Atomic Layer Deposition of Chalcogenide Thin Films · Atomic Layer Deposition of Chalcogenide Thin...

11
PUBLICATION REVIEW ON ULTRATECH ALD SYSTEMS Atomic Layer Deposition of Chalcogenide Thin Films 1 09.10.2015

Transcript of Atomic Layer Deposition of Chalcogenide Thin Films · Atomic Layer Deposition of Chalcogenide Thin...

PUBLICATION REVIEWON ULTRATECH ALD SYSTEMS

Atomic Layer Depositionof Chalcogenide Thin Films

1

09.10.2015

Highlights

q BenefitsofALDfornano-manufacturingofchalcogenidesq Atomiclevelthicknesscontrolq Depositionon3DnanostructuresusingExpoModeq Controlofcompositioninmulticomponentsulfidesq Widerangeofsulfidesdepositedbycustomers:q Cu2S,Sb2S3,In2S3,SnS,ZnS,PbS,Cu2ZnSnS4 forPVsq MoS2 for2Dmaterialsq CNThasextensiveR&Dandmanufacturingexperiencewithsulfides,e.g.,

Zn(O,S)andhandlingofH2Sq Keyusers:ArgonneNationalLab,StanfordU.,U.ofHamburg,U.of

Michigan

2

Introductionq Greatinterestinsulfides for

photovoltaics,photonics, catalysisq RequiresH2Sq Chalcogenidephotovoltaics

§ Absorber§ bandgapsandenergylevelsmore

suitablethanoxides§ 31-34%efficiencyat1-1.6eV§ CZTSquaternarysynthesizedforfirst

time§ Cu2SstabilizedbythinALDoxides

§ Buffer/Emitter§ In2S3,ZnS,andCdS, andZn(O,S)

q EnergyStorage§ Cu2S/CNTcathodes@260mAhg-1

§ Li2S@800mAhg-1

q Photonics§ ZnSforTFELdisplays(firstALD

industrialapplication)

3

1.Dasgupta,N.P.,etal.,AccountsChem Res48,341–348(2015).

Single junction efficiency limits

ALD sulfide absorbers

CIGS- Photovoltaics

4

q Absorber /buffer/TCOcombination determinesspectralcapturerange

q Maxefficiencytodateat20%q Complexheterojunction, wherebufferand

absorber interfacedeterminebandbendingandultimateefficiency

q Buffermaterial,composition, opticalproperties,andfilmuniformity arecrucial

ZnO(1-x)Sx composition

5

Composition controlledbychanging thenumberofZnS/ZnOcyclesinorder tomatchgivenCIGScomposition

3.5

3.4

3.3

3.2

3.1

3.0

2.9

2.8

2.7

2.6

2.5

Ban

d Ga

p [e

V]

1.00.80.60.40.20.0

x - composition of ZnO(1-x)Snx

Quantumefficiencymeasurement

TEMcross-sectionofaCIGScellwithALDgrownZn(O,S)bufferlayer.

1.Bhargavaet.al.,JournaloftheKoreanPhysicalSociety,Vol53,No.5,,2008.2.ZimmermannU.,etal.,21stEur.PhotovoltaicSolarEnergyConference(2006),Dresden

x– compositionofZnO(1-x)Sx

Cu2ZnSnS4 (CZST)

6

q Objectives§ Lowcostseminconductor (CZST)for

photovoltaic§ 1.4eVbandgap,conformality in3D§ Compositional controlofquaternary

materialsq Experimental

§ SavannahS200,Expo,H2Skit,150˚C§ Cu2S:Cu2DBA(Strem)@160˚C+1%H2S§ SnS:TDMASn+1%H2S§ ZnS:DEZ+1%H2S§ 2strategies:trilayersandnanolaminates

Thimsenetal.,ChemistryofMaterials,24(16),3188–3196(2012).doi:10.1021/cm3015463

Cu2S/SnS2/ZnStrilayer depositedonasilicontrenchwafer

InterfaceandcompositionprofileinCZST

7

1.Thimsen,ChemistryofMaterials,24(16),3188–3196(2013)[Argonne]

Cu2SonSWCNT(100,200,400,600cycles)

