Atlas of pollen, spores and further non-pollen palynomorphs ...

75
Atlas of pollen, spores and further non-pollen palynomorphs recorded in the glacial-interglacial late Quaternary sediments of Lake Suigetsu, central Japan Dieter Demske a , Pavel E. Tarasov a, * , Takeshi Nakagawa b , Suigetsu 2006 Project Members 1 a Institute of Geological Sciences, Palaeontology, Free University Berlin, Malteserstrasse 74-100, Building D, 12249 Berlin, Germany b Department of Geography, University of Newcastle, Newcastle upon Tyne NE1 7RU, UK article info Article history: Available online 8 February 2012 abstract The record of well preserved palynomorphs from sediment samples of Lake Suigetsu mirrors temporal changes in the ora around the lake and spatial changes in the vegetation cover of central Japan during the late Quaternary. This study presents photographic images of 169 identiable types of moss, lycophyte and fern spores and pollen of gymnospermous and angiospermous plants from the SG06 core sediment obtained at a standard magnication of ca. 750. Additionally non-pollen palynomorphs (NPPs), which appeared in the pollen slides, are documented, including remains of fungi, rhizopods, arthropods, rotifers, atworms as well as green algae and plant tissue fragments. All documented taxa are presented in taxonomical order on 66 plates, including 55 plates for pollen and spores of higher plants and 11 plates for NPPs. This study renders an overview on quality of preservation and on the range of palynomorphs found in the last glacial-interglacial sediments of Lake Suigetsu, and furthermore, may serve as a handy and thorough guide for palynological investigations, aiming at the reconstruction of past vegetation, environmental and climate dynamics. Ó 2012 Elsevier Ltd and INQUA. All rights reserved. 1. Introduction The analysis of fossil pollen and spores has developed into a method of profound value for palaeoenvironmental studies (e.g. von Post, 1916; Erdtman, 1952, 1965, 1969; Birks and Birks,1980; Fægri and Iversen, 1989; Moore et al., 1991; Bennett and Willis, 2001) providing proxy data for the reconstruction of past vegeta- tion changes and climate history and allowing human impact on the local and regional environments to be assessed. Furthermore, quantitative and qualitative reconstructions derived from the Quaternary pollen records help to validate results of the earth system modelling and thus improve the prognostic capabilities of climate and vegetation models (e.g. Prentice and Webb, 1998; Braconnot et al., 2004; Wanner et al., 2008; Müller et al., 2010; Kleinen et al., 2011; Williams et al., 2011). During the last two decades, growing attention was paid to palynological studies of lake sediments from the Japanese archi- pelago (e.g. Takahara et al., 2000; Walker et al., 2009; Nakagawa et al., 2012; Tarasovet al., 2011 and references therein). Especially in central Japan, where major vegetation types (biomes) inter- mingle following altitudinal and zonal climatic gradients, Quater- nary pollen records and pollen-based vegetation and climate reconstructions have been generated based on sediment cores from Lake Biwa (Miyoshi et al., 1999; Xiao et al., 1999; Kuwae et al., 2002; Nakagawa et al., 2008; Hayashi et al., 2010, 2012), Lake Mikata (Takahara and Takeoka, 1992a; Gotanda et al., 2002; Nakagawa et al., 2002) and nearby Lake Suigetsu with annually laminated sediments (Kitagawa and van der Plicht, 2000; Nakagawa et al., 2005, 2012; Walker et al., 2009; Kossler et al., 2011). These and other publications demonstrate the high potential of lacustrine sediments from Japan for providing centennial- to annual- resolution pollen-based reconstructions of the regional environ- ments during the Holocene and Pleistocene intervals and for comparison with adjacent regions in eastern Eurasia and elsewhere. The Lake Suigetsu 2006 Varved Sediment Coreproject embraces international collaborative research based on the composite 73.19 m SG06 core and aims to provide chronologically well controlled (AMS 14 C dates on terrestrial leaf macrofossils, varve counting, and tephrochronology) high-resolution records of environmental and climatic changes in central Japan during the last 150 ka (Staff et al., 2010, 2011; Kossler et al., 2011; Nakagawa et al., 2012). In order to achieve these objectives, detailed pollen analysis * Corresponding author. E-mail addresses: [email protected], [email protected] (P.E. Tarasov). 1 http://www.suigetsu.org/ Contents lists available at SciVerse ScienceDirect Quaternary International journal homepage: www.elsevier.com/locate/quaint 1040-6182/$ e see front matter Ó 2012 Elsevier Ltd and INQUA. All rights reserved. doi:10.1016/j.quaint.2012.02.002 Quaternary International 290-291 (2013) 164e238

Transcript of Atlas of pollen, spores and further non-pollen palynomorphs ...

Page 1: Atlas of pollen, spores and further non-pollen palynomorphs ...

at SciVerse ScienceDirect

Quaternary International 290-291 (2013) 164e238

Contents lists available

Quaternary International

journal homepage: www.elsevier .com/locate/quaint

Atlas of pollen, spores and further non-pollen palynomorphs recorded in theglacial-interglacial late Quaternary sediments of Lake Suigetsu, central Japan

Dieter Demske a, Pavel E. Tarasov a,*, Takeshi Nakagawa b, Suigetsu 2006 Project Members1

a Institute of Geological Sciences, Palaeontology, Free University Berlin, Malteserstrasse 74-100, Building D, 12249 Berlin, GermanybDepartment of Geography, University of Newcastle, Newcastle upon Tyne NE1 7RU, UK

a r t i c l e i n f o

Article history:Available online 8 February 2012

* Corresponding author.E-mail addresses: [email protected], pave

1 http://www.suigetsu.org/

1040-6182/$ e see front matter � 2012 Elsevier Ltd adoi:10.1016/j.quaint.2012.02.002

a b s t r a c t

The record of well preserved palynomorphs from sediment samples of Lake Suigetsu mirrors temporalchanges in the flora around the lake and spatial changes in the vegetation cover of central Japan duringthe late Quaternary. This study presents photographic images of 169 identifiable types of moss, lycophyteand fern spores and pollen of gymnospermous and angiospermous plants from the SG06 core sedimentobtained at a standard magnification of ca. 750�. Additionally non-pollen palynomorphs (NPPs), whichappeared in the pollen slides, are documented, including remains of fungi, rhizopods, arthropods,rotifers, flatworms as well as green algae and plant tissue fragments. All documented taxa are presentedin taxonomical order on 66 plates, including 55 plates for pollen and spores of higher plants and 11 platesfor NPPs. This study renders an overview on quality of preservation and on the range of palynomorphsfound in the last glacial-interglacial sediments of Lake Suigetsu, and furthermore, may serve as a handyand thorough guide for palynological investigations, aiming at the reconstruction of past vegetation,environmental and climate dynamics.

� 2012 Elsevier Ltd and INQUA. All rights reserved.

1. Introduction

The analysis of fossil pollen and spores has developed intoa method of profound value for palaeoenvironmental studies (e.g.von Post, 1916; Erdtman, 1952, 1965, 1969; Birks and Birks, 1980;Fægri and Iversen, 1989; Moore et al., 1991; Bennett and Willis,2001) providing proxy data for the reconstruction of past vegeta-tion changes and climate history and allowing human impact onthe local and regional environments to be assessed. Furthermore,quantitative and qualitative reconstructions derived from theQuaternary pollen records help to validate results of the earthsystem modelling and thus improve the prognostic capabilities ofclimate and vegetation models (e.g. Prentice and Webb, 1998;Braconnot et al., 2004; Wanner et al., 2008; Müller et al., 2010;Kleinen et al., 2011; Williams et al., 2011).

During the last two decades, growing attention was paid topalynological studies of lake sediments from the Japanese archi-pelago (e.g. Takahara et al., 2000; Walker et al., 2009; Nakagawaet al., 2012; Tarasov et al., 2011 and references therein). Especially

[email protected] (P.E. Tarasov).

nd INQUA. All rights reserved.

in central Japan, where major vegetation types (biomes) inter-mingle following altitudinal and zonal climatic gradients, Quater-nary pollen records and pollen-based vegetation and climatereconstructions have been generated based on sediment cores fromLake Biwa (Miyoshi et al., 1999; Xiao et al., 1999; Kuwae et al., 2002;Nakagawa et al., 2008; Hayashi et al., 2010, 2012), Lake Mikata(Takahara and Takeoka, 1992a; Gotanda et al., 2002; Nakagawaet al., 2002) and nearby Lake Suigetsu with annually laminatedsediments (Kitagawa and van der Plicht, 2000; Nakagawa et al.,2005, 2012; Walker et al., 2009; Kossler et al., 2011). These andother publications demonstrate the high potential of lacustrinesediments from Japan for providing centennial- to annual-resolution pollen-based reconstructions of the regional environ-ments during the Holocene and Pleistocene intervals and forcomparison with adjacent regions in eastern Eurasia andelsewhere.

The ‘Lake Suigetsu 2006 Varved Sediment Core’ projectembraces international collaborative research based on thecomposite 73.19 m SG06 core and aims to provide chronologicallywell controlled (AMS 14C dates on terrestrial leaf macrofossils,varve counting, and tephrochronology) high-resolution records ofenvironmental and climatic changes in central Japan during the last150 ka (Staff et al., 2010, 2011; Kossler et al., 2011; Nakagawa et al.,2012). In order to achieve these objectives, detailed pollen analysis

Page 2: Atlas of pollen, spores and further non-pollen palynomorphs ...

D. Demske et al. / Quaternary International 290-291 (2013) 164e238 165

constitutes an integral part of the project. Therefore, accurate andconsistent identification of the pollen and spores recoveredbecomes an important issue. The superb preservation of spores andpollen in the SG06 core sediment of Lake Suigetsu not only allowsus to obtain detailed quantitative data on pollen assemblages, butalso favours identification and the photographic record of indi-vidual palynological microfossils found in the sediment.

According to the Flora of Japan Database Project (http://foj.c.u-tokyo.ac.jp/gbif/; Ohwi, 1965; Ohba, 1994), there are 5629 nativespecies of vascular plants in Japan, including 10% pteridophytes and1% gymnosperms. This makes a detailed photographic documen-tation of modern pollen and spores a gigantic undertaking, asdemonstrated by a very comprehensive study on Europe and NorthAfrica (Reille, 1992, 1995, 1998). About 30% of the total species areendemic to Japan, which limits the use of identification keys andpollen atlases published for other regions of the world(Hooghiemstra and van Geel, 1998).

For Japan, photographic atlases of pollen and spores extractedfrom modern plant species are available (i.e. Ikuse, 1956;Shimakura, 1973; Nakamura, 1980a, b; Nasu and Seto, 1986a,b).However, these early works published in Japanese are poorlyaccessible to the western scientific community. Printing qualitysometimesmakes it difficult to see finemorphological details of thepollen and spore grains, essential for the accurate identification ofthe fossil palynomorphs, particularly when a large number ofreference species have very similar morphology. Moreover,conventional (light microscope) analysis of pollen and sporesrecovered from the fossil sediments seldom allows identification toa species-level, and makes a selection between the closely relatedpollen taxa a rather complicated and ambiguous task (e.g. Fægriand Iversen, 1989). Therefore, there is a practical advantage indocumenting palynomorphs from fossil assemblages because(a) the number of morphological types is limited to actual findsrepresentative for the study area; (b) the range of fossil types isrelated to vegetation of the study region, but reflects spatio-temporal changes in plant communities caused by a number offactors, including climate change and human activities; and (c) inthe case of the SG06 core of Lake Suigetsu the high quality ofpreservation allows full exploitation of the potential of lightmicroscopy, as used for conventional pollen analysis.

This paper presents a set of 55 plates with photographs of pollenand spore microfossils, aiming to provide (a) full documentation offossil pollen and spores recorded in the last glacial and Holocenesediments of Lake Suigetsu, and (b) a handy reference for paly-nologists working with the late Quaternary sediments from Japan.Additional 11 plates show non-pollen palynomorphs (NPPs), whichwere recorded in the samples prepared for pollen analysis. TheNPPs include microfossils from fungi, invertebrates and algae, andmay provide additional (often local) palaeoenvironmental infor-mation about the lake, nearest catchment, and human impact. Inperforming this work, an attempt was made to stay as close aspossible to a practical approach applied in the routine counting offossil pollen and spores using transmission light microscopy atstandard magnifications and avoiding oil immersion. Following theprinciples of L-O analysis (Erdtman, 1952, 1969) multiple imagesare presented, from high to low focus, i.e. series at subsequent indepth focal levels, which allow fine, three-dimensional details ofthe analysed microfossils to be illuminated.

2. Site setting

Lake Suigetsu (surface area ca. 4.3 km2, ca. 34 mwater depth) islocated on southwestern Honshu (Kinki region, Fukui prefecture,Wakasa district, 35�320 N, 135�530 E), near Wakasa Bay in an areaadjacent to the Sea of Japan (Fig. 1). Suigetsu belongs to the ‘Mikata

Five Lakes’ system. A shallow channel connects it to Lake Mikata,which itself is fed by the Hasu River crossing the Mikata Lowlandsfrom the south (see Nakagawa et al., 2012 for the lake hydrologyand sedimentation details). In the catchment area of Lake Suigetsuthe mountains reach ca. 400 m above sea level. Mountains furthereast reach ca. 800e900 m.

The area belongs to the warm-temperate zone with an annualmean temperature (MAT) of 14.8 �C, and annual precipitation ofabout 2400 mm. Winter monsoon conditions are characterised bycold and snow-bringing air masses crossing the Sea of Japan fromthe north-west, and summermonsoon conditions are characterisedby predominantly south-easterly winds bringing moisture fromover the Pacific Ocean to Japan (Nakagawa et al., 2012).

