Asymmetric cleavage of 2,2′-pyridil to picolinic acid ...Manas Kumar Biswas,a Sarat Chandra...

15
Electronic Supplementary Information Asymmetric cleavage of 2,2′-pyridil to picolinic acid anion radical coordinated to ruthenium(II): splitting of water to hydrogen Manas Kumar Biswas, a Sarat Chandra Patra, a Amarendra Nath Maity, b Shyue-Chu Ke, b Thomas Weyhermüller c and Prasanta Ghosh* , a a Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-103, India. b Department of Physics, National Dong Hwa University, Shou-Feng, Hualien 97401, Taiwan. c Max-Planck Institute for Chemical Energy Conversion, 45470 Muelheiman der Ruhr, Germany. Table of Contents Page No. Materials 2 Syntheses 2 Physical measurements 2 HPTLC measurement to establish the generation of pyridine-2-aldehyde during the cleavage of 2,2′-pyridil (PCO) 3 Identification of H2 gas by exact match of the retention time of authentic sample using GC 3 IR spectra of c-2 rad , c-3 ac .½toluene and t-2 rad 4 UV-vis/NIR spectra 5 Cyclic Voltammetry of c-2 rad and t-2 rad 5 Study of Kinetic Isotope Effect 6 Hyperfine splitting of the X-Band EPR spectra of c-2 rad 7 Optimized geometries of AMe rad , c-2 rad , c-2Me rad , t-2Me rad and c-3Me ac . 7 Monitoring of the conversion of PyCOOH −• to PyCOO - in c-2 rad by UV-vis/NIR absorption spectra 7 Photoactive orbitals of c-3 ac responsible for low energy absorptions 8 X-ray crystallographic data collection and refinement of c-3 ac .½toluene (CCDC 833917) 8 ORTEP plot showing two disordered phenyl rings (30% probability level) of c-3ac.½toluene 8 Experimental bond lengths (Å) and bond angles (°) of c-3 ac .½toluene 9 Density functional theory (DFT) calculations 9 Optimized bond lengths (Å) and bond angles (°) of AMe rad , c-2 rad , c-2Me rad , t-2Me rad and c-3Me ac 9 Significant calculated and experimental bond lengths (Å) 10 Excitation energies (λ, nm), oscillator strengths (f), transition types and dominant contributions of charge transfer bands obtained from TD DFT calculations 10 Optimized coordinates 12 References 15 Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Transcript of Asymmetric cleavage of 2,2′-pyridil to picolinic acid ...Manas Kumar Biswas,a Sarat Chandra...

Page 1: Asymmetric cleavage of 2,2′-pyridil to picolinic acid ...Manas Kumar Biswas,a Sarat Chandra Patra,a Amarendra Nath Maity,b Shyue-Chu Ke,b Thomas Weyhermüllerc and Prasanta Ghosh*,

Electronic Supplementary Information

Asymmetric cleavage of 2,2′-pyridil to picolinic acid anion radical

coordinated to ruthenium(II): splitting of water to hydrogen

Manas Kumar Biswas,a Sarat Chandra Patra,

a Amarendra Nath Maity,

b Shyue-Chu Ke,

b Thomas Weyhermüller

c

and Prasanta Ghosh*, a

aDepartment of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-103, India.

bDepartment of Physics, National Dong Hwa University, Shou-Feng, Hualien 97401, Taiwan. cMax-Planck Institute for Chemical Energy Conversion, 45470 Muelheiman der Ruhr, Germany.

Table of Contents

Page No.

Materials 2 Syntheses 2

Physical measurements 2

HPTLC measurement to establish the generation of pyridine-2-aldehyde during the cleavage of 2,2′-pyridil (PCO) 3 Identification of H2 gas by exact match of the retention time of authentic sample using GC 3

IR spectra of c-2rad, c-3ac.½toluene and t-2rad 4

UV-vis/NIR spectra 5 Cyclic Voltammetry of c-2rad and t-2rad 5

Study of Kinetic Isotope Effect 6

Hyperfine splitting of the X-Band EPR spectra of c-2rad 7 Optimized geometries of AMe

rad, c-2rad, c-2Merad, t-2Me

rad and c-3Meac. 7

Monitoring of the conversion of PyCOOH−• to PyCOO- in c-2rad by UV-vis/NIR absorption spectra 7

Photoactive orbitals of c-3ac responsible for low energy absorptions 8 X-ray crystallographic data collection and refinement of c-3ac.½toluene (CCDC 833917) 8

ORTEP plot showing two disordered phenyl rings (30% probability level) of c-3ac.½toluene 8

Experimental bond lengths (Å) and bond angles (°) of c-3ac.½toluene 9 Density functional theory (DFT) calculations 9

Optimized bond lengths (Å) and bond angles (°) of AMerad, c-2rad, c-2Me

rad, t-2Merad and c-3Me

ac 9

Significant calculated and experimental bond lengths (Å) 10 Excitation energies (λ, nm), oscillator strengths (f), transition types and dominant contributions of charge transfer bands obtained from TD

DFT calculations

10

Optimized coordinates 12 References 15

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2013

Page 2: Asymmetric cleavage of 2,2′-pyridil to picolinic acid ...Manas Kumar Biswas,a Sarat Chandra Patra,a Amarendra Nath Maity,b Shyue-Chu Ke,b Thomas Weyhermüllerc and Prasanta Ghosh*,

2

MATERIALS

Reagents or analytical grade materials were obtained from commercial suppliers and used without further purification. Spectroscopic

grade solvents were used for spectroscopic and electrochemical measurements. The precursors RuII(H)(CO)(Cl)(PPh3)3 (1) was prepared

by the reported procedures.1 All the physiochemical data have been collected on the isolated [RuII(PPh3)2((PyCO)2•−)(CO)Cl] (Arad)

(isolated as a crude product after evaporation of reaction solution mixture maintaining argon environment), trans-

[RuII(PPh3)2(PyCOOH•−)(CO)Cl] (t-2rad) and cis-[RuII(PPh3)2(PyCOOH•−)(CO)Cl] (c-2rad) (isolated as a crude product after evaporation

of reaction solution mixture), trans-[RuII(PPh3)2(PyCOO−)(CO)Cl] (t-3ac) and cis-[RuII(PPh3)2(PyCOO−)(CO)Cl.½toluene] (c-

3ac.½toluene). However, theoretical calculations have been performed on c-2rad and PMe3 analogues, [RuII(PMe3)2((PyCO)2•−)(CO)Cl]

(AMerad), trans-Ru(PyCOOH•−)(PMe3)2(CO)Cl (t-2Me

rad),cis-Ru(PyCOOH•−)(PMe3)2(CO)Cl (c-2Merad), trans-

[RuII(PMe3)2(PyCOO−)(CO)Cl] (t-3Meac) and cis-[RuII(PMe3)2(PyCOO−)(CO)Cl] (c-3Me

ac).

