Asymmetric Photochemistry - Princeton...

15
1. Circularly polarized light 2. Solid-phase 3. Solution-phase • Covalently-bound chiral auxilliaries • Chiral complexing agents • Chiral sensitizer Asymmetric Photochemistry MacMillan Group Meeting October 18, 2000 Tehshik Yoon Inoue, Y., in Organic Molecular Photochemistry, Ramamurthy, V., Schanze, K. S., Eds.; Dekker: New York, 1999, pp 71-130. Inoue, Y. Chem. Rev. 1992, 92, 741-770. Rau, H. Chem. Rev. 1983, 83, 535-547. Reviews: Why Study Asymmetric Photochemistry? ! Prebiotic photochemistry –– enantiomeric excess of biomolecules may have been generated by circularly polarized light (CPL) ! Environmentally benign processes –– light requires no workup, generates no waste ! Different mode of reactivity –– access to novel, strained compounds which are thermally inaccessible or difficult to synthesize

Transcript of Asymmetric Photochemistry - Princeton...

1. Circularly polarized light

2. Solid-phase

3. Solution-phase • Covalently-bound chiral auxilliaries • Chiral complexing agents • Chiral sensitizer

Asymmetric Photochemistry

MacMillan Group MeetingOctober 18, 2000

Tehshik Yoon

Inoue, Y., in Organic Molecular Photochemistry, Ramamurthy, V., Schanze, K. S., Eds.; Dekker: New York, 1999, pp 71-130.Inoue, Y. Chem. Rev. 1992, 92, 741-770.Rau, H. Chem. Rev. 1983, 83, 535-547.

Reviews:

Why Study Asymmetric Photochemistry?

! Prebiotic photochemistry –– enantiomeric excess of biomolecules may have been

generated by circularly polarized light (CPL)

! Environmentally benign processes –– light requires no workup, generates no waste

! Different mode of reactivity –– access to novel, strained compounds which are

thermally inaccessible or difficult to synthesize

S0

S1

S2

T1

S0

T1absorption fluorescence

intersystemcrossing

vibrational relaxation

radiationlessdecay

radiative process

nonradiative process

sensitization(quenching)

Photophysical processes

E

! Generalized Jablonski diagram

• Photochemistry can happen from either S1 or T1 state, but normally T1

• Spin-allowed processes (S to S, T to T) tend to be faster, so T1 is usually longer-lived (kd ~ 0.4 s-1)

• E(T1/S1) ~ 102 kcal/mol for most useful organic photochemistry

phosphorescence

see, e.g., Carroll, Structure and Mechanism inOrganic Chemistry, Pacific Grove, CA: Brooks/ColeCh. 12.

Asymmetric photodestruction with CPL

! Kuhn and Braun (1929)

MeEtO

O

Br

R-CPL

50% conv

MeEtO

O

Br

!D = +0.5 °(±) *

! Kuhn and Knopf (1930)

MeMe2N

O

N3

R-CPL

40% conv

MeMe2N

O

N3

[!]D = +0.78 °0.5% ee(±) *

Me

Me Me

O

! Kagan (1974)

(±)R-CPL

99% convMe

Me Me

O

20% ee

Naturwissenschaften, 1929, 17, 227

Naturwissenschaften, 1930, 19, 183

JACS, 1974, 96, 5152

! van't Hoff first suggested the possibility of asymmetric photochemistry with CPL in 1897

Photoresolution using CPL

Sh!, k1

h!, k-1

! enantiomers absorb nonpolarized or linearly polarized light with equal intensity

! enantiomers can absorb circularly polarized light with different intensities; the rate of reaction is proportional to the absorption coefficients ("R and "S)

! a photostationary state (pss) is achieved when k1[R] = k-1[S]

optical purity = ([R]-[S])/([R]+[S]) = g/2

where g = ("R - "S)/"; " = ("R + "s)/2

"R[R] = "S[S]

! g depends on wavelength of irradiation

Stevenson JACS 1978, 90, 2974

Photoresolution using CPL

O

PhH

O

H

Ph

O

HPh

h!

h!

! Schuster (1995): g313 = 0.0502

CPL induces observed 1.6% ee

JOC, 1995, 60, 7192

Cr

O

O O

O

O

O

O

O

O

O

O

O

Cr

O

OO

O

O

O

O

O

O

O

O

O

h!