3. Modern vegetation

The mountains surrounding Lake Suigetsu are covered withdense forest vegetation, assigned to the phytosociological class ofthe Camellietea japonicae (Numata, 1974; Miyawaki, 1980e1989).Secondary forests are most common and the natural vegetationaround the study site comprises remnants of submontane, warm-temperate, evergreen broadleaved forest, which can be assignedto the broadleaved evergreen/warm mixed (WAMX) forest biome(e.g. Takahara et al., 2000; Gotanda et al., 2002, 2008; Nakagawaet al., 2005; Gotanda and Yasuda, 2008). Evergreen foresttypically composed of Castanopsis cuspidata var. sieboldii and var.cuspidata (Yamada et al., 2002), evergreen oaks (Quercus subgen.Cyclobalanopsis), Persea thunbergii, and Camellia japonica has itsnorthernmost distribution in the Tohoku area, at ca. 38�N (Sasaki,1970; Miyawaki, 1984). The 1961e1990 average of mean Januarytemperatures reported by the coastal meteorological stationTsuruga located ca. 15 km from Lake Suigetsu (Fig. 1b) is 3 �C(Nakagawa et al., 2002). The presence of the WAMX forest biomearound Lake Suigetsu (Yoshioka, 1973, Fig. 1d) at elevations up to600e700 m (Sasaki, 1970; Miyawaki, 1984) suggests that itsdistribution limit is mean January temperature below zero.Secondary forest stands with Pinus densiflora (on drier sites) andRhododendron, and deciduous broadleaved taxa, e.g. Quercusserrata, Fraxinus and Castanea crenata (Miyawaki, 1984; Nakagawaet al., 2005), reflect human impact on the natural vegetationduring historical times (Suzuki, 1982; Miyawaki, 1984). Adjacent tothe lake, swampy sites are covered with aquatic vegetation,including reed communities and alder forests with Alnus japonica,while valley terraces are often occupied by rice fields, vegetablegardens and fruit (mainly plum and cherry) tree orchards.

The montane zone at 500/700e1500 m a.s.l. adjacent to the Seaof Japan, which experiences heavy snowfalls in winter andmoderately cool summer temperatures of ca. 21.1e16.5 �C(Yanagimachi and Ohmori, 1991), is covered by cool-temperatebroadleaved deciduous forests dominated by Japanese beech,Fagus crenata, representing the temperate deciduous forest biome(TEDE). The understorey plants include Lindera umbellata as well asIlex, Ligustrum, Acer, Betula, Symplocos, Lyonia, Ligustrum, Rubus andbamboo grass, e.g. Sasa kurilensis (Sasaki, 1970). The northern limitof TEDE forest with F. crenata and Ilex is in the Kuromatsunailowlands of southern Hokkaido (Sasaki, 1970; Suzuki, 1972; Hara,2010). The south-westernmost area of the F. crenata forest distri-bution occurs in the Chugoku Mountains west of Lake Suigestu,where it reaches the summits (Sasaki, 1970). In this region,F. crenata is sometimes intermingled with Fagus japonica (Ohno andIkeda, 1999), which is more common in the eastern areas of Japan(Sasaki, 1970). This distribution pattern is conditioned by lowtolerance of F. japonica to deep snow, which may damage the treeswhen exceeding 0.5 m in depth (Matsui et al., 2004; Hara, 2010).

Page 3: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 1. The locations of (a) Japan, (b) Lake Suigetsu and the Tsuruga meteorological observatory, and (c) the SG06 coring site (after Nakagawa et al., 2005; Kossler et al., 2011; Porterand An, 1995), and (d) potential vegetation map of Japan (modified from Yoshioka, 1973; after Gotanda et al., 2002). White arrows and the white line (a) show the dominant windsand average position of the East Asian monsoon front in summer; whilst black arrows and the black line (a) show the dominant winds and average position of the East Asianmonsoon front in winter (modified from Nakagawa et al., 2006).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238166

The transition from the WAMX to the TEDE biome occurs closeto Lake Suigetsu (Yoshino, 1978; Nakagawa et al., 2005), causinghigh diversity of pollen and spore taxa recorded in the lakesediment. Inland forests near the Yura headwaters (MAT ca. 13 �C,MAP ca. 2300 mm, winter snowfall reaching 1e3 m) are particu-larly rich in plant species. There Quercus sessilifolia and Quercussalicina grow below 600/700 m, and F. crenata and Quercus crispulaabove this level. Cryptomeria japonica and Ilex pedunculosa preferridges. Furthermore, the inland forests of valleys and slopes above600e700 m are composed of Ulmus davidiana, Pterocarya rhoifolia,Aesculus turbinata, Zelkova, Hydrangea accompanied by ferns andSasa (e.g. Yoshimura, 1965; Yamanaka et al., 1993; Kaneko andKawano, 2002; Tateno and Takeda, 2003) and a large number ofother woody taxa, including Acer, Tilia, Fraxinus, Aphananthe,Prunus, Magnolia, Kalopanax, Sorbus, Styrax, Cercidiphyllum andEuptelea (Miyawaki, 1984). Secondary vegetation in the lowerbeech forest zone also consists of Sasa fields (S. palmata, Miscanthus,Arundinella) or deciduous Quercus mixed with C. crenata, Carpinustschonoskii, C. laxiflora and P. densiflora (Sasaki, 1970).

In addition to broadly spread Cryptomeria japonica, which maydominate in cool-temperate conifer-hardwood mixed forests withbeech (Hirayama and Sakimoto, 2003), and is commonly cultivatedfor timber, a number of other coniferous taxa contribute to variousforest types in the montane beech zone. Cephalotaxus harringtoniivar. nana grows in the understorey. Tsuga sieboldii occurs on stony,shallow soils in the Ashiu Forest (Yoshimura, 1965), or further weston the slopes of the Daisen volcano in the Chugoku mountains(Sasaki, 1970). Associated species are Chamaecyparis obtusa andAbies firma. In the montane zone of central and southern Japan

Sciadopitys verticillata occurs at ca. 300e1500 m a.s.l. in associationwith A. firma and T. sieboldii (Tsukada, 1963; Suzuki, 1972; Kawaseet al., 2010).

Subalpine vegetation above 1200e1400 m a.s.l. represents thephytosociological class Vaccinio-Pinetea and is mainly charac-terised by Tsuga diversifolia (Sasaki, 1970; Yoshino, 1978, 1980;Franklin et al., 1979; Gansert, 2004; Hara, 2010). This vegetationis distributed in the Chubu-Kinki area to the west of Lake Suigetsu,comprising part of the Chugoku Mountains, as well as in theHokuriku region and the Ryohaku Mountains further north-east,including part of the northern Japanese Alps with Mt. Ontake(3067 m) and Mt. Hakotake. Forests of T. diversifolia with Abiesmariesii change into pure fir forests with increasing altitudes.A. mariesii is more common in northern Honshu, while A. veitchii ismore widely distributed towards the Pacific side of central Japan(Franklin et al., 1979; Gansert, 2004).

Locally in mountain forests of central Japan other conifers maybecome important components, including Picea jezoensis var.hondoensis, Larix leptolepis, or Thuja standishii, Pinus koraiensis andP. parviflora (Franklin et al., 1979). Natural stands of Chamaecyparisobtusa and C. pisifera occur on the Pacific side, while Juniperus iswidely distributed in the southwestern part of Japan allied withpines or with evergreen oak, Quercus phillyraeoides (Suzuki, 1972).Natural stands of Thujopsis dolabrata var. hondae are found innorthern Kanto (Honshu) and southern Hokkaido next to beechforests (Suzuki, 1972).

In the upper subalpine zone deciduous trees and shrubs becomeimportant in the vegetation cover, represented by Betula ermanii,Acer tschonoskii,Acer ukurunduense,A. nipponicum, Sorbus commixta,

Page 4: Atlas of pollen, spores and further non-pollen palynomorphs ...

D. Demske et al. / Quaternary International 290-291 (2013) 164e238 167

Prunus nipponica and Ericaceae (i.e. Rhododendron, Vaccinium spp.,Menziesia pentandra). Subalpine oak forests with Quercus mongolicavar. undulatifolia are found in northern Honshu. Similar type forestswith Q. mongolica var. grosseserrata grow on the Daisen volcano inthe ChugokuMountains (Sasaki,1970;Gansert, 2004). CommunitieswithAlnusmatsumurae andA.maximowiczii are also associatedwiththe subalpine zone (Franklin et al., 1979; Gansert, 2004). Togetherwith Ericaceae, Pinus pumila forms the very characteristic scrubvegetation in the upper subalpine zone (Franklin et al., 1979;Gansert, 2004). Conditions above the timberline are marked bymean summer temperatures below ca. 11.7 �C (Yanagimachi andOhmori, 1991) suitable for alpine meadows.

The current plant species distribution in the study area likelyreflects modern climate patterns as well as the late Quaternary(glacial-interglacial) climate dynamics. The suggested migrationpaths include one from the west, with the Sea of Japan route alongthe Chugoku Mountains, and another from the south of Kinki, withthe Kii Peninsula route extending along the Kako and Yura rivers(Hattori et al., 1987). In addition to these routes, exposed coastalplains due to low sea level have been suggested for postglacialmigration paths of Cryptomeria and Kalopanax (Tsukada, 1982,1986; Sakaguchi et al., 2010). Quantitative biome reconstructionbased on the pollen records from LakeMikata (Gotanda et al., 2002)and Lake Biwa (Tarasov et al., 2011), covering ca. 45 ka and ca.430 ka respectively, demonstrates that the central Japan region,including Lake Suigetsu, experienced pronounced changes in thedominant vegetation from cool conifer forest (COCO) and coolmixed forest (COMX) during the cold intervals of the late Quater-nary, to temperate deciduous (TEDE), temperate conifer (TECO) andwarm mixed forest (WAMX) during the warm intervals (Takaharaet al., 2000; Gotanda and Yasuda, 2008; Gotanda et al., 2008).

4. Material and methods

4.1. SG06 sediment core and sample preparation

The sediment cores were obtained from the central part of LakeSuigetsu in July and August 2006. A full description of the coringtechnique, core stratigraphy and project objectives are provided byNakagawa et al. (2012). Sediment cores were obtained from fourbore holes drilled in the central part of the lake within 20 mhorizontal distance of each other.

All fossil palynomorphs documented in this study were recov-ered from sediments of the SG06 core, with standard sub-samplingbeing performed using the double-L channel method (Nakagawa,2007; Nakagawa et al., 2012). Additionally, wastes and rejectsderiving from sub-sampling for multidisciplinary analyses(Nakagawa et al., 2012), i.e. overlapping sections from parallelcores, mechanically disturbed core-top materials, sediments stillattached on knives after cutting the core into sub-samples, werecollected, mixed and homogenised. Although the original depths ofthese sediment samples were not precisely controlled, they aresufficiently representative of the whole core because overlappingsections were available from at least every 80 cm, and the sedi-ments remaining on knives were, although in a very small quantity,available from every 1 cm. Sediments representing the two lastinterglacial periods and the last glacial interval were recoveredseparately in order to prevent the much stronger pollen signal ofthe warmer periods from masking the weaker signal of pollen taxafrom colder stages. Volumes of 1 cm3 (ca. 1.2 wet g) of these warmand cold ‘standard’ samples were treated using the modifiedmethod of heavy-liquid separation (Nakagawa et al., 1998, 2005).Residues containing pollen, spores and other NPPs were stored inglycerol, kept refrigerated whenever possible and stained withsafranine prior to microscopic analyses and photographing. For the

preparation of slides, 10 ml of glycerol suspension was spread in anx-shape, covered with a 12 � 12 mm glass, and after countingscanned for microfossils most suitable for photo documentation.The analysis was repeated using both ‘warm’ and ‘cold’ standardbatches, i.e. 108 samples representing glacial and interglacialenvironments were treated and analysed in total.

4.2. Microscopic analysis and photo documentation

A transmission light microscope was used (Meiji) with 10�oculars and four lenses (magnification/numerical aperture): Plan20�/0.40, SPlan 40�/0.65 Ph, Plan 60�/0.80 and Plan 100�/1.25Oil. For practical reasons the 60� lens was used as a standard,switching to magnifications of 40� (the standard for counts orcontrol counts), 100� and 20� dependent on the size of objects. Forthe photo documentation those slides were selected whichprovided the best variety of different, optimally preserved andwell-oriented palynomorphs. An extended search for less frequentpollen types was based on available counting lists. In sum, 27samples (on multiple slides) were selected for documentation ofthe late Quaternary pollen, spores and further NPP types.

A digital camera, mounted on the trinocular tube, providedimages as 1280 � 1024 pixel files in bitmap format with an RGBcolour depth of 3 � 8 bit. The image capturing software (pixel-fox)was adjusted to auto-white-balance, continuous exposuremeasurement and increased contrast settings. The images obtainedwere stamped with a provisional annotation text and a scale bar(100 mm/10), which was calibrated using a Zeiss object micrometer(1 mm/100). Due to limited depth of focus most objects are shownon serial images, i.e. in sequences from high to low focus. Thelimited depth of focus in transmission light microscopy requirescontinuous adjustment of different focus levels in order to evaluatemorphological features in three dimensions (Fægri and Iversen,1989), i.e. according to the principles of L-O analysis (Welcker,1859; Erdtman, 1952, 1969).

Image processing was based on multilayer files using AdobePhotoshop CS4 software (Adobe Systems Incorporated, 2005a,b).Onto a white background layer (184 � 244 mm, 2 mm margins,resolution of 300 dpi) copies of original files were imported asindividual layers and masked to an appropriate size leaving 2 mmmargins between images. For brightness, contrast and coordinationof colours with respect to the equal appearance of images on thephoto plates, individual images were enhanced by non-destructiveadjustment layers mainly using Levels, in a few appropriate casesalso Exposure, Colour balance and/or Gradation (Adobe SystemsIncorporated, 2005a,b). Because of the safranine stain, a black andwhite filter (maximum white) and an adjusting brightness andcontrast filter (both values þ20) were applied to the image plate.The uppermost layers comprise image numbers and the scale bar.Finally the plates were saved as grey-scale files (TIFF format, 8 bit/256 levels of grey).