SYNTHESES

[RuII(PPh3)2((PyCO)2•−)(CO)Cl] (Arad). To 2,2ʹ-pyridil [(PyCO)2] (43 mg, 0.2 m mol) in dry toluene (30 ml), RuII(H)(CO)(Cl)(PPh3)3

(190 mg, 0.2 m mol) was added. The mixture was refluxed for 40 min under argon. Brown solution of Arad was obtained. The solution

was evaporated to obtain the crude Arad and was used for EPR measurement and other analytical measurements. Mass spectrum (ESI,

positive ion, CH2Cl2); m/z: 901.32 for [Arad], 867.31 for [Arad–Cl]+.

trans-[RuII(PPh3)2(PyCOOH•−)(CO)Cl] (t-2rad). To 2,2ʹ-pyridil [(PyCO)2] (43 mg, 0.2 m mol) in moist toluene (30 ml),

[RuII(H)(CO)(Cl)(PPh3)3] (190 mg, 0.2 m mol) was added. The mixture was refluxed for 40 min under argon and allowed to cool to room

temperature (298 K). Dark blue t-2rad separated out, which was filtered and dried in air. Yield: 80 mg (40% with respect to ruthenium).

Mass spectrum (ESI, positive ion, CH2Cl2); m/z: 835.53 for [t-2rad+Na]+, 777.6 for [t-2rad–Cl]+. Anal. Calcd. (%) for C43H35ClNO3P2Ru:

C, 63.59; H, 4.34; N, 1.72; Found: C, 62.89; H, 4.20; N, 1.33; IR (KBr): =3448(vs), 1941(m), 1920(vs), 1654(vs), 1482(m), 1433(vs),

1334(m), 1231(m), 1098(vs), 743(m), 694(s), 520(s) cm-1.

cis-[RuII(PPh3)2(PyCOOH•−)(CO)Cl] (c-2rad). The filtrate of the above reaction was evaporated and dark green crude was obtained. It

was dried in air and used for analytical measurements. Mass spectrum (ESI, positive ion, CH2Cl2); m/z: 833.53 for [c-2rad+Na]+, 777.6 for

[c-2rad–Cl]+; IR (KBr): =3436(vs), 1943(vs), 1922(vs), 1654(vs), 1482(m), 1435(vs), 1345(m), 1095(vs), 744(vs), 695(vs), 518(vs) cm-1.

trans-[RuII(PPh3)2(PyCOO−)(CO)Cl] (t-3ac). Diffusion of n-hexane to the CH2Cl2 solution of t-2rad at room temperature affords the

crystals of t-3ac in good yield (60%) which are used for X-ray diffraction and all other spectroscopic analytical measurements. Mass

spectrum (ESI, positive ion, CH2Cl2); m/z: 834.07 for [t-3ac+Na]+, 776.10 for [t-3ac–Cl]+. Anal. Calcd. (%) for C43H34ClNO3P2Ru: C,

63.67; H, 4.22; N, 1.73; Found: C, 63.51; H, 4.10; N, 1.52; 1H NMR (600 MHz, CDCl3, 298 K): δ=7.66 (m, 15H), 7.60–7.53 (m, 4H),

7.47-7.36 (m, 8H), 7.33–7.28 (m, 9H), 7.16 (t, 2H), 7.13 (m, 1H), 7.05 (t, 1H), 6.98 (t, 1H), 2.04 (s, 4H); IR (KBr): =3436(m),

1938(vs), 1657(vs), 1599(m), 1482(m), 1435(s), 1333(s), 1091(s), 743(m), 695(vs), 519(vs) cm-1.

cis-[RuII(PPh3)2(PyCOO−)(CO)Cl].½toluene (c-3ac.½toluene). Diffusion of n-hexane to the toluene solution of c-2rad at room

temperature affords the crystals of c-3ac.½toluene in good yield (70%) which are used for X-ray diffraction and all other spectroscopic

analytical measurements. Mass spectrum (ESI, positive ion, CH2Cl2); m/z: 834.02 for [c-3ac+Na]+, 776.13 for [c-3ac–Cl]+. Anal. Calcd.

(%) for C43H34ClNO3P2Ru.½ toluene: C, 65.11; H, 4.52; N, 1.63; Found: C, 64.51; H, 4.30; N, 1.52; 1H NMR (600 MHz, CDCl3, 298 K):

δ=7.66 (m, 15H), 7.60–7.53 (m, 4H), 7.47–7.36 (m, 8H), 7.33–7.28 (m, 9H), 7.16 (t, 2H), 7.13 (m, 1H), 7.05 (t, 1H), 6.98 (t, 1H), 2.04 (s,

4H); IR (KBr): =3435(m), 1937(vs), 1657(vs), 1586(m), 1482(m), 1434(vs), 1344(m), 1090(s), 744(m), 696(vs), 520(vs) cm-1.

PHYSICAL MEASUREMENTS

Reagents or analytical grade materials were obtained from commercial suppliers and used without further purification. Spectroscopic

grade solvents were used for spectroscopic and electrochemical measurements. The C, H and N content of the compounds were obtained

from Perkin-Elmer 2400 series II elemental analyzer. Infrared spectra of the samples were measured from 4000 to 400 cm-1 with the KBr

pellet at room temperature on a Perkin-Elmer Spectrum RX 1, FT-IR Spectrophotometer. 1H NMR spectrum in CDCl3 solvent was

carried out on a Bruker DPX-300 MHz spectrometer. ESI mass spectrum was recorded on a micro mass Q-TOF mass spectrometer.

Electronic absorption spectrum in solution at 298 K was carried out on a Perkin-Elmer Lambda 25 spectrophotometer in the range of

1100–200 nm. The X-band electron paramagnetic resonance (EPR) spectra were measured on a Bruker EMX spectrometer, where the

microwave frequency was measured with a Hewlett-Packard 5246L electronic counter. H2 gas evolution was detected on Agilent

Technologies 7890A GC system using N2 carrier gas. Magnetic susceptibility at 298 K has been measured on Sherwood Magnetic

Susceptibility Balance. HPTLC experiment was performed with a CAMAG Linomat 5 sample application system and for detection a

CAMAG TLC Scanner 3 instrument was used.The electro analytical instrument, BASi Epsilon-EC for cyclic voltammetric experiment in

CH2Cl2 solution containing 0.2 M tetrabutylammonium hexafluorophosphate as supporting electrolyte was used. The BASi platinum

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2013

Page 3: Asymmetric cleavage of 2,2′-pyridil to picolinic acid ...Manas Kumar Biswas,a Sarat Chandra Patra,a Amarendra Nath Maity,b Shyue-Chu Ke,b Thomas Weyhermüllerc and Prasanta Ghosh*,

3

working electrode, platinum auxiliary electrode, Ag/AgCl reference electrode were used for the measurements. The redox potential data

were referenced vs. ferrocenium/ferrocene, Fc+/Fc, couple.

OO

Py

+e N

OO

Py

A

-e

Py

(PyCO)2

O

OPy

Py

B[(PyCO)2 ]

Scheme S1 One electron reduction of (PyCO)2.

