000E+000 1.000000000000E+000 0.000000000000E+000 0.000000000000E+000 1 GLRS 4 GSTD 0 100.00000 100.00000 100.00000 100.00000 100.00000 100.00000 0 NSCD 100 5000 0.000000000000E+000 1.000000000000E-006 20 1.000000000000E-006 0 0 0 0 0.000000000000E+000 0 COFN COATING.DAT SCATTER_PROFILE.DAT ABG_DATA.DAT SURF 0 TYPE STANDARD CURV 0.000000000000E+000 0 0.000000000000E+000 0.000000000000E+000 SLAB 1 DISZ INFINITY DIAM 0.000000000000E+000 0 0 POPS 0 0 0 0 0 0 SURF 1 TYPE STANDARD CURV 0.000000000000E+000 0 0.000000000000E+000 0.000000000000E+000 HIDE 0 0 1 SLAB 16 DISZ 1.000000000000E+004 DIAM 2.006178466328E+003 0 0 POPS 0 0 0 0 0 0

Page 47: (ATST) Stray and Scattered Light Analysis

46

SURF 2 STOP TYPE STANDARD CURV 0.000000000000E+000 0 0.000000000000E+000 0.000000000000E+000 HIDE 0 0 1 SLAB 2 DISZ 1.200000000000E+003 DIAM 2.000000000036E+003 0 0 POPS 0 0 0 0 0 0 FLAP 0.000000000000E+000 2.000000000036E+003 SURF 3 TYPE COORDBRK CURV 0.0 0 0.0 0.0 SLAB 6 PARM 1 0.000000000000E+000 PARM 2 4.000000000000E+003 PARM 3 0.000000000000E+000 PARM 4 0.000000000000E+000 PARM 5 0.000000000000E+000 PARM 6 0.000000000000E+000 DISZ 0.000000000000E+000 DIAM 0.000000000000E+000 0 0 POPS 0 0 0 0 0 0 SURF 4 COMM M1 TYPE STANDARD CURV -6.250000000000E-005 0 0.000000000000E+000 0.000000000000E+000 SLAB 4 DISZ -8.000000000000E+003 GLAS MIRROR 0 0 1.50000000 40.00000000 0.00000000 0 0 0 0.00000000 0.00000000 CONI -1.000000000000E+000 DIAM 6.000046327800E+003 0 0 POPS 0 0 0 0 0 0 CLAP 0.000000000000E+000 2.000000000000E+003 OBDC 0.000000000000E+000 -4.000000000000E+003 SURF 5 TYPE STANDARD CURV 0.000000000000E+000 0 0.000000000000E+000 0.000000000000E+000 HIDE 0 0 1 SLAB 15 DISZ -1.200000000000E+003 DIAM 7.486954841043E+000 0 0 POPS 0 0 0 0 0 0 SURF 6 TYPE COORDBRK CURV 0.0 0 0.0 0.0 SLAB 29 PARM 1 0.000000000000E+000 PARM 2 0.000000000000E+000 PARM 3 0.000000000000E+000 PARM 4 0.000000000000E+000 PARM 5 0.000000000000E+000 PARM 6 0.000000000000E+000 DISZ 0.000000000000E+000 DIAM 0.000000000000E+000 0 0 POPS 0 0 0 0 0 0

Page 48: (ATST) Stray and Scattered Light Analysis

47

SURF 7 COMM M2 TYPE STANDARD CURV 4.804784377279E-004 0 0.000000000000E+000 0.000000000000E+000 SLAB 5 DISZ 2.000000000000E+003 GLAS MIRROR 0 0 1.50000000 40.00000000 0.00000000 0 0 0 0.00000000 0.00000000 CONI -5.391673040452E-001 DIAM 8.872060614433E+002 0 0 POPS 0 0 0 0 0 0 CLAP 0.000000000000E+000 4.000000000000E+002 OBDC 0.000000000000E+000 6.000000000000E+002 SURF 8 TYPE COORDBRK CURV 0.0 0 0.0 0.0 SLAB 27 PARM 1 0.000000000000E+000 PARM 2 0.000000000000E+000 PPAR 2 6 -1.000000000000E+000 0.000000000000E+000 PARM 3 0.000000000000E+000 PPAR 3 6 -1.000000000000E+000 0.000000000000E+000 PARM 4 0.000000000000E+000 PARM 5 0.000000000000E+000 PARM 6 0.000000000000E+000 DISZ 0.000000000000E+000 DIAM 0.000000000000E+000 0 0 POPS 0 0 0 0 0 0 SURF 9 TYPE STANDARD CURV 0.000000000000E+000 0 0.000000000000E+000 0.000000000000E+000 HIDE 0 0 1 SLAB 28 DISZ 5.500000000000E+003 DIAM 0.000000000000E+000 1 0 POPS 0 0 0 0 0 0 SURF 10 TYPE STANDARD CURV 0.000000000000E+000 0 0.000000000000E+000 0.000000000000E+000 HIDE 0 0 1 SLAB 33 DISZ 3.350000000000E+002 DIAM 6.951160443273E+001 0 0 POPS 0 0 0 0 0 0 SURF 11 TYPE COORDBRK CURV 0.0 0 0.0 0.0 SLAB 30 PARM 1 0.000000000000E+000 PARM 2 0.000000000000E+000 PARM 3 0.000000000000E+000 PARM 4 0.000000000000E+000 PARM 5 -1.014350595888E+000 PARM 6 0.000000000000E+000 DISZ 0.000000000000E+000 DIAM 0.000000000000E+000 0 0 POPS 0 0 0 0 0 0

Page 49: (ATST) Stray and Scattered Light Analysis

48

SURF 12 COMM FOCAL PLANE TYPE STANDARD CURV 0.000000000000E+000 0 0.000000000000E+000 0.000000000000E+000 HIDE 0 0 1 SLAB 17 DISZ 0.000000000000E+000 DIAM 3.261690562790E+001 0 0 POPS 0 0 0 0 0 0 SURF 13 TYPE COORDBRK CURV 0.0 0 0.0 0.0 SLAB 31 PARM 1 0.000000000000E+000 PARM 2 0.000000000000E+000 PARM 3 0.000000000000E+000 PPAR 3 11 -1.000000000000E+000 0.000000000000E+000 PARM 4 0.000000000000E+000 PARM 5 0.000000000000E+000 PARM 6 0.000000000000E+000 DISZ 0.000000000000E+000 DIAM 0.000000000000E+000 0 0 POPS 0 0 0 0 0 0 SURF 14 TYPE STANDARD CURV 0.000000000000E+000 0 0.000000000000E+000 0.000000000000E+000 HIDE 0 0 1 SLAB 32 DISZ 3.000000000000E+002 DIAM 3.261690562790E+001 0 0 POPS 0 0 0 0 0 0 SURF 15 TYPE COORDBRK CURV 0.0 0 0.0 0.0 SLAB 12 PARM 1 0.000000000000E+000 PARM 2 0.000000000000E+000 PARM 3 0.000000000000E+000 PARM 4 4.500000000000E+001 PARM 5 0.000000000000E+000 PARM 6 0.000000000000E+000 DISZ 0.000000000000E+000 DIAM 0.000000000000E+000 0 0 POPS 0 0 0 0 0 0 SURF 16 COMM M3 TYPE STANDARD CURV 0.000000000000E+000 0 0.000000000000E+000 0.000000000000E+000 SLAB 11 DISZ 0.000000000000E+000 GLAS MIRROR 0 0 1.50000000 40.00000000 0.00000000 0 0 0 0.00000000 0.00000000 DIAM 7.176804897658E+001 0 0 POPS 0 0 0 0 0 0 ELAP 6.500000000000E+001 5.500000000000E+001 OBDC -1.000000000000E+001 -3.000000000000E+001 SURF 17

Page 50: (ATST) Stray and Scattered Light Analysis

49

TYPE COORDBRK CURV 0.0 0 0.0 0.0 SLAB 13 PARM 1 0.000000000000E+000 PARM 2 0.000000000000E+000 PARM 3 0.000000000000E+000 PPAR 3 15 1.000000000000E+000 0.000000000000E+000 PARM 4 4.500000000000E+001 PPAR 4 15 1.000000000000E+000 0.000000000000E+000 PARM 5 0.000000000000E+000 PPAR 5 15 1.000000000000E+000 0.000000000000E+000 PARM 6 0.000000000000E+000 DISZ -2.500000000000E+003 DIAM 0.000000000000E+000 0 0 POPS 0 0 0 0 0 0 SURF 18 TYPE COORDBRK CURV 0.0 0 0.0 0.0 SLAB 23 PARM 1 0.000000000000E+000 PARM 2 -6.763101471508E+000 PARM 3 -1.781434192610E-001 PARM 4 0.000000000000E+000 PARM 5 0.000000000000E+000 PARM 6 0.000000000000E+000 DISZ 0.000000000000E+000 DIAM 0.000000000000E+000 0 0 POPS 0 0 0 0 0 0 SURF 19 COMM M4 TYPE STANDARD CURV 2.123897456712E-004 0 0.000000000000E+000 0.000000000000E+000 SLAB 9 DISZ 0.000000000000E+000 GLAS MIRROR 0 0 1.50000000 40.00000000 0.00000000 0 0 0 0.00000000 0.00000000 CONI -5.341830994743E-001 DIAM 3.610653893806E+002 0 0 POPS 0 0 0 0 0 0 CLAP 0.000000000000E+000 1.700000000000E+002 OBDC 0.000000000000E+000 -2.250000000000E+002 SURF 20 TYPE COORDBRK CURV 0.0 0 0.0 0.0 SLAB 24 PARM 1 0.000000000000E+000 PARM 2 -2.327828145179E+002 PARM 3 -8.429444425659E-001 PARM 4 0.000000000000E+000 PARM 5 0.000000000000E+000 PARM 6 0.000000000000E+000 DISZ 3.600000000000E+003 DIAM 0.000000000000E+000 0 0 POPS 0 0 0 0 0 0 SURF 21 TYPE COORDBRK CURV 0.0 0 0.0 0.0

Page 51: (ATST) Stray and Scattered Light Analysis

50

SLAB 19 PARM 1 0.000000000000E+000 PARM 2 0.000000000000E+000 PARM 3 0.000000000000E+000 PARM 4 -1.000000000000E+001 PARM 5 0.000000000000E+000 PARM 6 0.000000000000E+000 DISZ 0.000000000000E+000 DIAM 0.000000000000E+000 0 0 POPS 0 0 0 0 0 0 SURF 22 TYPE STANDARD CURV 0.000000000000E+000 0 0.000000000000E+000 0.000000000000E+000 SLAB 8 DISZ 0.000000000000E+000 DIAM 1.130580521993E+002 0 0 POPS 0 0 0 0 0 0 SURF 23 COMM M5 TYPE STANDARD CURV 0.000000000000E+000 0 0.000000000000E+000 0.000000000000E+000 SLAB 18 DISZ 0.000000000000E+000 GLAS MIRROR 0 0 1.50000000 40.00000000 0.00000000 0 0 0 0.00000000 0.00000000 DIAM 1.130580521993E+002 0 0 POPS 0 0 0 0 0 0 CLAP 0.000000000000E+000 1.000000000000E+002 OBDC 2.000000000000E+001 1.000000000000E+001 SURF 24 TYPE COORDBRK CURV 0.0 0 0.0 0.0 SLAB 20 PARM 1 0.000000000000E+000 PARM 2 0.000000000000E+000 PARM 3 0.000000000000E+000 PPAR 3 21 1.000000000000E+000 0.000000000000E+000 PARM 4 -1.000000000000E+001 PPAR 4 21 1.000000000000E+000 0.000000000000E+000 PARM 5 0.000000000000E+000 PARM 6 0.000000000000E+000 DISZ -7.000000000000E+002 DIAM 0.000000000000E+000 0 0 POPS 0 0 0 0 0 0 SURF 25 TYPE COORDBRK CURV 0.0 0 0.0 0.0 SLAB 21 PARM 1 0.000000000000E+000 PARM 2 0.000000000000E+000 PARM 3 3.283458682960E-004 PARM 4 -3.500000000000E+001 PARM 5 0.000000000000E+000 PARM 6 0.000000000000E+000 DISZ 0.000000000000E+000 DIAM 0.000000000000E+000 0 0 POPS 0 0 0 0 0 0

Page 52: (ATST) Stray and Scattered Light Analysis

51

SURF 26 COMM M6 TYPE STANDARD CURV 0.000000000000E+000 0 0.000000000000E+000 0.000000000000E+000 SLAB 7 DISZ 0.000000000000E+000 GLAS MIRROR 0 0 1.50000000 40.00000000 0.00000000 0 0 0 0.00000000 0.00000000 DIAM 1.190339236502E+002 0 0 POPS 0 0 0 0 0 0 ELAP 1.100000000000E+002 9.000000000000E+001 OBDC 2.500000000000E+001 1.300000000000E+001 SURF 27 TYPE COORDBRK CURV 0.0 0 0.0 0.0 SLAB 22 PARM 1 0.000000000000E+000 PARM 2 0.000000000000E+000 PARM 3 3.283458682960E-004 PPAR 3 25 1.000000000000E+000 0.000000000000E+000 PARM 4 -3.500000000000E+001 PPAR 4 25 1.000000000000E+000 0.000000000000E+000 PARM 5 0.000000000000E+000 PARM 6 0.000000000000E+000 DISZ 1.050000000000E+004 DIAM 0.000000000000E+000 0 0 POPS 0 0 0 0 0 0 SURF 28 TYPE COORDBRK CURV 0.0 0 0.0 0.0 SLAB 26 PARM 1 0.000000000000E+000 PARM 2 0.000000000000E+000 PARM 3 0.000000000000E+000 PARM 4 0.000000000000E+000 PARM 5 0.000000000000E+000 PARM 6 0.000000000000E+000 DISZ 0.000000000000E+000 DIAM 0.000000000000E+000 0 0 POPS 0 0 0 0 0 0 SURF 29 TYPE STANDARD CURV 1.379821878030E-003 0 0.000000000000E+000 0.000000000000E+000 SLAB 3 DISZ 0.000000000000E+000 DIAM 1.959217500058E+002 0 0 POPS 0 0 0 0 0 0

Page 53: (ATST) Stray and Scattered Light Analysis

52

Appendix B ASAP Prescription !!ATST MODEL CREATED BY SCOTT ELLIS !! APRIL 2003 !! !! THIS PARTICULAR FILE HAS BEEN EDITED BY RICH PFISTERER !! APRIL 2003 !! !! MODEL UPDATES: !! 1. 4/28/03 [SE]: CHANGED HEAT SHIELD PROPERTIES -> ROUGHNESS RMS 0 .052 (3 DEG.) [GAUSSIAN] !! 2. 4/28/03 [SE]: REMOVED RMS SCATTER MODEL FROM HEAT SHIELD !! 3. 4/28/03 [SE]: CHANGED LAKE PROPERTIES -> ROUGHNESS RMS 0 .4 0 [UNIFORM] !! 4. 4/28/03 [SE]: CORRECTED TEXT OUTPUT CONTROLS !! 5. 4/28/03 [SE]: ADDED OPTIONS TO EVALUATE GREGORIAN/COUDE FOCI, LOOP OVER ANGLES, LOOP OVER !! LYOT STOP RADII (NOMINAL=260 MM), FOR BOTH DOME ON / DOME OFF CONDITIONS MKDOME !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! DOME ASSEMBLY !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! WIND VENTS !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! TA=ATAN[(8200-3900)/(12000-3000)] DX=1000 X0=6024 Y0=6394 Z0=1750 EDGES RECT X -DX./2 2492/COS[TA.] 2000 RECT X DX./2 2492/COS[TA.] 2000 OBJECT; .1 .2 'DOME.WIN.1' ROTATE Z TA. 0 0 SHIFT -X0. -Y0. Z0. EDGES RECT X -DX./2 2492/COS[TA.] 2000 RECT X DX./2 2492/COS[TA.] 2000 OBJECT; .1 .2 'DOME.WIN.2' ROTATE Z -TA. 0 0 SHIFT -X0. Y0. Z0. EDGES RECT X -DX./2 2492/COS[TA.] 2000 RECT X DX./2 2492/COS[TA.] 2000 OBJECT; .1 .2 'DOME.WIN.3' ROTATE Z -TA. 0 0 SHIFT X0. -Y0. Z0.

Page 54: (ATST) Stray and Scattered Light Analysis

53

EDGES RECT X -DX./2 2492/COS[TA.] 2000 RECT X DX./2 2492/COS[TA.] 2000 OBJECT; .1 .2 'DOME.WIN.4' ROTATE Z TA. 0 0 SHIFT X0. Y0. Z0. EDGES RECT X -DX./2 2@2000 RECT X DX./2 2@2000 OBJECT; .1 .2 'DOME.WIN.5' SHIFT 7700 0 Z0. EDGES RECT X -DX./2 2@2000 RECT X DX./2 2@2000 OBJECT; .1 .2 'DOME.WIN.6' SHIFT -7700 0 Z0. $DO 1 6 OBJ .?;REDEFINE COLOR STRAW. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! DOME ASSEMBLY: SLIT !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! EDGE RECT Z -12000 2150 8580 SHIFT -462 2565 0 SWEEP DIR 12000 0 0 1 OBJECT; .1 'DOME.SLIT' !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! DOME ASSEMBLY: OUTER WALLS !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! DOME FLOOR (BOUNDING PLANE) SURFACE PLANE Z 4750 ELLI 2@12000 SURFACE TUBE X -5420 2@12000 5420 2@12000 OBJECT 'DOME.OUTER.0' EDGE POINTS Z 4750, 8200 12000 1, -3900 12000 1, -8200 3000 1, -8200 -3000 1, -3900 -12000 1, 8200 -12000 1 SWEEP DIR -16750 0 0 1 OBJECT; .1 'DOME.OUTER.1' EDGE POINTS Z 4750,

Page 55: (ATST) Stray and Scattered Light Analysis

54

-8200 -12000 1, 3900 -12000 1, 8200 -3000 1, 8200 3000 1, 3900 12000 1, -8200 12000 1 SWEEP DIR -16750 0 0 1 OBJECT; .1 'DOME.OUTER.2' TA=ATAN[(6988-5223)/(5869-1354)] XO=6037 ZO=-6533 SURFACE PLANE X XO. RECT 8830 5600/COS[TA.] OBJECT 'DOME.OUTER.3 ROTATE Y TA. 0 XO. SHIFT Z ZO. SURFACE PLANE X -XO. RECT 8830 5600/COS[TA.] OBJECT 'DOME.OUTER.4 ROTATE Y -TA. 0 -XO. SHIFT Z ZO. $DO 1 5 OBJ .?;REDEFINE COLOR TANNISH. !! SET BOUNDARIES SURFACES PLANE X -3900 PLANE X 3900 OBJECT DOME.OUTER.0;BOUNDS .3 -.4 -.5 -.6 -.8 .9 OBJECT DOME.OUTER.1;BOUNDS -.2 .3 -.7 .10 .18 .20 OBJECT DOME.OUTER.2;BOUNDS .1 -.4 -.7 .12 .14 .16 OBJECT DOME.OUTER.3;BOUNDS -.5 -.7 OBJECT DOME.OUTER.4;BOUNDS -.6 -.7 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! DOME ASSEMBLY: INNER WALLS !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! DOME FLOOR (BOUNDING PLANE) SURFACE PLANE Z 4750 ELLI 2@12000 !! SLIT EDGE (BOUNDING EDGE) EDGE REPEAT .10 SURFACE TUBE X -5420 2@11000 5420 2@11000 OBJECT 'DOME.INNER.0'

Page 56: (ATST) Stray and Scattered Light Analysis

55

EDGE POINTS Z 4750, 7200 11000 1 -3270 11000 1, -7200 2773 1, -7200 -2773 1, -3270 -11000 1, 7200 -11000 1 SWEEP DIR -16750 0 0 1 OBJECT; .1 'DOME.INNER.1' EDGE POINTS Z 4750, -7200 -11000 1, 3270 -11000 1, 7200 -2773 1, 7200 2773 1, 3270 11000 1, -7200 11000 1 SWEEP DIR -16750 0 0 1 OBJECT; .1 'DOME.INNER.2' TA=ATAN[(6988-5223)/(5869-1354)] XI=5197 ZI=-5869 SURFACE PLANE X XI. RECT 8830 5600/COS[TA.] OBJECT 'DOME.INNER.3' ROTATE Y TA. 0 XI. SHIFT Z ZI. SURFACE PLANE X -XI. RECT 8830 5600/COS[TA.] OBJECT 'DOME.INNER.4' ROTATE Y -TA. 0 -XI. SHIFT Z ZI. $DO 1 5 OBJ .?;REDEFINE COLOR OLIVE. !! BOUNDING CONTROLS SURFACES PLANE X -3270 PLANE X 3270 OBJECT DOME.INNER.0;BOUNDS .3 -.4 -.5 -.6 .8 -.9 OBJECT DOME.INNER.1;BOUNDS -.2 .3 -.7 .19 .27 .29 OBJECT DOME.INNER.2;BOUNDS .1 -.4 -.7 .21 .23 .25 OBJECT DOME.INNER.3;BOUNDS -.5 -.7 OBJECT DOME.INNER.4;BOUNDS -.6 -.7 OBJECT DOME.SLIT;BOUNDS .7 -.16

Page 57: (ATST) Stray and Scattered Light Analysis

56

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! DOME SHUTTERS !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! SHUTTER 1 (MAIN SHUTTER WITH SNORKEL ASSY) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ANG1=ASIN[4446/13000] ANG2=ASIN[6500/13000] X0=-3400 DX=6000 EDGE ELLIPSE X X0. 2@13000 16 0 90+ANG1.+ANG2. ROTATE X -180-ANG1. SWEEP DIR DX. 1 0 0 OBJECT; .1 'DOME.SHUTTER1.1' EDGE ELLIPSE X X0. 2@11999 16 0 90+ANG1.+ANG2. ROTATE X -180-ANG1. SWEEP DIR DX. 1 0 0 OBJECT; .1 'DOME.SHUTTER1.2' SURFACE PLANE Z 0 RECT 3000 500 OBJECT 'DOME.SHUTTER1.3' SHIFT -462 12500 0 ROTATE X -90+ANG2. 0 0 SURFACE PLANE Z 0 RECT 3000 500 OBJECT 'DOME.SHUTTER1.4' SHIFT -462 12500 0 ROTATE X 180-ANG1. 0 0 SURFACE PLANE X X0. ELLI 2@13000 2@12000/13000 OBJECT 'DOME.SHUTTER1.5' BOUNDS .2 -.3 SURFACE PLANE X X0.+DX. ELLI 2@13000 2@12000/13000 OBJECT 'DOME.SHUTTER1.6' BOUNDS .3 -.4 $DO 1 6 OBJ .?;REDEFINE COLOR PURPLE. EDGE ELLIP Z 0 2@1 16 0 360 !! DOME ASSEMBLY: SHUTTER 1 SNORKEL !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SURFACES

Page 58: (ATST) Stray and Scattered Light Analysis

57

TUBE X 0 2@13000 1 2@13000 TUBE X 0 2@12000 1 2@12000 SURFACE !! INSIDE CYLINDER TUBE Z -14500 2@2400 -10000 2@2400 OBJECT 'DOME.SNORKEL.1' SHIFT -462 -3815 0 BOUNDS .3 SURFACE !! OUTSIDE CYLINDER TUBE Z -14500 2@2150 -10000 2@2150 OBJECT 'DOME.SNORKEL.2' SHIFT -462 -3815 0 BOUNDS .3 SURFACE !! TOP EDGE PLANE Z -14500 ELLI 2@2400 2@2150/2400 OBJECT 'DOME.SNORKEL.3' SHIFT -462 -3815 0 OBJECT DOME.SHUTTER1.1;BOUNDS .3 OBJECT DOME.SHUTTER1.2;BOUNDS .2 $DO 1 3 OBJ .?;REDEFINE COLOR VIOLET. GROUP -9 ROTATE X ZENITH. 0 0 RET !! DOME ASSEMBLY: SHUTTER 2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ANG1=26.5 ANG2=64 X0=-3400 DX=6000 MAXANG=90-0.5*(ANG1.+ANG2.) EDGE POINTS X0. 11600*COS[ANG2.] -11600*SIN[ANG2.] 1, X0. 11850*COS[ANG2.] -11850*SIN[ANG2.] 1, X0.+DX. 11850*COS[ANG2.] -11850*SIN[ANG2.] 1, X0.+DX. 11600*COS[ANG2.] -11600*SIN[ANG2.] 1 SWEEP AXIS ANG2.-ANG1. 1 0 0 OBJECT; .1 'DOME.SHUTTER2.1' SURFACE PLANE Z 0 RECT 3000 125 OBJECT 'DOME.SHUTTER2.2' SHIFT -462 11725 0 ROTATE X -ANG1. 0 0 SURFACE PLANE Z 0 RECT 3000 125

Page 59: (ATST) Stray and Scattered Light Analysis

58

OBJECT 'DOME.SHUTTER2.3' SHIFT -462 11725 0 ROTATE X -ANG2. 0 0 $DO 1 3 OBJ .?;REDEFINE COLOR BLUE. $IF ZENITH. GE ANG1. AND ZENITH.+ANG1. LE 90 3 GROUP "DOME.SHUTTER2.?" ROTATE X ZENITH.-ANG1. 0 0 RET $IF ZENITH.+ANG1. GT 90 3 GROUP "DOME.SHUTTER2.?" ROTATE X MAXANG. 0 0 RET !! DOME ASSEMBLY: SHUTTER 3 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ANG1=62.5 ANG2=74 MAXANG=90-0.5*(ANG1.+ANG2.) X0=-3400 DX=6000 EDGE POINTS X0. 11400*SIN[ANG2.] -11400*COS[ANG2.] 1, X0. 11150*SIN[ANG2.] -11150*COS[ANG2.] 1, X0.+DX. 11150*SIN[ANG2.] -11150*COS[ANG2.] 1, X0.+DX. 11400*SIN[ANG2.] -11400*COS[ANG2.] 1 SWEEP AXIS ANG1.-ANG2. 1 0 0 OBJECT; .1 'DOME.SHUTTER3.1' SURFACE PLANE Z 0 RECT 3000 125 OBJECT 'DOME.SHUTTER3.2' SHIFT -462 11275 0 ROTATE X -(90-ANG1.) 0 0 SURFACE PLANE Z 0 RECT 3000 125 OBJECT 'DOME.SHUTTER3.3' SHIFT -462 11275 0 ROTATE X -(90-ANG2.) 0 0 $DO 1 3 OBJ .?;REDEFINE COLOR LTBLUE. $IF ZENITH. GE ANG1. 3 GROUP "DOME.SHUTTER3.?" ROTATE X ZENITH.-ANG1. 0 0 RET

Page 60: (ATST) Stray and Scattered Light Analysis

59

MKMNTBASE !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! OSS MOUNT BASE (ROTATING YOKE ASSEMBLY) !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SURFACE PLANE X 2940.1 ELLI 2@375 OBJECT 'MOUNT.BASE.1' SURFACE TUBE X 2940 2@375 2638 2@375 OBJECT 'MOUNT.BASE.2' SURFACE PLANE Z -500 RECT 151 500 OBJECT 'MOUNT.BASE.3' SHIFT X 2789 SURFACE PLANE Z 469 RECT 374.5 825 OBJECT 'MOUNT.BASE.4' SHIFT X 3314.5 EDGES RECT Z -500 151 500 SHIFT X 2789 RECT Z 469 151 825 SHIFT X 2789 OBJECT; .1 .2 'MOUNT.BASE.5' BOUNDS .5 EDGES RECT Z 469 525.5 825 SHIFT X 3163.5 RECT Z 4750 1231 2260 SHIFT X 3869 OBJECT; .1 .2 'MOUNT.BASE.6' SURFACE PLANE X -3862.1 ELLI 2@375 OBJECT 'MOUNT.BASE.7' SURFACE TUBE X -3562 2@375 -3862 2@375 OBJECT 'MOUNT.BASE.8' SURFACE PLANE Z -500 RECT 151 500 OBJECT 'MOUNT.BASE.9' SHIFT X -3713 SURFACE PLANE Z 469 RECT 374.5 825 OBJECT 'MOUNT.BASE.10' SHIFT X -4236.5

Page 61: (ATST) Stray and Scattered Light Analysis

60

EDGES RECT Z -500 151 500 SHIFT X -3713 RECT Z 469 151 825 SHIFT X -3713 OBJECT; .1 .2 'MOUNT.BASE.11' BOUNDS .5 EDGES RECT Z 469 525.5 825 SHIFT X -4086.5 RECT Z 4750 769 2260 SHIFT X -4331 OBJECT; .1 .2 'MOUNT.BASE.12' SURFACE PLANE Z 4750 ELLI 2@6150 2@200/6150 OBJECT 'MOUNT.BASE.13' SURFACE TUBE Z 4750 2@200 6375 2@200 OBJECT 'MOUNT.BASE.14' $DO 1 14 OBJ .?;REDEFINE COLOR PLUM. !! DOME FLOOR SURFACE PLANE Z 4750 ELLI 2@12000 2@6150/12000 OBJECT 'MOUNT.BASE.15' !! DOME BASE TOWER SURFACE TUBE Z 4750 2@12000 19750 2@12000 OBJECT 'MOUNT.BASE.16' !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! MOUNT BASE: CENTER POST FOR MIRROR MOUNTS !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SURFACE !! BASE TUBE Z 4750 2@525 4700 2@525 1 1 OBJECT 'MOUNT.CTRPOST.1' SHIFT 852 600 0 SURFACE !! TOP SIDE OF BASE PLANE Z 4700 RECT 2@525 OBJECT 'MOUNT.CTRPOST.2' SHIFT 852 600 0 SURFACE !! TALL MAIN POST TUBE Z 4700 2@225 39 2@225 1 1 OBJECT 'MOUNT.CTRPOST.3' SHIFT 652 400 0