Pixel-based calibration of the images is based on themicrometer-calibrated scale bar (100 mm/10) in the original images.Correspondingly, when viewed at 300 dpi, the magnification ofobjects corresponds to 254� (10 mm/30 pixels, 20� lens), 516�(10 mm/61 pixels, 40� lens), 787� (10 mm/93 pixels, 60� lens) or1322� (10 mm/156 pixels, 100� lens). Within the plates thenumbering of images follows the order of objects and the opticalL-O sequence. Scale bars of 10 mmare given either for a single imageor as a stop-mark in the last image of a series.

4.3. Identification criteria and nomenclature

For the determination and naming of pollen and spore types(Figs. 2e56) standard publications with identification keys

Page 5: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 2. Marchantiopsida e Ricciaceae: 1-3 Riccia type (proximal view), 4 Riccia type (distal view). Anthocerotopsida e Anthocerotaceae: 5-6 Anthoceros punctatus type (wproximalview). e Notothyladaceae: 7-13 Phaeoceros laevis type (distal view). e 5-6 at lower magnification. In Figs. 2e67 all series are shown from high to low focus.

D. Demske et al. / Quaternary International 290-291 (2013) 164e238168

Page 6: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 3. Anthocerotopsida e Notothyladaceae: 1-4 Phaeoceros laevis type (proximal view). e Sphagnopsida e Sphagnaceae: 5 Sphagnum (proximal view). e Lycopodiopsida e

Huperziaceae: 6-17 Huperzia (proximal view). e Lycopodiaceae: 18-21 Lycopodium clavatum type (distal view).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238 169

Page 7: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 4. Lycopodiopsida e Lycopodiaceae: 1-6 Lycopodium clavatum type (proximal view). e Psilotopsida e Ophioglossaceae subfam. Botrychioideae (Botrychiaceae): 7-13 Botrychiumtype (distal view); e subfam. Ophioglossoideae (Ophioglossaceae s. str.): 14-16 Ophioglossum type (proximal view), 17 Ophioglossum (proximal view), 18-20 Ophioglossum (distalview). e Equisetopsida e Equisetaceae: 21 Equisetum, split spore.

D. Demske et al. / Quaternary International 290-291 (2013) 164e238170

Page 8: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 5. Polypodiopsida e Osmundaceae: 1-6 Osmunda (proximal view), 7-9 Osmunda (distal view). e Hymenophyllaceae: 10-12 Hymenophyllaceae, cf. Trichomanes (distal view).e Cyatheaceae: 13-14 Cyathea type (distal view), 15 Cyathea type (proximal view).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238 171

Page 9: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 6. Polypodiopsida e Cyatheaceae: 1-2 Cyathea type (proximal view). e Polypods e Dennstaedtiaceae-Pteridaceae: 3 Dennstaedtiaceae/Pteridaceae undiff., trilete spore(proximal view), 4 Dennstaedtiaceae/Pteridaceae undiff., spore with 4-branched intermediate laesura, between trilete and monolete (proximal view), 5-8 Dennstaedtiaceae/Pteridaceae undiff., thick-walled, distinctly sculptured spore with four-branched intermediate laesura, tetrangular outline (proximal view). e Dennstaedtiaceae: 9-10 Pteridium type(distal view), 11-15 Histiopteris type (wdistal view).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238172

Page 10: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 7. Polypodiopsida e Polypods e Dennstaedtiaceae: 1-2 Histiopteris type (equatorial view). e Pteridaceae subfam. Adiantoideae (Adiantaceae): 3-4 Adiantum type (proximalview); e subfam. Vittarioideae (Vittariaceae): 5-7 Vittaria/Haplopteris type (distal view). e Woodsiaceae: 8e11 Athyrium type (equatorial view). e Polypodiales: 12e16 Polypodialesundiff., monolete spores, perine lost (equatorial view).

Page 11: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 8. Polypodiopsida e Polypods e Thelypteridaceae: 1-5 Thelypteris type (wproximal view). e Blechnaceae: 6-8 Blechnaceae, cf. Blechnum (equatorial view). e Onocleaceae-Woodsiaceae: 9e10 Onocleaceae/Woodsiaceae undiff., Woodsia type s.l. (equatorial view), 11 Onocleaceae type (equatorial view). e Dryopteridaceae: 12-13 Dryopteris type(equatorial view), 14-16 Polystichum type (distal view). e Polypodiaceae: 17-19 Polypodium type (equatorial view).

Page 12: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 9. Polypodiopsida e Polypods e Polypodiaceae: 1-3 Polypodium type (wdistal view), 4-8 Polypodium (wdistal view), 9 Pyrrosia type (equatorial view).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238 175

Page 13: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 10. Polypodiopsida e Polypods e Polypodiaceae: 1-5 Pyrrosia type (equatorial view), 6-7 Pyrrosia type (wproximal view), 8-9 Pyrrosia type (distal view).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238176

Page 14: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 11. Pinopsida e Pinaceae: 1 Abies (equatorial view), 2-3 Abies (distal view), 4-7 Abies air-sack, detached from corpus (proximal view on attachment area).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238 177

Page 15: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 12. Pinopsida e Pinaceae: 1-3 Abies (wdistal view), 4 Abies (equatorial side view), 5 Abies (equatorial view), 6 Larix. e 4-5 at lower magnification.

D. Demske et al. / Quaternary International 290-291 (2013) 164e238178

Page 16: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 13. Pinopsida e Pinaceae: 1 Larix, 2 Picea sect. Eupicea type (wequatorial view), 3 Picea sect. Omorika type (equatorial view), 4-7 Picea sect. Eupicea type (equatorial view). e1-2and 4-7 at lower magnification.

D. Demske et al. / Quaternary International 290-291 (2013) 164e238 179

Page 17: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 14. Pinopsida e Pinaceae: 1e6 Pinus subgen. Diploxylon type (distal view), 7-8 Pinus subgen. Diploxylon type (wproximal view), 9e11 Pinus subgen. Diploxylon type (equatorialview), 12 Pinus undiff. (equatorial view).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238180

Page 18: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 15. Pinopsida e Pinaceae: 1-7 Pinus subgen. Haploxylon type (proximal view), 8 Pinus subgen. Haploxylon type (equatorial view).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238 181

Page 19: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 16. Pinopsida e Pinaceae: 1 Pinus subgen. Haploxylon type (equatorial view), 2-3 Pinus subgen. Haploxylon type (distal view), 4-6 Pinus subgen. Haploxylon type (equatorialview), 7-10 Pinus subgen. Haploxylon type (distal view). e 1 at higher magnification.

D. Demske et al. / Quaternary International 290-291 (2013) 164e238182

Page 20: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 17. Pinopsida e Pinaceae: 1-3 Pinus subgen. Haploxylon type (equatorial view), 4e8 Pinus subgen. Haploxylon type (distal view).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238 183

Page 21: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 18. Pinopsida e Pinaceae: 1-2 Tsuga diversifolia type (proximal view), 3 T. diversifolia type (distal view), 4-6 T. diversifolia type (proximal view).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238184

Page 22: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 19. Pinopsida e Pinaceae: 1-2 Tsuga diversifolia type (wproximal view), 3-4 Tsuga sieboldii type (distal? view), 5-6 T. sieboldii type (proximal view).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238 185

Page 23: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 20. Pinopsida e Pinaceae: 1 Tsuga sieboldii type (distal view), 2 Tsuga diversifolia type (distal view), 3 Tsuga undiff, cf. T. diversifolia (wequatorial view), 4-5 Tsuga undiff.(proximal view). e Podocarpaceae: 6-10 Podocarpus type (proximal view), 11-12 Podocarpus type (equatorial view). e 1-2 and 10 at lower magnification.

D. Demske et al. / Quaternary International 290-291 (2013) 164e238186

Page 24: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 21. Pinopsida e Sciadopityaceae: 1 Sciadopitys (proximal view), 2-8 Sciadopitys (distal view), 9-11 Sciadopitys (proximal view), 12-16 Sciadopitys (distal view), 18-20 Sciadopitys(proximal view). e Taxaceae (incl. Cephalotaxaceae): 17 Taxus/Cephalotaxus. e 1 at higher magnification.

D. Demske et al. / Quaternary International 290-291 (2013) 164e238 187

Page 25: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 22. Pinopsida e Cupressaceae-Taxodiaceae (Cupressaceae subfam. Cupressoideae and Taxodioideae): 1e13 Juniperus type, 14-18 Cupressaceae/Taxodiaceae undiff., 19Cupressaceae/Taxodiaceae undiff., pollen grain not split; e Taxodiaceae (Cupressaceae subfam. Taxodioideae): 20 Cryptomeria, split pollen grain (distal view), 21-22 Cryptomeria(distal view), 23-24 Cryptomeria, germinated pollen grain (equatorial view).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238188

Page 26: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 23. Pinopsida e Taxodiaceae (Cupressaceae subfam. Taxodioideae): 1-2 Cryptomeria, split pollen grain (equatorial view), 3 Cryptomeria (equatorial view), 4-5 Cryptomeria (distalview on germination zone and papilla), 6 Cryptomeria (wdistal view), 7 Cryptomeria (equatorial view), 8 Cryptomeria (wdistal view), 9-15 Cryptomeria (distal view). e Gnetopsida e

Ephedraceae: 16-17 Ephedra fragilis type (equatorial view), 18-21 Ephedra distachya type (equatorial view). e 1-2 at higher magnification.

D. Demske et al. / Quaternary International 290-291 (2013) 164e238 189

Page 27: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 24. Magnoliopsida e Basal angiosperms e Nymphaeaceae: 1-3 Nuphar (proximal view), 4 Nuphar (equatorial view), 5 Nuphar (proximal view), 6-7 Nuphar (equatorial view),8 Nuphar (distal view), 9-10 Nuphar (proximal view). eMonocots e Alismataceae: 11-14 Alisma type, 15 Sagittaria type. e Araceae: 16-17 Araceae undiff., cf. Pinellia, 18-24 Lysichiton(proximal view).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238190

Page 28: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 25. Magnoliopsida e Monocots e Araceae: 1-8 Lysichiton (proximal view). e Amaryllidaceae subfam. Allioideae: 9-13 Allium type (equatorial view). e Asparagaceae subfam.Nolinoideae: 14-15 Convallaria type (equatorial view). e Iridaceae: 16-19 Iridaceae undiff., cf. Iris humilis (wequatorial view), 20-24 Iris type (wdistal view).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238 191

Page 29: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 26. Magnoliopsida e Monocots e Iridaceae: 1-2 Iris type (equatorial view). e Xanthorrhoeaceae subfam. Hemerocallidoideae: 3-6 Hemerocallis (distal view), 7-10 Hemerocallis(proximal view).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238192

Page 30: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 27. Magnoliopsida e Monocots e Typhaceae (incl. Sparganiaceae): 1-4 Typha latifolia type (tetrad in wequatorial view), 5-6 T. latifolia type (tetrad in polar view), 7-10Sparganium/Typha (distal view). e Poaceae (Gramineae): 11 Poaceae undiff., wildgrass type (wdistal view), 12 Poaceae undiff., wildgrass type, size >37 mm (wdistal view),13 Poaceae undiff., wildgrass type (distal view), 14 Poaceae cereal type, size >37 mm (equatorial view), 15 Sasa kurilensis type, size >55 mm (wdistal view). e Cyperaceae: 16-21Cyperus type (equatorial view), 22 Rhynchospora type, crumpled, 23-25 Cyperaceae undiff. (equatorial view).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238 193

Page 31: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 28. Magnoliopsida e Monocots e Cyperaceae: 1-9 Cyperaceae undiff. (equatorial view), 10-12 Cyperaceae undiff., cf. Cyperus (equatorial view), 13-16 Schoenoplectus/Eleocharistype, size > 55 mm (equatorial view), 17-19 Cyperaceae undiff., cf. Schoenus (equatorial view), 20 Cladium type (equatorial view).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238194

Page 32: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 29. Magnoliopsida e Eudicots e Aceraceae (Sapindaceae subfam. Hippocastanoideae): 1-8 Acer undiff. (equatorial view), 9-11 Acer ukurunduense/sieboldianum type (equatorialview). e Actinidiaceae: 12-16 Actinidia type (equatorial view). e Anacardiaceae: 17-27 Rhus type (equatorial view), 28-30 Rhus (subequatorial view). e Apiaceae (Umbelliferae):31-34 Apiaceae undiff. (equatorial view). e 28-30 at higher magnification.