HPTLC MEASUREMENT TO ESTABLISH THE GENERATION OF PYRIDINE-2-ALDEHYDE DURING THE CLEAVAGE OF 2,2′-PYRIDIL (PCO)

TLC plate was prepared using CAMAG Linomat 5 sample application system where pyridine-2-aldehyde was used as standard and

applied at track 1 and 2 and the reaction mixture obtained during synthesis of c-2rad and t-2rad, was applied at track 3, 4 and 5. After

development the tracks were scanned using CAMAG TLC Scanner 3 and found spots with same rf value in each track. Fig. S1 shows the

result obtained from the scanner at a particular rf value. Each curve satisfied the particular peak region of pyridine-2-aldehyde.

Fig. S1 HPTLC data of pure pyridine-2-aldehyde (1, 2) and pyridine-2-aldehyde in reaction mixture (3, 4, 5) at different track.

Fig. S2 Identification of H2 gas by exact match of the retention time of authentic sample using GC.

Retention time: 2.675 min.

Retention time: 2.862 min.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2013

Page 4: Asymmetric cleavage of 2,2′-pyridil to picolinic acid ...Manas Kumar Biswas,a Sarat Chandra Patra,a Amarendra Nath Maity,b Shyue-Chu Ke,b Thomas Weyhermüllerc and Prasanta Ghosh*,

4

IR SPECTRA OF c-2rad

, c-3ac

.½toluene AND t-2rad

4000 3000 2000 100030

40

50

60

70

OH

CO(c-3ac

)3436

1654

19221943

%T

cm-1

CO(c-2rad

)

Fig. S3 IR spectra of c-2rad.

4000 3000 2000 1000

20

30

40

50

60

70

CO(c-3ac

)

16571937

%T

cm-1

Fig. S4 IR spectra of c-3ac.

4000 3000 2000 100030

40

50

60

70

CO(t-2rad

)

cm-1

%T

1943

1654

Fig. S5 IR spectra of t-2rad.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2013

Page 5: Asymmetric cleavage of 2,2′-pyridil to picolinic acid ...Manas Kumar Biswas,a Sarat Chandra Patra,a Amarendra Nath Maity,b Shyue-Chu Ke,b Thomas Weyhermüllerc and Prasanta Ghosh*,

5

400 600 800 10000.0

0.1

0.2

0.3

, 1

0-4

M-1

cm

-1 / nm

Fig. S6 UV-vis/NIR absorption spectra of t-2rad(blue), c-2rad(magenta), t-3ac(red) and c-3ac(green) in CH2Cl2.

CYCLIC VOLTAMMETRY OF c-2rad

AND t-2rad

0.5 0.0 -0.5 -1.0 -1.5

E1/2

= 0.415 V

E1/2

= -1.00 V

E / V

5A

Fig. S7 Cyclic voltammogram of c-2rad at 298 K. Conditions: 0.20 M [N(n-Bu)4]PF6 supporting electrolyte; platinum working electrode.

0.5 0.0 -0.5 -1.0

E1/2

= -0.855 V

E1/2

= 0.20 V

E / V

5A

0.5 0.0 -0.5 -1.0

E / V

5A

E1/2

= -0.855 V

E1/2

= 0.26 V

Fig. S8 Cyclic voltammograms of t-2rad in CH2Cl2 solution at 298 K (left) and 253 K (right). Conditions: 0.20 M [N(n-Bu)4]PF6 supporting electrolyte;

platinum working electrode.

Table S1 Redox potentials of c-2radand t-2rad in CH2Cl2 solution (0.20 M [N(n-Bu)4]PF6)

complexes temperature E11/2/V(ΔEa/mV) E2

1/2/V(ΔEa/mV)

c-2rad 298 K +0.415 (190) -1.0(60) t-2rad 298 K +0.20 (170) -0.855 (70)

t-2rad 253 K +0.26 (100) -0.855 (70)

apeak-to-peak separation; E11/2 have been assigned to RuIII/RuII redox couple comparing the redox potential data of the similar types of ruthenium(II)

complexes of picolinate incorporating PPh3 and Cl as co-ligands (reference 2)

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2013

Page 6: Asymmetric cleavage of 2,2′-pyridil to picolinic acid ...Manas Kumar Biswas,a Sarat Chandra Patra,a Amarendra Nath Maity,b Shyue-Chu Ke,b Thomas Weyhermüllerc and Prasanta Ghosh*,

6

STUDY OF KINETIC ISOTOPE EFFECT

From Lambert–Beer law: A = ε.c.l…………………… (1)

Differentiating eqn. 1 with respect to time (t):

……………….. (2)

For exponential decay of first order the curve follows:

[c = molar concentration, k = rate constant,

= decay rate]

Using eqn. 1 and 2 we get:

Or, [ = initial absorbance, t = time]

This is the working equation. It resembles with the equation of straight line of the type, y = mx + c [m = slope; c = intercept with Y-axis]

Now, the plot of lnA vs. t will be a straight line with slope ‘-k’ and intercept ‘ln ’ with Y-axis. From slope, the rate constant ‘k’ can be

determined. Two sets of experiments were carried out with H2O (Set-1) and D2O (Set-2).

For both Set-1 and 2:

The kinetic studies were performed measuring the absorbance with respect to time at a particular wavelength (768 nm)* using the ‘Time

Drive’ module of Perkin Elmer Lambda25 UV-vis/NIR spectrophotometer for a definite span of time (1500 s).

* This wavelength was selected because that particular peak disappears gradually during conversion (Fig. S6 and S13)

The curves thus obtained best fit to ‘first order exponential decay curve’ (Fig. S9). After that lnA vs. t curves were plotted (Fig. S10).

From the slopes kH (for Set-1) and kD (for Set-2) were determined and finally kH/kD was calculated.

0 300 600 900 1200 1500

0.30

0.32

0.34

0.36

Ab

so

rban

ce

Time (s)0 300 600 900 1200 1500

0.12

0.14

0.16

Ab

so

rban

ce

Time (s)

Fig. S9 Curve fitting for Set-1 (left) and Set-2 (right).

0 300 600 900 1200 1500

ln A

Set-2

Set-1

Slope = -0.00335

Slope = -0.00349

t (s)

Fig. S10 Curve representing slopes for Set-1 and Set-2 (Y-axis is not in scale).

So, kH = 0.00349 and kD = 0.00335

Therefore,

The value 1.04 is indicating secondary kinetic isotope effect.

[A = absorbance, ε = molar extinction coefficient, c = molar

concentration, l = light path length]

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2013

Page 7: Asymmetric cleavage of 2,2′-pyridil to picolinic acid ...Manas Kumar Biswas,a Sarat Chandra Patra,a Amarendra Nath Maity,b Shyue-Chu Ke,b Thomas Weyhermüllerc and Prasanta Ghosh*,

7

2.10 2.05 2.00 1.95 1.90

g = 2.0020

A (1H) = 9.89 G

Four 1H nuclei

g value Fig. S11 Hyperfine splitting of the X-Band EPR spectra of c-2rad by four pyridine H atoms in CH2Cl2 at 298 K (black, experimental and red, simulated

spectra).

AMerad c-2rad c-2Me

rad

t-2Merad c-3Me

ac

Fig. S12 Optimized geometries of AMerad, c-2rad, c-2Me

rad, t-2Merad and c-3Me

ac.