Page 62: (ATST) Stray and Scattered Light Analysis

61

EDGES !! ANGLED ARM EXTRUSION POINTS Y 625, 39 877 1, -394 88 1, -394 -191 1, -191 -191 1, 148 427 1 SWEEP DIR 450 0 -1 0 OBJECT; .1 'MOUNT.CTRPOST.4' SURFACE !! ANGLED ARM FACE PLANE Y 625 RECT 400 900 OBJECT 'MOUNT.CTRPOST.5' BOUNDS -.2 SURFACE !! ANGLED ARM FACE PLANE Y 175 RECT 400 900 OBJECT 'MOUNT.CTRPOST.6' BOUNDS -.3 EDGES !! TOP SUPPORT EXTRUSION POINTS Y 425, 148 427 1, -191 -191 1, -140 -191 1, 1650 376 1, 1650 427 1 SWEEP DIR 50 0 -1 0 OBJECT; .1 'MOUNT.CTRPOST.7' SURFACE !! TOP SUPPORT FACE PLANE Y 425 RECT 1000 400 OBJECT 'MOUNT.CTRPOST.8' SHIFT 118 0 729.5 BOUNDS -.2 SURFACE !! TOP SUPPORT EXTRUSION PLANE Y 375 RECT 1000 400 OBJECT 'MOUNT.CTRPOST.9' SHIFT 118 0 729.5 BOUNDS -.3 EDGES !! LOWER SUPPORT EXTRUSION (1 OF 2) POINTS Y 425, 4700 1326 1, 4650 1326 1, 1715 927 1, 1715 877 1, 4700 877 1 SWEEP DIR 50 0 -1 0 OBJECT; .1 'MOUNT.CTRPOST.10' SURFACE !! LOWER SUPPORT FACE (1 OF 4) PLANE Y 425 RECT 1500 250 OBJECT 'MOUNT.CTRPOST.11' SHIFT 1101.5 0 3207.5

Page 63: (ATST) Stray and Scattered Light Analysis

62

BOUNDS -.2 SURFACE !! LOWER SUPPORT FACE (2 OF 4) PLANE Y 375 RECT 1500 250 OBJECT 'MOUNT.CTRPOST.12' SHIFT 1101.5 0 3207.5 BOUNDS -.3 EDGE !! LOWER SUPPORT EXTRUSION (1 OF 2) REPEAT .3; SWEEP DIR 50 0 -1 0 OBJECT 'MOUNT.CTRPOST.13' ROTATE Z 90 652 400 ABS SURFACE !! LOWER SUPPORT FACE (3 OF 4) PLANE Y 425 RECT 1500 250 OBJECT 'MOUNT.CTRPOST.14' SHIFT 1101.5 0 3207.5 ROTATE Z 90 652 400 ABS BOUNDS -.2 SURFACE !! LOWER SUPPORT FACE (4 OF 4) PLANE Y 375 RECT 1500 250 OBJECT 'MOUNT.CTRPOST.15' SHIFT 1101.5 0 3207.5 ROTATE Z 90 652 400 ABS BOUNDS -.3 $DO 1 15 OBJ .?;REDEFINE COLOR MAROON. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! MOUNT BASE: SMALL MIRROR MOUNTS !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! MOUNT BASE: SMALL MIRROR MOUNTS: M5 !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! EDGE POINTS Y 175, !! EDGE EXTRUSION 360 877 1, 39 877 1, -54.6 707 1, 360 633.74 1 SWEEP DIR 250 0 -1 0 OBJECT; .1 'MOUNT.SMM.9' SURFACE !! OUTSIDE FACE PLANE Y -75 RECT 300 130 OBJECT 'MOUNT.SMM.10' SHIFT 760 0 200 BOUNDS -.2 TA=11

Page 64: (ATST) Stray and Scattered Light Analysis

63

SURFACE !! CYLINDER BASE FOR MIRROR ASSY TUBE X 0 [email protected] -25.4 [email protected] OBJECT 'MOUNT.SMM.11' ROTATE Y -TA. 0 0 SHIFT 693.6 0 20.4 $DO 1 3 OBJ .?;REDEFINE COLOR TURQUOISE. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! MOUNT BASE: SMALL MIRROR MOUNTS: M6 !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! EDGE !! EDGE EXTRUSION POINTS Y 175, -394 88 1, -394 -191 1, -191 -191 1, -191 -165.7 1, -368.7 88 1 SWEEP DIR 329 0 -1 0 OBJECT; .1 'MOUNT.SMM.12' SURFACE !! OUTSIDE FACE PLANE Y -154 RECT 125 150 OBJECT 'MOUNT.SMM.13' SHIFT -51.5 0 -292 BOUNDS -.2 TA=55 SURFACE !! CYLINDER BASE FOR MIRROR ASSY TUBE X 0 2@155 40 2@155 OBJECT 'MOUNT.SMM.14' ROTATE Y -TA. 0 0 SHIFT -38.7 1 -280 $DO 1 3 OBJ .?;REDEFINE COLOR BLUE. MKOSS !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! OSS TOWER !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! OSS TOWER: BIG SUPPORT ARMS !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! XCOUDE=462 SURFACE TUBE X 75.5 2@203 -999.5 2@203 OBJECT 'OSS.TOP.T0'

Page 65: (ATST) Stray and Scattered Light Analysis

64

SHIFT 0 -400 -8516 DX=2288-75.5 DY=0 DZ=8516-1646 RS=SQRT[DX.^2+DY.^2+DZ.^2] EDGES ELLIPSE Z 0 203 203 ALIGN 0 0 1 -DX./RS. DY./RS. DZ./RS. 0 0 0 SHIFT 75.5 -400 -8516 ELLIPSE Z 0 203 203 ALIGN 0 0 1 -DX./RS. DY./RS. DZ./RS. 0 0 0 SHIFT 2288 -400 -1646 OBJECT; .1 .2 'OSS.TOP.T1' DX=2288-75.5 DY=400+2950 DZ=8516-1646 RS=SQRT[DX.^2+DY.^2+DZ.^2] EDGES ELLIPSE Z 0 203 203 ALIGN 0 0 1 -DX./RS. DY./RS. DZ./RS. 0 0 0 SHIFT 75.5 -400 -8516 ELLIPSE Z 0 203 203 ALIGN 0 0 1 -DX./RS. DY./RS. DZ./RS. 0 0 0 SHIFT 2288 2950 -1646 OBJECT; .1 .2 'OSS.TOP.T2' DX=3212-999.5 DY=0 DZ=8516-1646 RS=SQRT[DX.^2+DY.^2+DZ.^2] EDGES ELLIPSE Z 0 203 203 ALIGN 0 0 1 DX./RS. DY./RS. DZ./RS. 0 0 0 SHIFT -999.5 -400 -8516 ELLIPSE Z 0 203 203 ALIGN 0 0 1 DX./RS. DY./RS. DZ./RS. 0 0 0 SHIFT -3212 -400 -1646 OBJECT; .1 .2 'OSS.TOP.T3' DX=3212-999.5 DY=400+2950 DZ=8516-1646 RS=SQRT[DX.^2+DY.^2+DZ.^2] EDGES ELLIPSE Z 0 203 203 ALIGN 0 0 1 DX./RS. DY./RS. DZ./RS. 0 0 0 SHIFT -999.5 -400 -8516 ELLIPSE Z 0 203 203 ALIGN 0 0 1 DX./RS. DY./RS. DZ./RS. 0 0 0 SHIFT -3212 2950 -1646 OBJECT; .1 .2 'OSS.TOP.T4'

Page 66: (ATST) Stray and Scattered Light Analysis

65

$DO 1 5 OBJ .?;REDEFINE COLOR UMBER. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! OSS TOWER: SECONDARY MIRROR SUPPORT AND SURROUND !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SURFACE TUBE Y -400 2@75 -1175 2@75 OBJECT 'OSS.SECSUP.1' SHIFT -999.5 0 -8516 SURFACE TUBE Y -400 2@75 -1175 2@75 OBJECT 'OSS.SECSUP.2' SHIFT 75.5 0 -8516 EDGE ELLIPSE Y 0 2@75 SHIFT 75.5 -1175 -8516 SWEEP AXIS -180 0 0 1 -462 -1175 -8516 OBJECT; .1 'OSS.SECSUP.3' SURFACE TUBE Y -400 2@75 -1175 2@75 OBJECT 'OSS.SECSUP.4' SHIFT -999.5 0 -7075 SURFACE TUBE Y -400 2@75 -1175 2@75 OBJECT 'OSS.SECSUP.5' SHIFT 75.5 0 -7075 EDGE ELLIPSE Y 0 2@75 SHIFT 75.5 -1175 -7075 SWEEP AXIS -180 0 0 1 -462 -1175 -7075 OBJECT; .1 'OSS.SECSUP.6' SURFACE TUBE Z 0 2@75 1441 2@75 OBJECT 'OSS.SECSUP.7' SHIFT 75.5 -1175 -8516 SURFACE TUBE Z 0 2@75 1441 2@75 OBJECT 'OSS.SECSUP.8' SHIFT -999.5 -1175 -8516 DY=775 DZ=1441 RS=SQRT[DY.^2+DZ.^2] TS=ATAN[DY./DZ.] SURFACE

Page 67: (ATST) Stray and Scattered Light Analysis

66

TUBE Z 0 2@75 RS. 2@75 OBJECT 'OSS.SECSUP.9' ROTATE X TS. 0 0 SHIFT 75.5 -400 -8516 SURFACE TUBE Z 0 2@75 RS. 2@75 OBJECT 'OSS.SECSUP.10' ROTATE X TS. 0 0 SHIFT -999.5 -400 -8516 $DO 1 10 OBJ .?;REDEFINE COLOR UMBER. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! OSS TOWER: SECONDARY MIRROR SHIELD !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SURFACE PLANE Y -1175 SURFACE PLANE Z -8516 RECT 537.5 387.5 OBJECT 'OSS.SHIELD.S1' SHIFT -462 -787.5 0 SURFACE PLANE Z -8516 ELLIP [email protected] OBJECT 'OSS.SHIELD.S2' SHIFT -462 -1175 0 BOUNDS -.3 $DO 1 2 OBJ .?;REDEFINE COLOR PLUM. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! OSS TOWER: PRIME FOCUS FIELD STOP !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! TA=13.95 !! RELATIVE TILT OF FIELD STOP (RH 4/14/03) IA=16 !! INTERNAL CONE HALF ANGLE OD=146 !! OUTER DIAMETER RIN=6.5 !! PFS ENTRANCE APERTURE RADIUS APER=270 !! APERTURE 1 RADIUS APEY=-1022 !! APERTURE 1 DECENTER SURFACE PLANE Z 0 ROTATE X TA. SHIFT -462 -1423 -7005 SURFACE TUBE Z -7068.35 2@APER. -6950 2@APER. OBJECT 'OSS.PFS.APE.EDGE' SHIFT -462 APEY. 0 SURFACE

Page 68: (ATST) Stray and Scattered Light Analysis

67

TUBE Z -7075 146 142 -6971 146 142 OBJECT 'OSS.PFS.OUTER.CYL' SHIFT -462 -1423 0 DZ=(7005-6906)/COS[TA.] SURFACE TUBE Z -7005 2@OD. -7005+DZ. 2@OD. OBJECT 'OSS.PFS.TILTED.CYL' ROTATE X TA. 0 -7005 SHIFT -462 -1423 0 SURFACE PLANE Z -6763 ELLI 2@RIN.+2 2@(RIN.)/(RIN.+2) OBJECT 'OSS.PFS.EDGE' ROTATE X TA. 0 -6763 SHIFT -462 -1484.8 0 INTERFACE 0.9 0;ROUGHNESS RANDOM 0 .0524;RET DZ=(6906-6763)/COS[TA.] SURFACE TUBE Z -6906 2@OD. -6906+DZ. 2@RIN.+2 OBJECT 'OSS.PFS.OUTER.CONE' ROTATE X TA. 0 -6906 SHIFT -462 -1448.4 0 INTERFACE 0.9 0;ROUGHNESS RANDOM 0 .0524;RET ODI=400*TAN[IA.]-RIN. SURFACE TUBE Z -6763 2@RIN. -7163 2@ODI. OBJECT 'OSS.PFS.INNER.CONE' ROTATE X TA. 0 -6763 SHIFT -462 -1484.8 0 $DO 1 5 OBJ .?;REDEFINE COLOR BLUE. !! ADJUST CENTER POSITION TO PASS BEAM WITHOUT CLIPPING GROUP -5 SHIFT Y YPFS. SHIFT Z ZPFS. RET OBJECT OSS.PFS.APE.EDGE; BOUNDS -.5 -.7 OBJECT OSS.PFS.OUTER.CYL; BOUNDS .6 -.7 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! OSS TOWER: APERTURE 1 !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SURFACE PLANE Y -1175 SURFACE TUBE Z -7081.35 2@APER. -7068.65 2@APER. OBJECT 'OSS.TOP.APE.0' SHIFT -462 APEY. 0

Page 69: (ATST) Stray and Scattered Light Analysis

68

SURFACE PLANE Z -7081.35 RECT 537.5 387.5 OBJECT 'OSS.TOP.APE.1' SHIFT -462 -787.5 0 BOUNDS .2 SURFACE PLANE Z -7081.35 ELLIP [email protected] OBJECT 'OSS.TOP.APE.2' SHIFT -462 -1175 0 BOUNDS .3 -.4 .5 SURFACE PLANE Z -7068.65 RECT 537.5 387.5 OBJECT 'OSS.TOP.APE.3' SHIFT -462 -787.5 0 BOUNDS .4 SURFACE PLANE Z -7068.65 ELLIP [email protected] OBJECT 'OSS.TOP.APE.4' SHIFT -462 -1175 0 BOUNDS .5 -.6 .7 OBJECT .6;BOUNDS .3;RET $DO 1 5 OBJ .?;REDEFINE COLOR PLUM. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! OSS TOWER: UPPER BOX ASSEMBLY !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! EDGES ELLIPSE X 0 75/COS[45] 75 ROTATE Z 45 SHIFT 539.6 302 -7075 ELLIPSE X 0 75/COS[45] 75 ROTATE Z -45 SHIFT -1463.6 302 -7075 ELLIPSE X 0 75/COS[45] 75 ROTATE Z -135 SHIFT -1463.6 -400 -7075 ELLIPSE X 0 75/COS[45] 75 ROTATE Z -225 SHIFT 539.6 -400 -7075 OBJECT; .4 .3 'OSS.TOP.CX1' OBJECT; .3 .2 'OSS.TOP.CX2' OBJECT; .2 .1 'OSS.TOP.CX3' OBJECT; .1 .4 'OSS.TOP.CX4' !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! OSS TOWER: MIDDLE BOX ASSEMBLY AND CROSS MEMBERS !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Page 70: (ATST) Stray and Scattered Light Analysis

69

EDGES ELLIPSE X 0 100/COS[45] 100 ROTATE Z 45 0 0 SHIFT 1363 1550 -4516 ELLIPSE X 0 100/COS[45] 100 ROTATE Z -45 0 0 SHIFT -2289 1550 -4516 ELLIPSE X 0 100/COS[45] 100 ROTATE Z -135 0 0 SHIFT -2289 -300 -4516 ELLIPSE X 0 100/COS[45] 100 ROTATE Z -225 0 0 SHIFT 1363 -300 -4516 OBJECT; .4 .3 'OSS.TOP.CX5' OBJECT; .3 .2 'OSS.TOP.CX6' OBJECT; .2 .1 'OSS.TOP.CX7' OBJECT; .1 .4 'OSS.TOP.CX8' EDGES ELLIPSE X 0 100 100 ROTATE Z 27.929 0 0 SHIFT 1363 1550 -4516 ELLIPSE X 0 100 100 ROTATE Z 27.929 0 0 SHIFT -2289 -300 -4516 OBJECT; .1 .2 'OSS.TOP.CX9' EDGES ELLIPSE X 0 100 100 ROTATE Z -27.929 0 0 SHIFT 1363 -300 -4516 ELLIPSE X 0 100 100 ROTATE Z -27.929 0 0 SHIFT -2289 1550 -4516 OBJECT; .1 .2 'OSS.TOP.CX10' !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! OSS TOWER: LOWER CROSS MEMBERS !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! DX=4575 DY=1950 DZ=2870 RS=SQRT[DX.^2+DY.^2+DZ.^2] EDGES ELLIPSE Z 0 100 100 ALIGN 0 0 1 -DX./RS. -DY./RS. DZ./RS. 0 0 0 SHIFT 1363 1550 -4516 ELLIPSE Z 0 100 100 ALIGN 0 0 1 -DX./RS. -DY./RS. DZ./RS. 0 0 0 SHIFT -3212 -400 -1646 OBJECT; .1 .2 'OSS.TOP.CX11'

Page 71: (ATST) Stray and Scattered Light Analysis

70

EDGES ELLIPSE Z 0 100 100 ALIGN 0 0 1 DX./RS. -DY./RS. DZ./RS. 0 0 0 SHIFT -2287 1550 -4516 ELLIPSE Z 0 100 100 ALIGN 0 0 1 DX./RS. -DY./RS. DZ./RS. 0 0 0 SHIFT 2288 -400 -1646 OBJECT; .1 .2 'OSS.TOP.CX12' DX=2288-1363 DY=1950 DZ=2870 RS=SQRT[DX.^2+DY.^2+DZ.^2] EDGES ELLIPSE Z 0 100 100 ALIGN 0 0 1 DX./RS. -DY./RS. DZ./RS. 0 0 0 SHIFT 1363 1550 -4516 ELLIPSE Z 0 100 100 ALIGN 0 0 1 DX./RS. -DY./RS. DZ./RS. 0 0 0 SHIFT 2288 -400 -1646 OBJECT; .1 .2 'OSS.TOP.CX13' EDGES ELLIPSE Z 0 100 100 ALIGN 0 0 1 -DX./RS. -DY./RS. DZ./RS. 0 0 0 SHIFT -2287 1550 -4516 ELLIPSE Z 0 100 100 ALIGN 0 0 1 -DX./RS. -DY./RS. DZ./RS. 0 0 0 SHIFT -3212 -400 -1646 OBJECT; .1 .2 'OSS.TOP.CX14' $DO 1 14 OBJ .?;REDEFINE COLOR UMBER. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! OSS BASE !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! OSS BASE: TOP FACE !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! TA=ATAN[(120.95-23)/600] SURFACE !! BOUNDING SURFACE FOR PASS-THRU TUBE Z 0 2@100 4846 2@100 ALIGN 0 0 1 0 SIN[TA.] COS[TA.] 0 0 0 SHIFT -462 -120.95 -1646 EDGES !! TOP (-Z) SIDE CORNERS / CUTOUTS POINTS 1738 1142 -1646 1, 1738 2700 -1646 1, -221 2700 -1646 1, 1738 1142 -1646 0,

Page 72: (ATST) Stray and Scattered Light Analysis

71

1497 950 -1646 1, -312 2389 -1646 1, -312 950 -1646 1, 1497 950 -1646 0, -2662 1142 -1646 1, -2662 2700 -1646 1, -703 2700 -1646 1, -2662 1142 -1646 0, -2421 950 -1646 1, -612 2389 -1646 1, -612 950 -1646 1, -2421 950 -1646 0 SWEEP DIR 600 0 0 1 OBJECT; .1 'OSS.BOTTOM.1' SURFACE !! UPPER SURFACE PLANE Z -1646 RECT 3000 1925 OBJECT 'OSS.BOTTOM.2' SHIFT -462 1275 0 BOUNDS .2 .3 SURFACE !! LOWER SURFACE PLANE Z -1046 RECT 3000 1925 OBJECT 'OSS.BOTTOM.3' SHIFT -462 1275 0 BOUNDS .3 .4 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! OSS BASE: CENTER SUPPORT !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! EDGES !! INSIDE CENTER SUPPORT CUTOUTS POINTS X -260, -650 3030 1, -650 -1645.9 1, 3200 -1645.9 1, 3200 2280 1, 2450 3030 1, -650 3030 0 -250 2730 1, -250 -1045.9 1, 2800 -1045.9 1, 2800 2256 1, 2332 2730 1, -250 2730 0 SWEEP DIR -400 1 0 0 OBJECT; .1 'OSS.BOTTOM.4' BOUNDS .5 SURFACE !! INSIDE CROSS MEMBER TUBE Y -250 150 200 2800 150 200 1 1 OBJECT 'OSS.BOTTOM.5' SHIFT -462 0 400 !!BOUNDS .6 SURFACE !! SIDE FACE OF CENTER SUPPORT PLANE X -260 RECT 1925 2338

Page 73: (ATST) Stray and Scattered Light Analysis

72

OBJECT 'OSS.BOTTOM.6' SHIFT 0 1275 692 BOUNDS -.3 SURFACE !! SIDE FACE OF CENTER SUPPORT PLANE X -660 RECT 1925 2338 OBJECT 'OSS.BOTTOM.7' SHIFT 0 1275 692 BOUNDS -.4 $DO 1 7 OBJ .?;REDEFINE COLOR DKGREEN. SURFACE !! LIGHT PATH CUTOUT THROUGH SUPPORT TUBE Z -10 2@100 700 2@100 OBJECT 'OSS.PASSTHRU.1' ALIGN 0 0 1 0 SIN[TA.] COS[TA.] 0 0 0 SHIFT -462 -120.95 -1646 BOUNDS -.5 REDEFINE COLOR LTGREEN. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! OSS BASE: PIVOT ARMS !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SURFACE !! +X PIVOT AXIS (OSS ROTATES ABOUT CENTER) TUBE X 3138 2@238 1738 2@238 OBJECT 'OSS.BEARING.1' SURFACE !! -X PIVOT AXIS (OSS ROTATES ABOUT CENTER) TUBE X -2662 2@238 -4062 2@238 OBJECT 'OSS.BEARING.2' SURFACE PLANE X 1738 ELLI 2@238 OBJECT 'OSS.BEARING.3' SURFACE PLANE X -2995 ELLI 2@238 OBJECT 'OSS.BEARING.4' $DO 1 4 OBJ .?;REDEFINE COLOR LTBROWN. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! OSS BASE: LEFT AND RIGHT SIDES (+X/-X) !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! EDGE !! OUTSIDE (+X) SUPPORT CUTOUTS POINTS X 2538, -650 3030 1, -650 -1645.9 1, 3200 -1645.9 1, 3200 2280 1, 2450 3030 1, -650 3030 0,

Page 74: (ATST) Stray and Scattered Light Analysis

73

1175 1480 1, 2800 -429 1, 2800 1480 1, 1175 1480 0, 650 1480 1, 650 -1045.9 1, 2800 -1045.9 1, 650 1480 0 SWEEP DIR -800 1 0 0 OBJECT; .1 'OSS.BOTTOM.8' SURFACE !! OUTSIDE (+X) SUPPORT - INSIDE FACE (OUTSIDE OMITTED) PLANE X 1738 RECT 1925 2338 OBJECT 'OSS.BOTTOM.9' SHIFT 0 1275 692 BOUNDS -.2 .6 EDGE !! OUTSIDE (-X) SUPPORT CUTOUTS POINTS X -2612, -650 3030 1, -650 -1645.9 1, 3200 -1645.9 1, 3200 2280 1, 2450 3030 1, -650 3030 0, 1175 1480 1, 2800 -429 1, 2800 1480 1, 1175 1480 0, 650 1480 1, 650 -1045.9 1, 2800 -1045.9 1, 650 1480 0 SWEEP DIR -800 1 0 0 OBJECT; .1 'OSS.BOTTOM.10' SURFACE !! OUTSIDE (-X) SUPPORT - INSIDE FACE (OUTSIDE OMITTED) PLANE X -2612 RECT 1925 2338 OBJECT 'OSS.BOTTOM.11' SHIFT 0 1275 692 BOUNDS -.2 .7 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! OSS BASE: UPPER SIDE (+Y) !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SURFACE !! TUBE X -660 200 150 -2662 200 150 1 1 OBJECT 'OSS.BOTTOM.12' SHIFT 0 3000 400 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! OSS BASE: LOWER SIDE (-Y) !!

Page 75: (ATST) Stray and Scattered Light Analysis

74

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! EDGE !! UPPER SIDE (-Y) SUPPORT CUTOUTS POINTS Y -650, -1046.1 1738 1, -1046.1 548 1, -418 1738 1, -1046.1 1738 0, 20 1713 1, -1020 -262 1, 1455 -262 1, 20 1713 0, 496 1738 1, 1480 384 1, 1480 1738 1, 496 1738 0, -1020 -662 1, 20 -2636 1, 1455 -662 1, -1020 -662 0, -1046.1 -1472 1, -1046.1 -2662 1, -418 -2662 1, -1046.1 -1472 0, 1480 -1308 1, 496 -2662 1, 1480 -2662 1, 1480 -1308 0, -1645.8 1739 1, -1645.8 -2663 1, 2280 -2663 1, 2280 1739 1, -1645.8 1739 0 SWEEP DIR 400 0 1 0 OBJECT; .1 'OSS.BOTTOM.13' SURFACE !! LOWER SIDE -Y) OUTSIDE FACE PLANE Y -649.9 RECT 1963 2200 OBJECT 'OSS.BOTTOM.14' SHIFT -462 0 317 BOUNDS -.2 SURFACE !! LOWER SIDE (-Y) INSIDE FACE PLANE Y -250.1 RECT 1963 2200 OBJECT 'OSS.BOTTOM.15' SHIFT -462 0 317 BOUNDS -.3 $DO 1 8 OBJ .?;REDEFINE COLOR DKGREEN. EDGES POINTS X 2448, -650 4200 1, -650 3030 1, 2450 3030 1, 3200 2280 1,

Page 76: (ATST) Stray and Scattered Light Analysis

75

3200 -955 1, 4141 -955 0 ARC X 2448 4141 -955 0 0 111.8 COMPOSITE -2 SWEEP DIR -200, 1 0 0 OBJECT; .1 'OSS.BASE.16' SURFACE PLANE X 2348 ELLI 2@4250 OBJECT 'OSS.BASE.17' BOUNDS -.2 EDGES POINTS X -3162, -650 4200 1, -650 3030 1, 2450 3030 1, 3200 2280 1, 3200 -955 1, 4141 -955 0 ARC X -3162 4141 -955 0 0 111.8 COMPOSITE -2 SWEEP DIR -200, 1 0 0 OBJECT; .1 'OSS.BASE.18' SURFACE PLANE X -3262 ELLI 2@4250 OBJECT 'OSS.BASE.19' BOUNDS -.2 $DO 1 4 OBJ .?;REDEFINE COLOR TANNISH. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! OSS BASE: INSIDE BRACKET MOUNT !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SURFACE PLANE Y -250 RECT 351 162 OBJECT 'OSS.BRACKET_MOUNT.1' SHIFT -824 0 -545 SURFACE PLANE X 0 ROTATE Z 45 SHIFT -848 -475 -545 SURFACE PLANE Z -824 RECT 162 200 OBJECT 'OSS.BRACKET_MOUNT.2' SHIFT -824 -450 0 BOUNDS .2 SURFACE

Page 77: (ATST) Stray and Scattered Light Analysis

76

PLANE Z -344 RECT 162 200 OBJECT 'OSS.BRACKET_MOUNT.3' SHIFT -824 -450 0 BOUNDS .3 $DO 1 3 OBJ .?;REDEFINE COLOR PLUM. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! OSS BASE: SMALL MIRROR MOUNTS: M3 !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! EDGES POINTS Y 86, -75 -262 1, -75 -352 1, -79.5 -356.5 1, 120.5 -556.5 1, 125 -552 1, 225 -552 1, 225 -262 1, -75 -262 0, -38.4 -332 1, 141.6 -512 1, 185 -512 1, 185 -332 1, -38.4 -332 0 POINTS Y 206, -75 -262 1, -75 -352 1, -93.9 -370.9 1, 109 -568 1, 125 -552 1, 225 -552 1, 225 -262 1, -75 -262 0, -38.4 -332 1, 141.6 -512 1, 185 -512 1, 185 -332 1, -38.4 -332 0 OBJECT; .1 .2 'OSS.SMM.1' SURFACE PLANE Y 86 RECT 165 165 OBJECT 'OSS.SMM.2' SHIFT -412 0 66 BOUNDS -.3 SURFACE PLANE Y 206 RECT 165 165 OBJECT 'OSS.SMM.3' SHIFT -412 0 66 BOUNDS -.3 SURFACE