D. Demske et al. / Quaternary International 290-291 (2013) 164e238 195

Page 33: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 30. Magnoliopsida e Eudicots e Apiaceae (Umbelliferae): 1e18 Apiaceae undiff. (equatorial view), 19-22 Bupleurum type (equatorial view), 23e32 Apiaceae undiff. (equatorialview). e Aquifoliaceae: 33-35 Ilex (equatorial view).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238196

Page 34: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 31. Magnoliopsida e Eudicots e Aquifoliaceae: 1-8 Ilex (equatorial view), 9-20 Ilex, cf. I. crenata (equatorial view), 21-24 Ilex, cf. I. pedunculosa (equatorial view). e Araliaceae:25e35 Araliaceae undiff. (equatorial view).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238 197

Page 35: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 32. Magnoliopsida e Eudicots e Araliaceae: 1-3 Aralia type (equatorial view), 4 Aralia type (subequatorial view), 5-9 Aralia type (equatorial view). e Asteraceae e subfam.Asteroideae: 10-14 Artemisia (polar view), 15e27 Artemisia (equatorial view), 28e30 Artemisia (polar view), 31-34 Cirsium type (polar view), 35 Cirsium type (equatorial view).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238198

Page 36: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 33. Magnoliopsida e Eudicots e Asteraceae e subfam. Asteroideae: 1-5 Cirsium type (polar view), 6-10 Saussurea type (equatorial view), 11-18 Aster type (equatorial view),19 Aster type (polar view), 20 Carduus type (equatorial view); e subfam. Cichorioideae: 21-23 Asteraceae subfam. Cichorioideae (wpolar view).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238 199

Page 37: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 34. Magnoliopsida e Eudicots e Balsaminaceae: 1-2 Impatiens (polar view). e Betulaceae: 3-13 Alnus undiff. (polar view), 14 Alnus fruticosa type (polar view), 15-22 Betula(polar view), 23-25 Corylus (polar view), 26-30 Carpinus/Ostrya (polar view), 31-34 Carpinus tschonoskii type (polar view).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238200

Page 38: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 35. Magnoliopsida e Eudicots e Brassicaceae (Cruciferae): 1 Brassicaceae (equatorial view), 2 Brassicaceae (subpolar view). e Buxaceae: 3-6 Pachysandra, 7-12 Buxus.e Campanulaceae: 13-15 Campanula type (polar view). e Caprifoliaceae: 16-19 Lonicera, crumpled (polar view), 20-25 Viburnum (equatorial view).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238 201

Page 39: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 36. Magnoliopsida e Eudicots e Caprifoliaceae: 1-4 Lonicera (wpolar view), 5-13 Viburnum (equatorial view), 14-16 Sambucus (equatorial view). e Caryophyllaceae: 17-18Cerastium type, 19e26 Caryophyllaceae undiff. e Celastraceae subfam. Celastroideae (Celastraceae s. str.): 27-28 Euonymus/Celastrus (polar view), 29-32 Celastraceae undiff.,cf. Tripterygium (subpolar view).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238202

Page 40: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 37. Magnoliopsida e Eudicots e Cercidiphyllaceae: 1-2 cf. Cercidiphyllum, crumpled. e Chenopodiaceae (Amaranthaceae subfam. Chenopodioideae): 3-8 Chenopodiaceae/Amaranthaceae. e Cornaceae subfam. Alangioideae (Alangiaceae): 9-14 Alangium platanifolium (polar view); e subfam. Cornoideae (Cornaceae s. str.): 15-16 Cornus (equatorialview). e 9-14 at lower magnification.

D. Demske et al. / Quaternary International 290-291 (2013) 164e238 203

Page 41: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 38. Magnoliopsida e Eudicots e Elaeagnaceae: 1-3 Elaeagnus (polar view), 4-6 Elaeagnus (equatorial view), 7-8 Hippophaë (equatorial view). e Ericaceae (incl. Pyrolaceae): 9-14Rhododendron (tetrad in polar view), 15-16 Ericaceae undiff. (polar view), 17-18 Ericaceae undiff., cf. Cassiope/Phyllodoce (polar view), 19 Pyrola type, broken tetrad (polar view).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238204

Page 42: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 39. Magnoliopsida e Eudicots e Euphorbiaceae: 1-3 Euphorbia type (subpolar view), 4-5 Euphorbia type (equatorial view). e Fabaceae: 6e9 Fabaceae undiff. (equatorial view),10-13 Astragalus/Oxytropis type (equatorial view). e Fagaceae: 14-17 Fagus crenata type (equatorial view), 18 F. crenata type (polar view), 19-25 F. crenata type (equatorial view),26-30 Fagus japonica type (equatorial view), 31 Fagus japonica type (polar view).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238 205

Page 43: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 40. Magnoliopsida e Eudicots e Fagaceae (evergreen oaks): 1-8 Quercus subgen. Cyclobalanopsis type (equatorial view), 9-11 Quercus subgen. Cyclobalanopsis type(subequatorial view), 12-13 Quercus subgen. Cyclobalanopsis type (equatorial view), 14 Quercus subgen. Cyclobalanopsis type (polar view), 15-36 Quercus subgen. Cyclobalanopsis type(equatorial view). e 1-11 at higher magnification.

D. Demske et al. / Quaternary International 290-291 (2013) 164e238206

Page 44: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 41. Magnoliopsida e Eudicots e Fagaceae: 1e24 Quercus subgen. Lepidobalanus type (equatorial view), 25-27 Quercus undiff. (equatorial view), 28-36 Castanea/Castanopsis(equatorial view). e 1-4 at higher magnification.

D. Demske et al. / Quaternary International 290-291 (2013) 164e238 207

Page 45: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 42. Magnoliopsida e Eudicots e Gentianaceae: 1-6 Gentianella campestris type (equatorial view). e Geraniaceae: 7 Geranium (polar view), 8 Geranium (subequatorial view),9-11 Geranium (polar view).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238208

Page 46: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 43. Magnoliopsida e Eudicots e Haloragaceae: 1 Haloragis (polar view), 2 Myriophyllum verticillatum (polar view). e Hamamelidaceae: 3 Hamamelis type (polar view), 4-6Hamamelis type (equatorial view). e Hippocastanaceae (Sapindaceae subfam. Hippocastanoideae): 7-19 Aesculus (equatorial view). e Hydrangeaceae: 21-32 Hydrangea type(equatorial view). e Hypericaceae: 33-35 Hypericum perforatum type (equatorial view), 36-38 Hypericum type (subequatorial view). e Juglandaceae: 39-43 Juglans (polar view),44-45 Juglans type (polar view).

Page 47: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 44. Magnoliopsida e Eudicots e Juglandaceae: 1-3 Pterocarya (polar view). e Lamiaceae: 4-11 Stachys type (equatorial view), 12 Prunella type, partially broken (polar view).e Menyanthaceae: 13-15 Menyanthes, crumpled (wpolar view), 16-24 Nymphoides (polar view).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238210

Page 48: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 45. Magnoliopsida e Eudicots e Menyanthaceae: 1-4 Nymphoides (polar view), 5 Nymphoides, degraded (polar view). e Moraceae: 6 Morus (wpolar view). e Myricaceae: 7-9Myrica (polar view). e Oleaceae: 10-12 Oleaceae undiff. (wequatorial view), 13-15 Ligustrum/Syringa (polar view), 16 Ligustrum/Syringa (equatorial view), 17 Ligustrum/Syringa(polar view), 18-22 Ligustrum/Syringa (subpolar view). e 8-9 at higher magnification.

Page 49: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 46. Magnoliopsida e Eudicots e Oleaceae: 1-7 Ligustrum/Syringa (equatorial view), 8-11 Fraxinus (subpolar view), 12-15 Fraxinus (equatorial view), 16-27 Fraxinus, cf. Fraxinusornus (equatorial view), 28 Fraxinus (subpolar view), 29-31 Fraxinus (equatorial view) e 8-15 at higher magnification.

D. Demske et al. / Quaternary International 290-291 (2013) 164e238212

Page 50: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 47. Magnoliopsida e Eudicots e Oleaceae: 1-4 Fraxinus (equatorial view), 5-8 Fraxinus (subpolar view), 9-12 Fraxinus (wequatorial view), 13-17 Fraxinus (equatorial view), 18-20Fraxinus (subpolar view). e Oxalidaceae: 21-25 Oxalis corniculata type (equatorial view). e Papaveraceae subfam. Fumarioideae (Fumariaceae): 26 Corydalis solida type. e Parnassiaceae(Celastraceae subfam. Parnassioideae): 27-30 cf. Parnassia (subequatorial view). e Passifloraceae: 31 Passiflora (wpolar view). e Plantaginaceae: 32-33 Plantago asiatica type, 34-35Plantago undiff. e 1-4 at higher magnification.

Page 51: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 48. Magnoliopsida e Eudicots e Polygonaceae: 1-16 Bistorta (equatorial view), 17-20 Persicaria maculosa type.

D. Demske et al. / Quaternary International 290-291 (2013) 164e238214

Page 52: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 49. Magnoliopsida e Eudicots e Polygonaceae: 1-6 Persicaria maculosa type, 7-9 Polygonum aviculare type, 4-loxocolporate specimen (equatorial view), 10-12 Polygonumaviculare type (equatorial view), 13-17 Fallopia type, pericolporate specimen with winged outline (equatorial view).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238 215

Page 53: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 50. Magnoliopsida e Eudicots e Polygonaceae: 1-5 Polygonum/Reynoutria (equatorial view), 6-9 Polygonum weyrichii type (equatorial view), 10-18 Rumex, 4-pantocolporatespecimen, 19-21 Rumex (equatorial view), 22 Rumex (subpolar view), 23-24 Rumex (equatorial view). e Primulaceae: 25-27 Lysimachia (subequatorial view), 28-34 Lysimachiatype (equatorial view), 35-36 Primulaceae undiff. (equatorial view). e 28-31 at higher magnification.

Page 54: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 51. Magnoliopsida e Eudicots e Ranunculaceae: 1 Adonis type, degraded and swollen pollen grain, 2-7 Anemone/Clematis type (equatorial view), 8-11 Anemone/Clematis type(subpolar view), 12-13 Garidella/Nigella type (equatorial view), 14-17 Ranunculus type (subequatorial view), 18e20 Ranunculus type (equatorial view), 21-24 Ranunculus type,pantocolpate specimen, 25-28 Pulsatilla type (equatorial view), 29-30 Pulsatilla type (subpolar view).

Page 55: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 52. Magnoliopsida e Eudicots e Ranunculaceae: 1-6 Pulsatilla type, 7-16 Thalictrum. e Rhamnaceae: 17-18 Rhamnaceae undiff. (polar view), 19-20 Rhamnus type (polar view),21-22 Rhamnaceae undiff. (polar view). e Rosaceae: 23-27 Filipendula, 28-31 Rosaceae undiff. (equatorial view), 32 Rosaceae undiff. (polar view), 33-34 Sorbus type (subequatorialview), 35-37 Sanguisorba officinalis type (subequatorial view). e Rutaceae: 38-41 Phellodendron (equatorial view). e 17 at higher magnification.

Page 56: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 53. Magnoliopsida e Eudicots e Rutaceae: 1-19 Phellodendron (equatorial view), 20-26 Skimmia (equatorial view). e Salicaceae: 27-40 Salix (equatorial view).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238 219

Page 57: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 54. Magnoliopsida e Eudicots e Salicaceae: 1-11 Salix (equatorial view). e Saxifragaceae: 12-15 Chrysosplenium/Saxifraga type (equatorial view), 16-19 Saxifraga granulata type,specimen with diffuse endoaperture area (equatorial view), 20-23 Saxifragaceae undiff., corroded (equatorial view). e Scrophulariaceae: 24-25 Pedicularis (equatorial view), 26-28Scrophularia type (equatorial view). e Styracaceae: 29-32 Styrax type (equatorial view). e Symplocaceae: 33 Symplocos (polar view). e Theaceae: 34-36 Camellia (subpolar view).e 12-15 at higher magnification.

Page 58: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 55. Magnoliopsida e Eudicots e Tiliaceae (Malvaceae subfam. Tilioideae): 1-9 Tilia (polar view). e Trapaceae (Lythraceae subfam. Trapoideae): 10-16 Trapa (equatorial view).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238 221

Page 59: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 56. Magnoliopsida e Eudicots e Ulmaceae: 1-6 Celtis/Aphananthe (wpolar view), 7-16 Ulmus/Zelkova (polar view). e Violaceae: 17-20 Viola arvensis type (equatorial view).e Vitaceae: 21-23 Vitis (equatorial view). e Indeterminatae: 24 undetermined pollen grain, 1-colporate, 25-28 undetermined pollen grain, 3-zonocolporate (equatorial view).

D. Demske et al. / Quaternary International 290-291 (2013) 164e238222

Page 60: Atlas of pollen, spores and further non-pollen palynomorphs ...

D. Demske et al. / Quaternary International 290-291 (2013) 164e238 223

(Moore et al., 1991; Beug, 2004; Punt et al., 1976e2009) were used.In each case further cross-checking with Japanese atlases on pollen(Shimakura, 1973; Nakamura, 1980a,b; Miyoshi et al., 2011) andspores (Nasu and Seto, 1986a,b) was carried out. In order to provideappropriate type names, taking into account morphological varia-tion and floristic diversity, the works of Reille (1992, 1995, 1998),Wang et al. (1997), and Zhang et al. (1990) were consulted. Addi-tionally, available publications on the morphology and ecology ofspores (Nakamura and Shibasaki, 1960; Chang, 1965; Nayar andDevi, 1968; Moe, 1974; Belling and Heusser, 1974; Cao et al., 2007)and pollen (Liang and Yu, 1985; Takahara, 1992; Lindbladh et al.,2002; Zanni and Ravazzi, 2007) were used.

The nomenclature is a critical issue (Joosten and de Klerk, 2002),which is however difficult to handle. In the fossil pollen analysisusing light microscopy, the level of taxonomic differentiation isrestricted. In most cases determination of pollen grains is possibleon the genus level or a combination of two or more genera, occa-sionally even on family or order level only, but sometimes on thelevel of individual subgenera or even species (Birks and Birks,1980). Generally, a taxon is named with the ‘type’, e.g. Aster typeor Plantago asiatica type, when including several other taxa, i.e.more than two different genera or different species (Birks, 1973;Birks and Birks, 1980; Fægri and Iversen, 1989); or when referringto a potential overlap in differentiations, e.g. Fagus crenata type andF. japonica type. Furthermore, a slash denotes a type including twogenera, e.g. Ulmus/Zelkova. Occasionally, for practical reasons theslash combined with the suffix ‘type’ refers to two similar pollentypes, e.g. Anemone/Clematis type with a smooth tectum(cf. Anemone nemorosa group and Clematis vitalba group in Puntet al., 1976e2009). Unclear or ambiguous determinations aredenoted with ‘cf.’ prior to the name (e.g. ‘cf. Parnassia’, untypicalgrain, but within range of description), while ‘undiff.’ is added incases when further differentiation is not possible or inappropriate.

The order of spore and pollen types shown on the plates(Figs. 2e56) follows a classification of major plant groups accordingto Shaw and Renzaglia (2004), Smith et al. (2006) and APG III(2009). For the diverse group of eudicotyledonean angiosperms,however, an alphabetical order of family names was applied.