! Stevenson and Verdieck, JACS 1968, 90, 2974

3- 3-

R

Photochemistry with CPL—prebiotic origin of optical activity?

! Bonner (1977)

O

HO

NH2

(±)L-CPL

75% conv

O

HO

NH2

2.5% ee

! Chiral amplification by autocatalysis (Soai)

N

NMe

CHO

i-Pr2Zn2% chiral initiator

toluene, 0 °C

N

NMe

OH

Me Me

Me

Me Me

Me

initiator

L-valine (2% ee)

yield

82%

ee

21%

JACS, 1977, 99, 3622

Ph CO2Me

OH

Ph Me

NHMe

(0.5% ee)

(0.1% ee)

89% 54%

notgiven 79%

JACS 1998, 120, 12157

Enantioselective photofixation using CPL

AS

PR

PS

!

h"

h"

Asymmetric photofixation possible by preferential photoexcitation of one of a pair ofrapidly equilibrating enantiomeric confomers

! Helicenes (Kagan)

CPL

fast

0.5% ee

Tetrahedron, 1975, 31, 2139)

Large g values are required for appreciable ee's; however, conformational flexibility

allows averaging of CD spectra with opposite signs.

AR

Enantioselective solid-phase photochemistry

i-PrO2C

CO2i-Pr

i-PrO2C CO2i-Pr

! Achiral compounds can crystallize into chiral point groups

h!

21%

>95% eeP212121

Scheffer JACS 1989, 111, 4985

! Introduction of chiral "handles" induces chiral crystals

–O2C

CO2i-Pr

CO2i-Pr

1. h! (20-40% conv)

2. CH2N2

>95% ee

Scheffer, Acc. Chem. Res. 1996, 29, 203

NH2+

CO2t-Bu

MeO2C

the solution-phase reaction gives racemic product and 1:1 regioselectivity

The di-"-methane rearrangement

Me Me Me MeMe

Me

———

General mechanism:

• olefin-arene rearrangement

h!

O O O

• olefin-carbonyl rearrangement

Enantioselective solid-phase photochemistry

O

OPh

! Modified zeolites as hosts

OO

H

Ph

h!, 10 min

69% ee, hexane slurry

Ramamurthy, Org. Lett. 2000, 2, 119

NaY•ephedrine

O

OPh

! Cyclodextrin hosts:

OO

H

Ph

"-cyclodextrin

h!, 15 min

33% ee solid phase4% ee aqueous phase

Ramamurthy, Tetrahedron 2000, 56, 7005

rigid environment essential?

Meyers' chiral lactam auxilliary

Meyers, A. I. JACS, 1986, 108, 306

N

O

O

Me

N

O

O

Me

Me

Me

Me

MeMe

MeO2C

Me

O

Me

MeO2C

Me

O

Me

MeN

O

O

Me

Me

Me

ethylene,acetophenone

h!, -78 °C

93% yield84-86% de

H2SO4/MeOH(56%)

H2SO4

+

~ 1:1

Me

HOMe

H

(–)-grandisol

No other examples reported

9 steps

Menthone-derived spirodioxinone

Me

HOMe

H

(+)-grandisol

5 steps

O O

O

i-Pr

Me

Me

tBu

O

O

O

i-Pr

Me

tBu

O

O

O

i-Pr

Me

O

O

O

i-Pr

MeMe

Me

H

Me

H

Me

H Me

H

H

H

+h!

h!

h!

O

Me

HO2C

Me

H

33% yield

3:1 r.s.

8:1 d.s.

70% yield

10:1 d.s.

55% yield

7:1 r.s.

5:1 d.s.

HCO2HH2O : acetone

80%

Demuth ACIEE 1986, 25, 1117

2 diastereomersseparated by crystallization

Menthone-derived spirodioxinone

O O

O

i-Pr

Me

MeO

O

O

i-Pr

MeMe

H

H

H

h!

70% yield

10:1 d.s.