400 600 800 10000

1

2

3

, 1

0-4M

-1c

m-1

/ nm Fig. S13 Monitoring of the conversion of PyCOOH−• to PyCOO- in c-2rad by UV-vis/NIR absorption spectra in CH2Cl2 at 298 K.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2013

Page 8: Asymmetric cleavage of 2,2′-pyridil to picolinic acid ...Manas Kumar Biswas,a Sarat Chandra Patra,a Amarendra Nath Maity,b Shyue-Chu Ke,b Thomas Weyhermüllerc and Prasanta Ghosh*,

8

Fig. S14 Photoactive orbitals of c-3ac responsible for low energy absorptions.

X-RAY CRYSTALLOGRAPHIC DATA COLLECTION AND REFINEMENT OF c-3ac

.½TOLUENE (

Greenish yellow single crystals of c-3ac.½toluene was picked up with a nylon loop and was mounted on a Bruker Kappa-CCD

diffractometer equipped with a Mo-target rotating-anode X-ray source and a graphite monochromator (Mo-K, = 0.71073 Å). Final

cell constants were obtained from least squares fits of all measured reflections. Structures were readily solved by Patterson method and

subsequent difference Fourier techniques. The crystallographic data of c-3ac.½toluene was listed in Table S2. ShelX973 was used for the

structure solution and refinement. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed at the calculated

positions and refined as riding atoms with isotropic displacement parameters. One of the phenyl rings of a triphenylphosphine ligand of

c-3ac (atoms C(8) to C(13)), and a neighbouring toluene molecule of crystallization (atoms C(44) to C(50)) were found to be disordered.

A split atom model was used to refine giving an occupation ratio of 0.655(13):0.345(13). Bond length and thermal displacement

parameters of split positions were refined to be equal using SADI and EADP restraints of ShelXL97. The crystals of t-3ac grow always

with crystallites. Several attempts to have better data set failed. No crystal data and bond parameters of it have been reported here.

Table S2 Crystallographic data for c-3ac.½toluene

compound c-3ac.½toluene calcd (g cm-3) 1.288

formula C46.50H38ClNO3P2Ru reflections collected 29035

fw 857.24 unique reflections 6240

crystal colour greenish yellow refection [I>2σ(I)] 4098 crystal system triclinic λ (Å)/μ (mm-1) 0.71073 / 0.526

space group P-1 F(000) 878

a(Å) 11.123(2) R1a [I>2σ(I)]/ GOFb 0.0765/1.140 b (Å) 11.397(2) R1a(all data) 0.1243

c (Å) 18.288(4) wR2c[I>2σ (I)] 0.1941

V (Å3) 2210.0(8) no. of parameters 515 Z 2 residual density (eÅ-3) 1.255

T (K) 293(2)

Observation criterion: aR1 = ||Fo|–|Fc||/|Fo|. bGOF = {[w(Fo2–Fc

2)2]/(n–p)}½, cwR2 = [[w(Fo

2–Fc2)2]/[w(Fo

2)2]]½, where w = 1/[2(Fo2)+(aP)2+bP], P = (Fo

2+2Fc2)/3.

Fig. S15 ORTEP plot showing two disordered phenyl rings (30% probability level) of c-3ac.½toluene (H atoms and solvents are excluded for clarity).

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2013

Page 9: Asymmetric cleavage of 2,2′-pyridil to picolinic acid ...Manas Kumar Biswas,a Sarat Chandra Patra,a Amarendra Nath Maity,b Shyue-Chu Ke,b Thomas Weyhermüllerc and Prasanta Ghosh*,

9

Table S3 Experimental bond lengths (Å) and bond angles (°) of c-3ac.½toluene

DENSITY FUNCTIONAL THEORY (DFT) CALCULATIONS

All calculations reported in this article were done with the Gaussian 03W4 program package supported by GaussView 4.1. The DFT5 and

TD DFT6 calculations have been performed at the level of Becke three parameter hybrid functional with the non-local correlation

functional of Lee-Yang-Parr (B3LYP).7 Gas-phase geometries c-2rad, AMerad, c-2Me

rad, t-2Merad with doublet spin state and c-3Me

ac with

singlet spin state have been optimized using Pualy’s Direct Inversion8 in the Iterative Subspace (DIIS), ‘tight’ convergent SCF

procedure9 ignoring symmetry with the converging criteria. In all calculation, a LANL2DZ basis set along with the corresponding

effective core potential (ECP) was used for ruthenium metal.10-12 Valence double zeta basis set, 6-31G13 for H was used. For C, O, N, P,

Cl and Br non-hydrogen atoms valence double zeta plus diffuse and polarization functions, 6-31++G**14 as basis set were employed for

the calculations. The percentage contributions of metal, halogen and chelated ligand to the frontier orbitals of species have been

calculated using GaussSum program package.15 The sixty lowest singlet excitation energies on the optimized geometries of AMerad, c-

2Merad, t-2Me

rad and c-3Meac have been calculated by TD DFT method.16

Table S4 Optimized bond lengths (Å) and bond angles (°) of AMerad, c-2rad, c-2Me

rad, t-2Merad and c-3Me

ac

AMerad c-2rad c-2Me

rad t-2Merad c-3Me

ac

Ru-C(1) 1.857 1.850 1.853 1.846 1.862

Ru-O(2) 2.139 2.178 2.177 2.198 2.140 Ru-N(1) 2.110 2.136 2.145 2.118 2.164

Ru-P(1) 2.423 2.485 2.388 2.417 2.377

Ru-P(2) 2.421 2.448 2.361 2.415 2.363 Ru-Cl(1) 2.480 2.478 2.499 2.485 2.500

C(2)-O(2) 1.305 1.288 1.286 1.281 1.295

C(2)-O(3) - 1.363 1.364 1.366 1.231 C(2)-C(3) 1.455 1.404 1.408 1.409 1.525

C(3)-N(1) 1.381 1.393 1.394 1.401 1.350

C(3)-C(4) 1.416 1.426 1.427 1.428 1.395 C(4)-C(5) 1.386 1.374 1.375 1.374 1.393

C(5)-C(6) 1.403 1.421 1.421 1.423 1.397

C(6)-C(7) 1.389 1.388 1.390 1.390 1.393 C(7)-N(1) 1.347 1.342 1.341 1.344 1.344

N(1)-Ru-O(2) 76.82 77.53 77.93 77.87 77.22

C(1)-Ru-Cl(1) 91.85 92.51 91.58 92.34 91.38 P(1)-Ru-P(2) 170.51 101.60 100.11 170.82 99.40

Ru-O(2)-C(2) 115.50 111.0 110.76 110.50 117.36

Ru-N(1)-C(3) 115.28 112.88 112.35 113.27 112.90

Ru-C(1) 1.830(10) C(3)-C(4) 1.358(12)

Ru-O(2) 2.095(6) C(4)-C(5) 1.367(14)

Ru-N(1) 2.112(7) C(5)-C(6) 1.362(16)

Ru-P(1) 2.361(3) C(6)-C(7) 1.390(15)

Ru-P(2) 2.363(2) C(7)-N(1) 1.296(11)

Ru-Cl(1) 2.431(2) N(1)-Ru-O(2) 78.4(2)

C(2)-O(2) 1.304(10) C(1)-Ru-Cl(1) 95.5(3)

C(2)-O(3) 1.227(10) P(1)-Ru-P(2) 99.3(1)

C(2)-C(3) 1.487(12) Ru-O(2)-C(2) 115.0(6)

C(3)-N(1) 1.339(10) Ru-N(1)-C(3) 113.5(6)

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2013

Page 10: Asymmetric cleavage of 2,2′-pyridil to picolinic acid ...Manas Kumar Biswas,a Sarat Chandra Patra,a Amarendra Nath Maity,b Shyue-Chu Ke,b Thomas Weyhermüllerc and Prasanta Ghosh*,

10

Chart S1 Significant calculated and experimental bond lengths (Å)

Bond c-2rad c-3ac.½toluene c-3ac

calc. exp. calc.