Presentation of all recorded NPPs (Figs. 57e67) tries to followphylogenetic order. Determinations of NPPs, except the embryo-phyte spores, are mainly based on images and the numbered typesaccording to van Geel (1978, 1986, 2001), van der Hammen and vanGeel (1978), van Geel and Grenfell (1996), Pals et al. (1980), vanGeel et al. (1981, 1983, 1989), Haas (1996) and Komárek and Hauer(2011). Green algae remains are distinguished following Jankovskáand Komárek (2000) and Komárek and Jankovská (2001).

5. Results and comments on taxa determination

The analysed samples showed an excellent preservation ofpollen and spores, which facilitated identification and photo-graphing of palynomorphs. This study (Figs. 2e56) covers spores ofmosses, lycophytes and ferns, pollen of gymnosperms, pollen ofbasal and monocotyledonean angiosperms, and pollen of eudico-tyledonean angiosperms. In total, 169 pollen and spore types weredistinguished, based on a conservative count, i.e. excluding typesmarked with ‘cf.’ or ‘undiff.’. The largest pollen grains were recor-ded for Abies and Alangium, while rather small grains are repre-sented by for example Castanea/Castanopsis, Hydrangea type, andFilipendula. The obligate aquatics, i.e. limno- and telmatophytesinclude: a basal angiospermous limnophyte (Nuphar), six mono-cotyledons (Alisma type, Sagittaria type, Typha latifolia type, Spar-ganium/Typha, Cyperus type, Cladium type) and fiveeudicotyledonean taxa (Haloragis, Myriophyllum, Menyanthes,Nymphoides, Trapa). The additional NPPs (Figs. 57e67) cover

various organism groups, including Cyanobacteria, fungi, rhizo-pods, arthropods, rotifers, flatworms, green and zygnemataceanalgae as well as remains of embryophytic land plants (mosses,ferns, spermatophytes).

5.1. Spore types

Plates showing images of spore types (Figs. 2e10), refer to thephyla (divisions) of Marchantiophyta (class Marchantiopsida e

liverworts), Anthocerotophyta (Anthocerotopsida e hornworts),Bryophyta (Sphagnopsida e peat mosses), Lycopodiophyta (Lyco-podiopsida e club mosses) and Pteridophyta (ferns, including Psi-lotopsida, Equisetopsida e horse tails, and Polypodiopsida).

Among the trilete spores (Figs. 2e7) representatives of mosseswere determined, such as Riccia type, Anthoceros, Phaeoceros laevistype, and Sphagnum (Moore et al., 1991; Cargill and Fuhrer, 2008),while recorded spores of lycophytes include Huperzia and Lycopo-dium clavatum type (Figs. 3 and 4). Within the pteridophytes, ina-perturate spores of Equisetum (Equisetopsida) were recorded inaddition to trilete spores of the Psilotopsida (Ophioglossaceae) andPolypodipsida. According to morphological characteristics the tri-lete Cyathea type (Figs. 5 and 6) may include spores of Cyathea,possibly also of Plagiogyriaceae p.p. Spores of Pteridium (Denn-staedtiaceae) are included in the Pteridium type, though notexcluding possibly similar trilete grains of some Antrophyum orAdiantum species (Pteridaceae s.l.). Interestingly, a number ofspores with intermediate laesurae between trilete and monoletewere recorded and tentatively assigned to the combined group ofPteridaceae s.l. and Dennstaedtiacae s.l. (Fig. 6). For this group, suchintermediate forms have been recorded besides the normally trileteor monolete spores (cf. Nayar and Devi, 1968; Dai et al., 2005;Martínez and Morbelli, 2009).

Monolete fern spores (Figs. 6e10) mostly represent eupolypodsof the Polypodiales, determination of which was based on rathergeneral characteristics, with naming applied in a broad sense. Forexample, Onocleaceae/Woodsiaceae undiff. (Fig. 8) may generallycomprise different taxa from both Woodsiaceae and Onocleacae(cf. Woodsia type in Sorsa, 1964).

5.2. Pollen types of gymnosperms

Spermatophyte pollen types representing gymnosperms(Figs. 11e23) include Pinophyta (Pinopsida e conifers) and Gneto-phyta (Gnetopsida). In the group of bisaccate conifer pollen deter-minations of Pinus subgen. Haploxylon type and P. subgen.Diploxylon type were based on morphometric characteristicsrelated to the attachment and size of sacci (Beug, 2004; Zanni andRavazzi, 2007), only partly related to the presence of verrucae onthe distal corpus membrane between the sacci (Moore et al., 1991).

The distinction of Tsuga diversifolia type and T. sieboldii typefollows measurements of the relative saccus thickness, beingassessed as the ratio of outer diameter with saccus to corpusdiameter (Takahara, 1992). The Juniperus type was distinguishedbased on the relatively thin exine (cf. J. communis type, Beug, 2004),in contrast to the group of Cupressaceae/Taxodiaceae undiff. withambiguous features. In general, pollen of Cryptomeria (Taxodiaceae,or Cupressaceae subfam. Taxodioideae) was readily determinable.Records of Taxus/Cephalotaxus include pollen grains which may betentatively assigned to Cephalotaxus since they are slightly largerthan in Taxus pollen according to data in the literature (Shimakura,1973; Nakamura, 1980a, b; Beug, 2004).

Pollen types of Ephedra, probably derived from long-distancetransport, are rather rare in sediment samples from Lake Suigetsuand are represented here by both Ephedra fragilis type and Ephedradistachya type (Fig. 23).

Page 61: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 57. Cyanobacteria e Cl. Cyanophyceae (blue-green algae): 1 Chroococcus/Gloeocapsa type. e Unknown (of animal, fungus or plant origin): 2-3 elliptic microfossil, with fissuresand crested reticulum (resting egg?), 4-6 globose microfossil, irregularly reticulate (resting egg or spore?), 7-9 thick-walled microfossil with slit-like openings (spore?), 10 unknownmicrofossil (cocoon or oocyte?), 11-13 globose microfossil with irregularly vermiculate sculpture, 14-16 thick-walled spore, sculpture with intersecting grooves, no perceptible pores(fungal spore?, ascospore?), 17-20 globose microfossil with long protuberances, 21 microfossil with hollow spines (algal spore?), 22-23 globose microfossil with bacula and baculateridges (bryophyte spore?), 24-25 globose microfossil with large gemmae (bryophyte spore?). e 10 at lower magnification.

D. Demske et al. / Quaternary International 290-291 (2013) 164e238224

Page 62: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 58. Unknown: 1-3 reticulate microfossil (algal spore?), 4-6 microfossil with small protuberances (algal spore?). e Bacillariophyta (diatoms): 7-8 siliceous fragment of diatomvalve, undetermined (non-palynomorph). e Fungi e hyphae: 9 fungal hyphae on infected Ericaceae pollen tetrad, 10-11 hyphopodium of Gaeumannomyces (Ascomycota, Cl.Sordariomycetes, Magnaporthaceae); e non-septate spores: 12 small, irregularly rounded, porate spore, 13 ellipsoidal spore with protruding apical pore (Sordaria? ascospore),14 elongate porate spore (conidium or chlamydospore), 15 inequilateral, porate ascospore, 16e17 porate ascospores, 18 diporate ascospore, 19 Chaetomium, diporate ascospore(lemon-shaped), 20 porate ascospore; eseptate spores: 21 3-septate ascospore, 22 barrel-like 5-septate spore, 23-24 asymmetric 5-septate spore (conidium?), 25 Geoglossum,7-septate ascospore, 26 1(or 2)-septate spore (chlamydospore?), 27 spore with transverse and longitudinal septa (conidium or chlamydospore); e aggregated spores: 28 aggregateof fungal spores. e 19 at higher magnification.

Page 63: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 59. Amoebozoa e Rhizopoda e Cl. Lobosea, Arcellidae (testate lobose amoebae): 1, 2 Arcella. e Animalia e Arthropoda: 3e6 chitinous hairs of arthropods, undetermined,7 fragment (abdomen?) of arthropod, undetermined. e Hexapoda, Cl. Insecta, O. Diptera, Chironomidae: 8 labium/mandible of chironomid. e Crustaceae, Cl. Maxillopoda, subcl.Copepoda: 9-10 spermatophore of copepod (aside an Aesculus pollen grain). e Chelicerata, Cl. Arachnida, subcl. Acarina, O. Orobatida: 11 claw of water mite. e Platyhelminthes,Cl. Turbellaria, O. Rhabdocoela: 12 oocyte (egg cocoon) of non-parasitic flatworm, with apical appendage. e Rotifera, Cl. Bdelloidea, O. Bdelloida: 13-14 resting egg of rotifer,cf. Filinia, 15 resting egg of rotifer, cf. Trichocera. e 8 at lower magnification.

D. Demske et al. / Quaternary International 290-291 (2013) 164e238226

Page 64: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 60. Animalia e Rotifera, Cl. Bdelloidea, O. Bdelloida: 1-5 resting egg of rotifer, cf. Trichocera. e Chlorophyta (green algae)e Cl. Trebouxiophyceae, Botryococcaceae: 6-7Botryococcus. e Cl. Chlorophyceae, Sphaeropleaceae: 8 Tetraedron cf. minima, 9 cf. Tetraedron. e Scenedesmaceae: 10-11 Coelastrum reticulatum. e 6 at lower magnification.

D. Demske et al. / Quaternary International 290-291 (2013) 164e238 227

Page 65: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 61. Chlorophyta e Cl. Chlorophyceae, Scenedesmaceae: 1-5 Coelastrum polychordum. e Hydrodictyaceae: 6e7 Pediastrum angulosum var. angulosum, 8 Pediastrum duplex, 9-10Pediastrum simplex var. clathratum. e 6 and 8-10 at lower magnification.

D. Demske et al. / Quaternary International 290-291 (2013) 164e238228

Page 66: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 62. Chlorophyta e Cl. Chlorophyceae, Hydrodictyaceae: 1-6 Pediastrum simplex var. clathratum. e 3e5 at lower, 6 at higher magnification.

D. Demske et al. / Quaternary International 290-291 (2013) 164e238 229

Page 67: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 63. Chlorophyta e Cl. Chlorophyceae, Hydrodictyaceae: 1-2 Pediastrum integrum, 3-5 Pediastrum boryanum undiff., 6e7 Pediastrum undiff. e Charophyta e Cl. Zygnemato-phyceae, Zygnemataceae: 8 Mougeotia, zygospore.

D. Demske et al. / Quaternary International 290-291 (2013) 164e238230

Page 68: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 64. Charophyta e Cl. Zygnematophyceae, Zygnemataceae: 1-2 Spirogyra type, zygospore or aplanospore, with smooth surface, 3-4 Spirogyra type, zygospore or aplanospore,with fine longitudinal striation and weak reticulum, 5-8 Spirogyra type, reticulate zygospore or aplanospore, 9-14 Zygnema type, zygospore or aplanospore, with distinct pits.

D. Demske et al. / Quaternary International 290-291 (2013) 164e238 231

Page 69: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 65. Embryophytes e Bryophytes (mosses s.l.): 1e4 moss leaf, undetermined, 5 reticulate spore of liverwort, trilete mark not perceptible (cf. Riccia). e Tracheophytes (vascularplants): 6-8 siliceous phytoliths, undetermined. e Pteridophyta e Cl. Polypodiopsida, Salviniaceae: 9 Salvinia, perispore fragment.

D. Demske et al. / Quaternary International 290-291 (2013) 164e238232

Page 70: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 66. Pteridophyta e Cl. Polypodiopsida, Salviniaceae: 1-2 Salvinia, perispore fragment (with spore in 1). e Pinophyta e Cl. Pinopsida: 3-5 tracheid fragment from conifer wood,with torus-margo pits. e Magnoliophyta e Cl. Magnoliopsida, Nymphaeaceae: 6-9 basal hair cells of Nymphaeaceae (water lilies), suberized basal cells of mucilaginous hairs.e Ceratophyllaceae: 10 Ceratophyllum, leaf spinule.

D. Demske et al. / Quaternary International 290-291 (2013) 164e238 233

Page 71: Atlas of pollen, spores and further non-pollen palynomorphs ...

Fig. 67. Magnoliophyta e Cl. Magnoliopsida: 1 leaf tissue fragment, with part of xyleme, 2 leaf tissue fragment, infected by fungal mycelium (with hyphopodia?), 3-4 leaf epidermisfragment, with stomata, 5 single stomum, 6 cuticle fragment. e 7-8 wood tissue fragment, scalariform perforation plate from trachea, undetermined. e 7-8 composite image, highand low focus.

D. Demske et al. / Quaternary International 290-291 (2013) 164e238234

Page 72: Atlas of pollen, spores and further non-pollen palynomorphs ...

D. Demske et al. / Quaternary International 290-291 (2013) 164e238 235

5.3. Pollen types of basal and monocotyledonean angiosperms

Pollen types of the Magnoliophyta (Magnoliopsida e floweringplants) represent basal and monocotyledonean angiosperms(Figs. 24e28) and the eudicotyledons (see Section 5.4). Of the basalangiosperms only Nuphar was recorded (Fig. 24), often in combi-nation with basal hair cells, which as non-pollen palynomorphs(Fig. 66) can be assigned to the Nymphaeaceae (Pals et al., 1980; vanGeel, 2001).

Hemerocallis, in combination with Bistorta pollen, may refer tothe subalpine community of Polygonum bistorta and Hemerocallismiddendorfii var. esculenta, e.g. at ca.1600e1900m a.s.l. north of theHokuriku mountains (Kikuchi, 1981). For pollen of Poaceae thereseems to be the potential to distinguish a Sasa type, the lattercomprising rather large pollen grains of subfam. Bambusoideae, e.g.S. kurilensis (see Shimakura, 1973; Nakamura, 1980a,b; cf. Bambustype in; Worobiec and Worobiec, 2005).

Several aquatic taxa, including limno- and telmatophytes, arerecorded by pollen of Alisma type, Sagittaria type, Typha and Spar-ganium. Within the Cyperaceae (sedges) Cyperus type and Schoeno-plectus/Eleocharis type may refer to elements of swamp vegetation.