Sato and Kaneko, Chem. Pharm. Bull. 1987, 35, 3971

+

O

OO

Me

Me

O

O

Me

Me

O

a

b

"Though the b-side attack of the alkene on A is not completely denied, it is morereasonable to assume that the minor adduct... may be formed via the less stableconfomer (B) by the attack of the alkene from the b-side."

major product minor product

[2+2] cycloadditions with tartarate auxilliary

OO

i-PrO2C CO2i-PrO

MeO2C

OO

O

i-PrO2CCO2i-Pr

CO2Me

H

O

MeO2C

OO

i-PrO2CCO2i-Pr

CO2Me

H O

84% deh!

benzene

h!

benzene 43% de

2-fold excess of ketal — isolated yields only 30-45%

Lange, TL, 1988, 29, 2613

! Chiral auxilliaries on the alkene component of alkene-enone photocycloadditions as much rarer

Chiral allene-enone [2+2] photocycloadditions

Carreira JACS, 1994, 116, 6622JACS, 1997, 119, 2597

O

O

C

tBuHO

O

H

tBu O

O

HO

h! O3

(92% ee)89% yield, 1.2:1 Z : E

(92% and 91% ee)

O

O

C

SiMe3HO

O

H

SiMe3 O

O

H

h!

(99% ee)89% yield, 1.3:1 Z : E

(92% and 86% ee)

1:2TBAF:AcOH

Chiral allene-enone [2+2] photocycloadditions

Carreira JACS, 1994, 116, 6622JACS, 1997, 119, 2597

O

O

C

tBu

H

O

O

C

tBu

H

O

tBu

O

H

• exo approach of allene: ring ! H vs ring ! tether

• enone approaches opposite t-Bu group

• free bond rotation at 1,4-diradical; cycloreversion is not competitive with ring closure (kr << kc)

kckf

kr

The Paterno-Buchi Reaction

Me

Me

Me

PhO

O

O

PhO

O Me

Me

MeO OMe

8-phenylmenthol auxilliary control

O

OOMe

Me

H

H

CO2R*

Ph

O

Ph

CO2R*

H

H

O

Ph

CO2R*

MeO

MeO

O

Ph

CO2R*MeO

MeO

h!

h!

h!

>96% de+

92% de

OO

H

H

CO2R*

Ph

h!>96% de

O

590% de

176% de

:

Scharf, ACIEE 1991, 30, 477

77%

99%

Asymmetric meta-arene-alkene photocycloaddition

O O

Me Me

O

O

OO

Me

Me

Me

Me

O

O

Me

Me

h!

pentane 55%

73 : 27

! C2-symmetric diol tether gives excellent facial selectivity

O O

Me Me

OO

Me

Me

h!

pentane

! Selectivity of the cyclopropane closure can be achieved by adjusting the tether

70% yieldonly isomer

• substrate synthesis was not discussed

• tether cleavage requires 3 steps, consumes the diol, and destroys 2 stereocenters

Sugimura, Tai Tet. Asymm. 1994, 5, 1163

Asymmetric photoinduced radical cyclization

Ph N

O

Ts O

N

OO

O

O

Ph

PhN

X*

O

OHPh

Ts

h!

cyclohexanebenzene

70% yieldone isomer

Ph N

OH

Ts O

X*

OH

PhH

N

Ts O

N

OO

O

O

minimize Ph — auxilliary

interaction

! Synthesis of 3-hydroxyproline derivatives

Wessig, Helv. Chim. Acta 1994, 77, 829

1,5-Habstraction

Photodeconjugation of esters with chiral auxilliaries

O

O

O

Me

Me

Me

Me

O

Me

OR*

OH

OR*

Me

Me

Me OH

OR*

Me

Me Me

Me

Me

O

Me

OR*

O

OO

H

Me Me

OR* =

h!, -60 °Chexane

h!

h!

73 % yield98% de

enantiodifferentiating step is protonation of the enol—not a photoprocess

MeO

O

c-Hex

Me Me

0.1 eq AHOR* =

AH

i-Pr2NH

(+)-ephedrine

(–)-ephedrine

yield

71%

65%

69%

dr

94%

52%

48%

Pete, Tet. Asym. 1991, 2, 1101

Me

Me

O

Et

OR*Me

Me

O

Et

OR*

h!, -60 °Chexane

0.1 eq AH

Piva, Tet. Asym. 1992, 3, 759

Asymmetric photodeconjugation of achiral esters

O

BnOMe

MeMe

NH

OH

PhMe

MeMe

O

BnOMe

MeMeh!, CH2CH2

-40 °C

(0.1 eq)70% ee

65% yield

! High levels of enantioselectivity can be achieved with catalytic amounts of addititve