Page 78: (ATST) Stray and Scattered Light Analysis

77

PLANE Z 225.1 RECT 150 175 OBJECT 'OSS.SMM.4' SHIFT -407 146 0 SURFACE TUBE Z 225.1 150 175 250 150 175 1 1 OBJECT 'OSS.SMM.5' SHIFT -407 146 0 EDGE POINTS X -284, 206.1 225.1 1, 206.1 -75 1, 231 -75 1, 321 200 1, 321 225.1 1, 206.1 225.1 0 SWEEP DIR 25 -1 0 0 OBJECT; .1 'OSS.SMM.6' SURFACE PLANE X -284 RECT 60 160 OBJECT 'OSS.SMM.7' SHIFT 0 264 75 BOUNDS -.2 SURFACE PLANE X -309 RECT 60 160 OBJECT 'OSS.SMM.8' SHIFT 0 264 75 BOUNDS -.3 $DO 1 8 OBJ .?;REDEFINE COLOR VIOLET. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! OSS BASE: PRIMARY MIRROR SUPPORT !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! EDGES !! OCTAGONAL SUPPORT: SEGMENTS 1, 2 RECT Y -650 800 250 SHIFT 2288 0 2280 RECT Y -4263 400 250 SHIFT 2288 0 1880 RECT Y -6388 400 250 SHIFT 1061 0 1880 OBJECT; .2 .3 'OSS.PM.ARM.1' OBJECT; .1 .2 'OSS.PM.ARM.2' SURFACE !! OCTAGONAL SUPPORT: SEGMENT 3 TUBE X 1311 150 400 -2236 150 400 1 1 OBJECT 'OSS.PM.ARM.3 SHIFT 0 -6238 1880 EDGES !! OCTAGONAL SUPPORT: SEGMENTS 4, 5 RECT Y -650 800 250

Page 79: (ATST) Stray and Scattered Light Analysis

78

SHIFT -3212 0 2280 RECT Y -4263 400 250 SHIFT -3212 0 1880 RECT Y -6388 400 250 SHIFT -1985 0 1880 OBJECT; .2 .3 'OSS.PM.ARM.4' OBJECT; .1 .2 'OSS.PM.ARM.5' EDGES !! OCTAGONAL SUPPORT: SEGMENTS 6, 7, 8 RECT X 2038 262.5 400 SHIFT 0 -2317.5 1880 RECT X 417 262.5 400 SHIFT 0 -957.5 1880 RECT X -1341 262.5 400 SHIFT 0 -957.5 1880 RECT X -2962 262.5 400 SHIFT 0 -2317.5 1880 OBJECT; .4 .3 'OSS.PM.ARM.6' OBJECT; .3 .2 'OSS.PM.ARM.7' OBJECT; .2 .1 'OSS.PM.ARM.8' EDGES !! ANGLED SUPPORT ARM (1 OF 2) RECT Y 0 330.5 250 SHIFT 2288 -650 -1315.5 RECT Y 0 330.5 250 ROTATE X -90 0 0 SHIFT 2288 -3933.5 1480 OBJECT; .1 .2 'OSS.PM.ARM.9' EDGES !! ANGLED SUPPORT ARM (2 OF 2) RECT Y 0 330.5 250 SHIFT -3212 -650 -1315.5 RECT Y 0 330.5 250 ROTATE X -90 0 0 SHIFT -3212 -3933.5 1480 OBJECT; .1 .2 'OSS.PM.ARM.10' $DO 1 10 OBJ .?;REDEFINE COLOR TANNISH. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! OSS BASE: PRIMARY MIRROR SUPPORT - CELL ASSEMBLY !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SURFACE TUBE Z 1492 2@2305 2282 2@2305 OBJECT 'OSS.PM.CELL.1' SHIFT -462 -3583 0 SURFACE PLANE Z 2282 ELLI 2@2305 OBJECT 'OSS.PM.CELL.2' SHIFT -462 -3583 0 SURFACE

Page 80: (ATST) Stray and Scattered Light Analysis

79

TUBE Y -1287 2@200 -823 2@200 1 1 OBJECT 'OSS.PM.CELL.ARM.1' SHIFT -462 0 2082 BOUNDS .3 SURFACE TUBE Y -1287 2@200 -823 2@200 1 1 OBJECT 'OSS.PM.CELL.ARM.2' SHIFT -462 0 2082 ROTATE Z 120 -462 -3583 BOUNDS .4 SURFACE TUBE Y -1287 2@200 -823 2@200 1 1 OBJECT 'OSS.PM.CELL.ARM.3' SHIFT -462 0 2082 ROTATE Z -120 -462 -3583 BOUNDS .5 $DO 1 5 OBJ .?;REDEFINE COLOR MAROON. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! OSS BASE: PRIMARY MIRROR SUPPORT - MIRROR COVER !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SURFACE TUBE Z 74 2200 213 1304 2200 213 1 1 OBJECT 'OSS.PM.COVER.1' SHIFT -462 -863 0 SURFACE PLANE Z 74 RECT 2200 213 OBJECT 'OSS.PM.COVER.2' SHIFT -462 -863 0 SURFACE PLANE Z 1304 RECT 2200 213 OBJECT 'OSS.PM.COVER.3' SHIFT -462 -863 0 $GO nocover EDGE ELLIPSE Y 0 [email protected] 16 45 315 EDGE POINTS Y 0 25.4*COS[45] 25.4*COS[45] 1, 76.2 25.4*COS[45] 1, 76.2 38 1, 101.6 38 1, 101.6 -38 1, 76.2 -38 1, 76.2 -25.4*COS[45] 1, 25.4*COS[45] -25.4*COS[45] 0 COMPOSITE -2

Page 81: (ATST) Stray and Scattered Light Analysis

80

SWEEP DIR -5100 0 1 0 OBJECT; .1 'OSS.PM.RAIL.1' SHIFT -2727 -650 1253 EDGE REPEAT .1 SWEEP DIR -5100 0 1 0 OBJECT; .1 'OSS.PM.RAIL.2' SHIFT 4530 0 0 EDGE ELLIPSE Y 0 [email protected] 16 0 360 EDGE !! INCREASED Y DECENTERS BY 100 MM TO PASS INCIDENT BEAM 4/14/03 POINTS X 1738, -6290 1480 1, -6290 1202 1, -5746 1202 1, -5746 1292 1, -5740 1292 1, -5720 1298 1, -5720 1304 1, -6188 1304 1, -6188 1480 1 SWEEP DIR -4400 1 0 0 OBJECT; .1 'OSS.PM.LATCH.1' SURFACE PLANE X 1738 RECT 385/COS[45] 139 OBJECT 'OSS.PM.LATCH.2' SHIFT 0 -6005 1341 ROTATE Z -45 1738 -5720 BOUNDS -.2 SURFACE PLANE X -2662 RECT 385/COS[45] 139 OBJECT 'OSS.PM.LATCH.3' SHIFT 0 -6005 1341 ROTATE Z 45 -2662 -5720 BOUNDS -.3 OBJECT OSS.PM.LATCH.1; BOUNDS .1 -.2 $DO 1 8 OBJ .?;REDEFINE COLOR MDBLUE. nocover $DO 1 3 OBJ .?;REDEFINE COLOR MDBLUE. GROUP "OSS.?" ROTATE X OSSTILT.+ZENITH.+SUNLOS. 0 0 RET

Page 82: (ATST) Stray and Scattered Light Analysis

81

MKOPTICS !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! OPTICS !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! OPTICS LAYOUT IMPORTED FROM 'ATST_BASELINE.INR' (ROB HUBBARD, 4/14/03) STOPIR=2000.001 STOPOR=3000.0015 SURFACE PLANE Z -1212.7 ELLIPSE 2@STOPOR. STOPIR./STOPOR. OBJECT 'FEO.STOP.FRONT' SHIFT Y -4000.0 REDEFINE COLOR 3 SURFACE PLANE Z -1200 ELLIPSE 2@STOPOR. STOPIR./STOPOR. OBJECT 'FEO.STOP.BACK' SHIFT Y -4000.0 REDEFINE COLOR 3 SURFACE TUBE Z -1212.7 2@STOPIR. -1200 2@STOPIR. OBJECT 'FEO.STOP.EDGE' SHIFT Y -4000.0 REDEFINE COLOR 3 !! Define M1 (Primary) ENTITIES TUBE Z -1125.0 [email protected] 333.0 [email protected] SHIFT Y -4000.0000000 OPTICAL Z 100.0 -16000.0 -1.0 ELLIPSE [email protected] OPTICAL Z 0.0 -16000.0 -1.0 ELLIPSE [email protected] OBJECTS .1 'FEO.M1.FRONT' INTERFACE 1 0 AIR AIR BOUNDS -.3 REDEFINE COLOR 1 .2 'FEO.M1.BACK' REDEFINE COLOR 25 BOUNDS -.3 .3 'FEO.M1.EDGE' BOUNDS .1 -.2 REDEFINE COLOR 25 GROUP "FEO.M1.?" !! Define M2 (Secondary) ENTITIES TUBE Z -200.0 [email protected] 500 [email protected] SHIFT Y 600.0000000 OPTICAL Z -100.0 2081.258848 -0.539167 ELLIPSE [email protected] OPTICAL Z 0.0 2081.258848 -0.539167 ELLIPSE [email protected]

Page 83: (ATST) Stray and Scattered Light Analysis

82

OBJECTS .1 'FEO.M2.FRONT' INTERFACE 1 0 AIR AIR BOUNDS -.3 REDEFINE COLOR 1 .2 'FEO.M2.BACK' REDEFINE COLOR 25 BOUNDS -.3 .3 'FEO.M2.EDGE' BOUNDS -.1 +.2 REDEFINE COLOR 25 GROUP "FEO.M2.?" SHIFT Z -9200.0 !! Define Gregorian focal plane !! Computed dimension is 38 mm semidiameter SURFACE PLANE Z 0 ELLI 39 OBJECT 'FEO.GREGORIAN.FOCUS' INTERFACE 0 FOCUSPOS. AIR AIR REDEFINE COLOR RED. SHIFT 0 0.0208 -1365.1498 !!NOTE THIS IS ADJUSTED FOR GROUP SHIFT LATER !! Define M3 (Fold mirror) SURFACE TUBE Z -100.0 [email protected] 100.0 [email protected] OBJECT 'FEO.M3.EDGE' SHIFT Y -22 REDEFINE COLOR 25 SURFACE PLANE Z 25.0 ELLIPSE [email protected] OBJECT 'FEO.M3.BACK' SHIFT X -10.0000000 SHIFT Y -30.0000000 ROTATE Y 45.0 ROTATE Z -1.014351 BOUNDS -.2 REDEFINE COLOR 25 SURFACE PLANE Z 0.0 ELLIPSE [email protected] OBJECT 'FEO.M3.FRONT' SHIFT X -10.0000000 SHIFT Y -30.0000000 ROTATE Y 45.0 ROTATE Z -1.014351 INTERFACE 1 0 AIR AIR BOUNDS -.3 REDEFINE COLOR 1 OBJECT FEO.M3.EDGE;BOUNDS .1 -.2 GROUP -3 SHIFT Z -1065.0

Page 84: (ATST) Stray and Scattered Light Analysis

83

RET !! Define M4 (Transfer mirror) ENTITIES TUBE Z -28.0 [email protected] 16.582658 [email protected] SHIFT Y -207.0000000 PLANE Z -28.0 ELLIPSE [email protected] SHIFT Y -207.0000000 OPTICAL Z 0.0 4708.325239 -0.534183 ELLIPSE [email protected] OBJECTS .1 'FEO.M4.FRONT' INTERFACE 1 0 AIR AIR BOUNDS -.3 REDEFINE COLOR 1 .2 'FEO.M4.BACK' REDEFINE COLOR 25 .3 'FEO.M4.EDGE' BOUNDS -.1 REDEFINE COLOR 25 GROUP "FEO.M4.?" ROTATE X 0.836207 ROTATE Y 90.0 SHIFT X -2499.727957 SHIFT Y 37.495041 SHIFT Z -1065.0 RET !! Define M5 (Folding Flat, probably DM) ENTITIES TUBE Z 0.0 [email protected] 17.0 [email protected] SHIFT X 20.0000000 SHIFT Y 10.0000000 PLANE Z 17.0 ELLIPSE [email protected] SHIFT X 20.0000000 SHIFT Y 10.0000000 PLANE Z 0.0 ELLIPSE 2@100 SHIFT X 20.0000000 SHIFT Y 10.0000000 OBJECTS .1 'AFTOPT.M5.FRONT' INTERFACE 1 0 AIR AIR REDEFINE COLOR 1 .2 'AFTOPT.M5.BACK' REDEFINE COLOR 25 .3 'AFTOPT.M5.EDGE' REDEFINE COLOR 25 GROUP "AFTOPT.M5.?" ROTATE Y 80.0 ROTATE Z 0.006737 SHIFT X 1096.874774 SHIFT Y -194.839668+16.0 !! Adjust Jim's location SHIFT Z -1065.0 RET !! Define M6

Page 85: (ATST) Stray and Scattered Light Analysis

84

ENTITIES TUBE Z -15.0 [email protected] 0.0 [email protected] SHIFT X 25.0000000 SHIFT Y 13.0000000 PLANE Z -15.0 ELLIPSE [email protected] SHIFT X 25.0000000 SHIFT Y 13.0000000 PLANE Z 0.0 ELLIPSE [email protected] SHIFT X 25.0000000 SHIFT Y 13.0000000 OBJECTS .1 'AFTOPT.M6.FRONT' INTERFACE 1 0 AIR AIR REDEFINE COLOR 1 .2 'AFTOPT.M6.BACK' REDEFINE COLOR 25 .3 'AFTOPT.M6.EDGE' REDEFINE COLOR 25 GROUP "AFTOPT.M6.?" ROTATE X 1.3709409E-04 ROTATE Y 35.0 ROTATE Z 0.006507 SHIFT X 439.089943 SHIFT Y -194.917015+14.0 !! Adjust Jim's location SHIFT Z -1304.4141 RET !! DEFINE LYOT STOP (POSITION/ORIENTATION FROM ASAP RAYTRACE) SURFACE PLANE Z 0 ELLI 2@360 2@RL./360 OBJECT 'FEO.LYOT.FRONT' SHIFT 0 501.1842 -7900 REDEFINE COLOR RED. SURFACE PLANE Z 12.7 ELLI 2@360 2@RL./360 OBJECT 'FEO.LYOT.BACK' SHIFT 0 501.1842 -7900 REDEFINE COLOR RED. SURFACE TUBE Z 0 2@258 12.7 2@RL. OBJECT 'FEO.LYOT.EDGE' SHIFT 0 501.1842 -7900 REDEFINE COLOR RED. !! Define Coude Focus SURFACE PLANE Z 9180.245 ELLIPSE 2@202 !! SHIFTED FOCUS -15.24 MM OBJECT 'AFTOPT.COUDE' ROTATE X 3.8126609E-04 ROTATE Z 0.00624

Page 86: (ATST) Stray and Scattered Light Analysis

85

SHIFT X 462.0 SHIFT Y -169.7 REDEFINE COLOR 1 RETURN !! DEFINE SCATTER IMPORTANCE EDGES..... !! PUPIL IMAGES EDGE 401 !! LYOT APERTURE ELLIPSE Z 0 RL. RL. SHIFT 0 501.1842 -7900 EDGE 402 !! IMAGE OF LYOT STOP ELLIPSE X 654 100 100 SHIFT 0 -169.9587 -1064.8 EDGE 403 !! AREA AROUND HEAT STOP ELLIPSE Y 0 2@200 SHIFT Z -8200 !! DEFINE EDGES FOR OPTICAL SURFACES EDGE 501 !! PRIMARY MIRROR SCATTER EDGE ELLI Z 0 2@2000/COS[14.046] SHIFT 0 -4000 -625 ROTATE X 14.036 -4000 -625 EDGE 502 !! SECONDARY MIRROR SCATTER EDGE ELLI Z 0 2@400/COS[16] SHIFT 0 600 -9075 ROTATE X 16 600 -9075 EDGE 503 !! FOLD MIRROR SCATTER EDGE ELLI Z 0 55/COS[45] 55 SHIFT 0 -20 -1065 ROTATE Y 45 -1065 0 EDGE 504 !! TRANSFER MIRROR SCATTER EDGE ELLI Z 0 2@175 ROTATE X 0.836207 ROTATE Y 90.0 SHIFT X -2499.727957 SHIFT Y 37.495041-207 SHIFT Z -1065.0 EDGE 505 !! M5 SCATTER EDGE ELLI Z 0 2@100 ROTATE Y 80.0 ROTATE Z 0.006737 SHIFT X 1096.874774+20 SHIFT Y -194.839668+26.0 !! Adjust Jim's location SHIFT Z -1065.0

Page 87: (ATST) Stray and Scattered Light Analysis

86

EDGE 506 !! M6 SCATTER EDGE ELLI Z 0 2@140 ROTATE X 1.3709409E-04 ROTATE Y 35.0 ROTATE Z 0.006507 SHIFT X 439.089943+25 SHIFT Y -194.917015+27.0 !! Adjust Jim's location SHIFT Z -1304.4141 EDGE 507 !! COUDE FOCUS ELLI Z 9180.245 2@205 ROTATE X 3.8126609E-04 ROTATE Z 0.00624 SHIFT X 462.0 SHIFT Y -167.9 !! DEFINE IMPORTANCE EDGES BASED ON SIZE AND APPARENT LOCATION OF COUDE !! FOCUS EDGE 601 ELLI Z 0 2@8 !! PRIME FOCUS (M1) ROTATE X 27.9 0 0 SHIFT Z -8000 EDGE 602 !! GREGORIAN FOCUS (M2) ELLI Z 0 2@60 SHIFT Y -20 SHIFT Z -1065 EDGE 603 !! (M3) ELLI Z 0 2@210 SHIFT Z 17313 ALIGN 0 0 1 -0.9982694222 -0.0587905463 -0.0013536569 0 0 0 SHIFT 0 -22.96116 -1065.406 EDGE 604 !! (M4) ELLI Z 0 2@20 SHIFT Z 0 ALIGN 0 0 1 0.9999999167161 0.0002766181339287 0.000300083816401 0 0 0 SHIFT 1117.380 -169.6295 -1067.867 EDGE 605 !! (M5) ELLI Z 0 2@210 SHIFT Z 11195 ALIGN 0 0 1 -0.9397802903 -0.0001020426 -0.3417791620 0 0 0 SHIFT 1117.380 -169.6295 -1067.867 EDGE 606 !! (M6) ELLI Z 0 2@210 SHIFT Z 10500 ALIGN 0 0 1 -0.0002564351 0.0000007384 0.9999999671 0 0 0 SHIFT 465.0689 -169.7003 -1305.099 !! DOME EDGES EDGE 701 !! A BIG CIRCLE AROUND THE TELESCOPE

Page 88: (ATST) Stray and Scattered Light Analysis

87

ELLI X 0 2@13000 EDGE 702 ELLI Z 4750 2@6150 !! THE DOME FLOOR EDGE 703 ELLI Z 4750 2@200 !! THE TOP OF THE HOLE IN THE DOME FLOOR (TO COUDE) EDGE 704 ELLI Z 6375 2@200 !! THE BOTTOM OF THE HOLE IN THE DOME FLOOR (TO COUDE) !! PASS THRU TA=ATAN[(120.95-23)/600] EDGE 802 !! SCATTER IMPORTANCE EDGE FOR PASS-THRU ELLI Z 0 100 100/COS[TA.] ALIGN 0 0 1 0 SIN[TA.] COS[TA.] 0 0 0 SHIFT -462 -120.95 -1646 !! APPLY GROUP TRANSFORMATION MATRICES GROUP "FEO.?" SHIFT X -462 SHIFT Y 169.7 SHIFT Z 1068 ROTATE X ZENITH.+SUNLOS. 0 0 RET EDGE 401; MATRIX PREVIOUS;RET EDGE 403; MATRIX PREVIOUS;RET $DO 501 504 EDGE ?;MATRIX PREVIOUS;RET $DO 601 604 EDGE ?;MATRIX PREVIOUS;RET GROUP "AFTOPT?" SHIFT X -462 SHIFT Y 169.7 SHIFT Z 1068 RET EDGE 402;MATRIX PREVIOUS;RET $DO 505 507 EDGE ?;MATRIX PREVIOUS;RET $DO 605 606 EDGE ?;MATRIX PREVIOUS;RET EDGE 802;ROTATE X OSSTILT.+ZENITH.+SUNLOS. 0 0; RET !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! END GEOMETRY !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Page 89: (ATST) Stray and Scattered Light Analysis

88

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! ASSIGN MODELS AND IMPORTANCE EDGES !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ALL_SCATTER SRAYS=10 !! DOME OBJECTS $IF DO_DOME. EQ 0 $GO skipdome $DO 1 6 OBJECT DOME.WIN.?;SCATTER MODEL 1; TOWARDS EDGE 403 SRAYS.; TOWARDS EDGE 501 SRAYS.; TOWARDS EDGE 502 SRAYS.; LEVEL MLEV.;RET $DO 0 4 OBJECT DOME.INNER.?;SCATTER MODEL 10; TOWARDS EDGE 403 SRAYS.; TOWARDS EDGE 501 SRAYS.; TOWARDS EDGE 502 SRAYS.; TOWARDS EDGE 802 SRAYS.; LEVEL MLEV.;RET OBJECT DOME.SLIT;SCATTER MODEL 10; TOWARDS EDGE 403 SRAYS.; TOWARDS EDGE 501 SRAYS.; TOWARDS EDGE 802 SRAYS.; LEVEL MLEV.;RET $DO 1 2 OBJECT DOME.SHUTTER1.?;SCATTER MODEL 10; TOWARDS EDGE 403 SRAYS.; TOWARDS EDGE 501 SRAYS.; TOWARDS EDGE 703 SRAYS.; TOWARDS EDGE 802 SRAYS.; LEVEL MLEV.;RET $DO 2 3 OBJECT DOME.SHUTTER?.1;SCATTER MODEL 10; TOWARDS EDGE 403 SRAYS.; TOWARDS EDGE 501 SRAYS.; TOWARDS EDGE 703 SRAYS.; TOWARDS EDGE 802 SRAYS.; LEVEL MLEV.;RET OBJECT DOME.SNORKEL.2;SCATTER MODEL 10; TOWARDS EDGE 501 SRAYS.; TOWARDS EDGE 703 SRAYS.; TOWARDS EDGE 802 SRAYS.; LEVEL MLEV.;RET

Page 90: (ATST) Stray and Scattered Light Analysis

89

skipdome !! OSS MOUNT BASE $IF DO_BASE. EQ 0 $GO skipbase $DO 1 13 OBJECT MOUNT.BASE.?;SCATTER MODEL 1; TOWARDS EDGE 502 SRAYS.; TOWARDS EDGE 505 SRAYS.; TOWARDS EDGE 506 SRAYS.; LEVEL MLEV.;RET OBJECT MOUNT.BASE.14;SCATTER MODEL 1;TOWARDS EDGE 507 SRAYS.;LEVEL OLEV.;RET OBJECT MOUNT.BASE.15;SCATTER MODEL 10; TOWARDS EDGE 502 SRAYS.; TOWARDS EDGE 701 SRAYS.; LEVEL MLEV.;RET $DO 1 15 OBJECT MOUNT.CTRPOST.?;SCATTER MODEL 1; TOWARDS EDGE 503 SRAYS. TOWARDS EDGE 504 SRAYS. TOWARDS EDGE 505 SRAYS. TOWARDS EDGE 506 SRAYS. TOWARDS EDGE 703 SRAYS. LEVEL MLEV.;RET $DO 9 14 OBJECT MOUNT.SMM.?;SCATTER MODEL 1; TOWARDS EDGE 503 SRAYS. TOWARDS EDGE 504 SRAYS. TOWARDS EDGE 505 SRAYS. TOWARDS EDGE 506 SRAYS. TOWARDS EDGE 703 SRAYS. LEVEL MLEV.;RET skipbase !! OSS $IF DO_OSS. EQ 0 $GO skiposs $DO 0 4 OBJECT OSS.TOP.T?;SCATTER MODEL 1; TOWARDS EDGE 403 SRAYS.; TOWARDS EDGE 501 SRAYS.; TOWARDS EDGE 502 SRAYS.; TOWARDS EDGE 802 SRAYS.; LEVEL MLEV.;RET

Page 91: (ATST) Stray and Scattered Light Analysis

90

$DO 1 14 OBJECT OSS.TOP.CX?;SCATTER MODEL 1; TOWARDS EDGE 403 SRAYS.; TOWARDS EDGE 501 SRAYS.; TOWARDS EDGE 502 SRAYS.; TOWARDS EDGE 802 SRAYS.; LEVEL MLEV.;RET $DO 0 4 OBJECT OSS.TOP.APE.?;SCATTER MODEL 1; TOWARDS EDGE 501 SRAYS.; TOWARDS EDGE 502 SRAYS.; TOWARDS EDGE 703 SRAYS.; TOWARDS EDGE 802 SRAYS.; LEVEL MLEV.;RET $DO 1 10 OBJECT OSS.SECSUP.?;SCATTER MODEL 1; TOWARDS EDGE 501 SRAYS.; TOWARDS EDGE 502 SRAYS.; TOWARDS EDGE 802 SRAYS.; LEVEL MLEV.;RET $DO 1 2 OBJECT OSS.SHIELD.?;SCATTER MODEL 1;TOWARDS EDGE 802 SRAYS.;TOWARDS EDGE 501 SRAYS.;LEVEL MLEV.;RET OBJECT OSS.PASSTHRU.1;SCATTER MODEL 1;TOWARDS EDGE 503 SRAYS.;LEVEL OLEV.;RET $DO 1 1 OBJECT OSS.BOTTOM.?;SCATTER MODEL 1; TOWARDS EDGE 502 SRAYS.; TOWARDS EDGE 503 SRAYS.; TOWARDS EDGE 504 SRAYS.; TOWARDS EDGE 703 SRAYS.; LEVEL MLEV.;RET OBJECT OSS.BOTTOM.2;SCATTER MODEL 1; TOWARDS EDGE 502 SRAYS.;LEVEL MLEV.; RET $DO 3 11 OBJECT OSS.BOTTOM.?;SCATTER MODEL 1; TOWARDS EDGE 502 SRAYS.; TOWARDS EDGE 503 SRAYS.; TOWARDS EDGE 504 SRAYS.; TOWARDS EDGE 505 SRAYS.; TOWARDS EDGE 506 SRAYS.; TOWARDS EDGE 703 SRAYS.; LEVEL MLEV.;RET OBJECT OSS.BOTTOM.12;SCATTER MODEL 1;TOWARDS EDGE 501 SRAYS.;TOWARDS EDGE 703 SRAYS.;LEVEL MLEV.;RET $DO 13 14 OBJECT OSS.BOTTOM.?;SCATTER MODEL 1;

Page 92: (ATST) Stray and Scattered Light Analysis

91

TOWARDS EDGE 501 SRAYS.; TOWARDS EDGE 502 SRAYS.; TOWARDS EDGE 505 SRAYS.; TOWARDS EDGE 506 SRAYS.; TOWARDS EDGE 703 SRAYS.; LEVEL MLEV.;RET $DO 15 15 OBJECT OSS.BOTTOM.?; SCATTER MODEL 1; TOWARDS EDGE 502 SRAYS.; TOWARDS EDGE 503 SRAYS.; TOWARDS EDGE 504 SRAYS.; TOWARDS EDGE 505 SRAYS.; TOWARDS EDGE 506 SRAYS.; TOWARDS EDGE 703 SRAYS.; LEVEL MLEV.;RET $DO 1 4 OBJECT OSS.BEARING.?;SCATTER MODEL 1; TOWARDS EDGE 503 SRAYS.; TOWARDS EDGE 504 SRAYS.; TOWARDS EDGE 505 SRAYS.; TOWARDS EDGE 506 SRAYS.; TOWARDS EDGE 703 SRAYS.; LEVEL MLEV.;RET $DO 1 8 OBJECT OSS.SMM.?;SCATTER MODEL 1; TOWARDS EDGE 505 SRAYS.; TOWARDS EDGE 506 SRAYS.; TOWARDS EDGE 703 SRAYS.; LEVEL MLEV.;RET $DO 1 3 OBJECT OSS.BRACKET_MOUNT.?;SCATTER MODEL 1; TOWARDS EDGE 501 SRAYS.; TOWARDS EDGE 503 SRAYS.; TOWARDS EDGE 504 SRAYS.; TOWARDS EDGE 505 SRAYS.; TOWARDS EDGE 506 SRAYS.; TOWARDS EDGE 703 SRAYS.; LEVEL MLEV.;RET $DO 1 10 OBJECT OSS.PM.ARM.?;SCATTER MODEL 1; TOWARDS EDGE 502 SRAYS.;LEVEL MLEV.; RET $DO 1 2 OBJECT OSS.PM.CELL.?;SCATTER MODEL 1; TOWARDS EDGE 502 SRAYS.; TOWARDS EDGE 703 SRAYS.; LEVEL MLEV.;RET $DO 1 3 OBJECT OSS.PM.COVER.?;SCATTER MODEL 1;