Ru-O2 2.178 2.095 2.140

Ru-N1 2.136 2.112 2.164

C2-O2 1.288 1.304 1.295

C2-O3 1.363 1.227 1.231

C2-C3 1.404 1.487 1.525

C3-N1 1.393 1.339 1.350

C3-C4 1.426 1.358 1.395

C4-C5 1.374 1.367 1.393

C5-C6 1.421 1.362 1.397

C6-C7 1.388 1.390 1.393

C7-N1 1.342 1.296 1.344

Table S5 Excitation energies (λ, nm), oscillator strengths (f), transition types and dominant contributions of charge transfer bands obtained from TD DFT

calculations

calc.

nm

f exp.

significant contributions (>10%)

transition types dominant contributions

744.5 0.0072 770 αHOMO → LUMO (39%) αHOMO → LUMO + 1 (45%) αHOMO → LUMO + 2 (16%)

L(97)→dRu(40)+pP(42)+pCl(10)

L(97)→dRu(59)+L(30)

L(97)→pP(68)+L(30)

LMCT LMMLCT LLCT

709.9 0.0040 697 αHOMO → LUMO (58%) αHOMO → LUMO + 1 (35%)

L(97)→dRu(40)+pP(42)+pCl(10)

L(97)→dRu(59)+L(30)

LMCT LMMLCT

437.2 0.0052 αHOMO → LUMO + 5 (91%) L(97)→dRu(65)+pP(38) LMCT

376.1 0.0039 αHOMO → LUMO + 7 (72%) αHOMO → LUMO + 8 (18%)

L(97)→dRu(34)+pP(32)+CO(30)

L(97)→dRu(37)+pP(65)

LMCT LMCT

361.4 0.0446 αHOMO → LUMO +14 (46%) βHOMO - 2 → LUMO (16%)

L(97)→dRu(93)

dRu(17)+L(57)+pCl(20)→L(96)

LMCT MMLLCT

357.0 0.0067 αHOMO → LUMO + 7 (12%) αHOMO → LUMO + 8 (49%)

L(97)→dRu(34)+pP(32)+CO(30)

L(97)→dRu(37)+pP(65)

LMCT LMCT

335.9 0.0211 βHOMO → LUMO (61%) βHOMO → LUMO + 1 (16%)

dRu(39)+pCl(54)→L(96)

dRu(39)+pCl(54)→dRu(39)+pP(43)+pCl(10)

MLCT d-d Transition

318.3 0.0332 αHOMO - 2 → LUMO (25%) βHOMO - 1 → LUMO (48%)

dRu(23)+pCl(71)→dRu(40)+pP(42)+pCl(10)

dRu(24)+pCl(69)→L(96)

d-d Transition MLCT

306.0 0.0486 αHOMO - 2 → LUMO (15%) βHOMO - 1 → LUMO (27%) βHOMO - 1 → LUMO + 1 (33%)

dRu(23)+pCl(71)→dRu(40)+pP(42)+pCl(10)

dRu(24)+pCl(69)→L(96)

dRu(24)+pCl(69)→dRu(39)+pP(43)+pCl(10)

d-d Transition MLCT d-d Transition

760.2 0.0040 762 αHOMO → LUMO (100%) L(96)→L(98) LLCT

643.4 0.0004 687 αHOMO → LUMO + 1 (92%) L(96)→dRu(45)+pP(25)+CO(14) LMCT

541.3 0.0020 577 αHOMO → LUMO + 2 (93%) L(96)→dRu(53)+pP(47) LMCT

413.1 0.0007 αHOMO → LUMO + 5 (91%) L(96)→dRu(40)+pP(27)+CO(30) LMCT

396.7 0.0091 αHOMO → LUMO + 4 (73%) αHOMO → LUMO + 7 (13%)

L(96)→dRu(100)

L(96)→pP(27)+CO(71)

LMCT LLCT

395.7 0.0112 αHOMO → LUMO + 7 (15%) βHOMO → LUMO (76%)

L(96)→pP(27)+CO(71)

dRu(54)+pCl(34)→L(97)

LLCT MLCT

392.2 0.0051 αHOMO → LUMO + 4 (19%) αHOMO → LUMO + 7 (51%)

L(96)→dRu(100)

L(96)→pP(27)+CO(71)

LMCT LLCT

390.4 0.0010 αHOMO - 2 → LUMO + 1 (37%) αHOMO → LUMO + 7 (16%) βHOMO - 1 → LUMO + 1 (32%)

dRu(37)+pCl(53)→dRu(45)+pP(25)+CO(14)

L(96)→pP(27)+CO(71)

dRu(37)+pCl(53)→dRu(44)+pP(27)+CO(13)

d-d Transition LLCT d-d Transition

387.8 0.0027 αHOMO → LUMO + 6 (75%) αHOMO → LUMO + 8 (14%)

L(96)→dRu(77)+pP(15)+L(10)

L(96)→dRu(33)+pP(27)+L(36)

LMMLCT LMMLCT

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2013

Page 11: Asymmetric cleavage of 2,2′-pyridil to picolinic acid ...Manas Kumar Biswas,a Sarat Chandra Patra,a Amarendra Nath Maity,b Shyue-Chu Ke,b Thomas Weyhermüllerc and Prasanta Ghosh*,

11

366.1 0.0009 αHOMO → LUMO + 6 (13%) αHOMO → LUMO + 8 (74%)

L(96)→dRu(77)+pP(15)+L(10)

L(96)→dRu(33)+pP(27)+L(36)

LMMLCT LMMLCT

360.3 0.0304 αHOMO → LUMO + 14 (56%) βHOMO - 4 → LUMO (16%)

L(96)→L(81)+pP(19)

dRu(17)+L(76)→L(97)