5.4. Pollen types of eudicotyledonean angiosperms

Themost abundant group of pollen types from eudicotyledons ispresented in alphabetical order by family name (Figs. 29e56),facilitating orientation and locating images within this highlydiverse group of flowering plants.

While the pollen type of Castanea/Castanopsis may be frequentin pollen samples, Camellia was rare in the analysed sedimentsamples from Lake Suigetsu. Pollen of evergreen oaks was abun-dant in the interglacial samples. In order to separate Quercus sub-gen. Cyclobalanopsis type (evergreen oaks) from Quercus subgen.Lepidobalanus type (deciduous oaks), differential characteristics ofornamentation as well as of size and form (Shimakura, 1973; Puntet al., 1976e2009; Nakamura, 1980a, 1980b; Beug, 2004) wereconsidered. Reliable differentiation of both types appears feasible(see Figs. 40 and 41), although it requires careful analysis. Arborealtaxa associatedwith warmmixed forests are Castanopsis, evergreenQuercus, Camellia, Passiflora, Styrax, Rhus, Celtis and, related to theundergrowth, Ilex, Symplocos, Buxus, Vitis, Rosaceae, Myrica,Elaeagnus and Araliaceae, which are recorded by clearly distin-guishable pollen types. Less clear is the determination of Hama-melis type, referring to Beug (2004).

In addition to Acer undiff., representing widespread elements ofthe regional forests, an A. ukurunduense/sieboldiana type wasdistinguished based on its distinctly tricolporate feature (Shimakura,1973; Nakamura, 1980a,b). Riverside and swamp forests formed bywillows and alders are represented by Alnus and Salix pollen.

The main pollen types representing the montane beech forestzone are F. crenata type and F. japonica type, which are distin-guished based on criteria of form and size (Shimakura, 1973;Nakamura, 1980a, b; Saito, 1992). Further pollen types related toPterocarya and Ulmus forests of moist valleys in this zone includeAesculus, Fraxinus, Zelkova, Tilia, and Carpinus as well as pollen ofshrubs like Cercidiphyllum, Alangium, Celastrus, Hydrangea, Pachy-sandra (e.g. Sasaki, 1970), Lonicera, Viburnum, Cornus, Euonymus,Ligustrum, Sambucus and Rhamnus. The Hydrangea type (incl.Deutzia and Philadelphus p.p.) is difficult to separate from Saxi-fragaceae and some other pollen, if features of the endoaperture areindistinct. For Hippophae long-distance transport cannot beexcluded, as in the case of Ephedra and Chenopodiaceae pollen.

Taxa related to the subalpine zone of central Japan include Acer(incl. A. ukurunduense), Quercus (deciduous), Betula, Rhododendron,and Sorbus type (Rosaceae). However, interpretation of pollen types

in terms of distribution and ecology may be hampered by limitedtaxonomic resolution as well as by overlapping occurrence indifferent vegetation zones and forest communities.

In well forested Japan, non-arboreal pollen types often consti-tute an integral part of pollen assemblages, but only some non-arboreal types are commented on here. Among the Asteraceae itis possible to distinguish pollen of Cirsium type, which may befrequent in pollen samples, related to swamp vegetation or beechforest. Further pollen types within the subfamilies of Asteroideae(incl. Carduoideae) and Cichorioideae may be distinguished as well.Chrysosplenium/Saxifraga type would comprise three types, i.e.Chrysosplenium, Saxifraga stellaris type and S. nivalis type in Mooreet al. (1991), here including relatively large Chrysosplenium pollenor further Saxifragaceae species from Japan (Shimakura, 1973;Nakamura, 1980a,b). Within Polygonaceae the distinction ofPolygonum (Pleuropteropyrum) weyrichii type refers to reticulateornamentation and an equatorially elongated endocolpus orendocingulus, or sometimes irregularly distributed colpi (tri-lox-ocolporate pollen), being different from Shimakura (1973) andNakamura (1980a,b).

5.5. Non-pollen palynomorphs

The primary focus of this work was on fossil pollen and fernspores. Additional, more frequently encountered NPPs (as definedin van Geel, 2001) were also documented, however (Figs. 57e67).These may facilitate the palynological work and be used for gettingadditional palaeoecological information supplementing the inter-pretation of pollen data.

The documented taxa include several unknown or tentativelydetermined microfossils (resting eggs, unknown spores etc.;Figs. 57 and 58), as well as chitinous fragments of arthropods (e.g.hairs, claws, labia/mandibles) and fungal remains (e.g. Gaeu-mannomyces hyphopodia, Geoglossum ascospores). Cyanobacteriaare rarely or only partly preserved in pollen samples. Chroococcus/Gloeocapsa type (Fig. 57) was determined based on the shape ofcells and mucilage (Komárek and Hauer, 2011). Further occasionalrecords comprised siliceous valve fragments of diatoms (Fig. 58),testae of rhizopods (Arcella, Fig. 59) and siliceous phytoliths oftracheophytes (Fig. 65).

Among the observed animal remains were chitinous fragmentsof arthropods (insects, chironomids, copepods, water mites),oocytes of non-parasitic flatworms of shoreline habitats, andresting eggs of rotifers (Figs. 59 and 60). In contrast, microfossils ofgreen algae (Botryococcus, Tetraedron, Pediastrum, Coelastrum) andof zygnemataceaen algae (Zygnemataceae) were of regular occur-rence (Figs. 60e64). Plant tissue fragments were recorded,including wood and leaf tissue fragments, remains of aquatic plantswith perispore fragments of Salvinia, spine hairs of Ceratophyllumand basal hair cells of Nymphaeaceae (Figs. 65e67).

6. Discussion and conclusions

This paper has presented55plateswithhigh-resolution images offossil pollen and spore taxa recovered from the last glacial andinterglacial sediments of Lake Suigetsu and representing past vege-tation communities of central Japan. This set of digital photographstaken with a light microscope at a standard magnification and ata series of different focal levels aims to serve as a handy andcomprehensive reference for morphologically and taxonomicallyconsistent identification of fossil pollen and spores recovered fromthe Quaternary sediments from Japan, which will be analysed bydifferent palynologists with varying degrees of experience andknowledge of local flora. Another aim of this paper is to providebackground information used to generate a continuous and high-

Page 73: Atlas of pollen, spores and further non-pollen palynomorphs ...

D. Demske et al. / Quaternary International 290-291 (2013) 164e238236

resolution pollen record of the SG06 core covering the last 150 ka(work inprogress) and todemonstrate the robustnessofpollen-basedvegetation and climate reconstructions derived from this record.

The atlas of the fossil pollen and spores of the SG06 core is offurther value in that it represents all arboreal pollen and non-arboreal taxa used for the interpretation of the late Quaternaryenvironments and for quantitative reconstructions of Japanesevegetation and climate (Takahara et al., 2000; Gotanda et al., 2002,2008; Nakagawa et al., 2005). The atlas also comprises a significantnumber of limnic and telmatic taxa pollen and fern and mossspores, representing important regional biomes and/or local envi-ronments. By comparison, the synthetic paper of Takahara et al.(2000) lists 115 pollen taxa and Selaginella selaginoides as anadditional spore type identified in the data set, representing 94modern sites, 58 mid-Holocene sites and 15 last glacial maximumsites distributed all over Japan.

Morphologically and taxonomically consistent determination ofpollen and spores in the modern surface and fossil samples isparticularly important when (a) doing regional syntheses of pollenrecords produced by different palynologists, and (b) performingquantitative pollen-based reconstructions, for example, using themodern analogues approach (Overpeck et al., 1985; Nakagawaet al., 2002; Tarasov et al., 2011).

Tree and shrub taxa are proposed as robust indicators of theJapanese climate (e.g. Nakagawa et al., 2002) and arboreal pollenpredominate in the pollen spectra from Lake Suigetsu and fromcentral Japan during the late Quaternary. However, the non-arboreal vegetation communities played a more important roleduring colder glacial intervals, as evidenced by the relatively highpercentages of non-arboreal pollen of herbs and graminoids in theLake Suigetsu 1993 core record between 15.7 and 15 ka beforepresent (e.g. Nakagawa et al., 2005). The percentage and number ofherbaceous taxa also show an increase in the late Holocene pollenrecords from Japan due to growing human impact. Non-arborealfossil pollen taxa are well represented in this study, thus stimu-lating their more systematic determination and counting in theother pollen records from Japan.

The biome reconstruction approach and the biome-taxonmatrix designed to reconstruct vegetation dynamics of the Japa-nese Archipelago from the available pollen records (Takahara et al.,2000; Gotanda et al., 2002) demonstrate that pollen taxa from theSG06 core presented in this study are representative of all majorvegetation units in Japan (Tsukada, 1988; Fig. 1d). This conclusion isin line with the previous reconstructions of the regional vegetationhistory in southern Honshu based on pollen records from LakeMikata (Yasuda, 1982; Takahara and Takeoka, 1992a; Gotanda et al.,2002), Lake Biwa (Miyoshi et al., 1999; Hayashi et al., 2010, 2012;Tarasov et al., 2011) and other basins (Takahara and Takeoka,1992b; Hayashi et al., 2009), which show profound changes inthe late Quaternary plant cover. With respect to the area of ‘MikataFive Lakes’ the biome reconstruction suggests cool mixed forest(typical of present-day Hokkaido) during the coldest phase of thelast glacial (Gotanda et al., 2002, 2008; Gotanda and Yasuda, 2008),temperate deciduous forest (currently occupies plains of south-ernmost Hokkaido and the northern half of Honshu) during the lateglacial and early Holocene, and broadleaved evergreen warm-mixed forest during the middle and late Holocene. Furthermore,interpretations of the regional pollen records (Yasuda, 1982;Takahara and Takeoka, 1992a,b; Takahara et al., 2000; Nakagawaet al., 2005; Gotanda et al., 2008; Tarasov et al., 2011) alsosuggest that temperate conifer forest (today mainly occurring inmountainous areas of Kyushu and Shikoku and on the Kii Peninsulaof southern Honshu) and cool conifer forest (mountains of northernHonshu and Hokkaido) biomes could also have played a role incentral Japan during the past 430 ka.

In sum, the current work demonstrates a good potential fordetailed differentiation of fossil pollen and spores in the lateQuaternary sediment of Lake Suigetsu and provides a solid back-ground for comprehensive interpretation of the SG06 pollenrecords in terms of past vegetation and climate dynamics in centralJapan. Furthermore, the presented photo collection provides help inidentification of the key pollen and spore taxa and some NPPs,which should facilitate routine pollen analysis and objectivecomparison between the pollen records. Continuing studies on theregional vegetation history around Lake Suigetsu based on theSG06 core and on the lake sediment cores in the other regions,including northern (e.g. Hokkaido and Rebun Island) and southernJapan, are necessary to improve and update the current work.

Acknowledgements

This study contributes to the project ‘Varve chronology andhigh-resolution vegetation and climate dynamics in central Japanduring the last glacial (ca. 10e50 kyr BP) derived from the LakeSuigetsu sediment record’ sponsored by the German ResearchFoundation DFG (grants TA 540/3 and BR 2208/7), to the ‘LakeSuigetsu 2006 Varved Sediment Core’ project sponsored by the UKNatural Environment Research Council (grants NE/D000289/1, NE/F003048/1 and SM/1219.0407/001), and to the Japanese KAKENHIproject (grant 211001002). Our gratitude is further extended to Dr.D. White and two anonymous reviewers for helpful comments, C.Leipe for digitalizing vegetation map, S. Hildebrandt for technicalassistance and G. Shephard for polishing English of the manuscript.Supplementary associated data can be found in the online version(http://www.suigetsu.org/).

References

Adobe Systems Incorporated, 2005a. Optimum Strategies for Using Adobe Photo-shop CS2 in Scientific and Medical Imaging, White Paper, 6/05, 10 pp. PDF file.www.adobe.com/digitalimag/science.html. downloaded Sept. 2009.

Adobe Systems Incorporated, 2005b. Adobe Studio on Adobe Photoshop CS2:Enhance scientific and medical images, Tutorial, 5 pp. PDF file. www.adobe.com/digitalimag/science.html. downloaded Sept. 2009.

APG III, 2009. An update of the Angiosperm Phylogeny Group classification for theorders and families of flowering plants: APG III (The Angiosperm PhylogenyGroup). Botanical Journal of the Linnean Society 161, 105e121.

Belling, A.J., Heusser, C.J., 1974. Spore Morphology of the Polypodiaceae of North-eastern North America, I. Bulletin of the Torrey Botanical Club 101 (6), 326e339.

Bennett, K.D., Willis, K.J., 2001. Pollen. In: Smol, J.P., Birks, H.J.B., Last, W.M. (Eds.),Tracking Environmental Change Using Lake Sediments. Terrestrial, Algal, andSiliceous Indicators, vol. 3. Kluwer, Dordrecht/Bosten/London, pp. 5e32.

Beug, H.-J., 2004. Leitfaden der Pollenbestimmung: für Mitteleuropa und angren-zende Gebiete. Pfeil, München.

Birks, H.J.B., 1973. Past and present vegetation of the Isle of Skye. A paleoecologicalstudy. Cambridge University Press.

Birks, H.J.B., Birks, H.H., 1980. Quaternary palaeoecology. E. Arnold, London.Braconnot, P., Harrison, S.P., Joussaume, S., Hewitt, C.D., Kitoch, A., Kutzbach, J.E.,

Liu, Z., Otto-Bliesner, B., Syktus, J., Weber, S.L., 2004. Evaluation of PMIP coupledocean-atmosphere simulations of the mid-Holocene. In: Battarbee, R.W.,Gasse, F., Stickley, C.E. (Eds.), Past Climate Variability through Europe and Africa.Developments in Paleoenvironmental Research, vol. 6. Springer, Dordrecht,pp. 515e533.

Cargill, D.C., Fuhrer, B.A., 2008. Taxonomic Studies of the Australian Anthocer-otophyta II: The Genus Phaeoceros. In: Fieldiana e In celebration of Dr. John J.Engel: A tribute to 40 years in bryology e Part 8: Hornworts, vol. 47. Fieldiana:Botany, N.S., pp. 239e253 (Chapter 20) (publ. by Field Museum of NaturalHistory).