Page 93: (ATST) Stray and Scattered Light Analysis

92

TOWARDS EDGE 501 SRAYS.; TOWARDS EDGE 502 SRAYS.; TOWARDS EDGE 503 SRAYS.; TOWARDS EDGE 504 SRAYS.; TOWARDS EDGE 505 SRAYS.; TOWARDS EDGE 703 SRAYS.; LEVEL MLEV.;RET !! PRIME FOCUS ASSY OBJECT OSS.PFS.EDGE;SCATTER MODEL 5; TOWARDS EDGE 501 SRAYS.; TOWARDS EDGE 802 SRAYS.; TOWARDS EDGE 703 SRAYS.; LEVEL OLEV.;RET OBJECT OSS.PFS.OUTER.CONE;SCATTER MODEL 5; TOWARDS EDGE 501 SRAYS.; TOWARDS EDGE 802 SRAYS.; TOWARDS EDGE 703 SRAYS.; LEVEL OLEV.;RET OBJECT OSS.PFS.INNER.CONE;SCATTER MODEL 7;TOWARDS EDGE 502 SRAYS.;LEVEL MLEV.;RET OBJECT OSS.PFS.OUTER.CYL;SCATTER MODEL 1; TOWARDS EDGE 501 SRAYS.; TOWARDS EDGE 802 SRAYS.; TOWARDS EDGE 703 SRAYS.; LEVEL MLEV.;RET OBJECT OSS.PFS.TILTED.CYL;SCATTER MODEL 1; TOWARDS EDGE 501 SRAYS.; TOWARDS EDGE 802 SRAYS.; LEVEL MLEV.;RET skiposs !! ENTRANCE APERTURE OBJECT FEO.STOP.FRONT;SCATTER MODEL 1; TOWARDS EDGE 502 SRAYS.; TOWARDS EDGE 601 SRAYS.; LEVEL MLEV.;RET OBJECT FEO.STOP.BACK;SCATTER MODEL 1; TOWARDS EDGE 501 SRAYS.; !!TOWARDS EDGE 703 SRAYS.; !! NOT A CRITICAL OBJECT FOR ZENITH=0 LEVEL MLEV.;RET OBJECT FEO.STOP.EDGE;SCATTER MODEL 7; TOWARDS EDGE 501 SRAYS.; !!TOWARDS EDGE 703 SRAYS.; !! NOT A CRITICAL OBJECT FOR ZENITH=0 TOWARDS EDGE 802 SRAYS.; LEVEL MLEV.;RET

Page 94: (ATST) Stray and Scattered Light Analysis

93

!! LYOT STOP OBJECT FEO.LYOT.FRONT;SCATTER MODEL 1;TOWARDS EDGE 502 SRAYS.;LEVEL MLEV.;RET OBJECT FEO.LYOT.BACK;SCATTER MODEL 1; TOWARDS EDGE 501 SRAYS.; TOWARDS EDGE 703 SRAYS.; TOWARDS EDGE 802 SRAYS.; LEVEL MLEV.;RET OBJECT FEO.LYOT.EDGE;SCATTER MODEL 7; TOWARDS EDGE 501 SRAYS.; TOWARDS EDGE 703 SRAYS.; TOWARDS EDGE 802 SRAYS.; LEVEL MLEV.;RET !! OPTICS OBJECT FEO.M1.FRONT;SCATTER MODEL 6; TOWARDS EDGE 601 SRAYS.; TOWARDS EDGE 502 SRAYS.; !!TOWARDS EDGE 703 SRAYS.; !! NOT A CRITICAL OBJECT FOR ZENITH=0 LEVEL OLEV.;RET $DO 2 4 OBJECT FEO.M?.FRONT;SCATTER MODEL 6;TOWARDS EDGE 60? SRAYS.;LEVEL OLEV.;RET $DO 1 4 OBJECT FEO.M?.EDGE;SCATTER MODEL 1; TOWARDS EDGE 503 SRAYS.; TOWARDS EDGE 504 SRAYS.; TOWARDS EDGE 505 SRAYS.; TOWARDS EDGE 506 SRAYS.; TOWARDS EDGE 703 SRAYS.; LEVEL MLEV.;RET OBJECT AFTOPT.M5.FRONT;SCATTER MODEL 6;TOWARDS EDGE 605 SRAYS.;TOWARDS EDGE 703 SRAYS.;LEVEL OLEV.;RET OBJECT AFTOPT.M6.FRONT;SCATTER MODEL 6;TOWARDS EDGE 606 SRAYS.;LEVEL OLEV.;RET $DO 5 6 OBJECT AFTOPT.M?.EDGE;SCATTER MODEL 1; TOWARDS EDGE 503 SRAYS.; TOWARDS EDGE 504 SRAYS.; TOWARDS EDGE 505 SRAYS.; TOWARDS EDGE 506 SRAYS.; TOWARDS EDGE 703 SRAYS.; LEVEL MLEV.;RET TRACECOLL ARAD=2.5

Page 95: (ATST) Stray and Scattered Light Analysis

94

RIN=2000 GRID ELLIP Z 0 -4@RIN. 2@41 SOU DIR 0 0 1, 0 TAN[ARAD/60] 1, 0 -TAN[ARAD/60] 1, TAN[ARAD/60] 0 1, -TAN[ARAD/60] 0 1 !! SEL ONL S .1 FLUX TOTAL 1 SHIFT -462 -4000+169.7 1068 ROTATE X ZENITH. 0 0 MOVE BY -15000 RET TRFOV CON ALL; RAYS 0 RIN=2000 GRID ELLIP Z 0 -4@RIN. 2@41 SOU DIR TAN[ARAD/60] 0 1 FLUX TOTAL 1 SHIFT -462 -4000+169.7 1068 ROTATE X ZENITH. 0 0 MOVE BY -15000 RET TRACE CON ON FEO.GREGORIAN.FOCUS STATS FLUX=0 $GRAB 'TOTAL' 0 2 FLUX !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! CREATE RAYS FOR DIRECT ILLUMINATION SCATTER CALC !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! TRACEDIRECT $IF DO_DOME. EQ 0 RSUN=15000 !! SIZE OF EMITTING DISK (MM) $IF DO_DOME. EQ 1 RSUN=3000 !! SIZE OF EMITTING DISK (MM) $IF DOSUN. NE 0 15 SUNSA=16 !! HALF-ANGLE (ARC-MIN) SUBTENDED BY FULL SUN SUNEA=16 !! INPUT ANGLE (ARC-MIN) (0 TO SUNSA) SUNSF=(SIN[SUNEA./60]/SIN[SUNSA./60])^2 !! SCALE FACTOR FOR RELATIVE SOLID ANGLES PSUN=4*ATAN(1)*RSUN.^2*ESUN.*1E-06*SUNSF. !! INCIDENT POWER EMITTING DISK Z 0 2@RSUN. SUNRAYS. 2@SUNEA./60 SEL ONL S .1 $IF DO_DOME. EQ 1 3 SHIFT X -462 ABS SHIFT Y -3830.3 ABS SHIFT Z -132 ABS

Page 96: (ATST) Stray and Scattered Light Analysis

95

MOVE BY Z -18000 ROTATE X ZENITH. 0 0 FLUX TOTAL PSUN. RET SEL ALL $IF DOSKY. NE 0 11 RSKY=15000 !! SIZE OF EMITTING DISK (MM) SKYSA=90 !! HALF-ANGLE (DEG) SUBTENDED BY FULL SKY SKYEA=89.9 !! INPUT ANGLE (ARC-MIN) (0 TO SKYSA) SKYSF=(SIN[SKYEA.]/SIN[SKYSA.])^2 !! SCALE FACTOR FOR RELATIVE SOLID ANGLES PSKY=4*ATAN(1)*RSKY.^2*ESKY.*1E-06*SKYSF. !! INCIDENT POWER EMITTING DISK Z 4750 2@RSKY. SKYRAYS. 2@SKYEA. SEL ONL S .1 MOVE BY -35000; FLUX TOTAL PSKY. RET SEL ALL GET 1 MAXSOURCES=NSOURCES. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! CREATE RAYS REFLECTED FROM LAKE SURFACE ONLY !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! TRACELAKE SUNRAYS=2001 SKYRAYS=SUNRAYS.^2 SPLIT 1 SURFACE PLANE Z 19750 ELLI 2@1000*RLAKE. 2@15000/(1000*RLAKE.) OBJECT 'LAKE' INTERFACE COATING -BARE AIR WATER ROUGHNESS RANDOM 0 0.4 0 SURFACE TUBE Z -15000 2@15000 19750 2@15000 OBJECT 'TOWER.SIDE' INTERFACE 0 1 AIR AIR SURFACE PLANE Z -15000 ELLI 2@15000 OBJECT 'TOWER.TOP' INTERFACE 0 1 AIR AIR LAKEAREA=4*ATAN(1)*(RLAKE.^2) $IF DOSUN. NE 0 8 PSUN=ESUN.*LAKEAREA.*COS[ZENITH.] !! INCIDENT POWER GRID ELLIPTIC Z 19750 -4@RLAKE.*1000 2@SUNRAYS. RANDOM .9

Page 97: (ATST) Stray and Scattered Light Analysis

96

SOU DIR 0 -SIN[ZENITH.] COS[ZENITH.] SEL ONL S .1 MOVE BY -35000 FLUX TOTAL PSUN. RET SEL ALL $IF DOSKY. NE 0 10 SKYSA=90 !! HALF-ANGLE (DEG) SUBTENDED BY FULL SKY SKYEA=89.9 !! INPUT ANGLE (ARC-MIN) (0 TO SKYSA) SKYSF=(SIN[SKYEA.]/SIN[SKYSA.])^2 !! SCALE FACTOR FOR RELATIVE SOLID ANGLES PSKY=LAKEAREA.*SKYSF. !! INCIDENT POWER EMITTING DISK Z 19750 2@RLAKE.*1000 SKYRAYS. 2@SKYEA. SEL ONL S .1 MOVE BY -35000; FLUX TOTAL PSKY. RET SEL ALL TRACE STEP +1 !! TRACE TO LAKE SURFACE CON ONL LAKE;SUBSET;RET;CON ALL !! OMIT ANY RAYS THAT STRIKE OBSERVATORY TRACE STEP +1;STATS !! REFLECT RAYS FROM LAKE SURFACE CON ONL TOWER.SIDE OR TOWER.TOP; !! SELECT ONLY RAYS THAT ARE NEAR OBSERVATORY SEL ONL Z 4750;SUBSET;RET;CON ALL;SEL ALL;STATS GET 1 MAXSOURCES=NSOURCES. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! CREATE RAYS SCATTERED FROM SNOW FIELD ONLY !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! TRACESNOW SUNRAYS=501 SKYRAYS=SUNRAYS.^2 REDGE=(RSNOW.*20/35)*1000 EDGE 901 ELLI Z 4750 2@REDGE. SURFACE PLANE Z 19750 ELLI 2@1000*RSNOW. OBJECT 'SNOW' SURFACE TUBE Z -15000 2@15000 19750 2@15000 OBJECT 'TOWER.SIDE'

Page 98: (ATST) Stray and Scattered Light Analysis

97

INTERFACE 0 1 AIR AIR SURFACE PLANE Z -15000 ELLI 2@15000 OBJECT 'TOWER.TOP' INTERFACE 0 1 AIR AIR SNOWAREA=4*ATAN(1)*(RSNOW.^2) $IF DOSUN. NE 0 8 PSUN=ESUN.*SNOWAREA.*COS[ZENITH.] !! INCIDENT POWER GRID ELLIPTIC Z 19750 -4@RSNOW.*1000 2@SUNRAYS. RANDOM .9 SOU DIR 0 -SIN[ZENITH.] COS[ZENITH.] SEL ONL S .1 MOVE BY Z -35000 FLUX TOTAL PSUN. RET SEL ALL $IF DOSKY. NE 0 10 SKYSA=90 !! HALF-ANGLE (DEG) SUBTENDED BY FULL SKY SKYEA=89.9 !! INPUT ANGLE (ARC-MIN) (0 TO SKYSA) SKYSF=(SIN[SKYEA.]/SIN[SKYSA.])^2 !! SCALE FACTOR FOR RELATIVE SOLID ANGLES PSKY=SNOWAREA.*SKYSF. !! INCIDENT POWER EMITTING DISK Z 19750 2@RSNOW.*1000 SKYRAYS. 2@SKYEA. SEL ONL S .1 MOVE BY Z -35000; FLUX TOTAL PSKY. RET SEL ALL OBJECT SNOW;LEVEL 1;SCATTER MODEL 1;TOWARDS EDGE 901 10;RET TRACE STEP +1;STATS !! TRACE TO SNOW FIELD CON ONL SNOW;SUBSET;RET;CON ALL !! OMIT ANY RAYS THAT STRIKE OBSERVATORY TRACE STEP +1;STATS !! SCATTER RAYS TOWARDS OBSERVATORY CON ONL TOWER.SIDE OR TOWER.TOP; !! SELECT ONLY RAYS THAT ARE NEAR OBSERVATORY SEL ONL Z 5000;SUBSET;RET;CON ALL;SEL ALL;STATS GET 1 MAXSOURCES=NSOURCES. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! RUN OPTICS ONLY SCATTER CALCULATION !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! OPTICS_SCATTER LEVEL OFF RAYS 0

Page 99: (ATST) Stray and Scattered Light Analysis

98

RSUN=2000 !! SIZE OF EMITTING DISK (MM) SUNSA=16 !! HALF-ANGLE (ARC-MIN) SUBTENDED BY FULL SUN SUNEA=16 !! INPUT ANGLE (ARC-MIN) (0 TO SUNSA) SUNSF=(SIN[SUNEA./60]/SIN[SUNSA./60])^2 !! SCALE FACTOR FOR RELATIVE SOLID ANGLES PSUN=4*ATAN(1)*RSUN.^2*ESUN.*1E-06*SUNSF. !! INCIDENT POWER EMITTING DISK Z 0 2@RSUN. SUNRAYS. 2@SUNEA./60 SEL ONL S .1 SHIFT X -462 ABS SHIFT Y -3830.3 ABS SHIFT Z -132 ABS MOVE BY Z -18000 ROTATE X ZENITH. 0 0 FLUX TOTAL PSUN. RET SEL ALL $SCR 5 ************************************************ ** ** ** RUNNING OPTICS ONLY CALCULATION ** ** ** ************************************************ PS1=0 !! LEVEL 1 SCATTER M1 NR1=0 PS2=0 !! LEVEL 1 SCATTER M2 NR2=0 PS3=0 !! LEVEL 1 SCATTER M3 NR3=0 PS4=0 !! LEVEL 1 SCATTER M4 NR4=0 PS5=0 !! LEVEL 1 SCATTER M5 NR5=0 PS6=0 !! LEVEL 1 SCATTER M6 NR6=0 SRAYS=10 $DO 1 4 OBJECT FEO.M?.FRONT;SCATTER MODEL 6;TOWARDS EDGE 60? SRAYS.;LEVEL 1;RET $DO 5 6 OBJECT AFTOPT.M?.FRONT;SCATTER MODEL 6;TOWARDS EDGE 60? SRAYS.;LEVEL 1;RET !! TRACE RAYS TRACE $IF FOCUSPOS. EQ 0 CON ONL FEO.GREGORIAN.FOCUS $IF FOCUSPOS. EQ 1 CON ONL AFTOPT.COUDE

Page 100: (ATST) Stray and Scattered Light Analysis

99

$DO 1 4 SEL ONL OBJECT -FEO.M?.FRONT AND GENERATION -1 STATS $GRAB 'TOTAL' 0 1, NR? $GRAB 'TOTAL' 0 2, PS? $DO 5 6 SEL ONL OBJECT -AFTOPT.M?.FRONT AND GENERATION -1 STATS $GRAB 'TOTAL' 0 1, NR? $GRAB 'TOTAL' 0 2, PS? OPTICSTOTAL=PS1.+PS2.+PS3.+PS4.+PS5.+PS6. SEL EXC SOURCE -1 STATS $GRAB 'TOTAL' 0 1, NRD $GRAB 'TOTAL' 0 2, PDIRECT $IF SAVEOUTPUT. EQ 1 $IO OUTPUT OPTICSONLY.TXT +13 $IF FOCUSPOS. EQ 0 2 $SCR 1 ************* LEVEL 1 SCATTER FROM OPTICS TO GREGORIAN ***************** $IF FOCUSPOS. EQ 1 2 $SCR 1 *************** LEVEL 1 SCATTER FROM OPTICS TO COUDE ******************* $SCR 13 NUMBER OF SOURCE RAYS = \SUNRAYS.\ TOTAL INCIDENT POWER = \PSUN.\ W (\ESUN.\ W/m^2) SUN AOI (LINE OF SIGHT OFFSET) = \SUNLOS.\ degrees TOTAL DIRECT POWER (NO SCATTER) = \PDIRECT.\ W (\NRD.\ RAYS) M1 --> PRIMARY MIRROR = \PS1.\ W (\NR1.\ RAYS) M2 --> SECONDARY MIRROR = \PS2.\ W (\NR2.\ RAYS) M3 --> FOLD MIRROR 1 = \PS3.\ W (\NR3.\ RAYS) M4 --> TRANSFER MIRROR = \PS4.\ W (\NR4.\ RAYS) M5 --> FOLD MIRROR 2 [DM] = \PS5.\ W (\NR5.\ RAYS) M6 --> FOLD MIRROR 3 = \PS6.\ W (\NR6.\ RAYS) TOTAL SCATTERED POWER FROM OPTICS ONLY = \OPTICSTOTAL.\ W ************************************************************************ $IF SAVEOUTPUT. EQ 1 3 $IO OUTPUT CLOSE $SCR 1 **** OUTPUT DIRECTED TO OPTICSONLY.TXT **** SEL ALL EP_SCATTER $SCR 6

Page 101: (ATST) Stray and Scattered Light Analysis

100

************************************************ ** ** ** CALCULATING EP SCATTER CONTRIBUTIONS ** ** ** ************************************************ PS1=0 !! LEVEL 1 SCATTER FROM FRONT OF EP NR1=0 PS2=0 !! LEVEL 2 SCATTER FROM FRONT OF EP NR2=0 PS3=0 !! LEVEL 1 SCATTER FROM INSIDE EDGE OF EP NR3=0 PS4=0 !! LEVEL 2 SCATTER FROM INSIDE EDGE OF EP NR4=0 PS5=0 !! LEVEL 1 SCATTER FROM BACK OF EP NR5=0 PS6=0 !! LEVEL 2 SCATTER FROM BACK OF EP NR6=0 !! TRACE RAYS $IF FOCUSPOS. EQ 0 CON ONL FEO.GREGORIAN.FOCUS $IF FOCUSPOS. EQ 1 CON ONL AFTOPT.COUDE $IF OLEV. EQ 2 GEN1=1;GEN2=2 $IF OLEV. EQ 3 GEN1=2;GEN2=3 SEL ONL OBJECT -FEO.STOP.FRONT AND GENERATION -GEN1. STATS $GRAB 'TOTAL' 0 1, NR1 $GRAB 'TOTAL' 0 2, PS1 SEL ONL OBJECT -FEO.STOP.FRONT AND GENERATION -GEN2. STATS $GRAB 'TOTAL' 0 1, NR2 $GRAB 'TOTAL' 0 2, PS2 SEL ONL OBJECT -FEO.STOP.EDGE AND GENERATION -GEN1. STATS $GRAB 'TOTAL' 0 1, NR3 $GRAB 'TOTAL' 0 2, PS3 SEL ONL OBJECT -FEO.STOP.EDGE AND GENERATION -GEN2. STATS $GRAB 'TOTAL' 0 1, NR4 $GRAB 'TOTAL' 0 2, PS4 SEL ONL OBJECT -FEO.STOP.BACK AND GENERATION -GEN1. STATS $GRAB 'TOTAL' 0 1, NR5 $GRAB 'TOTAL' 0 2, PS5 SEL ONL OBJECT -FEO.STOP.BACK AND GENERATION -GEN2.

Page 102: (ATST) Stray and Scattered Light Analysis

101

STATS $GRAB 'TOTAL' 0 1, NR6 $GRAB 'TOTAL' 0 2, PS6 EPTOTAL=0 $DO 1 6 EPTOTAL=EPTOTAL.+PS?. $IF SAVEHISTORY. EQ 1 21 WIN Y Z PIXELS 362 CON ALL $IF NR1. GT 0 2 SEL ONL OBJECT -FEO.STOP.FRONT AND GENERATION -GEN1. AND OBJECT AFTOPT.M6.FRONT $IO VECTOR REWIND;PLOT FACETS 5 5 OVER 'EP FRONT - LEVEL 1';HISTORY PLOT $IF NR2. GT 0 2 SEL ONL OBJECT -FEO.STOP.FRONT AND GENERATION -GEN2. AND OBJECT AFTOPT.M6.FRONT $IO VECTOR REWIND;PLOT FACETS 5 5 OVER 'EP FRONT - LEVEL 2';HISTORY PLOT $IF NR3. GT 0 2 SEL ONL OBJECT -FEO.STOP.EDGE AND GENERATION -GEN1. AND OBJECT AFTOPT.M6.FRONT $IO VECTOR REWIND;PLOT FACETS 5 5 OVER 'EP EDGE - LEVEL 1';HISTORY PLOT $IF NR4. GT 0 2 SEL ONL OBJECT -FEO.STOP.EDGE AND GENERATION -GEN2. AND OBJECT AFTOPT.M6.FRONT $IO VECTOR REWIND;PLOT FACETS 5 5 OVER 'EP EDGE - LEVEL 2';HISTORY PLOT $IF NR5. GT 0 2 SEL ONL OBJECT -FEO.STOP.BACK AND GENERATION -GEN1. AND OBJECT AFTOPT.M6.FRONT $IO VECTOR REWIND;PLOT FACETS 5 5 OVER 'EP BACK - LEVEL 1';HISTORY PLOT $IF NR6. GT 0 2 SEL ONL OBJECT -FEO.STOP.BACK AND GENERATION -GEN2. AND OBJECT AFTOPT.M6.FRONT $IO VECTOR REWIND;PLOT FACETS 5 5 OVER 'EP BACK - LEVEL 2';HISTORY PLOT !!$ECHO NONE $IF SAVEOUTPUT. EQ 1 $IO OUTPUT SCATTERDATA.TXT +13 $SCR 16 ********************** SCATTER FROM EP APERTURE ************************ ANGLE FROM ZENITH = \ZENITH.\ DEGREES DOME SETTING (0 = OFF, 1 = ON) = \DO_DOME.\ ANALYSIS TASK (0=DIRECT, 1=LAKE, 2=SNOW) = \TASKNUM.\ FOCUS POSITION (0=GREGORIAN, 1=COUDE) = \FOCUSPOS.\ LYOT STOP INNER APERTURE RADIUS = \RL.\ mm LEVEL 1 SCATTER FROM FRONT SURFACE = \PS1.\ W (\NR1.\ RAYS)

Page 103: (ATST) Stray and Scattered Light Analysis

102

LEVEL 2 SCATTER FROM FRONT SURFACE = \PS2.\ W (\NR2.\ RAYS) LEVEL 1 SCATTER FROM INSIDE EDGE = \PS3.\ W (\NR3.\ RAYS) LEVEL 2 SCATTER FROM INSIDE EDGE = \PS4.\ W (\NR4.\ RAYS) LEVEL 1 SCATTER FROM BACK SURFACE = \PS5.\ W (\NR5.\ RAYS) LEVEL 2 SCATTER FROM BACK SURFACE = \PS6.\ W (\NR6.\ RAYS) TOTAL SCATTERED POWER FROM EP APERTURE = \EPTOTAL.\ W ************************************************************************ $DO 1 MAXSOURCES. SEL ONL OBJECT -FEO.STOP.FRONT OR OBJECT -FEO.STOP.EDGE OR OBJECT -FEO.STOP.BACK AND S -? $SCR 3 LIST OF MOST SIGNIFICANT SCATTER PATHS FOR SOURCE ? PATHS .0001 TOTAL $IF SAVEOUTPUT. EQ 1 5 $SCR 3 *************************** END ENTRANCE APERTURE ************************************* $IO OUTPUT CLOSE SEL ALL CON ALL $ECHO HS_SCATTER $SCR 6 ******************************************************** ** ** ** CALCULATING HEAT SHIELD SCATTER CONTRIBUTIONS ** ** ** ******************************************************** PS1=0 !! LEVEL 1 SCATTER FROM FRONT OF EP NR1=0 PS2=0 !! LEVEL 2 SCATTER FROM FRONT OF EP NR2=0 PS3=0 !! LEVEL 1 SCATTER FROM INSIDE EDGE OF EP NR3=0 PS4=0 !! LEVEL 2 SCATTER FROM INSIDE EDGE OF EP NR4=0 PS5=0 !! LEVEL 1 SCATTER FROM BACK OF EP NR5=0

Page 104: (ATST) Stray and Scattered Light Analysis

103

PS6=0 !! LEVEL 2 SCATTER FROM BACK OF EP NR6=0 !! TRACE RAYS $IF FOCUSPOS. EQ 0 CON ONL FEO.GREGORIAN.FOCUS $IF FOCUSPOS. EQ 1 CON ONL AFTOPT.COUDE $IF OLEV. EQ 2 GEN1=1;GEN2=2 $IF OLEV. EQ 3 GEN1=2;GEN2=3 SEL ONL OBJECT -OSS.PFS.EDGE AND GENERATION -GEN1. STATS $GRAB 'TOTAL' 0 1, NR1 $GRAB 'TOTAL' 0 2, PS1 SEL ONL OBJECT -OSS.PFS.EDGE AND GENERATION -GEN2. STATS $GRAB 'TOTAL' 0 1, NR2 $GRAB 'TOTAL' 0 2, PS2 SEL ONL OBJECT -OSS.PFS.OUTER.CONE AND GENERATION -GEN1. STATS $GRAB 'TOTAL' 0 1, NR3 $GRAB 'TOTAL' 0 2, PS3 SEL ONL OBJECT -OSS.PFS.OUTER.CONE AND GENERATION -GEN2. STATS $GRAB 'TOTAL' 0 1, NR4 $GRAB 'TOTAL' 0 2, PS4 SEL ONL OBJECT -OSS.PFS.INNER.CONE AND GENERATION -GEN1. STATS $GRAB 'TOTAL' 0 1, NR5 $GRAB 'TOTAL' 0 2, PS5 SEL ONL OBJECT -OSS.PFS.INNER.CONE AND GENERATION -GEN2. STATS $GRAB 'TOTAL' 0 1, NR6 $GRAB 'TOTAL' 0 2, PS6 HSTOTAL=0 $DO 1 6 HSTOTAL=HSTOTAL.+PS?. $IF SAVEHISTORY. EQ 1 21 WIN Y Z PIXELS 362 CON ALL $IF NR1. GT 0 2 SEL ONL OBJECT -OSS.PFS.EDGE AND GENERATION -GEN1. AND OBJECT AFTOPT.M6.FRONT $IO VECTOR REWIND;PLOT FACETS 5 5 OVER 'EP FRONT - LEVEL 1';HISTORY PLOT $IF NR2. GT 0 2

Page 105: (ATST) Stray and Scattered Light Analysis

104

SEL ONL OBJECT -OSS.PFS.EDGE AND GENERATION -GEN2. AND OBJECT AFTOPT.M6.FRONT $IO VECTOR REWIND;PLOT FACETS 5 5 OVER 'EP FRONT - LEVEL 2';HISTORY PLOT $IF NR3. GT 0 2 SEL ONL OBJECT -OSS.PFS.OUTER.CONE AND GENERATION -GEN1. AND OBJECT AFTOPT.M6.FRONT $IO VECTOR REWIND;PLOT FACETS 5 5 OVER 'EP EDGE - LEVEL 1';HISTORY PLOT $IF NR4. GT 0 2 SEL ONL OBJECT -OSS.PFS.OUTER.CONE AND GENERATION -GEN2. AND OBJECT AFTOPT.M6.FRONT $IO VECTOR REWIND;PLOT FACETS 5 5 OVER 'EP EDGE - LEVEL 2';HISTORY PLOT $IF NR5. GT 0 2 SEL ONL OBJECT -OSS.PFS.INNER.CONE AND GENERATION -GEN1. AND OBJECT AFTOPT.M6.FRONT $IO VECTOR REWIND;PLOT FACETS 5 5 OVER 'EP EDGE - LEVEL 1';HISTORY PLOT $IF NR6. GT 0 2 SEL ONL OBJECT -OSS.PFS.INNER.CONE AND GENERATION -GEN2. AND OBJECT AFTOPT.M6.FRONT $IO VECTOR REWIND;PLOT FACETS 5 5 OVER 'EP EDGE - LEVEL 2';HISTORY PLOT !!$ECHO NONE $IF SAVEOUTPUT. EQ 1 $IO OUTPUT SCATTERDATA.TXT +13 $SCR 16 ********************** SCATTER FROM HEAT SHIELD ************************ ANGLE FROM ZENITH = \ZENITH.\ DEGREES DOME SETTING (0 = OFF, 1 = ON) = \DO_DOME.\ ANALYSIS TASK (0=DIRECT, 1=LAKE, 2=SNOW) = \TASKNUM.\ FOCUS POSITION (0=GREGORIAN, 1=COUDE) = \FOCUSPOS.\ LYOT STOP INNER APERTURE RADIUS = \RL.\ mm LEVEL 1 SCATTER FROM FRONT EDGE = \PS1.\ W (\NR1.\ RAYS) LEVEL 2 SCATTER FROM FRONT EDGE = \PS2.\ W (\NR2.\ RAYS) LEVEL 1 SCATTER FROM OUTER CONE = \PS3.\ W (\NR3.\ RAYS) LEVEL 2 SCATTER FROM OUTER CONE = \PS4.\ W (\NR4.\ RAYS) LEVEL 1 SCATTER FROM INNER CONE = \PS5.\ W (\NR5.\ RAYS) LEVEL 2 SCATTER FROM INNER CONE = \PS6.\ W (\NR6.\ RAYS) TOTAL SCATTERED POWER FROM HEAT SHIELD = \HSTOTAL.\ W ************************************************************************ $DO 1 MAXSOURCES. SEL ONL OBJECT -OSS.PFS.EDGE OR OBJECT -OSS.PFS.OUTER.CONE AND S -? $SCR 3 LIST OF MOST SIGNIFICANT SCATTER PATHS FOR SOURCE ? PATHS .0001 TOTAL