LLCT MMLLCT

339.9 0.0030 αHOMO - 2 → LUMO + 1 (37%) βHOMO - 1 → LUMO + 1 (42%)

dRu(37)+pCl(53)→dRu(45)+pP(25)+CO(14)

dRu(37)+pCl(53)→dRu(44)+pP(27)+CO(13)

d-d Transition d-d Transition

335.9 0.0005 αHOMO → LUMO + 9 (81%) L(96)→dRu(62)+pP(28)+L(10) LMMLCT

326.4 0.0022 αHOMO → LUMO + 12 (85%) L(96)→dRu(26)+pP(30)+L(31) LMMLCT

323.1 0.0019 αHOMO → LUMO + 10 (80%) L(96)→dRu(10)+pP(88) LMCT

317.1 0.0021 αHOMO → LUMO + 11 (79%) L(96)→dRu(10)+pP(89) LMCT

314.7 0.0067 αHOMO - 1 → LUMO (19%) βHOMO - 2 → LUMO (52%) βHOMO → LUMO + 2 (10%)

dRu(51)+pP(38)→L(98)

dRu(17)+pP(54)+pCl(15)+L(13)→L(97)

dRu(54)+pCl(34)→L(96)

MLCT MMLLCT MLCT

313.1 0.0405 βHOMO - 3 → LUMO (25%) βHOMO - 2 → LUMO (23%) βHOMO → LUMO + 2 (19%)

dRu(46)+CO(10)+L(30)→L(97)

dRu(17)+pP(54)+pCl(15)+L(13)→L(97)

dRu(54)+pCl(34)→L(96)

MMLLCT MMLLCT MLCT

324.6 0.0416 HOMO - 1 → LUMO (44) HOMO - 1 → LUMO + 2 (20) HOMO → LUMO (20)

dRu(36)+pCl(56)→L(97)

dRu(36)+pCl(56)→dRu(40)+pP(40)

dRu(31)+pCl(55)→L(97)

MLCT d-d Transition MLCT

Arad 586.0 0.0902 αHOMO → LUMO (88%) L(93)→

L(99) LLCT

500.6 0.0521 αHOMO → LUMO + 1 (72%) βHOMO → LUMO (20%)

L(93)→L(100)

dRu(52)+pCl(38)→L(96)

LLCT

383.3 0.0381 βHOMO - 5 → LUMO (10%) βHOMO - 3 → LUMO (75%)

dRu(28)+L(53)→L(96)

dRu(22)+pP(48)+pCl(10)+L(19)→L(96)

MMLLCT MMLLCT

303.5 0.0498 αHOMO-1 → LUMO (22%) βHOMO - 8 → LUMO (10%) βHOMO → LUMO + 1 (29%)

dRu(49)+pCl(40)→L(99)

dRu(14)+L(73)→L(96)

dRu(52)+pCl(38)→L(99)

MLCT MMLLCT MLCT

MLCT = metal to ligand charge transfer; LLCT = ligand to ligand charge transfer; LMCT = ligand to metal charge transfer; MMLLCT = mixed metal ligand to ligand charge transfer; LMMLCT = ligand to mixed metal ligand charge transfer

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2013

Page 12: Asymmetric cleavage of 2,2′-pyridil to picolinic acid ...Manas Kumar Biswas,a Sarat Chandra Patra,a Amarendra Nath Maity,b Shyue-Chu Ke,b Thomas Weyhermüllerc and Prasanta Ghosh*,

12

OPTIMIZED COORDINATES

Table S6 Optimized coordinates of AMerad

Sl. Symbol X Y Z Sl. Symbol X Y Z

1 Ru 9.530152 -3.37627 11.56717 28 O 7.809433 -0.92525 11.9601

2 C 8.489682 -1.86088 11.82911 29 Cl 10.87222 -2.90403 13.59905

3 N 8.632999 -4.06953 9.787537 30 P 8.129067 -4.7223 13.01169

4 C 7.618906 -3.46538 9.139176 31 C 7.332154 -3.80643 14.3981

5 C 7.074546 -3.9506 7.956917 32 H 6.797278 -4.49274 15.06507

6 C 7.611087 -5.12656 7.412101 33 H 8.108667 -3.27962 14.96079

7 C 8.653828 -5.76506 8.063898 34 H 6.626367 -3.06724 14.0054

8 C 9.169182 -5.233 9.271241 35 C 6.717779 -5.62626 12.23358

9 C 10.23418 -5.81656 10.07328 36 H 6.028424 -4.91489 11.76716

10 O 10.596 -5.18517 11.15607 37 H 7.092297 -6.30051 11.4569

11 P 11.22614 -2.11624 10.38031 38 H 6.170365 -6.21499 12.97892

12 H 7.236625 -2.5582 9.593624 39 C 9.072924 -6.0516 13.86354

13 H 6.256475 -3.41792 7.482749 40 H 8.427561 -6.60265 14.55765

14 H 7.215801 -5.53891 6.487698 41 H 9.491329 -6.73957 13.1245

15 H 9.097196 -6.67499 7.683216 42 H 9.90199 -5.59124 14.40811

16 C 11.45656 -0.39434 10.99397 43 C 10.87334 -7.10322 9.744028

17 H 12.30549 0.091446 10.49892 44 O 10.62946 -7.71414 8.693285

18 H 10.55164 0.193685 10.80883 45 C 11.84252 -7.72476 10.7333

19 H 11.62984 -0.43021 12.07359 46 C 12.80398 -6.98945 11.44356

20 C 11.02617 -1.88671 8.55615 47 C 12.61252 -9.70399 11.61819

21 H 10.98399 -2.86036 8.057591 48 C 13.71424 -7.67417 12.2501

22 H 10.09185 -1.35576 8.345976 49 H 12.82624 -5.90985 11.37554

23 H 11.86126 -1.31125 8.139375 50 C 13.62174 -9.06224 12.34449

24 C 12.91151 -2.84398 10.52782 51 H 12.49337 -10.7852 11.67552

25 H 13.66075 -2.18767 10.06968 52 H 14.47597 -7.12768 12.80053

26 H 13.13804 -2.98131 11.58899 53 H 14.30424 -9.63668 12.96492

27 H 12.93939 -3.81991 10.03502 54 N 11.75085 -9.06461 10.82402

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2013

Page 13: Asymmetric cleavage of 2,2′-pyridil to picolinic acid ...Manas Kumar Biswas,a Sarat Chandra Patra,a Amarendra Nath Maity,b Shyue-Chu Ke,b Thomas Weyhermüllerc and Prasanta Ghosh*,