Charge/dischargeforfirst3cyclesat1000mA/g

Cu2ScathodeforLIB

8

q Objectives§ Cu2Sdepositedonsinglewall

carbonnanotubesq Experimental

§ SavannahS200at135˚C,expomode

§ CuAMD(150˚C)and1%H2S§ SWCNTfunctionalized

with9minO3

q Results§ Core-shellSWCNT-n-Cu2Sexhibits

highchargedischarge/stability§ highcapacity(260mA/g)§ >99%Coulombicefficiency

1Meng,X.,JournalofPowerSources,2015,280,621–629 [ArgonneNL]

StabilizationofCu2SforPVs

9

q Cu2SPVabsorber§ abundant,nontoxic,

absorption>1E4cm-1

q IssuewithCu2S/CdSjunctionduetoCudiffusion

q S200forCu2SfromCuAMD/H2S@145˚C

q TiO2 ALDusedasCudiffusionbarrierandn-typeemittertoreplaceCdS

q 1-2Al2O3 cyclesreducecarrierconcentrationandstabilizefilmfor>2weeks

1.Riha,S.C.etalAcsApplMaterInter131010083550003 (2013).[ArgonneNL]

Carrierconcentrationfromin-situIV

PassivationofCu2SwithTiO2 &Al2O3/TiO2

In2S3 ALD

10

MassGainduringIn(amd)3 /H2Scycles

Absorptioncoefficientatvaryingdep.temperatures Impactofprocesstemperatureonn-typeIn2S3

q ChalcogenidePVtoreplaceCdS

q In(amd)3 andH2SinS200q Self-limitedALDupto225˚Cq 0.89Å/cycle@150˚Cq NodetectableC,N,O

halogen (RBS/AES)

1McCarthy,R.F.,etal,AcsApplMaterInter6,12137–12145(2014).[ArgonneNL]

Referencelist

11

1. Xu,J.etal. Atomiclayerdeposition ofabsorbing thinfilmsonnanostructuredelectrodesforshort-wavelengthinfraredphotosensing. Appl Phys Lett 107, 153105–5(2015).2. McCarthy,R.F.,Schaller, R.D.,Gosztola,D.J.,Wiederrecht,G.P.&Martinson,A.B.F.Photoexcited CarrierDynamicsofIn2S3ThinFilms. J.Phys.Chem.Lett. (2015).doi:10.1021/acs.jpclett.5b009353. Baryshev,S.V.,Riha,S.C.&Zinovev, A.V.SolarAbsorberCu2ZnSnS4 anditsParentMultilayersZnS/SnS2/Cu2SSynthesizedbyAtomicLayerDeposition andAnalyzedbyX-rayPhotoelectron Spectroscopy.Surf.Sci.Spectra 22, 81–99(2015).4. Riha,S.C.,Schaller,R.D.,Gosztola,D.J.,Wiederrecht,G.P.&Martinson,A.B.F.Photoexcited CarrierDynamicsofCu2SThinFilms.J.Phys.Chem.Lett. 5, 4055–4061(2014).5. Sutherland, B.R.etal. PerovskiteThinFilms viaAtomicLayerDeposition.AdvancedMaterials n/a–n/a(2014).doi:10.1002/adma.2014039656. McCarthy,R.F.,Weimer,M.S.,Emery,J.D.,Hock,A.S.&Martinson,A.B.F.Oxygen-FreeAtomicLayerDepositionofIndiumSulfide.Acs Appl MaterInter 6, 12137–12145(2014).7. Riha,S.C.etal. StabilizingCu2SforPhotovoltaicsOneAtomicLayerataTime.Acs Appl MaterInter131010083550003 (2013).doi:10.1021/am403225e8. Thimsen, E.etal. InterfacesandComposition ProfilesinMetal–SulfideNanolayers Synthesized byAtomicLayerDeposition.ChemMater 25, 313–319(2013).9. Thimsen, E.etal. AtomicLayerDeposition oftheQuaternaryChalcogenideCu2ZnSnS4.ChemMater 24, 3188–3196(2012).10. Yang,R.B.etal. PulsedVapor-Liquid-Solid GrowthofAntimony Selenide andAntimony SulfideNanowires.AdvancedMaterials 21, 3170–3174(2009).11. Dasgupta,N.P.,Walch,S.P.&Prinz,F.FabricationandCharacterizationofLeadSulfide ThinFilms byAtomicLayerDeposition.ECSTransactions 16, 29–36(2008).

SulfideworkdoneonUltratechCNTALDsystems