Page 106: (ATST) Stray and Scattered Light Analysis

105

$IF SAVEOUTPUT. EQ 1 5 $SCR 3 *************************** END HEAT SHIELD ************************************* $IO OUTPUT CLOSE SEL ALL CON ALL $ECHO LS_SCATTER $SCR 6 **************************************************** ** ** ** CALCULATING LYOT STOP SCATTER CONTRIBUTIONS ** ** ** **************************************************** PS1=0 !! LEVEL 1 SCATTER FROM FRONT OF LS NR1=0 PS2=0 !! LEVEL 2 SCATTER FROM FRONT OF LS NR2=0 PS3=0 !! LEVEL 1 SCATTER FROM INSIDE EDGE OF LS NR3=0 PS4=0 !! LEVEL 2 SCATTER FROM INSIDE EDGE OF LS NR4=0 PS5=0 !! LEVEL 1 SCATTER FROM BACK OF LS NR5=0 PS6=0 !! LEVEL 2 SCATTER FROM BACK OF LS NR6=0 !! TRACE RAYS $IF FOCUSPOS. EQ 0 CON ONL FEO.GREGORIAN.FOCUS $IF FOCUSPOS. EQ 1 CON ONL AFTOPT.COUDE $IF OLEV. EQ 2 GEN1=1;GEN2=2 $IF OLEV. EQ 3 GEN1=2;GEN2=3 SEL ONL OBJECT -FEO.LYOT.FRONT AND GENERATION -GEN1. STATS $GRAB 'TOTAL' 0 1, NR1 $GRAB 'TOTAL' 0 2, PS1 SEL ONL OBJECT -FEO.LYOT.FRONT AND GENERATION -GEN2. STATS

Page 107: (ATST) Stray and Scattered Light Analysis

106

$GRAB 'TOTAL' 0 1, NR2 $GRAB 'TOTAL' 0 2, PS2 SEL ONL OBJECT -FEO.LYOT.EDGE AND GENERATION -GEN1. STATS $GRAB 'TOTAL' 0 1, NR3 $GRAB 'TOTAL' 0 2, PS3 SEL ONL OBJECT -FEO.LYOT.EDGE AND GENERATION -GEN2. STATS $GRAB 'TOTAL' 0 1, NR4 $GRAB 'TOTAL' 0 2, PS4 SEL ONL OBJECT -FEO.LYOT.BACK AND GENERATION -GEN1. STATS $GRAB 'TOTAL' 0 1, NR5 $GRAB 'TOTAL' 0 2, PS5 SEL ONL OBJECT -FEO.LYOT.BACK AND GENERATION -GEN2. STATS $GRAB 'TOTAL' 0 1, NR6 $GRAB 'TOTAL' 0 2, PS6 LSTOTAL=0 $DO 1 6 LSTOTAL=LSTOTAL.+PS?. $IF SAVEHISTORY. EQ 1 21 WIN Y Z PIXELS 362 CON ALL $IF NR1. GT 0 2 SEL ONL OBJECT -FEO.LYOT.FRONT AND GENERATION -GEN1. AND OBJECT AFTOPT.M6.FRONT $IO VECTOR REWIND;PLOT FACETS 5 5 OVER 'LS FRONT - LEVEL 1';HISTORY PLOT $IF NR2. GT 0 2 SEL ONL OBJECT -FEO.LYOT.FRONT AND GENERATION -GEN2. AND OBJECT AFTOPT.M6.FRONT $IO VECTOR REWIND;PLOT FACETS 5 5 OVER 'LS FRONT - LEVEL 2';HISTORY PLOT $IF NR3. GT 0 2 SEL ONL OBJECT -FEO.LYOT.EDGE AND GENERATION -GEN1. AND OBJECT AFTOPT.M6.FRONT $IO VECTOR REWIND;PLOT FACETS 5 5 OVER 'LS EDGE - LEVEL 1';HISTORY PLOT $IF NR4. GT 0 2 SEL ONL OBJECT -FEO.LYOT.EDGE AND GENERATION -GEN2. AND OBJECT AFTOPT.M6.FRONT $IO VECTOR REWIND;PLOT FACETS 5 5 OVER 'LS EDGE - LEVEL 2';HISTORY PLOT $IF NR5. GT 0 2 SEL ONL OBJECT -FEO.LYOT.BACK AND GENERATION -GEN1. AND OBJECT AFTOPT.M6.FRONT $IO VECTOR REWIND;PLOT FACETS 5 5 OVER 'LS BACK - LEVEL 1';HISTORY PLOT $IF NR6. GT 0 2 SEL ONL OBJECT -FEO.LYOT.BACK AND GENERATION -GEN2. AND OBJECT AFTOPT.M6.FRONT

Page 108: (ATST) Stray and Scattered Light Analysis

107

$IO VECTOR REWIND;PLOT FACETS 5 5 OVER 'LS BACK - LEVEL 2';HISTORY PLOT !!$ECHO NONE $IF SAVEOUTPUT. EQ 1 $IO OUTPUT SCATTERDATA.TXT +13 $SCR 16 ********************** SCATTER FROM LYOT STOP ************************* ANGLE FROM ZENITH = \ZENITH.\ DEGREES DOME SETTING (0 = OFF, 1 = ON) = \DO_DOME.\ ANALYSIS TASK (0=DIRECT, 1=LAKE, 2=SNOW) = \TASKNUM.\ FOCUS POSITION (0=GREGORIAN, 1=COUDE) = \FOCUSPOS.\ LYOT STOP INNER APERTURE RADIUS = \RL.\ mm LEVEL 1 SCATTER FROM FRONT SURFACE = \PS1.\ W (\NR1.\ RAYS) LEVEL 2 SCATTER FROM FRONT SURFACE = \PS2.\ W (\NR2.\ RAYS) LEVEL 1 SCATTER FROM INSIDE EDGE = \PS3.\ W (\NR3.\ RAYS) LEVEL 2 SCATTER FROM INSIDE EDGE = \PS4.\ W (\NR4.\ RAYS) LEVEL 1 SCATTER FROM BACK SURFACE = \PS5.\ W (\NR5.\ RAYS) LEVEL 2 SCATTER FROM BACK SURFACE = \PS6.\ W (\NR6.\ RAYS) TOTAL SCATTERED POWER FROM LYOT STOP = \LSTOTAL.\ W ************************************************************************ $DO 1 MAXSOURCES. SEL ONL OBJECT -FEO.LYOT.FRONT OR OBJECT -FEO.LYOT.EDGE OR OBJECT -FEO.LYOT.BACK AND S -? $SCR 3 LIST OF MOST SIGNIFICANT SCATTER PATHS FOR SOURCE ? PATHS .0001 TOTAL $IF SAVEOUTPUT. EQ 1 5 $SCR 3 *************************** END LYOT STOP ************************************* $IO OUTPUT CLOSE SEL ALL CON ALL $ECHO SUMSCATTER $IF FOCUSPOS. EQ 0 CON ONL FEO.GREGORIAN.FOCUS

Page 109: (ATST) Stray and Scattered Light Analysis

108

$IF FOCUSPOS. EQ 1 CON ONL AFTOPT.COUDE $IF OLEV. EQ 2 GEN1=1;GEN2=2 $IF OLEV. EQ 3 GEN1=2;GEN2=3 SEL ONL GENERATION 0 STATS $GRAB 'TOTAL' 0 2, SPECPWR SEL ONL GENERATION -GEN1. STATS $GRAB 'TOTAL' 0 2, GEN1PWR SEL ONL GENERATION -GEN2. STATS $GRAB 'TOTAL' 0 2, GEN2PWR !!$ECHO NONE $IF SAVEOUTPUT. EQ 1 $IO OUTPUT SCATTERDATA.TXT +13 $SCR 12 *************************** SUMMARY DATA ******************************* ANGLE FROM ZENITH = \ZENITH.\ DEGREES DOME SETTING (0 = OFF, 1 = ON) = \DO_DOME.\ ANALYSIS TASK (0=DIRECT, 1=LAKE, 2=SNOW) = \TASKNUM.\ FOCUS POSITION (0=GREGORIAN, 1=COUDE) = \FOCUSPOS.\ LYOT STOP INNER APERTURE RADIUS = \RL.\ mm ======================================================================== TOTAL DIRECT POWER (NO SCATTER) = \SPECPWR.\ W TOTAL SCATTERED POWER (LEVEL 1) = \GEN1PWR.\ W TOTAL SCATTERED POWER (LEVEL 2) = \GEN2PWR.\ W ************************************************************************ $DO 1 MAXSOURCES. $SCR 3 LIST OF MOST SIGNIFICANT SPECULAR PATHS FOR SOURCE ? =================================================== SEL ONL GENERATION 0 AND S ? PATHS .001 TOTAL $DO 1 MAXSOURCES. $SCR 3 LIST OF MOST SIGNIFICANT LEVEL 1 PATHS FOR SOURCE ?

Page 110: (ATST) Stray and Scattered Light Analysis

109

=================================================== SEL ONL GENERATION -GEN1. AND S -? PATHS .001 TOTAL $DO 1 MAXSOURCES. $SCR 3 LIST OF MOST SIGNIFICANT LEVEL 2 PATHS FOR SOURCE ? =================================================== SEL ONL GENERATION -GEN2. AND S -? PATHS .001 TOTAL $IF SAVEOUTPUT. EQ 1 5 $SCR 3 *************************** END SUMMARY ************************************* $IO OUTPUT CLOSE SEL ALL CON ALL $ECHO !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! PUT IT ALL TOGETHER !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! MKSYS SYSTEM NEW RESET RAYS 0 CUTOFF 1E-15 HALT 1E-12 !! =========== MODEL COLORS ============== RED=2 MAROON=8 ORANGE=4 UMBER=24 YELLOW=5 STRAW=18 GOLD=22 GREEN=13 LTGREEN=7 DKGREEN=17 TURQUOISE=21 MDBLUE=3 BLUE=11 LTBLUE=9

Page 111: (ATST) Stray and Scattered Light Analysis

110

VIOLET=26 PLUM=19 PURPLE=6 TANNISH=25 LTBROWN=16 OLIVE=15 !! =========== MATERIALS TABLE ========= WAVELENGTHS 1 MEDIA 1 1.3333 'WATER' !! =========== COATING TABLE =========== WAVELENGTHS 1 COATING PROPERTIES; 0`0 0`0 'Absorb' WAVELENGTHS 1 COATING PROPERTIES; 1`0 0`0 'Reflect' WAVELENGTHS 1 COATING PROPERTIES; 0`0 1`0 'Transmit' WAVELENGTHS 1 COATING PROPERTIES; 0.2`0 0.9797958971`0 'Standard Coating' !! ========== SCATTER MODELS =========== MODELS LAMBERTIAN 0.9 !! MODEL 1 - DIFFUSE WHITE PAINT - OSS STRUCTURE HARVEY 1.58 -1.5 .001 !! MODEL 2 - 20 ANGSTROM RMS @ 1 UM HARVEY .000264 -1.4 .59 !! MODEL 3 - USE WITH 4 TO SIMULATE CL400 HARVEY 1.654 -2.26 .007 !! MODEL 4 - USE WITH 3 " " " SUM 3 4 !! MODEL 5 - SIMULATED MIL-1246C CL 400 SUM 2 5 !! MODEL 6 - SUM OF MODELS 2 AND 5 POLYNOMIAL 3 3 !!PLOT 0 30 45 60 89 !! MODEL 7 - MARTIN BLACK FROM APART'S DATABASE -2.903623 0.8091737 -3.206674 -1.341637 10.53917 -16.65749, 0.6869802 -5.557304 23.70261 -9.12149 2.604202 -24.25873, 42.25711 37.15075 -100.2538 15.64558 -18.16666 41.46487, 26.45964 -23.24515 9.720815 -26.59653 19.82249 2.507614, 10.36671 6.513805 7.63499 -31.39013 -10.94139 12.98424, 54.4162 -169.7045 79.33511 44.01324 91.76894 0.3513786, 25.25112 -105.5021 -101.7723 82.81336 HARVEY 40 -1.5 .001 !! MODEL 8 - 100 ANGSTROM RMS @ 1 UM (USE ON HEAT STOP) NOT USED!!!! SUM 5 8 !! MODEL 9 - SUM OF MODELS 5 AND 8 LAMBERTIAN 0.5 !! MODEL 10 - DIFFUSE 'GRAY' - DOME INTERIOR AND FLOOR LAMBERTIAN 1 !! MODEL 11 !! ========= SOURCE DEFINITION ========= BEAMS INCOHERENT GEOMETRIC UNITS MM WAVELENGTH 1 MICRONS

Page 112: (ATST) Stray and Scattered Light Analysis

111

!! ========= OSS ORIENTATION ================ OSSTILT=13.95 !! TILT ANGLE FOR ZENITH POINTING YPFS=-21.6 ZPFS=-5.9 !! ======== BUILD GEOMETRY ================== $IF DO_DOME. EQ 1 MKDOME $IF DO_BASE. EQ 1 MKMNTBASE $IF DO_OSS. EQ 1 MKOSS $IF DO_OPTICS. EQ 1 MKOPTICS !! ======== RUN SCATTER CALCULATIONS ======== MLEV=0 OLEV=0 $IF DOSCATTER. GT 1 DOSCATTER=1 $IF TASKNUM. EQ -1 3 OLEV=0; MLEV=0; TRACECOLL $IF TASKNUM. EQ 0 3 OLEV=2*DOSCATTER.; MLEV=1*DOSCATTER.; TRACEDIRECT $IF TASKNUM. EQ 1 3 OLEV=2*DOSCATTER.; MLEV=1*DOSCATTER.; TRACELAKE $IF TASKNUM. EQ 2 3 OLEV=3*DOSCATTER.; MLEV=2*DOSCATTER.; TRACESNOW $IF DOSCATTER. NE 0 ALL_SCATTER $IF RUNTRACE. NE 0 AND SAVEHISTORY. EQ 0 TRACE $IF RUNTRACE. NE 0 AND SAVEHISTORY. EQ 1 SAVE;TRACE; !!#######################################################################################!!

Page 113: (ATST) Stray and Scattered Light Analysis

112

!!#######################################################################################!! !! SET UP AND RUN MODEL !!#######################################################################################!! !!#######################################################################################!! !! SET APERTURE RADIUS OF LYOT STOP RL=260 !! CREATE GEOMETRY ELEMENTS DO_DOME=1 !! =0, NO DOME; =1, CREATE DOME DO_BASE=1 !! =0, NO BASE; =1, CREATE BASE DO_OSS=1 !! =0, NO OSS; =1, CREATE OSS DO_OPTICS=1 !! =0, NO OPTICS; =1, CREATE OPTICS !! CREATE SOURCES? DOSUN=1 DOSKY=0 !! RAYTRACE SETTINGS ZENITH=0 !! ANGLE FROM ZENITH ( >0 ) SUNLOS=0 !! OFFSET FOR LIMB VIEWING (DEGREES) ESUN=850 !! DIRECT SOLAR IRRADIANCE (W/M^2) ESKY=150 !! INDIRECT (SKY) IRRADIANCE (W/M^2) SUNRAYS=1 !! NUMBER OF SOURCE RAYS SKYRAYS=1000 RUNTRACE=0 !! =0, START TRACE MANUALLY; =1, START TRACE AUTOMATICALLY FOCUSPOS=0 !! =0, GREGORIAN; =1, COUDE !! SURROUNDING AREA DIMENSIONS RLAKE=200 !! RADIUS OF LAKE (M) RSNOW=200 !! RADIUS OF SNOW FIELD (M) !! SELECT ANALYSIS TASK TASKNUM=0 !! =-1, CREATE COLLIMATED SOURCE RAYS !! =0, CREATE RAYS FOR SUN AND/OR SKY DIRECT ILLUMINATION !! =1, CREATE RAYS FOR SUN AND/OR SKY REFLECTED FROM LAKE !! =2, CREATE RAYS FOR SUN AND/OR SKY SCATTERED FROM SNOW DOSCATTER=0 !! =0, NO SCATTER; =1, FULL SCATTER CALCULATION !! OUTPUT CONTROLS SAVEHISTORY=0 !! =0, NO RAY HISTORY; =1, SAVE RAY HISTORIES

Page 114: (ATST) Stray and Scattered Light Analysis

113

SAVEOUTPUT=0 !! =0, WRITE TEXT OUTPUT TO SCREEN ONLY; = 1, WRITE TO DATA FILE !! EXECUTE MODEL !!MKSYS !!WIN -Z Y !!PLOT FACETS 21 21 ;$VIEW !!$IO RUNLOOP RUNTRACE=1 $DO MINTASK. MAXTASK. !!ACTUALLY SOURCE TASKNUM=?; MKSYS; TRACE $IF FOCUSPOS. EQ 0 CON ONL FEO.GREGORIAN.FOCUS;SUBSET;RET $IF FOCUSPOS. EQ 1 CON ONL AFTOPT.COUDE;SUBSET;RET EP_SCATTER; HS_SCATTER; LS_SCATTER; SUMSCATTER; $IF SAVEOUTPUT. EQ 1 8 $IO OUTPUT SCATTERDATA.TXT +13 $SCR 5 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ !!!!!!!!!!!!!!!!!!! END TASK !!!!!!!!!!!!!!!!!!!! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ $IO OUTPUT CLOSE LOOPFOCUS $DO 0 1 FOCUSPOS=?. RUNLOOP LOOPANGLE MAXZENITH=74 DA=0 $IF MAXANGLES.-1 GT 0 DA=MAXZENITH./(MAXANGLES.-1) $DO 0 MAXANGLES.-1 ZENITH=DA.*?.

Page 115: (ATST) Stray and Scattered Light Analysis

114

LOOPFOCUS LOOPSTOPS MAXR=260 DR=-5 $DO 0 MAXSTOPS. RL=MAXR.+DR.*?. LOOPANGLE LOOPDOME $DO MINDOME. MAXDOME. DO_DOME=?. $IF DO_DOME. EQ 0 2 SUNRAYS=125000 SKYRAYS=100000 $IF DO_DOME. EQ 1 2 SUNRAYS=10000 SKYRAYS=500000 LOOPFOCUS DOSUN=1 DOSKY=1 SAVEOUTPUT=1 DOSCATTER=1 !!MAKE DOSCATTER=0 FOR LYOT STOP CALCULATION RUNTRACE=1 ZENITH=0 SUNRAYS=1000 !! NUMBER OF SOURCE RAYS SKYRAYS=2*SUNRAYS RL=260 MINTASK=2 !! STARTING TASKNUM (0 TO 2) MAXTASK=2 !! ENDING TASKNUM (0 TO 2) MINDOME=1 !! STARTING DOME SETTING (0 OR 1) MAXDOME=1 !! ENDING DOME SETTING (0 OR 1) MAXANGLES=1 !! MAXIMUM NUMBER OF ANGLE STEPS (>= 1) MAXSTOPS=0 !! MAXIMUM NUMBER OF LYOT STOP SIZE CHANGES $ECHO OFF $IF SAVEOUTPUT. EQ 1 4 $IO OUTPUT SCATTERDATA.TXT 13 $SCR 1 SCATTER DATA FOR DIRECT/REFLECTED/SCATTERED ILLUMINATION $IO OUTPUT CLOSE $ECHO LOOPDOME $ECHO OFF

Page 116: (ATST) Stray and Scattered Light Analysis

115

$IF SAVEOUTPUT. EQ 1 3 $SCR 1 ****** DATA WRITTEN TO FILE SCATTERDATA.TXT ****** $IO OUTPUT CLOSE $ECHO $IO END !! MISCELLANEOUS ANALYSES... !!ADDED CALCULATION FOR GETTING TRUE DIMENSIONS OF FIELD STOP !! RNP 27 APRIL 2003 !!$ITER ARAD -3 3 -51, FLUX !! TRFOV SAVE TRACE SEL ONL S -1 OR S -2 CON ONL AFTOPT.COUDE SUBSET RET; SEL ALL CON ALL STATS WIN -Z Y;PLOT FACETS 7 7 OVER;HISTORY SPOTS;$VIEW $IO VECTOR REWIND;WIN -Z Y;PLOT FACETS 7 7 OVER;HISTORY PLOT COLOR RED.;$VIEW $IO VECTOR REWIND;WIN -Z Y;PLOT FACETS 7 7 OVER;SPOTS P COLOR LTBLUE.;$VIEW $IO MKSYS $IO !! TRACK CENTROID LOCATION FOR ON-AXIS IMAGE $ECHO NONE $IO OUTPUT SCANDATA.TXT 13 $SCR 1 ANGLE X Y $IO OUTPUT CLOSE $DO 0 30 ZENITH=?*2.5;MKSYS; TRACE;CON ONL AFTOPT.COUDE;STATS P $GRAB 'Centroid:' 0 1, XPOS $GRAB 'Centroid:' 0 2, YPOS $IO OUTPUT SCANDATA.TXT +13 $SCR 1 \ZENITH.\ \XPOS.\ \YPOS.\ $IO OUTPUT CLOSE

Page 117: (ATST) Stray and Scattered Light Analysis

116

!! CRITICAL OBJECTS DETERMINATION GRID ELLIP Z 9175 -4@205 2@61 SOU DIR 0 0 1 SEL ONL S .1;FLUX TOTAL 1;RET;SEL ALL OBJECT AFTOPT.COUDE;SCATTER MODEL 11;TOWARDS EDGE 704 50;RET TRACE CON ALL;WIN -Z Y;PLOT FACETS 15 15 OVER;SPOTS P COLOR LTBLUE.;$VIEW $IO OUTPUT CRITICALOBJ_Z50.TXT 13;STATS;$IO OUTPUT CLOSE !! CRITICAL OBJECTS DETERMINATION MKSYS $DO 1 190 OBJ ?.;LEVEL OFF;RET RAYS 0 GRID ELLIP Z 0 -4@39 2@51 SOU DIR 0 0 1 SHIFT -462.000 169.721 -300 MOVE BY -100 SEL ONL S .1;FLUX TOTAL 1;RET;SEL ALL !!EMITTING DISK Z 0 2@2000 25000 2@16/60 !! SHIFT -462.000 -3830.279 -1500 !!SEL ONL S .1;FLUX TOTAL 1;RET;SEL ALL OBJECT FEO.GREGORIAN.FOCUS;INTERFACE 0 0;RET OBJECT OSS.PFS.OUTER.CONE;INTERFACE 0 0;RET OBJECT OSS.PFS.EDGE;INTERFACE 0 0;RET OBJECT FEO.GREGORIAN.FOCUS;INTERFACE 0 0;SCATTER MODEL 11;TOWARDS EDGE 802 50;LEVEL 1;RET SAVE;TRACE CON ONL 88:92 187:189 WIN -Z Y;PRO OVER;HISTORY PLOT OVER;CON ALL;PLOT FACETS 11 11; $IO OBJECT FEO.GREGORIAN.FOCUS;INTERFACE 0 0;LEVEL OFF;RET SEL ONL S 2 TRACE OBJECT AFTOPT.COUDE;SCATTER MODEL 11;TOWARDS EDGE 704 50;LEVEL 1;RET $IO VECTOR REWIND SEL ONL S 1 CON ALL;WIN -Z Y;PLOT FACETS 11 11 OVER;SPOTS P COLOR BLUE. OVER; !!$IO OUTPUT CRITICALOBJ_Z0.TXT +13;STATS;$IO OUTPUT CLOSE SEL ONL S 2 CON ALL;SPOTS P COLOR STRAW.; $VIEW !!$IO OUTPUT CRITICALOBJ_Z0.TXT +13;STATS;$IO OUTPUT CLOSE $IO

Page 118: (ATST) Stray and Scattered Light Analysis

117

!! ANALYZE SCATTER IMPORTANCE EDGES.... OBJECT AFTOPT.M6.FRONT;INTERFACE 0 0;SCATTER MODEL 1;TOWARDS EDGE 606 10;RET WIN Y Z PLOT FACETS 7 7 OVER;TRACE PLOT $IO VECTOR REWIND WIN Y X CON ONL AFTOPT.COUDE PLOT FACETS 5 5 OVER;SPOTS P STATS RET !! BEST PRIME FOCUS LOCATION ANALYSIS.... $ITER YPFS -20 -25 11, ZPFS -10 0 11, POWER MKSYS WIN Y X;PIXELS 41;DIS ITER;PIC;

Page 119: (ATST) Stray and Scattered Light Analysis

118

Appendix C ASAP Objects Names No Dome OBJECT numbers/names:

1 MOUNT.BASE.1 2 MOUNT.BASE.2 3 MOUNT.BASE.3 4 MOUNT.BASE.4 5 MOUNT.BASE.5 6 MOUNT.BASE.6 7 MOUNT.BASE.7 8 MOUNT.BASE.8 9 MOUNT.BASE.9

10 MOUNT.BASE.10 11 MOUNT.BASE.11 12 MOUNT.BASE.12 13 MOUNT.BASE.13 14 MOUNT.BASE.14 15 MOUNT.BASE.15 16 MOUNT.BASE.16 17 MOUNT.CTRPOST.1 18 MOUNT.CTRPOST.2 19 MOUNT.CTRPOST.3 20 MOUNT.CTRPOST.4 21 MOUNT.CTRPOST.5 22 MOUNT.CTRPOST.6 23 MOUNT.CTRPOST.7 24 MOUNT.CTRPOST.8 25 MOUNT.CTRPOST.9 26 MOUNT.CTRPOST.10 27 MOUNT.CTRPOST.11 28 MOUNT.CTRPOST.12 29 MOUNT.CTRPOST.13 30 MOUNT.CTRPOST.14 31 MOUNT.CTRPOST.15 32 MOUNT.SMM.9 33 MOUNT.SMM.10 34 MOUNT.SMM.11 35 MOUNT.SMM.12 36 MOUNT.SMM.13 37 MOUNT.SMM.14 38 OSS.TOP.T0 39 OSS.TOP.T1 40 OSS.TOP.T2 41 OSS.TOP.T3 42 OSS.TOP.T4

43 OSS.SECSUP.1 44 OSS.SECSUP.2 45 OSS.SECSUP.3 46 OSS.SECSUP.4 47 OSS.SECSUP.5 48 OSS.SECSUP.6 49 OSS.SECSUP.7 50 OSS.SECSUP.8 51 OSS.SECSUP.9 52 OSS.SECSUP.10 53 OSS.SHIELD.S1 54 OSS.SHIELD.S2 55 OSS.PFS.APE.EDGE 56 OSS.PFS.OUTER.CYL 57 OSS.PFS.TILTED.CYL 58 OSS.PFS.EDGE 59 OSS.PFS.OUTER.CONE 60 OSS.PFS.INNER.CONE 61 OSS.TOP.APE.0 62 OSS.TOP.APE.1 63 OSS.TOP.APE.2 64 OSS.TOP.APE.3 65 OSS.TOP.APE.4 66 OSS.TOP.CX1 67 OSS.TOP.CX2 68 OSS.TOP.CX3 69 OSS.TOP.CX4 70 OSS.TOP.CX5 71 OSS.TOP.CX6 72 OSS.TOP.CX7 73 OSS.TOP.CX8 74 OSS.TOP.CX9 75 OSS.TOP.CX10 76 OSS.TOP.CX11 77 OSS.TOP.CX12 78 OSS.TOP.CX13 79 OSS.TOP.CX14 80 OSS.BOTTOM.1 81 OSS.BOTTOM.2 82 OSS.BOTTOM.3 83 OSS.BOTTOM.4 84 OSS.BOTTOM.5 85 OSS.BOTTOM.6 86 OSS.BOTTOM.7 87 OSS.PASSTHRU.1

88 OSS.BEARING.1 89 OSS.BEARING.2 90 OSS.BEARING.3 91 OSS.BEARING.4 92 OSS.BOTTOM.8 93 OSS.BOTTOM.9 94 OSS.BOTTOM.10 95 OSS.BOTTOM.11 96 OSS.BOTTOM.12 97 OSS.BOTTOM.13 98 OSS.BOTTOM.14 99 OSS.BOTTOM.15

100 OSS.BASE.16 101 OSS.BASE.17 102 OSS.BASE.18 103 OSS.BASE.19 104 OSS.BRACKET_MOUNT.1105 OSS.BRACKET_MOUNT.2106 OSS.BRACKET_MOUNT.3107 OSS.SMM.1 108 OSS.SMM.2 109 OSS.SMM.3 110 OSS.SMM.4 111 OSS.SMM.5 112 OSS.SMM.6 113 OSS.SMM.7 114 OSS.SMM.8 115 OSS.PM.ARM.1 116 OSS.PM.ARM.2 117 OSS.PM.ARM.3 118 OSS.PM.ARM.4 119 OSS.PM.ARM.5 120 OSS.PM.ARM.6 121 OSS.PM.ARM.7 122 OSS.PM.ARM.8 123 OSS.PM.ARM.9 124 OSS.PM.ARM.10 125 OSS.PM.CELL.1 126 OSS.PM.CELL.2 127 OSS.PM.CELL.ARM.1 128 OSS.PM.CELL.ARM.2 129 OSS.PM.CELL.ARM.3 130 OSS.PM.COVER.1 131 OSS.PM.COVER.2 132 OSS.PM.COVER.3

Page 120: (ATST) Stray and Scattered Light Analysis

119

133 FEO.STOP.FRONT 134 FEO.STOP.BACK 135 FEO.STOP.EDGE 136 FEO.M1.FRONT 137 FEO.M1.BACK 138 FEO.M1.EDGE 139 FEO.M2.FRONT 140 FEO.M2.BACK 141 FEO.M2.EDGE 142 FEO.GREGORIAN.FOCUS 143 FEO.M3.EDGE 144 FEO.M3.BACK 145 FEO.M3.FRONT 146 FEO.M4.FRONT 147 FEO.M4.BACK 148 FEO.M4.EDGE 149 AFTOPT.M5.FRONT 150 AFTOPT.M5.BACK 151 AFTOPT.M5.EDGE 152 AFTOPT.M6.FRONT 153 AFTOPT.M6.BACK 154 AFTOPT.M6.EDGE 155 FEO.LYOT.FRONT 156 FEO.LYOT.BACK 157 FEO.LYOT.EDGE 158 AFTOPT.COUDE 159 SNOW 160 TOWER.SIDE 161 TOWER.TOP