13

Table S7 Optimized coordinates of c-2rad

Sl. Symbol X Y Z Sl. Symbol X Y Z

1 Ru -0.18139 -0.973316 -0.560848 44 H -4.044805 -3.492687 -3.124934

2 P -1.499396 1.007237 0.014997 45 H -3.753705 -4.223715 1.132285

3 O -0.629482 -1.688278 1.447522 46 H -4.875701 -4.694366 -1.045585

4 C -3.286512 0.586523 0.274915 47 O -1.968903 -3.110209 2.606974

5 C -4.091003 0.276387 -0.835029 48 H -1.28711 -2.860366 3.254049

6 C -3.854819 0.523482 1.555666 49 Cl 0.859786 -3.19071 -0.936046

7 C -5.431757 -0.070134 -0.669553 50 C -0.008513 -0.49977 -2.34129

8 H -3.674406 0.310593 -1.83715 51 O 0.032996 -0.265843 -3.479351

9 C -5.19793 0.169173 1.721592 52 P 2.123228 -0.212063 -0.027626

10 H -3.25882 0.754685 2.432027 53 C 3.486267 -0.999157 -1.02119

11 C -5.990216 -0.126461 0.611505 54 C 3.279826 -1.440332 -2.335739

12 H -6.035304 -0.307804 -1.54158 55 C 4.778888 -1.086797 -0.477904

13 H -5.618996 0.124234 2.722793 56 C 4.341313 -1.943456 -3.093163

14 H -7.033303 -0.403434 0.741084 57 H 2.291747 -1.419899 -2.774373

15 C -1.591285 2.385913 -1.223192 58 C 5.83807 -1.597205 -1.232164

16 C -2.756457 3.154133 -1.40072 59 H 4.967976 -0.762968 0.54054

17 C -0.454957 2.71112 -1.979187 60 C 5.623242 -2.024888 -2.545088

18 C -2.784154 4.206833 -2.318774 61 H 4.155484 -2.286546 -4.107605

19 H -3.649503 2.931134 -0.826496 62 H 6.828801 -1.66233 -0.789105

20 C -0.481708 3.765859 -2.895106 63 H 6.445785 -2.425703 -3.132213

21 H 0.46179 2.147035 -1.856216 64 C 2.631585 -0.646845 1.701638

22 C -1.647093 4.514865 -3.071171 65 C 2.320499 -1.942772 2.151019

23 H -3.696945 4.78392 -2.444311 66 C 3.368318 0.204384 2.540732

24 H 0.410922 3.9944 -3.470982 67 C 2.732597 -2.367513 3.416019

25 H -1.670629 5.33082 -3.789071 68 H 1.769471 -2.618385 1.505089

26 C -1.087672 1.889814 1.596871 69 C 3.769987 -0.222443 3.810903

27 C -1.309637 3.268107 1.751885 70 H 3.645404 1.199707 2.21087

28 C -0.576477 1.158231 2.682138 71 C 3.451863 -1.508768 4.253107

29 C -1.029636 3.900124 2.966445 72 H 2.493874 -3.37658 3.74347

30 H -1.692367 3.857937 0.925759 73 H 4.339948 0.4509 4.446621

31 C -0.300411 1.7937 3.896841 74 H 3.769337 -1.84246 5.238117

32 H -0.395065 0.094287 2.571455 75 C 2.569754 1.584117 -0.233854

33 C -0.52467 3.165262 4.043489 76 C 2.144161 2.557533 0.686912

34 H -1.205678 4.96831 3.067873 77 C 3.288567 2.010658 -1.365455

35 H 0.098695 1.212692 4.724391 78 C 2.440676 3.908755 0.491972

36 H -0.305536 3.658624 4.987179 79 H 1.581287 2.26803 1.566118

37 N -1.968167 -2.104394 -0.861695 80 C 3.574297 3.364481 -1.565591

38 C -2.566396 -2.39416 -2.027552 81 H 3.638932 1.287967 -2.094579

39 C -2.377608 -2.784643 0.282613 82 C 3.156077 4.319119 -0.635798

40 C -3.608131 -3.303512 -2.150029 83 H 2.105266 4.638237 1.224578

41 H -2.19128 -1.871825 -2.901841 84 H 4.134492 3.666878 -2.447

42 C -3.452911 -3.718696 0.2205 85 H 3.385206 5.370884 -0.787546

43 C -4.062521 -3.975942 -0.983899 86 C -1.628128 -2.501152 1.43577

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2013

Page 14: Asymmetric cleavage of 2,2′-pyridil to picolinic acid ...Manas Kumar Biswas,a Sarat Chandra Patra,a Amarendra Nath Maity,b Shyue-Chu Ke,b Thomas Weyhermüllerc and Prasanta Ghosh*,