Cao, J.-G., Yu, J., Wang, Q.-X., 2007. Spore Morphology of Ferns from China VII:Cyatheaceae. Acta Botanica Yunnanica 29 (1), 7e12 (in Chinese, with Englishabstract).

Chang, Y.-L., 1965. Studies in the Spore Morphology of Vittaria Smith. Acta BotanicaSinica 13 (2), 151e159. 4 plates (in Chinese, with English summary).

Dai, X.-L., Wang, Q.-X., Yu, J., Zhu, R.-L., 2005. Spore Morphology of Pteridophytesfrom China, VI: Pteridaceae. Acta Botanica Yunnanica 27 (5), 489e500 (inChinese, with English abstract).

Erdtman, G., 1952. Pollen Morphology and Plant Taxonomy: Angiosperms. In: AnIntroduction to Palynology, vol. I. Almqvist and Wiksell, Stockholm.

Page 74: Atlas of pollen, spores and further non-pollen palynomorphs ...

D. Demske et al. / Quaternary International 290-291 (2013) 164e238 237

Erdtman, G., 1965. Pollen and Spore Morphology/Plant Taxonomy: Gymnospermae,Bryophyta (Text). An Introduction to Palynology, vol. III. Almqvist and Wiksell,Stockholm.

Erdtman, G., 1969. Handbook of Palynology, Morphology e Taxonomy e Ecology:An Introduction to the Study of Pollen Grains and Spores. Munksgaard,Copenhagen.

Fægri, K., Iversen, J., 1989. Textbook of Pollen Analysis. In: Fægri, K., Kaland, P.E.,Krzywinski, K. (Eds.), fourth ed. John Wiley & Sons, Chichester.

Franklin, J.F., Maeda, T., Ohsumi, Y., Matsui, M., Yagi, H., Hawk, G.M., 1979. SubalpineConiferous Forests of Central Honshu, Japan. Ecological Monographs 49 (3),311e334.

Gansert, D., 2004. Treelines of the Japanese Alps e altitudinal distribution andspecies composition under contrasting winter climates. Flora 199, 143e156.

Gotanda, K., Yasuda, Y., 2008. Spatial biome changes in southwestern Japan sincethe Last Glacial Maximum. Quaternary International 184, 84e93.

Gotanda, K., Nakagawa, T., Tarasov, P., Kitagawa, J., Inoue, Y., Yasuda, Y., 2002. Biomeclassification from Japanese pollen data: application to modern-day and LateQuaternary samples. Quaternary Science Reviews 21, 647e657.

Gotanda, K., Nakagawa, T., Tarasov, P.E., Yasuda, Y., 2008. Disturbed vegetationreconstruction using the biomization method from Japanese pollen data:Modern and Late Quaternary samples. Quaternary International 184, 56e74.

Haas, J.N., 1996. Neorhabdocoela oocytes - palaeoecological indicators found inpollen preparations from Holocene freshwater lake sediments. Review ofPaleobotany and Palynology 91, 371e382.

Hara, M., 2010. Climatic and historical factors controlling horizontal and verticaldistribution patterns of two sympatric beech species, Fagus crenata Blume andFagus japonica Maxim., in eastern Japan. Flora 205, 161e170.

Hattori, T., Nakanishi, S., Takeda, Y., 1987. The chorological study of the main luci-dophyllous species in the Kinki District with special reference to their immi-gration during the postglacial period. Japanese Journal of Ecology 37, 1e10 (inJapanese, with English abstract and summary).

Hayashi, R., Takahara, H., Tanida, K., Danhara, T., 2009. Vegetation response to EastAsian monsoon fluctuations from the penultimate to last glacial period basedon a terrestrial pollen record from the inland Kamiyoshi Basin, western Japan.Palaeogeography, Palaeoclimatology, Palaeoecology 284, 246e256.

Hayashi, R., Takahara, H., Hayashida, A., Takemura, K., 2010. Millennial-scale vege-tation changes during the last 40,000 yr based on a pollen record from LakeBiwa, Japan. Quaternary Research 74 (1), 91e99.

Hayashi, R., Inoue, J., Makino, M., Takahara, H., 2012. Vegetation history during thelast 17,000 years around Sonenuma Swamp in the eastern shore area of LakeBiwa, western Japan: With special reference to changes in species compositionof Quercussubgenus Lepidobalanustrees based on SEM pollen morphology.Quaternary International 254, 99e106.

Hirayama, K., Sakimoto, M., 2003. Spatial distribution of canopy and subcanopyspecies along a sloping topography in a cool-temperate coniferhardwood forestin the snowy region of Japan. Ecological Research 18, 443e454.

Hooghiemstra, H., van Geel, B., 1998. World list of Quaternary pollen and sporeatlases. Review of Palaeobotany and Palynology 104, 157e182.

Ikuse, M., 1956. Pollen grains of Japan. Hirokawa Publishing Co., Tokyo.Jankovská, V., Komárek, J., 2000. Indicative value of Pediastrum and other coccal

green algae in palaeoecology. Folia Geobotanica 35, 59e82.Joosten, H., de Klerk, P., 2002. What’s in a name? Some thoughts on pollen classi-

fication, identification, and nomenclature in Quaternary palynology. Review ofPalaeobotany and Palynology 122 (1e2), 29e45.

Kaneko, Y., Kawano, S., 2002. Demography and matrix analysis on a natural Pter-ocarya rhoifolia population developed along a mountain stream. Journal of PlantResearch 115, 341e354.

Kawase, D., Tsumura, Y., Tomaru, N., Seo, A., Yumoto, T., 2010. Genetic Structure ofan Endemic Japanese Conifer, Sciadopitys verticillata (Sciadopityaceae), by UsingMicrosatellite Markers. Journal of Heredity 101 (3), 292e297.

Kikuchi, T., 1981. The Vegetation of Mount Iide, as Representative of Mountains withHeavy Snowfall in Japan. Mountain Research and Development 1 (3e4),261e265.

Kitagawa, H., van der Plicht, J., 2000. Atmospheric radiocarbon calibration beyond11,900 cal BP from Lake Suigetsu laminated sediments. Radiocarbon 42 (3),370e381.

Kleinen, T., Tarasov, P., Brovkin, V., Andreev, A., Stebich, M., 2011. Comparison ofmodeled and reconstructed changes in forest cover through the past 8000years: Eurasian perspective. The Holocene 21 (5), 723e734.

Komárek, J., Jankovská, V., 2001. Review of the Green Algal Genus Pediastrum:Implication for Pollenanalytical Research. In: Bibliotheca Phycologica, vol. 108. J.Cramer/Gebrüder Borntraeger, Berlin-Stuttgart.

Komárek, J., Hauer, T., 2011. CyanoDB.cz e On-line database of cyanobacterialgenera. World-wide electronic publication. University of South Bohemia &Institute of Botany AS CR. http://www.cyanodb.cz.

Kossler, A., Tarasov, P., Schlolaut, G., Nakagawa, T., Marshall, M., Brauer, A., Staff, R.,Bronk Ramsey, C., Bryant, C., Lamb, H., Demske, D., Gotanda, K., Haraguchi, T.,Yokoyama, Y., Yonenobu, H., Tada, R., Suigetsu 2006 project members, 2011.Onset and termination of the late-glacial climate reversal in the high-resolutiondiatom and sedimentary records from the annually laminated SG06 core fromLake Suigetsu, Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 306(3e4), 103e115.

Kuwae, M., Yoshikawa, S., Inouchi, Y., 2002. A diatom record for the past 400 kafrom Lake Biwa in Japan correlates with global paleoclimatic trends. Palae-ogeography, Palaeoclimatology, Palaeoecology 183 (3e4), 261e274.

Liang, Y.-H., Yu, Ch.-H, 1985. Pollen morphology of Styracaceae and its taxonomicsignificance. Acta Phytotaxonomica Sinica 23 (2), 81e90. 4 plates.

Lindbladh, M., O’Connor, R., Jacobson Jr., G.L., 2002. Morphometric analysis of pollengrains for paleoecological studies: classification of Picea from eastern NorthAmerica. American Journal of Botany 89 (9), 1459e1467.

Martínez, O.G., Morbelli, M.A., 2009. The spores of Pteris cretica complex (Pter-idaceae-Pteridophyta) in America. Grana 48 (3), 193e204.

Matsui, T., Yagihashi, T., Nakaya, T., Tanaka, N., Taoda, H., 2004. Climatic controls ondistribution of Fagus crenata forests in Japan. Journal of Vegetation Science 15(1), 57e66.

Miyawaki, A., 1984. A Vegetation-Ecological View of the Japanese Archipelago. In:Bulletin of the Institute of Environmental Science and Technology, vol. 11.Yokohama University, pp.85e101.

Miyawaki, A. (Ed.), 1980e1989, Vegetation of Japan, vols. 1e10. Shibundo, Tokyo.With colored vegetation maps and tables in Japanese with German and Englishsummary.

Miyoshi, N., Fujiki, T., Morita, Y., 1999. Palynology of a 250-m core from Lake Biwa: A430,000-year record of glacial-interglacial vegetation change in Japan. Reviewof Palaeobotany and Palynology 104, 267e283.

Miyoshi, N., Fujiki, T., Kimura, H., 2011. Pollen flora of Japan. Hokkaido UniversityPress, Sapporo.

Moe, D., 1974. Identification Key for Trilete Microspores of Fennoscandian Pter-idophyta. Grana 14 (2e3), 132e142.

Moore, P.D., Webb, J.A., Collinson, M.E., 1991. Pollen Analysis. second ed., reprinted1999. Blackwell Science, Oxford.

Müller, S., Tarasov, P.E., Andreev, A.A., Tütken, T., Gartz, S., Diekmann, B., 2010. LateQuaternary vegetation and environments in the Verkhoyansk Mountains region(NE Asia) reconstructed from a 50-kyr fossil pollen record from Lake Billyakh.Quaternary Science Reviews 29, 2071e2086.

Nakagawa, T., 2007. Double-L channel: an amazingly non-destructive method ofcontinuous sub-sampling from sediment cores. Quaternary International167e168 (Supplement), 298.

Nakagawa, T., Brugiapaglia, E., Digerfeldt, G., Reille, M., de Beaulieu, J.-L., Yasuda, Y.,1998. Dense-media separation as a more efficient pollen extraction method foruse with organic sediment/deposit samples: comparison with the conventionalmethod. Boreas 27 (1), 15e24.

Nakagawa, T., Tarasov, P.E., Nishida, K., Gotanda, K., Yasuda, Y., 2002. Quantitativepollen-based climate reconstruction in central Japan: application to surface andLate Quaternary spectra. Quaternary Science Reviews 21 (18e19), 2099e2113.

Nakagawa, T., Kitagawa, H., Yasuda, Y., Tarasov, P.E., Gotanda, K., Sawai, Y., 2005.Pollen/event stratigraphy of the varved sediment of Lake Suigetsu, central Japanfrom 15,701 to 10,217 SG vyr BP (Suigetsu varve years before present):Description, interpretation, and correlation with other regions. QuaternaryScience Reviews 24 (14e15), 1691e1701.

Nakagawa, T., Tarsov, P.E., Kitagawa, H., Yasuda, Y., Gotanda, K., 2006. Seasonallyspecific response of the East Asian monsoon to deglacial climate changes.Geology 34 (7), 521e524.

Nakagawa, T., Okuda, M., Yonenobu, H., Miyoshi, N., Fujiki, T., Gotanda, K., Tarasov, P.E.,Morita, Y., Takemura, K., Horie, S., 2008. Regulation of themonsoon climate by twodifferent orbital rhythms and forcing mechanisms. Geology 36 (6), 491e494.

Nakagawa, T., Gotanda, K., Haraguchi, T., Danhara, T., Yonenobu, H., Brauer, A.,Yokoyama, Y., Tada, R., Takemura, K., Staff, R.A., Payne, R., Bronk Ramsey, C.,Bryant, C., Brock, F., Schlolaut, G., Marshall, M., Tarasov, P., Lamb, H., Suigetsu2006 Project Members, 2012. SG06, a fully continuous and varved sedimentcore from Lake Suigetsu, Japan: stratigraphy and potential for improving theradiocarbon calibration model and understanding of late Quaternary climatechanges. Quaternary Science Reviews 36, 164e176.

Nakamura, J., 1980a. Diagnostic characters of pollen grains of Japan, Part II. In:Special Publications from the Osaka Museum of Natural History, Vol. 12. OsakaMuseum of Natural History, Osaka, Japan. 1e157, plates (in Japanese withEnglish abstract).

Nakamura, J., 1980b. Diagnostic characters of pollen grains of Japan, Part I. In:Special Publications from the Osaka Museum of Natural History, Vol. 13. OsakaMuseum of Natural History, Osaka, Japan, pp. 1e91. text (in Japanese withEnglish abstract).

Nakamura, J., Shibasaki, T., 1960. Diagnostic characters of fern spores, (I) Ophio-glossaceae, Helminthostachyaceae and Osmundaceae. Research Reports of theKochi University, vol. 8, 1e11, 8 plates.

Nasu, T., Seto, K., 1986a. Spore morphology of Japanese pteridophytes, Part I (plates).In: Special Publications from Osaka Museum of Natural History, Vol. 16e17.Osaka Museum of Natural History, Osaka, Japan. 174 plates.

Nasu, T., Seto, K., 1986b. Spore morphology of Japanese pteridophytes. Part I. In:Special Publications from Osaka Museum of Natural History, Vol. 18. OsakaMuseum of Natural History, Osaka, Japan.

Nayar, B.K., Devi, S., 1968. Spore morphology of the Pteridaceae III: The Dicksonioid,Dennstaedtioid and Lindsayoid Ferns. Grana Palynologica 8 (1), 185e203.

Numata, M. (Ed.), 1974. The flora and vegetation of Japan. Elsevier, Tokyo.Ohba, H., 1994. The Flora of Japan and the Implication of Global Climate Change.