Dome OBJECT numbers/names:

1 DOME.WIN.1 2 DOME.WIN.2 3 DOME.WIN.3 4 DOME.WIN.4 5 DOME.WIN.5 6 DOME.WIN.6 7 DOME.SLIT 8 DOME.OUTER.0 9 DOME.OUTER.1

10 DOME.OUTER.2 11 DOME.OUTER.3 12 DOME.OUTER.4

13 DOME.INNER.0 14 DOME.INNER.1 15 DOME.INNER.2 16 DOME.INNER.3 17 DOME.INNER.4 18 DOME.SHUTTER1.1 19 DOME.SHUTTER1.2 20 DOME.SHUTTER1.3 21 DOME.SHUTTER1.4 22 DOME.SHUTTER1.5 23 DOME.SHUTTER1.6 24 DOME.SNORKEL.1 25 DOME.SNORKEL.2 26 DOME.SNORKEL.3 27 DOME.SHUTTER2.1 28 DOME.SHUTTER2.2 29 DOME.SHUTTER2.3 30 DOME.SHUTTER3.1 31 DOME.SHUTTER3.2 32 DOME.SHUTTER3.3 33 MOUNT.BASE.1 34 MOUNT.BASE.2 35 MOUNT.BASE.3 36 MOUNT.BASE.4 37 MOUNT.BASE.5 38 MOUNT.BASE.6 39 MOUNT.BASE.7 40 MOUNT.BASE.8 41 MOUNT.BASE.9 42 MOUNT.BASE.10 43 MOUNT.BASE.11 44 MOUNT.BASE.12 45 MOUNT.BASE.13 46 MOUNT.BASE.14 47 MOUNT.BASE.15 48 MOUNT.BASE.16 49 MOUNT.CTRPOST.1 50 MOUNT.CTRPOST.2 51 MOUNT.CTRPOST.3 52 MOUNT.CTRPOST.4 53 MOUNT.CTRPOST.5 54 MOUNT.CTRPOST.6 55 MOUNT.CTRPOST.7 56 MOUNT.CTRPOST.8 57 MOUNT.CTRPOST.9 58 MOUNT.CTRPOST.10 59 MOUNT.CTRPOST.11

60 MOUNT.CTRPOST.12 61 MOUNT.CTRPOST.13 62 MOUNT.CTRPOST.14 63 MOUNT.CTRPOST.15 64 MOUNT.SMM.9 65 MOUNT.SMM.10 66 MOUNT.SMM.11 67 MOUNT.SMM.12 68 MOUNT.SMM.13 69 MOUNT.SMM.14 70 OSS.TOP.T0 71 OSS.TOP.T1 72 OSS.TOP.T2 73 OSS.TOP.T3 74 OSS.TOP.T4 75 OSS.SECSUP.1 76 OSS.SECSUP.2 77 OSS.SECSUP.3 78 OSS.SECSUP.4 79 OSS.SECSUP.5 80 OSS.SECSUP.6 81 OSS.SECSUP.7 82 OSS.SECSUP.8 83 OSS.SECSUP.9 84 OSS.SECSUP.10 85 OSS.SHIELD.S1 86 OSS.SHIELD.S2 87 OSS.PFS.APE.EDGE 88 OSS.PFS.OUTER.CYL 89 OSS.PFS.TILTED.CYL 90 OSS.PFS.EDGE 91 OSS.PFS.OUTER.CONE 92 OSS.PFS.INNER.CONE 93 OSS.TOP.APE.0 94 OSS.TOP.APE.1 95 OSS.TOP.APE.2 96 OSS.TOP.APE.3 97 OSS.TOP.APE.4 98 OSS.TOP.CX1 99 OSS.TOP.CX2

100 OSS.TOP.CX3 101 OSS.TOP.CX4 102 OSS.TOP.CX5 103 OSS.TOP.CX6 104 OSS.TOP.CX7 105 OSS.TOP.CX8 106 OSS.TOP.CX9

Page 121: (ATST) Stray and Scattered Light Analysis

120

107 OSS.TOP.CX10 108 OSS.TOP.CX11 109 OSS.TOP.CX12 110 OSS.TOP.CX13 111 OSS.TOP.CX14 112 OSS.BOTTOM.1 113 OSS.BOTTOM.2 114 OSS.BOTTOM.3 115 OSS.BOTTOM.4 116 OSS.BOTTOM.5 117 OSS.BOTTOM.6 118 OSS.BOTTOM.7 119 OSS.PASSTHRU.1 120 OSS.BEARING.1 121 OSS.BEARING.2 122 OSS.BEARING.3 123 OSS.BEARING.4 124 OSS.BOTTOM.8 125 OSS.BOTTOM.9 126 OSS.BOTTOM.10 127 OSS.BOTTOM.11 128 OSS.BOTTOM.12 129 OSS.BOTTOM.13 130 OSS.BOTTOM.14 131 OSS.BOTTOM.15 132 OSS.BASE.16 133 OSS.BASE.17 134 OSS.BASE.18 135 OSS.BASE.19 136 OSS.BRACKET_MOUNT.1 137 OSS.BRACKET_MOUNT.2 138 OSS.BRACKET_MOUNT.3 139 OSS.SMM.1 140 OSS.SMM.2 141 OSS.SMM.3 142 OSS.SMM.4 143 OSS.SMM.5 144 OSS.SMM.6 145 OSS.SMM.7 146 OSS.SMM.8 147 OSS.PM.ARM.1 148 OSS.PM.ARM.2 149 OSS.PM.ARM.3 150 OSS.PM.ARM.4 151 OSS.PM.ARM.5 152 OSS.PM.ARM.6 153 OSS.PM.ARM.7

154 OSS.PM.ARM.8 155 OSS.PM.ARM.9 156 OSS.PM.ARM.10 157 OSS.PM.CELL.1 158 OSS.PM.CELL.2 159 OSS.PM.CELL.ARM.1 160 OSS.PM.CELL.ARM.2 161 OSS.PM.CELL.ARM.3 162 OSS.PM.COVER.1 163 OSS.PM.COVER.2 164 OSS.PM.COVER.3 165 FEO.STOP.FRONT 166 FEO.STOP.BACK 167 FEO.STOP.EDGE 168 FEO.M1.FRONT 169 FEO.M1.BACK 170 FEO.M1.EDGE 171 FEO.M2.FRONT 172 FEO.M2.BACK 173 FEO.M2.EDGE 174 FEO.GREGORIAN.FOCUS175 FEO.M3.EDGE 176 FEO.M3.BACK 177 FEO.M3.FRONT 178 FEO.M4.FRONT 179 FEO.M4.BACK 180 FEO.M4.EDGE 181 AFTOPT.M5.FRONT 182 AFTOPT.M5.BACK 183 AFTOPT.M5.EDGE 184 AFTOPT.M6.FRONT 185 AFTOPT.M6.BACK 186 AFTOPT.M6.EDGE 187 FEO.LYOT.FRONT 188 FEO.LYOT.BACK 189 FEO.LYOT.EDGE 190 AFTOPT.COUDE 191 SNOW 192 TOWER.SIDE 193 TOWER.TOP

Page 122: (ATST) Stray and Scattered Light Analysis

121

Appendix D ASAP Path Data for Snow Illumination and Dome This information is provided as backup for the results summarized in Section 4.4.3.

Gregorian Focus *************************** SUMMARY DATA ******************************* ANGLE FROM ZENITH = 0 DEGREES DOME SETTING (0 = OFF, 1 = ON) = 1 ANALYSIS TASK (0=DIRECT, 1=LAKE, 2=SNOW) = 2 FOCUS POSITION (0=GREGORIAN, 1=COUDE) = 0 LYOT STOP INNER APERTURE RADIUS = 260 mm ======================================================================== TOTAL DIRECT POWER (NO SCATTER) = 0 W TOTAL SCATTERED POWER (LEVEL 1) = 6.34383E-4 W TOTAL SCATTERED POWER (LEVEL 2) = 8.40959E-6 W ************************************************************************ LIST OF MOST SIGNIFICANT SPECULAR PATHS FOR SOURCE 1 =================================================== 201659 ray flags changed 0 rays now selected LIST OF MOST SIGNIFICANT SPECULAR PATHS FOR SOURCE 2 =================================================== 0 ray flags changed 0 rays now selected LIST OF MOST SIGNIFICANT LEVEL 1 PATHS FOR SOURCE 1 (DIRECT SOLAR) =================================================== 17 ray flags changed 17 rays now selected OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 1 2 1.923E-04 49.138 -4 174 126 -126.005 -191.001 0.000 5 4 7.379E-05 18.853 -5 174 177 -127.002 -191.001 0.000 3 1 7.081E-05 18.091 -5 174 177 -127.004 -191.001 0.000 2 1 4.435E-05 11.330 -4 174 114 -114.005 -191.001 0.000 4 2 1.013E-05 2.587 -5 174 177 -131.002 -191.001 0.000 ------------------------ 6 17 3.914E-04 LIST OF MOST SIGNIFICANT LEVEL 1 PATHS FOR SOURCE 2 (INDIRECT SKY) =================================================== 54 ray flags changed 37 rays now selected OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 3 16 1.840E-04 75.736 -5 174 177 -127.002 -191.001 0.000 4 1 3.765E-05 15.496 -4 174 127 -127.004 -191.001 0.000

Page 123: (ATST) Stray and Scattered Light Analysis

122

1 2 1.148E-05 4.723 -4 174 114 -114.005 -191.001 0.000 5 4 9.827E-06 4.044 -5 174 177 -131.002 -191.001 0.000 ------------------------ 5 37 2.430E-04 LIST OF MOST SIGNIFICANT LEVEL 2 PATHS FOR SOURCE 1 (DIRECT SOLAR) =================================================== 103110 ray flags changed 103073 rays now selected OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 97 177 2.053E-06 28.718 -5 174 119 -119.001 -108.004 -191.001 0.000 119 282 1.505E-06 21.044 -5 174 119 -119.001 -73.004 -191.001 0.000 110 2886 8.643E-07 12.087 -5 174 119 -119.001 -17.004 -191.001 0.000 64 123 6.615E-07 9.251 -5 174 119 -119.001 -71.004 -191.001 0.000 38 2507 5.656E-07 7.910 -5 174 119 -119.001 -16.004 -191.001 0.000 111 9 5.236E-07 7.323 -5 174 119 -119.001 -102.002 -191.001 0.000 90 103 2.162E-07 3.024 -5 174 119 -119.001 -109.004 -191.001 0.000 122 8956 1.841E-07 2.575 -5 174 119 -119.001 -14.004 -191.001 0.000 99 133 1.425E-07 1.993 -5 174 119 -119.001 -102.004 -191.001 0.000 4 6570 1.033E-07 1.444 -5 174 119 -119.001 -15.004 -191.001 0.000 28 296 8.427E-08 1.179 -5 174 119 -119.001 -72.004 -191.001 0.000 23 3445 6.159E-08 0.861 -5 174 119 -119.001 -13.004 -191.001 0.000 116 64 4.916E-08 0.688 -5 174 119 -119.001 -110.004 -191.001 0.000 95 1139 3.491E-08 0.488 -5 174 119 -119.001 -30.004 -191.001 0.000 94 289 2.639E-08 0.369 -5 174 119 -119.001 -74.004 -191.001 0.000 40 9335 1.684E-08 0.235 -5 174 119 -119.001 -7.003 -191.001 0.000 139 1 9.224E-09 0.129 -8 174 177 -119.001 -108.004 -191.001 0.000 13 3138 6.549E-09 0.092 -6 174 171 -168.001 -166.001 -191.001 0.000 114 70 4.939E-09 0.069 -5 174 119 -119.001 -27.004 -191.001 0.000 138 1 4.497E-09 0.063 -6 174 171 -168.002 -14.002 -191.001 0.000 31 3 4.384E-09 0.061 -6 174 171 -168.002 -16.002 -191.001 0.000 108 3654 4.245E-09 0.059 -6 174 171 -168.001 -17.002 -191.001 0.000 109 1400 2.479E-09 0.035 -5 174 171 -171.001 -17.003 -191.001 0.000 137 6634 2.405E-09 0.034 -5 174 171 -171.001 -14.003 -191.001 0.000 1 6135 2.158E-09 0.030 -5 174 171 -171.001 -15.003 -191.001 0.000 19 2968 1.899E-09 0.027 -6 174 171 -168.001 -16.002 -191.001 0.000 9 9628 1.824E-09 0.026 -5 174 171 -171.001 -13.003 -191.001 0.000 20 1207 1.308E-09 0.018 -5 174 171 -171.001 -16.003 -191.001 0.000 49 3 1.151E-09 0.016 -6 174 171 -168.002 -15.002 -191.001 0.000 130 4144 1.014E-09 0.014 -6 174 171 -168.001 -14.002 -191.001 0.000 34 1876 9.832E-10 0.014 -6 174 171 -168.001 -162.001 -191.001 0.000 68 3 8.905E-10 0.012 -8 174 177 -119.001 -16.004 -191.001 0.000 118 258 8.718E-10 0.012 -6 174 171 -168.001 -73.002 -191.001 0.000 52 3769 7.825E-10 0.011 -6 174 171 -168.001 -13.002 -191.001 0.000 44 1160 6.906E-10 0.010 -6 174 171 -168.001 -130.001 -191.001 0.000 3 3810 6.628E-10 0.009 -6 174 171 -168.001 -15.002 -191.001 0.000 123 32 6.407E-10 0.009 -8 174 177 -119.001 -14.004 -191.001 0.000 120 3 4.864E-10 0.007 -8 174 177 -119.001 -17.004 -191.001 0.000 144 1135 3.735E-10 0.005 -5 174 171 -171.001 -3.003 -191.001 0.000 5 999 3.303E-10 0.005 -5 174 171 -171.001 -1.003 -191.001 0.000 88 1 3.164E-10 0.004 -6 174 171 -168.002 -130.001 -191.001 0.000 101 12 3.084E-10 0.004 -8 174 177 -119.001 -30.004 -191.001 0.000 98 2 2.404E-10 0.003 -6 174 171 -168.002 -13.002 -191.001 0.000 55 3 2.132E-10 0.003 -6 174 171 -168.002 -166.001 -191.001 0.000

Page 124: (ATST) Stray and Scattered Light Analysis

123

121 336 1.672E-10 0.002 -5 174 91 -91.002 -14.001 -191.001 0.000 46 291 1.473E-10 0.002 -5 174 171 -171.001 -130.002 -191.001 0.000 63 127 1.385E-10 0.002 -6 174 171 -168.001 -71.002 -191.001 0.000 22 1313 1.054E-10 0.001 -5 174 171 -171.001 -2.003 -191.001 0.000 124 11 8.828E-11 0.001 -5 174 171 -171.001 -73.003 -191.001 0.000 127 3 8.693E-11 0.001 -6 174 171 -168.002 -3.002 -191.001 0.000 91 100 8.384E-11 0.001 -6 174 171 -168.001 -72.002 -191.001 0.000 21 121 8.355E-11 0.001 -5 174 91 -91.002 -16.001 -191.001 0.000 136 20 7.207E-11 0.001 -5 174 171 -171.001 -155.001 -191.001 0.000 ------------------------ 166 103073 7.150E-06 LIST OF MOST SIGNIFICANT LEVEL 2 PATHS FOR SOURCE 2 (INDIRECT SKY) =================================================== 201659 ray flags changed 98586 rays now selected OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 86 142 2.828E-07 22.461 -5 174 119 -119.001 -108.004 -191.001 0.000 112 3233 2.057E-07 16.333 -5 174 119 -119.001 -17.004 -191.001 0.000 94 129 1.842E-07 14.630 -5 174 119 -119.001 -107.004 -191.001 0.000 90 66 1.065E-07 8.454 -5 174 119 -119.001 -105.004 -191.001 0.000 21 2368 9.872E-08 7.840 -5 174 119 -119.001 -16.004 -191.001 0.000 71 102 9.345E-08 7.421 -5 174 119 -119.001 -109.004 -191.001 0.000 42 400 8.609E-08 6.837 -5 174 119 -119.001 -72.004 -191.001 0.000 78 72 4.120E-08 3.272 -5 174 119 -119.001 -110.004 -191.001 0.000 107 108 3.714E-08 2.949 -5 174 119 -119.001 -111.004 -191.001 0.000 76 111 3.546E-08 2.816 -5 174 119 -119.001 -71.004 -191.001 0.000 8 7115 2.526E-08 2.006 -5 174 119 -119.001 -15.004 -191.001 0.000 125 8155 2.096E-08 1.665 -5 174 119 -119.001 -14.004 -191.001 0.000 22 3600 1.262E-08 1.003 -5 174 119 -119.001 -13.004 -191.001 0.000 62 294 6.661E-09 0.529 -5 174 119 -119.001 -74.004 -191.001 0.000 99 61 5.216E-09 0.414 -5 174 119 -119.001 -73.004 -191.001 0.000 24 10445 4.233E-09 0.336 -5 174 119 -119.001 -7.003 -191.001 0.000 84 784 2.905E-09 0.231 -5 174 119 -119.001 -30.004 -191.001 0.000 95 1 2.302E-09 0.183 -8 174 177 -119.001 -107.004 -191.001 0.000 10 3128 1.475E-09 0.117 -6 174 171 -168.001 -166.001 -191.001 0.000 108 1 6.158E-10 0.049 -8 174 177 -119.001 -111.004 -191.001 0.000 110 3303 5.647E-10 0.045 -6 174 171 -168.001 -17.002 -191.001 0.000 72 1 4.585E-10 0.036 -6 174 171 -168.002 -15.002 -191.001 0.000 139 2 4.071E-10 0.032 -6 174 171 -168.002 -17.002 -191.001 0.000 1 5935 3.608E-10 0.029 -5 174 171 -171.001 -15.003 -191.001 0.000 12 10319 3.544E-10 0.028 -5 174 171 -171.001 -13.003 -191.001 0.000 43 2 3.518E-10 0.028 -8 174 177 -119.001 -72.004 -191.001 0.000 111 1277 3.271E-10 0.026 -5 174 171 -171.001 -17.003 -191.001 0.000 115 6316 3.237E-10 0.026 -5 174 171 -171.001 -14.003 -191.001 0.000 13 2723 2.401E-10 0.019 -6 174 171 -168.001 -16.002 -191.001 0.000 122 3 2.072E-10 0.016 -8 174 177 -119.001 -17.004 -191.001 0.000 145 2 1.642E-10 0.013 -6 174 171 -168.002 -162.001 -191.001 0.000 14 1076 1.536E-10 0.012 -5 174 171 -171.001 -16.003 -191.001 0.000 7 1775 1.448E-10 0.012 -6 174 171 -168.001 -162.001 -191.001 0.000 3 3847 1.406E-10 0.011 -6 174 171 -168.001 -15.002 -191.001 0.000 113 3644 1.259E-10 0.010 -6 174 171 -168.001 -14.002 -191.001 0.000 114 2 1.164E-10 0.009 -6 174 171 -168.002 -14.002 -191.001 0.000 44 2 1.083E-10 0.009 -6 174 171 -168.002 -16.002 -191.001 0.000

Page 125: (ATST) Stray and Scattered Light Analysis

124

47 3321 1.068E-10 0.008 -6 174 171 -168.001 -13.002 -191.001 0.000 101 16 1.056E-10 0.008 -5 174 171 -171.001 -104.003 -191.001 0.000 17 1140 9.129E-11 0.007 -6 174 171 -168.001 -130.001 -191.001 0.000 9 1048 7.796E-11 0.006 -5 174 171 -171.001 -1.003 -191.001 0.000 135 35 6.120E-11 0.005 -8 174 177 -119.001 -14.004 -191.001 0.000 93 87 5.255E-11 0.004 -6 174 171 -168.001 -107.002 -191.001 0.000 15 20 5.095E-11 0.004 -8 174 177 -119.001 -15.004 -191.001 0.000 30 1030 5.082E-11 0.004 -5 174 171 -171.001 -3.003 -191.001 0.000 66 2 4.559E-11 0.004 -8 174 177 -119.001 -16.004 -191.001 0.000 83 81 3.070E-11 0.002 -6 174 171 -168.001 -72.002 -191.001 0.000 25 124 3.043E-11 0.002 -5 174 91 -91.002 -16.001 -191.001 0.000 89 62 3.028E-11 0.002 -6 174 171 -168.001 -105.002 -191.001 0.000 134 5 2.744E-11 0.002 -5 174 171 -171.001 -103.003 -191.001 0.000 19 351 2.735E-11 0.002 -5 174 171 -171.001 -130.002 -191.001 0.000 98 152 2.722E-11 0.002 -6 174 171 -168.001 -73.002 -191.001 0.000 109 102 2.551E-11 0.002 -5 174 91 -91.002 -17.001 -191.001 0.000 85 125 2.193E-11 0.002 -6 174 171 -168.001 -108.002 -191.001 0.000 106 72 1.940E-11 0.002 -6 174 171 -168.001 -111.002 -191.001 0.000 5 1082 1.593E-11 0.001 -5 174 171 -171.001 -2.003 -191.001 0.000 119 2 1.495E-11 0.001 -8 174 177 -119.001 -30.004 -191.001 0.000 75 96 1.453E-11 0.001 -6 174 171 -168.001 -71.002 -191.001 0.000 46 15 1.419E-11 0.001 -8 174 177 -119.001 -13.004 -191.001 0.000 143 1 1.324E-11 0.001 -8 174 177 -119.001 -74.004 -191.001 0.000 56 82 1.321E-11 0.001 -5 174 171 -171.001 -115.001 -191.001 0.000 ------------------------

156 586 1.259E-06

Page 126: (ATST) Stray and Scattered Light Analysis

125

Coude Focus *************************** SUMMARY DATA ******************************* ANGLE FROM ZENITH = 0 DEGREES DOME SETTING (0 = OFF, 1 = ON) = 1 ANALYSIS TASK (0=DIRECT, 1=LAKE, 2=SNOW) = 2 FOCUS POSITION (0=GREGORIAN, 1=COUDE) = 1 LYOT STOP INNER APERTURE RADIUS = 260 mm ======================================================================== TOTAL DIRECT POWER (NO SCATTER) = 0 W TOTAL SCATTERED POWER (LEVEL 1) = 1.81633E-4 W TOTAL SCATTERED POWER (LEVEL 2) = 1.64977E-5 W ************************************************************************ LIST OF MOST SIGNIFICANT SPECULAR PATHS FOR SOURCE 1 =================================================== 233527 ray flags changed 0 rays now selected LIST OF MOST SIGNIFICANT SPECULAR PATHS FOR SOURCE 2 =================================================== 0 ray flags changed 0 rays now selected LIST OF MOST SIGNIFICANT LEVEL 1 PATHS FOR SOURCE 1 =================================================== 12 ray flags changed 12 rays now selected OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 1 1 4.811E-05 57.361 -4 190 129 -129.005 -191.001 0.000 2 4 3.576E-05 42.638 -4 190 117 -117.006 -191.001 0.000 ------------------------ 3 12 8.387E-05 LIST OF MOST SIGNIFICANT LEVEL 1 PATHS FOR SOURCE 2 =================================================== 49 ray flags changed 37 rays now selected OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 1 6 5.767E-05 58.987 -4 190 129 -129.005 -191.001 0.000 3 5 3.943E-05 40.327 -4 190 131 -131.006 -191.001 0.000 4 3 6.384E-07 0.653 -4 190 117 -117.006 -191.001 0.000 5 9 3.202E-08 0.033 -4 190 184 -184.001 -191.001 0.000 ------------------------ 5 37 9.777E-05 LIST OF MOST SIGNIFICANT LEVEL 2 PATHS FOR SOURCE 1 =================================================== 119513 ray flags changed

Page 127: (ATST) Stray and Scattered Light Analysis

126

119476 rays now selected OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 4 15363 5.252E-06 36.248 -5 190 46 -46.001 -158.002 -191.001 0.000 18 7259 2.143E-06 14.793 -5 190 46 -46.001 -126.006 -191.001 0.000 42 1168 1.815E-06 12.526 -5 190 46 -46.001 -129.005 -191.001 0.000 121 4751 1.442E-06 9.954 -5 190 46 -46.001 -127.006 -191.001 0.000 36 2688 1.175E-06 8.107 -5 190 46 -46.001 -131.006 -191.001 0.000 9 2285 8.220E-07 5.674 -5 190 46 -46.001 -125.006 -191.001 0.000 27 563 4.720E-07 3.258 -5 190 46 -46.001 -114.006 -191.001 0.000 73 387 4.117E-07 2.842 -5 190 46 -46.001 -115.006 -191.001 0.000 138 2662 1.836E-07 1.267 -5 190 46 -46.001 -117.006 -191.001 0.000 48 507 1.249E-07 0.862 -5 190 46 -46.001 -51.005 -191.001 0.000 40 605 1.231E-07 0.849 -5 190 46 -46.001 -124.006 -191.001 0.000 104 1194 1.142E-07 0.788 -5 190 46 -46.001 -30.003 -191.001 0.000 140 819 8.647E-08 0.597 -5 190 46 -46.001 -116.006 -191.001 0.000 39 337 8.558E-08 0.591 -5 190 46 -46.001 -128.002 -191.001 0.000 70 99 7.308E-08 0.504 -5 190 46 -46.001 -162.006 -191.001 0.000 38 78 2.288E-08 0.158 -5 190 46 -46.001 -55.005 -191.001 0.000 43 208 1.850E-08 0.128 -5 190 46 -46.001 -112.004 -191.001 0.000 50 303 1.571E-08 0.108 -6 190 184 -181.001 -129.003 -191.001 0.000 20 990 1.517E-08 0.105 -5 190 184 -184.001 -125.005 -191.001 0.000 141 98 1.382E-08 0.095 -6 190 184 -184.001 -129.003 -191.001 0.000 144 486 9.139E-09 0.063 -6 190 184 -181.001 -117.004 -191.001 0.000 32 418 7.545E-09 0.052 -6 190 184 -181.001 -115.004 -191.001 0.000 10 3076 6.461E-09 0.045 -11 190 184 -168.001 -166.001 -191.001 0.000 132 96 6.064E-09 0.042 -5 190 184 -184.001 -129.004 -191.001 0.000 134 1 4.497E-09 0.031 -11 190 184 -168.002 -14.002 -191.001 0.000 24 3 4.384E-09 0.030 -11 190 184 -168.002 -16.002 -191.001 0.000 35 1979 4.257E-09 0.029 -5 190 184 -184.001 -131.005 -191.001 0.000 112 3620 4.157E-09 0.029 -11 190 184 -168.001 -17.002 -191.001 0.000 150 1446 2.395E-09 0.017 -6 190 184 -181.001 -127.004 -191.001 0.000 113 1337 2.378E-09 0.016 -10 190 184 -171.001 -17.003 -191.001 0.000 133 6372 2.305E-09 0.016 -10 190 184 -171.001 -14.003 -191.001 0.000 1 5899 2.078E-09 0.014 -10 190 184 -171.001 -15.003 -191.001 0.000 16 2906 1.858E-09 0.013 -11 190 184 -168.001 -16.002 -191.001 0.000 6 9298 1.768E-09 0.012 -10 190 184 -171.001 -13.003 -191.001 0.000 107 20 1.548E-09 0.011 -6 190 184 -184.001 -115.004 -191.001 0.000 31 232 1.477E-09 0.010 -8 190 184 -177.001 -115.002 -191.001 0.000 152 91 1.338E-09 0.009 -6 190 184 -181.001 -162.005 -191.001 0.000 17 1159 1.257E-09 0.009 -10 190 184 -171.001 -16.003 -191.001 0.000 54 3 1.151E-09 0.008 -11 190 184 -168.002 -15.002 -191.001 0.000 125 4062 9.975E-10 0.007 -11 190 184 -168.001 -14.002 -191.001 0.000 34 2065 9.886E-10 0.007 -6 190 184 -181.001 -131.004 -191.001 0.000 26 1840 9.587E-10 0.007 -11 190 184 -168.001 -162.001 -191.001 0.000 117 252 8.449E-10 0.006 -11 190 184 -168.001 -73.002 -191.001 0.000 57 3666 7.605E-10 0.005 -11 190 184 -168.001 -13.002 -191.001 0.000 139 365 7.146E-10 0.005 -5 190 184 -184.001 -124.005 -191.001 0.000 45 1148 6.831E-10 0.005 -11 190 184 -168.001 -130.001 -191.001 0.000 2 3734 6.506E-10 0.004 -11 190 184 -168.001 -15.002 -191.001 0.000 88 332 6.177E-10 0.004 -8 190 184 -177.001 -131.002 -191.001 0.000 37 24 4.698E-10 0.003 -7 190 184 -178.001 -55.002 -191.001 0.000 161 30 4.657E-10 0.003 -6 190 184 -184.001 -127.004 -191.001 0.000 142 1082 3.556E-10 0.002 -10 190 184 -171.001 -3.003 -191.001 0.000 3 960 3.179E-10 0.002 -10 190 184 -171.001 -1.003 -191.001 0.000 100 1 3.164E-10 0.002 -11 190 184 -168.002 -130.001 -191.001 0.000