14

Table S8 Optimized coordinates of c-2Merad

Sl. Symbol X Y Z Sl. Symbol X Y Z

1 Ru -0.30564 -0.15009 -0.30088 23 H -3.65581 -0.98447 -1.88869

2 C -0.75559 0.200072 -2.06478 24 C -3.80703 0.641809 0.713401

3 Cl -0.15814 -2.60359 -0.75337 25 H -4.75992 0.180249 0.998388

4 N 1.827355 -0.15624 -0.52511 26 H -3.45417 1.25036 1.551656

5 C 2.552574 -0.00051 -1.64234 27 H -3.98558 1.298093 -0.14484

6 C 3.935317 -0.132 -1.68467 28 C -2.61117 -1.76423 1.75121

7 C 4.620603 -0.46542 -0.48496 29 H -2.16408 -1.24978 2.606575

8 C 3.902462 -0.65272 0.672372 30 H -3.64098 -2.05615 1.988473

9 C 2.483579 -0.50315 0.655489 31 H -2.0079 -2.64963 1.533186

10 C 1.64299 -0.70556 1.766493 32 C -1.42151 3.290426 -0.57403

11 O 0.363909 -0.57611 1.726487 33 H -1.24767 4.32554 -0.25771

12 O 2.215053 -1.04371 2.958191 34 H -1.29004 3.225706 -1.65898

13 P -2.56518 -0.66522 0.275594 35 H -2.45389 3.019279 -0.33764

14 P -0.24431 2.139965 0.269064 36 C 1.372571 2.973136 -0.05669

15 H 1.993257 0.235633 -2.54279 37 H 2.168483 2.468512 0.497739

16 H 4.462035 0.003414 -2.62315 38 H 1.61734 2.917248 -1.12164

17 H 5.701054 -0.58249 -0.48486 39 H 1.328589 4.02544 0.247564

18 H 4.384841 -0.92507 1.605146 40 C -0.50755 2.529412 2.05678

19 H 1.483372 -1.24486 3.566644 41 H -0.33726 3.5953 2.248774

20 C -3.49295 -1.61182 -1.0058 42 H -1.52696 2.273679 2.360294

21 H -2.89621 -2.47891 -1.29961 43 H 0.182294 1.932719 2.65916

22 H -4.46412 -1.93965 -0.61671 44 O -1.00837 0.419896 -3.1784

Table S9 Optimized coordinates of t-2Merad

Sl. Symbol X Y Z Sl. Symbol X Y Z

1 Ru 9.451292 -3.3847 11.6219 23 H 11.00414 -2.83851 8.192542

2 C 8.435065 -1.86553 11.8796 24 H 10.21303 -1.28 8.478663

3 N 8.573733 -3.98971 9.791783 25 H 11.98801 -1.35612 8.331436

4 C 7.589678 -3.39099 9.099612 26 C 12.86685 -2.94817 10.74146

5 C 7.087284 -3.87481 7.897775 27 H 13.65669 -2.33594 10.29015

6 C 7.641395 -5.07012 7.36115 28 H 13.05577 -3.07318 11.81153

7 C 8.649619 -5.70823 8.043163 29 H 12.86156 -3.93901 10.279

8 C 9.126604 -5.16872 9.276217 30 O 7.776837 -0.9145 12.01571

9 C 10.14973 -5.73512 10.06234 31 Cl 10.72283 -3.01379 13.72397

10 O 10.55909 -5.22717 11.16514 32 P 7.957197 -4.73807 12.95536

11 O 10.73706 -6.88772 9.625035 33 C 7.143555 -3.85295 14.35222

12 P 11.21955 -2.15094 10.53335 34 H 6.571927 -4.5471 14.97947

13 H 7.190987 -2.48 9.535701 35 H 7.917234 -3.36563 14.95311

14 H 6.290733 -3.33889 7.392985 36 H 6.468504 -3.08248 13.96551

15 H 7.271976 -5.47363 6.422286 37 C 6.543226 -5.56626 12.09959

16 H 9.10129 -6.62145 7.670055 38 H 5.890057 -4.8157 11.64292

17 H 11.41071 -7.11841 10.28874 39 H 6.920702 -6.21484 11.3027

18 C 11.49129 -0.45144 11.19182 40 H 5.956935 -6.16854 12.80378

19 H 12.37393 0.01297 10.73661 41 C 8.822875 -6.1326 13.79006

20 H 10.6151 0.17342 10.98961 42 H 8.130198 -6.69965 14.42319

21 H 11.62642 -0.51565 12.27561 43 H 9.260834 -6.79544 13.039

22 C 11.10067 -1.87829 8.708796 44 H 9.634873 -5.72153 14.39665

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2013

Page 15: Asymmetric cleavage of 2,2′-pyridil to picolinic acid ...Manas Kumar Biswas,a Sarat Chandra Patra,a Amarendra Nath Maity,b Shyue-Chu Ke,b Thomas Weyhermüllerc and Prasanta Ghosh*,

15

Table S10 Optimized coordinates of c-3Meac

Sl. Symbol X Y Z Sl. Symbol X Y Z

1 Ru 9.378564 -3.43092 11.85215 23 C 11.65944 -2.67333 14.68519

2 C 8.329766 -1.97011 12.33594 24 H 11.91939 -2.98777 15.7028

3 Cl 7.622156 -5.02806 12.6353 25 H 12.54132 -2.79872 14.05078

4 N 8.526548 -3.85941 9.909929 26 H 11.39044 -1.6122 14.7102

5 C 7.469744 -3.25826 9.33726 27 C 10.81728 -5.40971 14.29398

6 C 6.880703 -3.74341 8.172415 28 H 11.59997 -5.64032 13.56631

7 C 7.404582 -4.89568 7.580904 29 H 11.19083 -5.55558 15.31435

8 C 8.497199 -5.51898 8.179697 30 H 9.975445 -6.0798 14.0997

9 C 9.030919 -4.98025 9.350465 31 C 11.39069 -0.41257 11.63016

10 C 10.22068 -5.63052 10.04757 32 H 12.17508 0.110847 11.07118

11 O 10.55623 -5.08329 11.17251 33 H 10.47126 0.180501 11.58975

12 O 10.78595 -6.5766 9.499697 34 H 11.69947 -0.49217 12.67605

13 P 10.23897 -3.68218 14.05379 35 C 10.84077 -1.68743 9.131771

14 P 11.08891 -2.0928 10.91963 36 H 10.78957 -2.60811 8.543487

15 H 7.085265 -2.3762 9.83791 37 H 9.902926 -1.14005 8.994754

16 H 6.024336 -3.22726 7.749733 38 H 11.66931 -1.07412 8.759095

17 H 6.96394 -5.30157 6.674309 39 C 12.77355 -2.84827 10.89793

18 H 8.953617 -6.41838 7.780759 40 H 13.45707 -2.24663 10.28752

19 C 9.004088 -3.42328 15.39682 41 H 13.17595 -2.91624 11.9128

20 H 8.121588 -4.03173 15.18523 42 H 12.70639 -3.86283 10.49651

21 H 9.429112 -3.70549 16.36717 43 O 7.663572 -1.05287 12.59716

22 H 8.703877 -2.37054 15.43138

REFERENCE

1 N. Ahmad, J. J. Levison, S. D. Robinson and M. F. Uttley, Inorg. Synth., 1974, 15, 45.

2 N. Ghatak and S. Bhattacharya, Polyhedron, 1994, 13, 2999.

3 (a) ShelXS97, G. M. Sheldrick, Universität Göttingen: Germany, 1997; (b) ShelXL97, G. M. Sheldrick, Universität Göttingen: Germany, 1997.

4 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, Jr., J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant,

J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K.

Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, R.

Ammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D.

Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J.

Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A.

Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian 03, revision E.01; Gaussian,

Inc.: Wallingford, CT 06492, 2005.

5 (a) D. R Salahub and M. C. Zerner, The Challenge of d and f Electrons, ACS, Washington, D.C., 1989; (b) R. G. Parr and W. Yang, Density Functional

Theory of atoms and molecules; Oxford University Press, Oxford, U.K., 1989; (c) W. Kohn and L. Sham, J. Phys. Rev., 1965, 140, A1133; (d) P.

Hohenberg and W. Kohn, Phys Rev., 1964, 136, B864.

6 (a) R. E. Stratmann, G. E. Scuseria and M. Frisch, J. Chem. Phys., 1998, 109, 8218; (b) M. E. Casida, C. Jamoroski, K. C. Casida and D. R. Salahub, J.

Chem. Phys., 1998, 108, 4439; (c) R. Bauernschmitt and R. Ahlrichs, Chem. Phys.Lett., 1996, 256, 454.

7 (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648; (b) B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett., 1989, 157, 200; (c) C. Lee, W.

Yang, R. G. Parr, Phys. Rev., 1988, B 37, 785.

8 P. J. Pulay, Comp. Chem.,1982, 3, 556.

9 H. B. Schlegel and J. J. McDouall, in Computational Advances in Organic Chemistry, ed. C. Ogretir and I. G. Csizmadia, Kluwer Academic, The

Netherlands, 1991, p 167.

10 P. J. Hay and W. R. Wadt, J. Chem. Phys.,1985, 82, 270.

11 W. R. Wadt and P. J. Hay, J. Chem. Phys.,1985, 82, 284.

12 P. J. Hay and W. R. Wadt, J. Chem. Phys.,1985, 82, 299.

13 (a) V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern and L. A. Curtiss, J. Comp. Chem., 2001, 22, 976; (b) M. M. Francl, W. J. Pietro, W. J.

Hehre, J. S. Binkley, D. J. DeFrees, J. A. Pople and M. S. Gordon, J. Chem. Phys., 1982, 77, 3654; (c) P. C. Hariharan and J. A. Pople, Mol. Phys.,

1974, 27, 209; (d) P. C. Hariharan and J. A. Pople, Theo. Chim. Acta., 1973, 28, 213; (e) W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phy.,

1972, 56, 2257.

14 T. Clark, J. Chandrasekhar, G. W. Spitznagel and P. V. R. Schleyer, J. Comp. Chem., 1983, 4, 294.

15 N. M. O’Boyle, A. L. Tenderholt and K. M. Langner, J. Comp. Chem., 2008, 29, 839.

16 (a) M. Cossi, N. Rega, G. Scalmani and V. Barone, J. Comp. Chem., 2003, 24, 669; (b) V. Barone, M. Cossi, J. Phys. Chem. A., 1998, 102, 1995.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2013