Journal of Plant Research 107 (1), 85e89.Ohno, K., Ikeda, T., 1999. A Note on the Syntaxonomy of the Torreyo-Fagetum

japonicae. Bulletin of the Institute of Environmental Science and Technology 25(1), 39e48. Yokohama.

Ohwi, J., 1965. Flora of Japan. A Combined, Much Revised, and Extended Trans-lation by the Author of his Flora of Japan (1953) and Flora of Japan e Pter-idophyta (1957). Smithsonian Institution, Washington, D.C.

Page 75: Atlas of pollen, spores and further non-pollen palynomorphs ...

D. Demske et al. / Quaternary International 290-291 (2013) 164e238238

Overpeck, J.T., Webb III, T., Prentice, I.C., 1985. Quantitative interpretation of fossilpollen spectra: Dissimilarity coefficients and the method of modern analogs.Quaternary Research 23 (1), 87e108.

Pals, J.P., van Geel, B., Delfos, A., 1980. Palaeoecological studies in the Klokkeweelbog near Hoogkarspel (prov. of Noord Holland). Review of Palaeobotany andPalynology 30, 371e418.

Porter, S.C., An, Z., 1995. Correlation between climate events in the North Atlanticand China during the last glaciation. Nature 375, 305e308.

Prentice, I.C., Webb III, T., 1998. BIOME 6000: reconstructing global mid-Holocenevegetation patterns from palaeoecological records. Journal of Biogeography25, 997e1005.

Punt, W., Blackmore, S., Hoen, P., Stafford, P. (Eds.), 1976e2009, The NorthwestEuropean Pollen Flora, vols. IeIX. Elsevier, Amsterdam. http://stage.bio.uu.nl/palaeo/research/NEPF/nepf.htm. Parts 1e70updated: April 2010.

Reille, M., 1992. Pollen et spores d’Europe et d’Afrique du nord. Laboratoire debotanique historique et palynologie, URA CNRS, Marseille, France (including446 plates, 13195 photos, 2277 taxa.).

Reille, M., 1995. Pollen et spores d’Europe et d’ Afrique du nord. Supplement I.Laboratoire de botanique hislorique el palynologie, URA CNRS, Marseille, France(including 274 plates, 8082 photos, 1615 taxa).

Reille, M., 1998. Pollen et spores d’Europe et d’ Afrique du nord. Supplement 2.Laboratoire de botanique historique et palynologie, URA CNRS, Marseille, France(including 435 plates, 12867 photos, 2180 taxa).

Saito, T., 1992. Pollen Morphology and Species-level Distinction of the Genus Fagusfrom the Hachiya Formation (Lower Miocene), Mizunami Group, Japan. Journalof Earth and Planetary Sciences 39, 31e46. Nagoya University.

Sakaguchi, S., Sakurai, S., Yamasaki, M., Isagi, Y., 2010. How did the exposed seafloorfunction in postglacial northward range expansion of Kalopanax septemlobus?Evidence from ecological niche modelling. Ecological Research 25 (6),1183e1195.

Sasaki, Y., 1970. Versuch zur systematischen und geographischen Gliederung derJapanischen Buchenwaldgesellschaften. Plant Ecology 20 (1e4), 214e249.

Shaw, J., Renzaglia, K., 2004. Phylogeny and Diversification of Bryophytes. AmericanJournal of Botany 91 (10), 1557e1581.

Shimakura, M., 1973. Palynomorphs of Japaneses plants. Special Publications fromthe Osaka Museum of Natural History (Osaka, Japan), 5 (text), 121 plates, 13 pp.index (in Japanese, with English abstract)1e60.

Smith, A.R., Pryer, K.M., Schuettpelz, E., Korall, P., Schneider, H., Wolf, P.G., 2006.A classification for extant ferns. Taxon 55 (3), 705e731.

Sorsa, P., 1964. Studies on the spore morphology of Fennoscandian fern species.Annales Botanici Fennici 1, 179e201.

Staff, R.A., Bronk Ramsey, C., Nakagawa, T., Suigetsu 2006 ProjectMembers, 2010. A re-analysis of the Lake Suigetsu terrestrial radiocarbon calibration dataset. NuclearInstruments and Methods in Physics Research Section B 268 (7e8), 960e965.

Staff, R.A., Bronk Ramsey, C., Bryant, C.L., Brock, F., Payne, R.L., Schlolaut, G.,Marshall, M.H., Brauer, A., Lamb, H.F., Tarasov, P., Yokoyama, Y., Haraguchi, T.,Gotanda, K., Yonenobu, H., Nakagawa, T., Suigetsu 2006 Project Members, 2011.New 14C determinations from Lake Suigetsu, Japan: 12,000 to 0 cal BP. Radio-carbon 53 (3), 511e528.

Suzuki, T., 1972. Vegetation map. In: Hashimoto, N., Hachiya, K., Okanoue, M.,Kurotori, T., Matsui, M., Mashimo, Y., Maeda, T., Maruyama, A., Endo, K.,Kojima, T., Arimitsu, K., Yagi, H. (Eds.), Forest Environment Map of Japan(1:2,000,000). Society of Forest Environment, pp. 17e38. Tokyo, Japan (andvegetation map).

Suzuki, K., 1982. Distribution of evergreen and summergreen broad-leaved forest inJapan, vol. 8. Bulletin of the Institute of Environmental Science and Technology,Yokohama University, pp. 151e163.

Takahara, H., 1992. Pollen morphology of the genus Tsuga in Japan, vol. 36. Bulletinof Kyoto Prefectural University Forests, pp. 45e55 (in Japanese, with Englishsummary).

Takahara, H., Takeoka, M., 1992a. Vegetation history since the last glacial period inthe Mikata lowland, the Sea of Japan area, western Japan. Ecological Research 7,371e386.

Takahara, H., Takeoka, M., 1992b. Postglacial vegetation history around Torihama,Fukui Prefecture, Japan. Ecological Research 7, 79e85.

Takahara, H., Sugita, S., Harrison, S.P., Miyoshi, N., Morita, Y., Uchiyama, T., 2000.Pollen-based reconstructions of Japanese biomes at 0, 6000 and 18,000 14C yrBP. Journal of Biogeography 27, 665e683.

Tarasov, P.E., Nakagawa, T., Demske, D., Osterle, H., Igarashi, Y., Kitagawa, J.,Mokhova, L., Bazarova, V., Okuda, M., Gotanda, K., Miyoshi, N., Fujiki, T.,Takemura, K., Yonenobu, H., Fleck, A., 2011. Progress in the reconstruction ofQuaternary climate dynamics in the Northwest Pacific: A newmodern analoguereference dataset and ist application to the 430-kyr pollen record from LakeBiwa. Earth Science Reviews 108, 64e79.

Tateno, R., Takeda, H., 2003. Forest structure and tree species distribution in relationto topography-mediated heterogeneity of soil nitrogen and light at the forestfloor. Ecological Research 18, 559e571.

Tsukada, M., 1963. Umbrella Pine, Sciadopitys verticillata: Past and Present Distri-bution in Japan. Science 142, 1680e1681.

Tsukada, M., 1982. Cryptomeria japonica: Glacial refugia and late-glacial and post-glacial migration. Ecology 63 (4), 1091e1105.

Tsukada, M., 1986. Altitudinal and latitudinal migration of Cryptomeria japonica forthe past 20,000 years in Japan. Quaternary Research 26, 135e152.

Tsukada, M., 1988. Glacial and Holocene vegetation history: Japan. In: Huntley, B.,WebbIII, T. (Eds.), Vegetation History. Kluwer, Dordrecht, pp. 459e518.

van der Hammen, T., van Geel, B., 1978. Zygnemataceae in Quaternary Colombiansediments. Review of Palaeobotany and Palynology 25, 377e391.

van Geel, B., 1978. A palaeoecological study of Holocene peat bog sections inGermany and the Netherlands, based on the analysis of pollen, spores andmacro- and microscopic remains of fungi, algae, cormophytes and animals.Review of Palaeobotany and Palynology 25, 1e120.

van Geel, B., 1986. Application of fungal and algal remains and other microfossils inpalynological analyses. In: Berglund, B.E. (Ed.), Handbook of Holocene Palae-oecology and Palaeohydrology. Wiley, Chichester, pp. 497e505.

van Geel, B., 2001. Non-pollen palynomorphs. In: Smol, J.P., Birks, H.J.B., Last, W.M.(Eds.), Tracking Environmental Change Using Lake Sediments. Terrestrial, Algal,and Siliceous Indicators, vol. 3. Kluwer, Dordrecht/Bosten/London, pp. 99e119.

van Geel, B., Grenfell, H.R., 1996. Spores of Zygnemataceae. In: Jansonius, J.,McGregor, D.C. (Eds.), Palynology: principles and applications, vol. 1. AmericanAssociation of Stratigraphic Palynologists Foundation, pp. 173e179.

van Geel, B., Bohncke, S.J.P., Dee, H., 1981. A palaeoecological study of an upper lateglacial and holocene sequence from "de borchert", The Netherlands. Review ofPalaeobotany and Palynology 31, 367e448.

van Geel, B., Hallewas, D.P., Pals, J.P., 1983. A late holocene deposit under theWestfriese Zeedijk near Enkhuizen (Prov. of Noord Holland, The Netherlands):Palaeoecological and archaeological aspects. Review of Palaeobotany andPalynology 38, 269e335.

van Geel, B., Coope, G.R., van der Hammen, T., 1989. Palaeoecology and stratigraphyof the Lateglacial type section at Usselo (the Netherlands). Review of Palae-obotany and Palynology 60, 25e129.

von Post, L., 1916. Om skogsträdpollen i sydsvenska torfmosslagerföljder. Geo-logiska Föreningens i Stockholm Förhandlingar 38, 384e390.

Walker, M., Johnsen, S., Rasmussen, S.O., Popp, T., Steffensen, J.-P., Gibbard, P.,Hoek, W., Lowe, J., Andrews, J., Björck, S., Cwynar, L.C., Hughen, K., Kershaw, P.,Kromer, B., Litt, T., Lowe, D.J., Nakagawa, T., Newnham, R., Schwander, J., 2009.Formal definition and dating of the GSSP (Global Stratotype Section and Point)for the base of the Holocene using the Greenland NGRIP ice core, and selectedauxiliary records. Journal of Quaternary Science 24 (1), 3e17.

Wang, F., Chien, N., Zhang, Y., Yang, H., 1997. Pollen Flora of China. Science Press,Beijing (in Chinese).

Wanner, H., Beer, J., Bütikofer, J., Crowley, T.J., Cubasch, U., Flückiger, J., Goosse, H.,Grosjean, M., Joos, F., Kaplan, J.O., Küttel, M., Müller, S.A., Prentice, I.C.,Solomina, O., Stocker, T.F., Tarasov, P., Wagner, M., Widmann, M., 2008. Mid- tolate Holocene climate change: an overview. Quaternary Science Reviews 27(19e20), 1791e1828.

Welcker, H., 1859. On the Measurement of the Vertical Thickness of MicroscopicObjects; and on the Determination of the Chemical Properties from theirRefractive Power. Transactions of TheMicroscopical Society & Journal 7, 240e247.

Williams, J.W., Tarasov, P., Brewer, S., Notaro, M., 2011. Late Quaternary variations intree cover at the northern forest-tundra ecotone. Journal of GeophysicalResearch 116 (G01017), 14. doi:10.1029/2010JG001458.

Worobiec, E., Worobiec, G., 2005. Leaves and pollen of bamboos from the PolishNeogene. Review of Palaeobotany and Palynology 133, 39e50.

Xiao, J.L., An, Z.S., Liu, T.S., Inouchi, Y., Kumai, H., Yoshikawa, S., Kondo, Y., 1999. EastAsian monsoon variation during the last 130,000 years: Evidence from theLoess Plateau of central China and Lake Biwa of Japan. Quaternary ScienceReviews 18, 147e157.

Yamanaka, N., Matsumoto, A., Oshima, Y., Kawanabe, S., 1993. Stand structure ofMondori-Dani watershed, Kyoto University Forest in Ashiu. Bulletin of the KyotoUniversity Forests 65, 63e76 (in Japanese, with English summary).

Yanagimachi, O., Ohmori, H., 1991. Ecological status of Pinus pumila scrub and thelower boundary of the Japanese alpine zone. Arctic and Alpine Research 23 (4),424e435.

Yasuda, Y., 1982. Pollen analytical study of the sediment from the Lake Mikata inFukui prefecture, central Japan e especially on the fluctuation of precipitationsince the Last Glacial Age on the side of Sea of Japan. The Quaternary Research(Tokyo) 21, 255e271 (in Japanese, with English summary).

Yamada, H., Yamaguchi, K., Miyaura, T., 2002. Effect of Japan Sea Climate onGeographic Distribution of Castanopsis sieboldii and C. cuspidata. Journal ofForest Research 7, 67e71.

Yoshimura, K., 1965. Plantecological Studies on Kyoto University Forest: Outline ofthe Forest Vegetation and Studies on Interspecific Association of Trees. Bulletinof Kyoto University e Forestry Society 47 (9), 295e303.

Yoshino, M.M., 1978. Altitudinal Vegetation Belts of Japan with Special Reference toClimatic Conditions. Arctic and Alpine Research 10 (2), 449e456.

Yoshino, M.M., 1980. Natural Regions of Japan. GeoJournal 4 (2), 161e172.Yoshioka, K., 1973. Plant Geography. Kyoritsu-Shuppan, Tokyo (in Japanese).Zanni, M., Ravazzi, C., 2007. Description and differentiation of Pseudolarix amabilis

pollen: Palaeoecological implications and new identification key to freshbisaccate pollen. Review of Palaeobotany and Palynology 145, 35e75.

Zhang, Y., Xi, Y., Zhang, J., Gao, G., Du, N., Kong, Z., 1990. Spore Morphology ofChinese Pteridophytes. Science Press, Beijing, China.