Page 128: (ATST) Stray and Scattered Light Analysis

127

58 507 2.763E-10 0.002 -8 190 184 -177.001 -114.002 -191.001 0.000 108 2 2.404E-10 0.002 -11 190 184 -168.002 -13.002 -191.001 0.000 106 75 2.337E-10 0.002 -7 190 184 -178.001 -115.003 -191.001 0.000 64 2 1.963E-10 0.001 -11 190 184 -168.002 -166.001 -191.001 0.000 89 97 1.764E-10 0.001 -6 190 184 -184.001 -131.004 -191.001 0.000 46 533 1.522E-10 0.001 -5 190 184 -184.001 -51.004 -191.001 0.000 ------------------------ 171 119476 1.449E-05 LIST OF MOST SIGNIFICANT LEVEL 2 PATHS FOR SOURCE 2 =================================================== 233527 ray flags changed 114051 rays now selected OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 8 13654 8.281E-07 41.212 -5 190 46 -46.001 -158.002 -191.001 0.000 136 5734 2.927E-07 14.568 -5 190 46 -46.001 -127.006 -191.001 0.000 11 2645 1.727E-07 8.597 -5 190 46 -46.001 -125.006 -191.001 0.000 42 2114 1.607E-07 7.996 -5 190 46 -46.001 -131.006 -191.001 0.000 16 785 1.566E-07 7.794 -5 190 46 -46.001 -114.006 -191.001 0.000 21 872 1.320E-07 6.571 -5 190 46 -46.001 -129.005 -191.001 0.000 29 6209 1.282E-07 6.379 -5 190 46 -46.001 -126.006 -191.001 0.000 140 2934 3.474E-08 1.729 -5 190 46 -46.001 -117.006 -191.001 0.000 38 475 2.322E-08 1.156 -5 190 46 -46.001 -112.004 -191.001 0.000 22 724 1.325E-08 0.659 -5 190 46 -46.001 -124.006 -191.001 0.000 10 466 1.135E-08 0.565 -5 190 46 -46.001 -116.006 -191.001 0.000 101 1013 8.532E-09 0.425 -5 190 46 -46.001 -30.003 -191.001 0.000 60 199 7.813E-09 0.389 -5 190 46 -46.001 -115.006 -191.001 0.000 28 376 7.782E-09 0.387 -5 190 46 -46.001 -51.005 -191.001 0.000 135 1687 5.687E-09 0.283 -6 190 184 -181.001 -127.004 -191.001 0.000 139 100 4.427E-09 0.220 -5 190 46 -46.001 -157.002 -191.001 0.000 142 248 3.764E-09 0.187 -6 190 184 -184.001 -127.004 -191.001 0.000 63 89 3.312E-09 0.165 -5 190 46 -46.001 -55.005 -191.001 0.000 24 944 1.994E-09 0.099 -5 190 184 -184.001 -125.005 -191.001 0.000 9 2995 1.428E-09 0.071 -11 190 184 -168.001 -166.001 -191.001 0.000 125 1 1.055E-09 0.053 -11 190 184 -168.002 -17.002 -191.001 0.000 58 900 7.624E-10 0.038 -6 190 184 -181.001 -115.004 -191.001 0.000 141 785 6.510E-10 0.032 -6 190 184 -181.001 -117.004 -191.001 0.000 77 224 5.935E-10 0.030 -6 190 184 -181.001 -114.004 -191.001 0.000 20 666 5.680E-10 0.028 -6 190 184 -181.001 -129.003 -191.001 0.000 118 3313 5.607E-10 0.028 -11 190 184 -168.001 -17.002 -191.001 0.000 65 1868 4.898E-10 0.024 -6 190 184 -181.001 -131.004 -191.001 0.000 79 210 3.939E-10 0.020 -8 190 184 -177.001 -115.002 -191.001 0.000 12 9820 3.434E-10 0.017 -10 190 184 -171.001 -13.003 -191.001 0.000 1 5630 3.374E-10 0.017 -10 190 184 -171.001 -15.003 -191.001 0.000 41 1716 3.234E-10 0.016 -5 190 184 -184.001 -131.005 -191.001 0.000 108 64 3.133E-10 0.016 -8 190 184 -177.001 -67.001 -191.001 0.000 121 6124 3.112E-10 0.015 -10 190 184 -171.001 -14.003 -191.001 0.000 119 1195 3.081E-10 0.015 -10 190 184 -171.001 -17.003 -191.001 0.000 48 309 3.042E-10 0.015 -5 190 184 -184.001 -124.005 -191.001 0.000 92 95 2.813E-10 0.014 -5 190 184 -184.001 -129.004 -191.001 0.000 13 2742 2.541E-10 0.013 -11 190 184 -168.001 -16.002 -191.001 0.000 144 3 2.323E-10 0.012 -11 190 184 -168.002 -14.002 -191.001 0.000 109 16 2.124E-10 0.011 -7 190 184 -178.001 -67.002 -191.001 0.000 15 524 2.016E-10 0.010 -8 190 184 -177.001 -114.002 -191.001 0.000

Page 129: (ATST) Stray and Scattered Light Analysis

128

110 49 1.849E-10 0.009 -5 190 46 -46.001 -67.005 -191.001 0.000 66 477 1.647E-10 0.008 -6 190 184 -181.001 -162.005 -191.001 0.000 5 1801 1.590E-10 0.008 -11 190 184 -168.001 -162.001 -191.001 0.000 14 1013 1.405E-10 0.007 -10 190 184 -171.001 -16.003 -191.001 0.000 2 3654 1.378E-10 0.007 -11 190 184 -168.001 -15.002 -191.001 0.000 120 3552 1.232E-10 0.006 -11 190 184 -168.001 -14.002 -191.001 0.000 64 3284 1.070E-10 0.005 -11 190 184 -168.001 -13.002 -191.001 0.000 17 1156 9.027E-11 0.004 -11 190 184 -168.001 -130.001 -191.001 0.000 152 20 8.294E-11 0.004 -6 190 184 -184.001 -129.003 -191.001 0.000 51 390 8.163E-11 0.004 -8 190 184 -177.001 -131.002 -191.001 0.000 34 167 7.908E-11 0.004 -8 190 184 -177.001 -136.002 -191.001 0.000 7 1049 7.871E-11 0.004 -10 190 184 -171.001 -1.003 -191.001 0.000 114 11 7.206E-11 0.004 -10 190 184 -171.001 -104.003 -191.001 0.000 153 140 6.553E-11 0.003 -6 190 184 -184.001 -131.004 -191.001 0.000 32 282 5.558E-11 0.003 -7 190 184 -178.001 -125.003 -191.001 0.000 76 140 5.417E-11 0.003 -7 190 184 -178.001 -114.003 -191.001 0.000 111 91 5.360E-11 0.003 -11 190 184 -168.001 -107.002 -191.001 0.000 91 9 5.196E-11 0.003 -6 190 184 -184.001 -115.004 -191.001 0.000 36 936 4.830E-11 0.002 -10 190 184 -171.001 -3.003 -191.001 0.000 134 1546 4.247E-11 0.002 -8 190 184 -177.001 -127.002 -191.001 0.000 133 7 3.830E-11 0.002 -10 190 184 -171.001 -103.003 -191.001 0.000 105 68 3.397E-11 0.002 -11 190 184 -168.001 -105.002 -191.001 0.000 159 151 3.101E-11 0.002 -5 190 184 -184.001 -116.005 -191.001 0.000 59 636 2.858E-11 0.001 -5 190 184 -184.001 -115.005 -191.001 0.000 99 79 2.799E-11 0.001 -11 190 184 -168.001 -72.002 -191.001 0.000 44 322 2.757E-11 0.001 -7 190 184 -178.001 -124.003 -191.001 0.000 113 137 2.468E-11 0.001 -11 190 184 -168.001 -73.002 -191.001 0.000 18 282 2.426E-11 0.001 -10 190 184 -171.001 -130.002 -191.001 0.000 52 296 2.182E-11 0.001 -7 190 184 -178.001 -131.003 -191.001 0.000 163 98 2.168E-11 0.001 -7 190 184 -181.001 -162.005 -191.001 0.000 ------------------------ 167 114051 2.009E-06

Page 130: (ATST) Stray and Scattered Light Analysis

129

Appendix E ASAP Path Data for Snow Illumination and “No Dome” This information is provided as backup for the results summarized in Section 5.4.3.

Gregorian Focus *************************** SUMMARY DATA ******************************* ANGLE FROM ZENITH = 0 DEGREES DOME SETTING (0 = OFF, 1 = ON) = 0 ANALYSIS TASK (0=DIRECT, 1=LAKE, 2=SNOW) = 2 FOCUS POSITION (0=GREGORIAN, 1=COUDE) = 0 LYOT STOP INNER APERTURE RADIUS = 260 mm ======================================================================== TOTAL DIRECT POWER (NO SCATTER) = 0 W TOTAL SCATTERED POWER (LEVEL 1) = 1.07283E-2 W TOTAL SCATTERED POWER (LEVEL 2) = 3.32951E-5 W ************************************************************************ LIST OF MOST SIGNIFICANT SPECULAR PATHS FOR SOURCE 1 =================================================== 361633 ray flags changed 0 rays now selected LIST OF MOST SIGNIFICANT SPECULAR PATHS FOR SOURCE 2 =================================================== 0 ray flags changed 0 rays now selected LIST OF MOST SIGNIFICANT LEVEL 1 PATHS FOR SOURCE 1 =================================================== 216 ray flags changed 216 rays now selected OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 9 21 7.495E-03 69.917 -4 142 83 -83.002 -159.001 0.000 13 1 1.014E-03 9.463 -4 142 47 -47.003 -159.001 0.000 15 55 9.817E-04 9.158 -5 142 145 -95.002 -159.001 0.000 16 4 2.463E-04 2.297 -5 142 145 -95.004 -159.001 0.000 2 5 2.396E-04 2.235 -4 142 82 -82.005 -159.001 0.000 10 9 1.437E-04 1.340 -4 142 156 -156.003 -159.001 0.000 1 4 1.378E-04 1.285 -4 142 64 -64.004 -159.001 0.000 7 1 1.350E-04 1.260 -4 142 20 -20.002 -159.001 0.000 3 8 1.276E-04 1.190 -4 142 94 -94.005 -159.001 0.000 14 17 1.133E-04 1.057 -5 142 145 -99.002 -159.001 0.000 19 1 3.093E-05 0.289 -4 142 95 -95.005 -159.001 0.000 17 14 2.048E-05 0.191 -5 142 145 -89.001 -159.001 0.000 18 1 1.692E-05 0.158 -4 142 72 -72.004 -159.001 0.000 20 1 9.004E-06 0.084 -4 142 95 -95.004 -159.001 0.000 8 1 6.476E-06 0.060 -4 142 46 -46.003 -159.001 0.000 6 1 8.708E-07 0.008 -4 142 57 -57.002 -159.001 0.000 5 44 7.484E-07 0.007 -4 142 139 -139.001 -159.001 0.000 ------------------------ 20 216 1.072E-02

Page 131: (ATST) Stray and Scattered Light Analysis

130

LIST OF MOST SIGNIFICANT LEVEL 1 PATHS FOR SOURCE 2 =================================================== 493 ray flags changed 277 rays now selected OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 16 4 2.757E-06 34.348 -4 142 83 -83.002 -159.001 0.000 2 48 1.837E-06 22.888 -5 142 145 -95.002 -159.001 0.000 15 2 1.218E-06 15.175 -4 142 82 -82.005 -159.001 0.000 11 6 9.535E-07 11.880 -4 142 156 -156.003 -159.001 0.000 4 33 2.665E-07 3.320 -5 142 145 -99.002 -159.001 0.000 7 9 2.363E-07 2.944 -5 142 145 -95.004 -159.001 0.000 3 7 1.967E-07 2.451 -4 142 95 -95.005 -159.001 0.000 5 9 1.240E-07 1.546 -4 142 94 -94.005 -159.001 0.000 13 3 1.161E-07 1.447 -4 142 95 -95.004 -159.001 0.000 12 1 9.341E-08 1.164 -4 142 47 -47.003 -159.001 0.000 1 18 8.836E-08 1.101 -5 142 145 -89.001 -159.001 0.000 8 6 6.705E-08 0.835 -4 142 72 -72.004 -159.001 0.000 9 3 5.090E-08 0.634 -4 142 64 -64.004 -159.001 0.000 17 2 1.392E-08 0.173 -4 142 57 -57.002 -159.001 0.000 19 1 3.826E-09 0.048 -4 142 82 -82.004 -159.001 0.000 18 3 3.266E-09 0.041 -4 142 61 -61.004 -159.001 0.000 10 67 2.505E-10 0.003 -4 142 139 -139.001 -159.001 0.000 ------------------------ 19 277 8.026E-06 LIST OF MOST SIGNIFICANT LEVEL 2 PATHS FOR SOURCE 1 =================================================== 237519 ray flags changed 237242 rays now selected OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 63 7106 4.284E-06 12.883 -5 142 87 -87.001 -77.004 -159.001 0.000 62 11406 4.046E-06 12.169 -5 142 87 -87.001 -41.004 -159.001 0.000 21 11036 3.949E-06 11.875 -5 142 87 -87.001 -39.004 -159.001 0.000 115 2239 3.195E-06 9.607 -5 142 87 -87.001 -72.004 -159.001 0.000 48 2859 3.045E-06 9.158 -5 142 87 -87.001 -75.004 -159.001 0.000 25 16157 2.947E-06 8.862 -5 142 87 -87.001 -42.004 -159.001 0.000 16 14877 2.173E-06 6.535 -5 142 87 -87.001 -40.004 -159.001 0.000 4 2925 1.831E-06 5.506 -5 142 87 -87.001 -74.004 -159.001 0.000 84 6512 1.629E-06 4.900 -5 142 87 -87.001 -76.004 -159.001 0.000 46 3162 7.670E-07 2.307 -5 142 87 -87.001 -78.004 -159.001 0.000 7 1564 6.253E-07 1.880 -5 142 87 -87.001 -71.004 -159.001 0.000 106 2670 5.820E-07 1.750 -5 142 87 -87.001 -79.004 -159.001 0.000 143 92 5.678E-07 1.708 -5 142 87 -87.001 -76.002 -159.001 0.000 29 1574 5.575E-07 1.677 -5 142 87 -87.001 -73.004 -159.001 0.000 116 118 5.495E-07 1.652 -5 142 87 -87.001 -77.002 -159.001 0.000 132 89 4.246E-07 1.277 -5 142 87 -87.001 -70.002 -159.001 0.000 51 214 4.193E-07 1.261 -5 142 87 -87.001 -46.003 -159.001 0.000 94 792 2.685E-07 0.808 -5 142 87 -87.001 -66.004 -159.001 0.000 88 255 2.596E-07 0.781 -5 142 87 -87.001 -38.004 -159.001 0.000 133 1956 1.895E-07 0.570 -5 142 87 -87.001 -70.004 -159.001 0.000 61 179 1.405E-07 0.423 -5 142 87 -87.001 -47.003 -159.001 0.000

Page 132: (ATST) Stray and Scattered Light Analysis

131

73 454 1.349E-07 0.406 -5 142 87 -87.001 -48.003 -159.001 0.000 184 260 1.130E-07 0.340 -5 142 87 -87.001 -69.004 -159.001 0.000 2 150 7.101E-08 0.214 -5 142 87 -87.001 -64.004 -159.001 0.000 191 1 5.204E-08 0.156 -6 142 139 -136.002 -47.001 -159.001 0.000 163 173 5.120E-08 0.154 -5 142 87 -87.001 -156.003 -159.001 0.000 69 394 3.662E-08 0.110 -5 142 87 -87.001 -67.004 -159.001 0.000 56 91 2.320E-08 0.070 -8 142 145 -87.001 -40.004 -159.001 0.000 240 58 1.978E-08 0.059 -6 142 87 -87.001 -40.004 -159.001 0.000 79 215 1.899E-08 0.057 -5 142 139 -139.001 -49.002 -159.001 0.000 49 34 1.835E-08 0.055 -8 142 145 -87.001 -75.004 -159.001 0.000 45 100 1.834E-08 0.055 -8 142 145 -87.001 -42.004 -159.001 0.000 245 45 1.799E-08 0.054 -6 142 87 -87.001 -66.004 -159.001 0.000 20 909 1.620E-08 0.049 -5 142 139 -139.001 -39.003 -159.001 0.000 213 3 1.469E-08 0.044 -8 142 145 -87.001 -76.002 -159.001 0.000 139 2 1.196E-08 0.036 -8 142 145 -87.001 -70.002 -159.001 0.000 198 63 1.154E-08 0.035 -5 142 87 -87.001 -156.002 -159.001 0.000 11 15664 1.109E-08 0.033 -6 142 139 -136.001 -134.001 -159.001 0.000 152 269 1.067E-08 0.032 -5 142 139 -139.001 -50.002 -159.001 0.000 204 26 8.433E-09 0.025 -6 142 87 -87.001 -95.004 -159.001 0.000 86 31 8.259E-09 0.025 -8 142 145 -87.001 -77.004 -159.001 0.000 157 5 8.056E-09 0.024 -8 142 145 -87.001 -72.004 -159.001 0.000 103 30 6.563E-09 0.020 -8 142 145 -87.001 -76.004 -159.001 0.000 158 8 6.502E-09 0.020 -8 142 145 -87.001 -38.004 -159.001 0.000 26 26 5.715E-09 0.017 -8 142 145 -87.001 -74.004 -159.001 0.000 52 11 5.707E-09 0.017 -6 142 139 -136.002 -134.001 -159.001 0.000 173 2 5.598E-09 0.017 -6 142 139 -136.002 -130.001 -159.001 0.000 140 141 5.380E-09 0.016 -5 142 139 -139.001 -48.002 -159.001 0.000 188 41 5.280E-09 0.016 -5 142 139 -139.001 -63.002 -159.001 0.000 156 34 4.926E-09 0.015 -5 142 87 -87.001 -65.004 -159.001 0.000 95 15 4.728E-09 0.014 -8 142 145 -87.001 -66.004 -159.001 0.000 168 5 4.571E-09 0.014 -5 142 87 -87.001 -64.003 -159.001 0.000 57 16 4.307E-09 0.013 -8 142 145 -87.001 -39.004 -159.001 0.000 80 862 3.712E-09 0.011 -5 142 139 -139.001 -41.003 -159.001 0.000 19 18956 3.203E-09 0.010 -6 142 139 -136.001 -39.002 -159.001 0.000 40 17582 3.071E-09 0.009 -6 142 139 -136.001 -41.002 -159.001 0.000 8 4 2.578E-09 0.008 -8 142 145 -87.001 -71.004 -159.001 0.000 121 8 2.527E-09 0.008 -6 142 139 -136.002 -98.001 -159.001 0.000 75 121 2.332E-09 0.007 -5 142 139 -139.001 -52.002 -159.001 0.000 31 1636 2.186E-09 0.007 -5 142 139 -139.001 -42.003 -159.001 0.000 10 1497 1.997E-09 0.006 -5 142 139 -139.001 -40.003 -159.001 0.000 38 14633 1.831E-09 0.006 -6 142 139 -136.001 -98.001 -159.001 0.000 124 337 1.801E-09 0.005 -5 142 59 -59.002 -41.001 -159.001 0.000 114 3072 1.647E-09 0.005 -6 142 139 -136.001 -72.002 -159.001 0.000 194 2 1.550E-09 0.005 -6 142 139 -136.002 -72.002 -159.001 0.000 23 8522 1.428E-09 0.004 -6 142 139 -136.001 -130.001 -159.001 0.000 135 3 1.403E-09 0.004 -6 142 139 -136.002 -41.002 -159.001 0.000 172 6 1.330E-09 0.004 -8 142 145 -87.001 -79.004 -159.001 0.000 155 12 1.304E-09 0.004 -6 142 87 -87.001 -93.003 -159.001 0.000 134 11 1.289E-09 0.004 -8 142 145 -87.001 -70.004 -159.001 0.000 24 6053 1.278E-09 0.004 -6 142 139 -136.001 -42.002 -159.001 0.000 216 2 1.159E-09 0.003 -8 142 145 -87.001 -77.002 -159.001 0.000 220 8 1.128E-09 0.003 -6 142 87 -87.001 -95.002 -159.001 0.000 18 433 1.084E-09 0.003 -5 142 59 -59.002 -39.001 -159.001 0.000 105 50 1.006E-09 0.003 -5 142 139 -139.001 -51.002 -159.001 0.000 203 38 9.867E-10 0.003 -6 142 87 -87.001 -99.004 -159.001 0.000 174 235 9.691E-10 0.003 -5 142 139 -139.001 -66.003 -159.001 0.000 30 5695 9.235E-10 0.003 -6 142 139 -136.001 -40.002 -159.001 0.000

Page 133: (ATST) Stray and Scattered Light Analysis

132

60 426 8.912E-10 0.003 -6 142 139 -136.001 -47.001 -159.001 0.000 241 4 8.588E-10 0.003 -9 142 145 -87.001 -40.004 -159.001 0.000 3 3123 8.471E-10 0.003 -6 142 139 -136.001 -74.002 -159.001 0.000 244 36 8.109E-10 0.002 -6 142 139 -139.001 -66.003 -159.001 0.000 185 2 7.898E-10 0.002 -8 142 145 -87.001 -69.004 -159.001 0.000 129 201 7.649E-10 0.002 -5 142 139 -139.001 -72.003 -159.001 0.000 74 7 7.436E-10 0.002 -6 142 139 -136.002 -39.002 -159.001 0.000 47 3192 7.177E-10 0.002 -6 142 139 -136.001 -75.002 -159.001 0.000 50 584 6.807E-10 0.002 -6 142 139 -136.001 -46.001 -159.001 0.000 190 60 6.534E-10 0.002 -5 142 139 -139.001 -68.003 -159.001 0.000 187 6 6.346E-10 0.002 -8 142 145 -87.001 -41.004 -159.001 0.000 96 237 5.971E-10 0.002 -6 142 139 -136.001 -65.001 -159.001 0.000 102 3 5.764E-10 0.002 -8 142 145 -87.001 -78.004 -159.001 0.000 35 1470 5.578E-10 0.002 -6 142 139 -136.001 -45.001 -159.001 0.000 72 1248 4.792E-10 0.001 -6 142 139 -136.001 -48.001 -159.001 0.000 131 636 4.506E-10 0.001 -5 142 139 -139.001 -81.001 -159.001 0.000 39 3913 4.383E-10 0.001 -5 142 139 -139.001 -98.002 -159.001 0.000 15 170 4.093E-10 0.001 -5 142 59 -59.002 -40.001 -159.001 0.000 215 5 4.042E-10 0.001 -8 142 145 -87.001 -73.004 -159.001 0.000 117 4 3.975E-10 0.001 -6 142 139 -136.002 -40.002 -159.001 0.000 22 4048 3.958E-10 0.001 -6 142 139 -136.001 -77.002 -159.001 0.000 70 10 3.877E-10 0.001 -8 142 145 -87.001 -67.004 -159.001 0.000 161 2 3.861E-10 0.001 -8 142 145 -87.001 -64.004 -159.001 0.000 1 747 3.699E-10 0.001 -6 142 139 -136.001 -64.001 -159.001 0.000 246 1 3.606E-10 0.001 -9 142 145 -87.001 -66.004 -159.001 0.000 193 2 3.587E-10 0.001 -6 142 139 -136.002 -78.002 -159.001 0.000 82 863 3.505E-10 0.001 -6 142 139 -136.001 -68.002 -159.001 0.000 6 1935 3.364E-10 0.001 -6 142 139 -136.001 -71.002 -159.001 0.000 ------------------------ 246 237242 3.325E-05 LIST OF MOST SIGNIFICANT LEVEL 2 PATHS FOR SOURCE 2 =================================================== 361633 ray flags changed 124391 rays now selected OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 15 14995 5.539E-09 12.901 -5 142 87 -87.001 -41.004 -159.001 0.000 34 9171 4.716E-09 10.985 -5 142 87 -87.001 -76.004 -159.001 0.000 4 7914 4.118E-09 9.591 -5 142 87 -87.001 -77.004 -159.001 0.000 6 18585 3.875E-09 9.027 -5 142 87 -87.001 -40.004 -159.001 0.000 10 3665 3.427E-09 7.983 -5 142 87 -87.001 -75.004 -159.001 0.000 43 4404 3.416E-09 7.957 -5 142 87 -87.001 -74.004 -159.001 0.000 3 3707 3.334E-09 7.766 -5 142 87 -87.001 -72.004 -159.001 0.000 1 14746 3.114E-09 7.252 -5 142 87 -87.001 -39.004 -159.001 0.000 16 18345 2.778E-09 6.470 -5 142 87 -87.001 -42.004 -159.001 0.000 2 1762 1.432E-09 3.336 -5 142 87 -87.001 -73.004 -159.001 0.000 11 2041 9.810E-10 2.285 -5 142 87 -87.001 -71.004 -159.001 0.000 30 1746 8.408E-10 1.958 -5 142 87 -87.001 -66.004 -159.001 0.000 32 3026 7.353E-10 1.713 -5 142 87 -87.001 -79.004 -159.001 0.000 55 135 7.166E-10 1.669 -5 142 87 -87.001 -77.002 -159.001 0.000 37 63 6.644E-10 1.548 -5 142 87 -87.001 -70.002 -159.001 0.000 9 3102 5.125E-10 1.194 -5 142 87 -87.001 -78.004 -159.001 0.000 72 89 5.020E-10 1.169 -5 142 87 -87.001 -76.002 -159.001 0.000 38 2330 4.900E-10 1.141 -5 142 87 -87.001 -70.004 -159.001 0.000

Page 134: (ATST) Stray and Scattered Light Analysis

133

107 428 3.618E-10 0.843 -5 142 87 -87.001 -48.003 -159.001 0.000 117 218 2.409E-10 0.561 -5 142 87 -87.001 -69.004 -159.001 0.000 103 169 1.831E-10 0.426 -5 142 87 -87.001 -156.003 -159.001 0.000 49 273 1.466E-10 0.341 -5 142 87 -87.001 -64.004 -159.001 0.000 27 227 1.342E-10 0.313 -5 142 87 -87.001 -67.004 -159.001 0.000 52 225 7.124E-11 0.166 -5 142 87 -87.001 -47.003 -159.001 0.000 176 106 6.088E-11 0.142 -6 142 87 -87.001 -42.004 -159.001 0.000 13 241 5.628E-11 0.131 -5 142 87 -87.001 -38.004 -159.001 0.000 110 30 4.406E-11 0.103 -5 142 87 -87.001 -65.004 -159.001 0.000 35 37 3.233E-11 0.075 -8 142 145 -87.001 -76.004 -159.001 0.000 56 36 3.148E-11 0.073 -8 142 145 -87.001 -75.004 -159.001 0.000 44 442 2.983E-11 0.069 -5 142 139 -139.001 -49.002 -159.001 0.000 7 140 2.596E-11 0.060 -8 142 145 -87.001 -40.004 -159.001 0.000 31 41 2.376E-11 0.055 -8 142 145 -87.001 -66.004 -159.001 0.000 65 44 2.262E-11 0.053 -8 142 145 -87.001 -74.004 -159.001 0.000 158 53 2.244E-11 0.052 -5 142 87 -87.001 -156.002 -159.001 0.000 36 699 2.080E-11 0.048 -5 142 139 -139.001 -39.003 -159.001 0.000 41 138 2.030E-11 0.047 -8 142 145 -87.001 -42.004 -159.001 0.000 179 115 1.885E-11 0.044 -6 142 87 -87.001 -40.004 -159.001 0.000 120 4 1.514E-11 0.035 -8 142 145 -87.001 -77.002 -159.001 0.000 12 17 1.321E-11 0.031 -8 142 145 -87.001 -72.004 -159.001 0.000 5 32 1.271E-11 0.030 -8 142 145 -87.001 -77.004 -159.001 0.000 150 2 1.243E-11 0.029 -6 142 139 -136.002 -48.001 -159.001 0.000 182 42 1.055E-11 0.025 -6 142 87 -87.001 -66.004 -159.001 0.000 40 207 8.807E-12 0.021 -5 142 139 -139.001 -50.002 -159.001 0.000 92 11 6.852E-12 0.016 -6 142 139 -136.002 -134.001 -159.001 0.000 48 35 6.740E-12 0.016 -5 142 87 -87.001 -46.003 -159.001 0.000 119 5 5.747E-12 0.013 -6 142 87 -87.001 -84.004 -159.001 0.000 57 15 5.552E-12 0.013 -6 142 139 -136.002 -41.002 -159.001 0.000 82 18 5.516E-12 0.013 -6 142 139 -136.002 -39.002 -159.001 0.000 26 684 4.741E-12 0.011 -5 142 139 -139.001 -40.003 -159.001 0.000 47 1001 3.857E-12 0.009 -6 142 139 -136.001 -134.001 -159.001 0.000 183 23 3.757E-12 0.009 -6 142 139 -139.001 -155.001 -159.001 0.000 23 681 3.504E-12 0.008 -5 142 139 -139.001 -41.003 -159.001 0.000 42 12 3.368E-12 0.008 -6 142 87 -87.001 -93.003 -159.001 0.000 134 4 3.273E-12 0.008 -8 142 145 -87.001 -69.004 -159.001 0.000 39 19 3.223E-12 0.008 -8 142 145 -87.001 -70.004 -159.001 0.000 131 69 3.069E-12 0.007 -5 142 139 -139.001 -48.002 -159.001 0.000 115 59 2.957E-12 0.007 -6 142 139 -139.001 -50.002 -159.001 0.000 66 15 2.892E-12 0.007 -8 142 145 -87.001 -41.004 -159.001 0.000 18 29 2.812E-12 0.007 -8 142 145 -87.001 -39.004 -159.001 0.000 45 101 2.571E-12 0.006 -5 142 59 -59.002 -39.001 -159.001 0.000 77 325 2.490E-12 0.006 -5 142 139 -139.001 -66.003 -159.001 0.000 24 1040 2.409E-12 0.006 -6 142 139 -136.001 -41.002 -159.001 0.000 22 17 2.231E-12 0.005 -6 142 87 -87.001 -89.001 -159.001 0.000 21 525 2.176E-12 0.005 -5 142 139 -139.001 -42.003 -159.001 0.000 62 6 2.108E-12 0.005 -8 142 145 -87.001 -73.004 -159.001 0.000 20 685 1.867E-12 0.004 -6 142 139 -136.001 -39.002 -159.001 0.000 14 103 1.765E-12 0.004 -5 142 59 -59.002 -41.001 -159.001 0.000 177 2 1.725E-12 0.004 -9 142 145 -87.001 -42.004 -159.001 0.000 58 138 1.521E-12 0.004 -5 142 139 -139.001 -52.002 -159.001 0.000 156 34 1.511E-12 0.004 -5 142 87 -87.001 -57.002 -159.001 0.000 68 12 1.395E-12 0.003 -6 142 139 -136.002 -98.001 -159.001 0.000 106 188 1.257E-12 0.003 -6 142 139 -136.001 -48.001 -159.001 0.000 162 4 1.231E-12 0.003 -6 142 87 -87.001 -95.002 -159.001 0.000 123 101 1.210E-12 0.003 -5 142 139 -139.001 -51.002 -159.001 0.000 146 1 1.128E-12 0.003 -6 142 139 -136.002 -72.002 -159.001 0.000