! Selectivity is highly substrate-dependent

O

EtOMe

MeMe

O

EtOEt

EtMe

O

BnO

Me

O

EtO

Me

O

i-PrOMe

MeMe

O

OMe

MeMe

c-Hex

40% ee84% yield

52% ee60% yield

68% ee76% yield

25% ee65% yield

10% ee56% yield

43% ee74% yield

Piva, JACS, 1990, 112, 9263

Cycloadditions using chiral complexing agents

! 2:1 host:guest complexes

O

O

OH

OH

Ph

Ph

Ph

Ph

O

O

NBn

NBn

O

O

h!

wateralkyl sulfate

90% yield> 99% ee

O

O

OH

OH

Ph

Ph

Ph

Ph

O

O

NEt

NEt

O

O

h!

wateralkyl sulfate

40% yield

14% ee

• N-benzyl groups work well; N-alkyl, N-aryl, and N-allyl give poorer results

O

O

OH

OH

Ph

Ph

Ph

Ph

O

O

NMe

NMe

O

O

h!

wateralkyl sulfate

69% yield97% ee

• Aqueous suspensions made from powdered 2:1 host:guest co-crystals. Is this really a solution-phase reaction?

Toda, JCS, Chem. Comm. 1995, 621

Cycloadditions using chiral complexing agents

O

Me Me

Me

NO

NH

NH

O

O

NH

O

O

H

H

h!, 2.6 eq sens*

toluene, -60 °C

77% yield93% ee

sens*:

NH

O

O

h!, 1.2 eq sens*

toluene, -15 °CNH

O

O

H 88% yield88% ee

! Stereoselectivity based host-guest recognition: amide–amide interaction

! Best enantioselectivity in a solution-phase photochemical reaction to date

Bach, ACIEE, 2000, 39, 2302

Enantioselective sensitized photodestruction

RuN

NN

N

N

N

R

R

R

RR

R

R =

Me

Me Me

O

O

EtOH

MeCHO !-[Ru(Menbpy)3]2+ [!-[Ru(Menbpy)3]2+]*

!-[Ru(Menbpy)3]3+

h"

!-[Co(acac)3]

#-[Co(acac)3]

Co(acac)2 + acac–

! Inorganic systems can work well

k!

k#

!-[Ru(Menbpy)3]2+ =

! 1.3 mol% sensitizer used

! k!/k# = 14.7 (94% ee) in

9:1 EtOH:water at 30% conversion

! Enantioselectivity is critically

solvent-dependant: k!/k# = 8.7

in 8:1 EtOH:water

Inoue JCS, Chem. Comm. 1993, 1423

2+

Enantioselective organic photosensitized reactions

! Organic systems work less well

(±)O

H

H

h", -78 °CO

O

H

H

• 10% ee at 44% conv.

• sensitizer loading not given

Demuth Helv. Chim. Acta 1980, 63, 2434

• Di-$-methane rearrangement

• Sulfoxide isomerization

Me

SMe

O

Me

SMe

O

Me NHAc

h"• 20 mol% sensitizer

• 4.1% ee at pss

Kagan TL 1973, 42, 4159

Enantioselective photosensitized polar addition

! Photosensitized ant-Markovnikov methanol addition to 1,1-diphenylpropene

Ph

PhMe

Ph

PhMe

OMe

CO2R CO2R

Me

Ph Ph

15% sensitizerh!, 25°C

+ MeOH

R =

27% ee1.9% yield8.5 days

• The intermediacy of an electron-transfer exiplex is invoked

• Addition occurs to the radical cation intermediate

• Increasing concentration of MeOH lowers ee, indicating that polar effects are

important in the symmetry-breaking step

benzene

Inoue JCS, Chem Comm 1993, 718

Enantioselective photosensitized [4+2] cycloaddition

Ph

MeMe

Ph

hn (2.5% sens*)

toluene, -65 °C

CN

CN

CN

CN

15% ee

• No yields given

• Reaction of electron-rich diene with electron-rich dienophile

• Enantioselectivty presumably arises from selective capture of

diastereomeric exciplexes

Schuster JACS 1990, 112, 9635

! Photochemistry with circularly-polarized light gives poor enantiomeric

excesses, but CPL can't be ruled out as the prebiotic origin of biological

homochirality

! Solid-phase asymmetric photochemistry can work very well, but has limited

range

! Solution-phase photochemistry can have good enantioselectivity, particularly

with [2+2] photocycloadditions using chiral auxilliaries

! Asymmetric photochemistry using chiral sensitizers is usually poorly

selective

Conclusions