Page 135: (ATST) Stray and Scattered Light Analysis

134

60 3 1.054E-12 0.002 -8 142 145 -87.001 -78.004 -159.001 0.000 76 391 8.797E-13 0.002 -6 142 139 -136.001 -40.002 -159.001 0.000 99 2 8.390E-13 0.002 -6 142 139 -136.002 -42.002 -159.001 0.000 46 186 8.274E-13 0.002 -5 142 139 -139.001 -68.003 -159.001 0.000 126 6 8.200E-13 0.002 -5 142 59 -59.002 -68.001 -159.001 0.000 64 269 8.147E-13 0.002 -6 142 139 -136.001 -75.002 -159.001 0.000 28 3 8.098E-13 0.002 -8 142 145 -87.001 -67.004 -159.001 0.000 25 4 7.914E-13 0.002 -6 142 139 -136.002 -40.002 -159.001 0.000 17 2 7.678E-13 0.002 -6 142 139 -136.002 -79.002 -159.001 0.000 67 380 6.758E-13 0.002 -6 142 139 -136.001 -72.002 -159.001 0.000 51 279 6.466E-13 0.002 -6 142 139 -136.001 -74.002 -159.001 0.000 8 41 6.141E-13 0.001 -5 142 59 -59.002 -42.001 -159.001 0.000 19 37 6.003E-13 0.001 -5 142 59 -59.002 -40.001 -159.001 0.000 61 144 5.906E-13 0.001 -6 142 139 -136.001 -156.001 -159.001 0.000 50 2 5.322E-13 0.001 -8 142 145 -87.001 -64.004 -159.001 0.000 91 32 5.163E-13 0.001 -6 142 87 -87.001 -99.004 -159.001 0.000 78 196 5.058E-13 0.001 -5 142 139 -139.001 -72.003 -159.001 0.000 139 1 4.991E-13 0.001 -6 142 139 -136.002 -75.002 -159.001 0.000 87 136 4.606E-13 0.001 -6 142 139 -136.001 -68.002 -159.001 0.000 ------------------------

184 124391 4.293E-08

Coude Focus *************************** SUMMARY DATA ******************************* ANGLE FROM ZENITH = 0 DEGREES DOME SETTING (0 = OFF, 1 = ON) = 0 ANALYSIS TASK (0=DIRECT, 1=LAKE, 2=SNOW) = 2 FOCUS POSITION (0=GREGORIAN, 1=COUDE) = 1 LYOT STOP INNER APERTURE RADIUS = 260 mm ======================================================================== TOTAL DIRECT POWER (NO SCATTER) = 0 W TOTAL SCATTERED POWER (LEVEL 1) = 1.13659E-3 W TOTAL SCATTERED POWER (LEVEL 2) = 3.06851E-5 W ************************************************************************ LIST OF MOST SIGNIFICANT SPECULAR PATHS FOR SOURCE 1 =================================================== 1246793 ray flags changed 0 rays now selected LIST OF MOST SIGNIFICANT SPECULAR PATHS FOR SOURCE 2 =================================================== 0 ray flags changed 0 rays now selected LIST OF MOST SIGNIFICANT LEVEL 1 PATHS FOR SOURCE 1 =================================================== 143 ray flags changed 143 rays now selected OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 11 7 6.681E-04 58.825 -4 158 83 -83.006 -159.001 0.000

Page 136: (ATST) Stray and Scattered Light Analysis

135

3 7 2.376E-04 20.917 -4 158 20 -20.005 -159.001 0.000 2 8 1.102E-04 9.699 -4 158 97 -97.005 -159.001 0.000 12 15 3.742E-05 3.295 -4 158 85 -85.006 -159.001 0.000 7 2 3.146E-05 2.770 -4 158 23 -23.005 -159.001 0.000 10 3 3.039E-05 2.675 -9 158 152 -156.003 -159.001 0.000 1 5 1.533E-05 1.349 -4 158 99 -99.006 -159.001 0.000 13 3 1.694E-06 0.149 -4 158 111 -111.003 -159.001 0.000 8 5 1.399E-06 0.123 -4 158 35 -35.005 -159.001 0.000 5 43 7.960E-07 0.070 -9 158 152 -139.001 -159.001 0.000 14 1 5.653E-07 0.050 -4 158 84 -84.006 -159.001 0.000 6 9 3.896E-07 0.034 -5 158 152 -149.001 -159.001 0.000 15 10 3.657E-07 0.032 -5 158 152 -152.001 -159.001 0.000 9 5 1.223E-07 0.011 -9 158 152 -157.003 -159.001 0.000 ------------------------ 15 143 1.136E-03 LIST OF MOST SIGNIFICANT LEVEL 1 PATHS FOR SOURCE 2 =================================================== 365 ray flags changed 222 rays now selected OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 3 15 4.936E-07 55.889 -4 158 97 -97.005 -159.001 0.000 8 2 1.053E-07 11.918 -4 158 37 -37.005 -159.001 0.000 12 3 8.092E-08 9.162 -4 158 83 -83.006 -159.001 0.000 2 30 6.536E-08 7.401 -4 158 85 -85.006 -159.001 0.000 4 2 5.919E-08 6.702 -9 158 152 -156.003 -159.001 0.000 9 11 5.130E-08 5.808 -4 158 99 -99.006 -159.001 0.000 10 18 2.254E-08 2.552 -4 158 35 -35.005 -159.001 0.000 11 4 3.695E-09 0.418 -4 158 84 -84.006 -159.001 0.000 13 1 1.052E-09 0.119 -9 158 152 -61.004 -159.001 0.000 6 61 2.090E-10 0.024 -9 158 152 -139.001 -159.001 0.000 7 9 5.548E-11 0.006 -4 158 152 -152.001 -159.001 0.000 5 10 9.550E-12 0.001 -6 158 152 -146.001 -159.001 0.000 ------------------------ 13 222 8.832E-07 LIST OF MOST SIGNIFICANT LEVEL 2 PATHS FOR SOURCE 1 =================================================== 721235 ray flags changed 721013 rays now selected OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 7 158426 1.137E-05 37.103 -5 158 14 -14.001 -126.002 -159.001 0.000 206 64006 3.790E-06 12.367 -5 158 14 -14.001 -95.006 -159.001 0.000 61 30035 3.656E-06 11.930 -5 158 14 -14.001 -99.006 -159.001 0.000 65 12004 3.031E-06 9.889 -5 158 14 -14.001 -97.005 -159.001 0.000 27 27322 2.078E-06 6.781 -5 158 14 -14.001 -93.006 -159.001 0.000 18 37846 1.762E-06 5.748 -5 158 14 -14.001 -94.006 -159.001 0.000 88 10702 1.676E-06 5.467 -5 158 14 -14.001 -83.006 -159.001 0.000 4 3385 9.755E-07 3.183 -5 158 14 -14.001 -82.006 -159.001 0.000 71 13026 5.884E-07 1.920 -5 158 14 -14.001 -19.005 -159.001 0.000 212 20696 4.113E-07 1.342 -5 158 14 -14.001 -85.006 -159.001 0.000

Page 137: (ATST) Stray and Scattered Light Analysis

136

67 6252 3.145E-07 1.026 -5 158 14 -14.001 -84.006 -159.001 0.000 45 4462 2.680E-07 0.875 -5 158 14 -14.001 -92.006 -159.001 0.000 42 1290 1.816E-07 0.593 -5 158 14 -14.001 -20.005 -159.001 0.000 38 3400 1.185E-07 0.387 -5 158 14 -14.001 -80.004 -159.001 0.000 58 427 6.402E-08 0.209 -5 158 14 -14.001 -96.002 -159.001 0.000 205 23593 2.757E-08 0.090 -6 158 152 -149.001 -95.004 -159.001 0.000 74 2116 2.341E-08 0.076 -5 158 152 -152.001 -97.004 -159.001 0.000 26 14868 2.269E-08 0.074 -5 158 152 -152.001 -93.005 -159.001 0.000 208 1059 1.925E-08 0.063 -6 158 152 -152.001 -95.004 -159.001 0.000 80 219 1.786E-08 0.058 -10 158 152 -139.001 -49.002 -159.001 0.000 37 304 1.581E-08 0.052 -5 158 14 -14.001 -23.005 -159.001 0.000 17 935 1.474E-08 0.048 -10 158 152 -139.001 -39.003 -159.001 0.000 94 11091 1.409E-08 0.046 -6 158 152 -149.001 -83.004 -159.001 0.000 1 2474 1.368E-08 0.045 -8 158 152 -145.001 -83.002 -159.001 0.000 203 28 1.247E-08 0.041 -9 158 152 -149.001 -156.003 -159.001 0.000 220 3453 1.235E-08 0.040 -6 158 152 -149.001 -85.004 -159.001 0.000 160 205 1.189E-08 0.039 -10 158 152 -139.001 -50.002 -159.001 0.000 99 16043 1.120E-08 0.037 -5 158 152 -152.001 -99.005 -159.001 0.000 12 15503 9.448E-09 0.031 -11 158 152 -136.001 -134.001 -159.001 0.000 204 29 8.327E-09 0.027 -9 158 152 -152.001 -156.003 -159.001 0.000 69 2482 7.276E-09 0.024 -6 158 152 -149.001 -97.003 -159.001 0.000 194 50 7.228E-09 0.024 -10 158 152 -139.001 -63.002 -159.001 0.000 141 164 6.074E-09 0.020 -10 158 152 -139.001 -48.002 -159.001 0.000 60 23304 5.026E-09 0.016 -6 158 152 -149.001 -99.004 -159.001 0.000 132 200 4.906E-09 0.016 -5 158 14 -14.001 -90.005 -159.001 0.000 202 118 4.515E-09 0.015 -5 158 14 -14.001 -130.006 -159.001 0.000 81 906 4.373E-09 0.014 -10 158 152 -139.001 -41.003 -159.001 0.000 124 69 3.869E-09 0.013 -5 158 14 -14.001 -104.006 -159.001 0.000 165 86 3.208E-09 0.010 -9 158 152 -145.001 -83.002 -159.001 0.000 16 19089 3.187E-09 0.010 -11 158 152 -136.001 -39.002 -159.001 0.000 128 8 3.037E-09 0.010 -11 158 152 -136.002 -39.002 -159.001 0.000 172 1832 2.943E-09 0.010 -6 158 152 -149.001 -130.005 -159.001 0.000 46 17107 2.936E-09 0.010 -11 158 152 -136.001 -41.002 -159.001 0.000 76 171 2.753E-09 0.009 -10 158 152 -139.001 -52.002 -159.001 0.000 122 857 2.470E-09 0.008 -8 158 152 -145.001 -104.002 -159.001 0.000 111 3144 2.122E-09 0.007 -11 158 152 -136.001 -72.002 -159.001 0.000 11 1509 2.092E-09 0.007 -10 158 152 -139.001 -40.003 -159.001 0.000 210 299 1.908E-09 0.006 -6 158 152 -152.001 -97.003 -159.001 0.000 10 2629 1.770E-09 0.006 -8 158 152 -145.001 -82.002 -159.001 0.000 43 13961 1.741E-09 0.006 -11 158 152 -136.001 -98.001 -159.001 0.000 91 9 1.605E-09 0.005 -11 158 152 -136.002 -98.001 -159.001 0.000 28 1527 1.589E-09 0.005 -10 158 152 -139.001 -42.003 -159.001 0.000 181 235 1.515E-09 0.005 -10 158 152 -139.001 -66.003 -159.001 0.000 131 113 1.477E-09 0.005 -5 158 152 -152.001 -90.004 -159.001 0.000 197 1025 1.468E-09 0.005 -6 158 152 -152.001 -99.004 -159.001 0.000 3 751 1.375E-09 0.004 -6 158 152 -149.001 -82.004 -159.001 0.000 20 8315 1.309E-09 0.004 -11 158 152 -136.001 -130.001 -159.001 0.000 252 55 1.221E-09 0.004 -11 158 152 -139.001 -66.003 -159.001 0.000 162 7 1.220E-09 0.004 -11 158 152 -136.002 -134.001 -159.001 0.000 238 1 1.176E-09 0.004 -11 158 152 -136.002 -68.002 -159.001 0.000 196 3 1.161E-09 0.004 -11 158 152 -136.002 -41.002 -159.001 0.000 103 51 1.091E-09 0.004 -10 158 152 -139.001 -51.002 -159.001 0.000 175 169 1.081E-09 0.004 -6 158 152 -152.001 -83.004 -159.001 0.000 25 5638 1.070E-09 0.003 -11 158 152 -136.001 -40.002 -159.001 0.000 70 12425 9.930E-10 0.003 -5 158 152 -152.001 -19.004 -159.001 0.000 192 126 9.592E-10 0.003 -6 158 152 -149.001 -104.004 -159.001 0.000 5 3189 9.561E-10 0.003 -11 158 152 -136.001 -74.002 -159.001 0.000

Page 138: (ATST) Stray and Scattered Light Analysis

137

21 5609 9.315E-10 0.003 -11 158 152 -136.001 -42.002 -159.001 0.000 177 10 9.160E-10 0.003 -9 158 152 -145.001 -64.004 -159.001 0.000 168 470 8.779E-10 0.003 -6 158 152 -149.001 -84.004 -159.001 0.000 64 414 8.734E-10 0.003 -11 158 152 -136.001 -47.001 -159.001 0.000 229 10 8.286E-10 0.003 -9 158 152 -145.001 -72.004 -159.001 0.000 41 270 8.270E-10 0.003 -7 158 152 -146.001 -20.002 -159.001 0.000 134 171 8.213E-10 0.003 -10 158 152 -139.001 -72.003 -159.001 0.000 51 692 7.704E-10 0.003 -11 158 152 -136.001 -46.001 -159.001 0.000 66 222 7.435E-10 0.002 -5 158 152 -152.001 -93.003 -159.001 0.000 152 10 7.259E-10 0.002 -5 158 14 -14.001 -30.005 -159.001 0.000 50 2987 7.156E-10 0.002 -11 158 152 -136.001 -75.002 -159.001 0.000 230 93 7.123E-10 0.002 -6 158 152 -149.001 -111.001 -159.001 0.000 171 29 7.087E-10 0.002 -9 158 152 -145.001 -156.003 -159.001 0.000 211 4843 7.024E-10 0.002 -5 158 152 -152.001 -85.005 -159.001 0.000 97 266 6.750E-10 0.002 -11 158 152 -136.001 -65.001 -159.001 0.000 169 1241 6.028E-10 0.002 -5 158 152 -152.001 -84.005 -159.001 0.000 33 1305 5.843E-10 0.002 -11 158 152 -136.001 -45.001 -159.001 0.000 104 9357 5.663E-10 0.002 -5 158 152 -152.001 -83.005 -159.001 0.000 226 377 5.582E-10 0.002 -6 158 152 -149.001 -89.003 -159.001 0.000 154 6 4.965E-10 0.002 -11 158 152 -136.002 -76.002 -159.001 0.000 87 565 4.834E-10 0.002 -5 158 152 -152.001 -82.005 -159.001 0.000 198 1 4.761E-10 0.002 -11 158 152 -136.002 -45.001 -159.001 0.000 193 37 4.689E-10 0.002 -6 158 152 -152.001 -104.004 -159.001 0.000 227 286 4.263E-10 0.001 -6 158 152 -152.001 -89.003 -159.001 0.000 54 3870 4.238E-10 0.001 -7 158 152 -146.001 -93.003 -159.001 0.000 59 2382 4.208E-10 0.001 -7 158 152 -146.001 -99.003 -159.001 0.000 44 4040 4.190E-10 0.001 -10 158 152 -139.001 -98.002 -159.001 0.000 209 32 4.135E-10 0.001 -10 158 152 -139.001 -68.003 -159.001 0.000 19 4132 4.082E-10 0.001 -11 158 152 -136.001 -77.002 -159.001 0.000 135 532 3.993E-10 0.001 -10 158 152 -139.001 -81.001 -159.001 0.000 2 723 3.968E-10 0.001 -11 158 152 -136.001 -64.001 -159.001 0.000 78 1083 3.956E-10 0.001 -5 158 152 -152.001 -92.005 -159.001 0.000 183 2 3.844E-10 0.001 -11 158 152 -136.002 -72.002 -159.001 0.000 237 3 3.652E-10 0.001 -11 158 152 -136.002 -79.002 -159.001 0.000 225 51 3.638E-10 0.001 -7 158 152 -146.001 -89.002 -159.001 0.000 147 768 3.504E-10 0.001 -7 158 152 -146.001 -130.004 -159.001 0.000 8 1861 3.372E-10 0.001 -11 158 152 -136.001 -71.002 -159.001 0.000 93 1204 3.287E-10 0.001 -7 158 152 -146.001 -83.003 -159.001 0.000 73 1159 3.269E-10 0.001 -11 158 152 -136.001 -48.001 -159.001 0.000 138 257 3.230E-10 0.001 -7 158 152 -149.001 -83.005 -159.001 0.000 170 430 3.210E-10 0.001 -11 158 152 -136.001 -156.001 -159.001 0.000 36 63 3.176E-10 0.001 -7 158 152 -146.001 -23.002 -159.001 0.000 113 422 3.117E-10 0.001 -9 158 152 -149.001 -139.001 -159.001 0.000 ------------------------ 252 721013 3.065E-05 LIST OF MOST SIGNIFICANT LEVEL 2 PATHS FOR SOURCE 2 =================================================== 1246793 ray flags changed 525780 rays now selected OBJECTS Path Rays SumTOTAL Percent Hits Curr Prev Split/Scatter ... 1 197272 1.221E-08 32.403 -5 158 14 -14.001 -126.002 -159.001 0.000 3 77897 4.348E-09 11.541 -5 158 14 -14.001 -95.006 -159.001 0.000 15 38207 4.320E-09 11.465 -5 158 14 -14.001 -99.006 -159.001 0.000

Page 139: (ATST) Stray and Scattered Light Analysis

138

4 15658 3.462E-09 9.188 -5 158 14 -14.001 -97.005 -159.001 0.000 5 45839 3.371E-09 8.946 -5 158 14 -14.001 -94.006 -159.001 0.000 2 34150 2.631E-09 6.982 -5 158 14 -14.001 -93.006 -159.001 0.000 26 15687 2.214E-09 5.875 -5 158 14 -14.001 -83.006 -159.001 0.000 8 3918 2.185E-09 5.799 -5 158 14 -14.001 -82.006 -159.001 0.000 11 13041 6.015E-10 1.597 -5 158 14 -14.001 -19.005 -159.001 0.000 10 25921 5.332E-10 1.415 -5 158 14 -14.001 -85.006 -159.001 0.000 118 583 3.482E-10 0.924 -5 158 14 -14.001 -20.005 -159.001 0.000 32 7368 3.426E-10 0.909 -5 158 14 -14.001 -92.006 -159.001 0.000 105 942 1.865E-10 0.495 -5 158 14 -14.001 -96.002 -159.001 0.000 13 5059 1.863E-10 0.495 -5 158 14 -14.001 -84.006 -159.001 0.000 75 3600 9.581E-11 0.254 -5 158 14 -14.001 -80.004 -159.001 0.000 19 4273 6.865E-11 0.182 -5 158 152 -152.001 -93.005 -159.001 0.000 25 177 5.070E-11 0.135 -5 158 14 -14.001 -89.005 -159.001 0.000 84 496 4.967E-11 0.132 -5 158 14 -14.001 -90.005 -159.001 0.000 39 2657 4.592E-11 0.122 -6 158 152 -149.001 -95.004 -159.001 0.000 60 1080 3.097E-11 0.082 -6 158 152 -152.001 -95.004 -159.001 0.000 157 20 2.580E-11 0.068 -6 158 14 -14.001 -93.005 -159.001 0.000 76 218 2.449E-11 0.065 -5 158 14 -14.001 -23.005 -159.001 0.000 51 350 2.313E-11 0.061 -10 158 152 -139.001 -49.002 -159.001 0.000 71 20 2.186E-11 0.058 -9 158 152 -152.001 -156.003 -159.001 0.000 180 30 2.021E-11 0.054 -5 158 14 -14.001 -130.006 -159.001 0.000 110 50 1.896E-11 0.050 -5 158 14 -14.001 -37.005 -159.001 0.000 83 448 1.763E-11 0.047 -5 158 152 -152.001 -90.004 -159.001 0.000 70 19 1.554E-11 0.041 -9 158 152 -149.001 -156.003 -159.001 0.000 14 3698 1.448E-11 0.038 -5 158 152 -152.001 -99.005 -159.001 0.000 114 89 1.252E-11 0.033 -5 158 14 -14.001 -32.005 -159.001 0.000 56 1067 1.136E-11 0.030 -11 158 152 -136.001 -134.001 -159.001 0.000 43 2251 1.110E-11 0.029 -6 158 152 -149.001 -85.004 -159.001 0.000 115 50 9.737E-12 0.026 -9 158 152 -145.001 -156.003 -159.001 0.000 59 1402 8.613E-12 0.023 -5 158 152 -152.001 -97.004 -159.001 0.000 38 1794 8.474E-12 0.022 -6 158 152 -149.001 -83.004 -159.001 0.000 18 644 7.520E-12 0.020 -10 158 152 -139.001 -39.003 -159.001 0.000 55 1859 6.290E-12 0.017 -6 158 152 -149.001 -99.004 -159.001 0.000 57 11 6.229E-12 0.017 -11 158 152 -136.002 -134.001 -159.001 0.000 12 3 6.017E-12 0.016 -11 158 152 -136.002 -72.002 -159.001 0.000 53 796 5.764E-12 0.015 -10 158 152 -139.001 -40.003 -159.001 0.000 128 40 5.755E-12 0.015 -5 158 14 -14.001 -104.006 -159.001 0.000 142 101 5.677E-12 0.015 -10 158 152 -139.001 -48.002 -159.001 0.000 31 716 5.527E-12 0.015 -10 158 152 -139.001 -41.003 -159.001 0.000 47 194 5.499E-12 0.015 -10 158 152 -139.001 -50.002 -159.001 0.000 37 874 5.158E-12 0.014 -8 158 152 -145.001 -83.002 -159.001 0.000 27 1006 3.774E-12 0.010 -6 158 152 -149.001 -97.003 -159.001 0.000 184 40 3.529E-12 0.009 -9 158 152 -145.001 -83.002 -159.001 0.000 132 506 3.392E-12 0.009 -6 158 152 -149.001 -84.004 -159.001 0.000 42 12 3.068E-12 0.008 -11 158 152 -136.002 -39.002 -159.001 0.000 94 412 2.888E-12 0.008 -6 158 152 -149.001 -82.004 -159.001 0.000 130 112 2.816E-12 0.007 -5 158 14 -14.001 -35.005 -159.001 0.000 95 479 2.800E-12 0.007 -6 158 152 -149.001 -130.005 -159.001 0.000 64 2 2.791E-12 0.007 -11 158 152 -136.002 -40.002 -159.001 0.000 45 39 2.782E-12 0.007 -11 158 152 -139.001 -50.002 -159.001 0.000 72 13 2.727E-12 0.007 -11 158 152 -136.002 -41.002 -159.001 0.000 104 40 2.660E-12 0.007 -5 158 14 -14.001 -30.005 -159.001 0.000 40 635 2.385E-12 0.006 -6 158 152 -152.001 -99.004 -159.001 0.000 30 997 2.275E-12 0.006 -11 158 152 -136.001 -41.002 -159.001 0.000 129 69 2.217E-12 0.006 -7 158 152 -146.001 -35.002 -159.001 0.000 81 10 2.132E-12 0.006 -9 158 152 -145.001 -65.004 -159.001 0.000

Page 140: (ATST) Stray and Scattered Light Analysis

139

20 288 1.986E-12 0.005 -8 158 152 -145.001 -82.002 -159.001 0.000 7 541 1.958E-12 0.005 -10 158 152 -139.001 -42.003 -159.001 0.000 171 1 1.888E-12 0.005 -11 158 152 -136.002 -69.002 -159.001 0.000 65 119 1.855E-12 0.005 -10 158 152 -139.001 -52.002 -159.001 0.000 17 715 1.847E-12 0.005 -11 158 152 -136.001 -39.002 -159.001 0.000 73 326 1.809E-12 0.005 -10 158 152 -139.001 -66.003 -159.001 0.000 21 91 1.740E-12 0.005 -7 158 152 -146.001 -89.002 -159.001 0.000 49 250 1.662E-12 0.004 -11 158 152 -136.001 -48.001 -159.001 0.000 48 4 1.625E-12 0.004 -11 158 152 -136.002 -98.001 -159.001 0.000 22 246 1.625E-12 0.004 -6 158 152 -149.001 -89.003 -159.001 0.000 61 281 1.605E-12 0.004 -6 158 152 -152.001 -83.004 -159.001 0.000 23 192 1.512E-12 0.004 -6 158 152 -152.001 -89.003 -159.001 0.000 173 20 1.467E-12 0.004 -5 158 14 -14.001 -106.006 -159.001 0.000 153 143 1.412E-12 0.004 -5 158 152 -152.001 -82.005 -159.001 0.000 99 7 1.201E-12 0.003 -11 158 152 -136.002 -42.002 -159.001 0.000 91 338 1.180E-12 0.003 -8 158 152 -145.001 -104.002 -159.001 0.000 41 151 1.081E-12 0.003 -7 158 152 -146.001 -20.002 -159.001 0.000 28 293 1.067E-12 0.003 -6 158 152 -152.001 -97.003 -159.001 0.000 116 1 9.405E-13 0.002 -11 158 152 -136.002 -64.001 -159.001 0.000 135 81 9.222E-13 0.002 -10 158 152 -139.001 -51.002 -159.001 0.000 89 386 9.036E-13 0.002 -11 158 152 -136.001 -40.002 -159.001 0.000 58 176 8.508E-13 0.002 -10 158 152 -139.001 -68.003 -159.001 0.000 77 276 8.225E-13 0.002 -11 158 152 -136.001 -75.002 -159.001 0.000 44 281 6.880E-13 0.002 -11 158 152 -136.001 -74.002 -159.001 0.000 79 319 6.412E-13 0.002 -11 158 152 -136.001 -72.002 -159.001 0.000 90 2 6.397E-13 0.002 -11 158 152 -136.002 -45.001 -159.001 0.000 74 4 6.346E-13 0.002 -11 158 152 -136.002 -76.002 -159.001 0.000 141 18 6.060E-13 0.002 -7 158 152 -149.001 -90.002 -159.001 0.000 162 144 6.030E-13 0.002 -11 158 152 -136.001 -156.001 -159.001 0.000 93 203 5.934E-13 0.002 -10 158 152 -139.001 -72.003 -159.001 0.000 69 281 5.918E-13 0.002 -8 158 152 -145.001 -99.002 -159.001 0.000 169 91 5.372E-13 0.001 -6 158 152 -149.001 -35.003 -159.001 0.000 179 225 5.184E-13 0.001 -5 158 152 -152.001 -84.005 -159.001 0.000 24 38 5.106E-13 0.001 -7 158 14 -14.001 -89.003 -159.001 0.000 97 146 4.891E-13 0.001 -11 158 152 -136.001 -68.002 -159.001 0.000 190 40 4.548E-13 0.001 -11 158 152 -139.001 -51.002 -159.001 0.000 120 97 4.431E-13 0.001 -6 158 152 -149.001 -94.004 -159.001 0.000 92 198 4.248E-13 0.001 -6 158 152 -149.001 -104.004 -159.001 0.000 29 86 4.242E-13 0.001 -10 158 152 -139.001 -77.003 -159.001 0.000 54 108 4.121E-13 0.001 -7 158 152 -146.001 -99.003 -159.001 0.000 178 10 4.105E-13 0.001 -9 158 152 -152.001 -61.004 -159.001 0.000 80 95 3.986E-13 0.001 -11 158 152 -136.001 -65.001 -159.001 0.000 101 3 3.858E-13 0.001 -11 158 152 -136.002 -77.002 -159.001 0.000 ------------------------ 194 525780 3.768E-08