ASSESSMENT OF SHAPE MEMORY ALLOYS FROM ...stress (MPa) 30 ºC strain (%) (a) 100 200 300 400 0 40 80...

36
www.nasa.gov ASSESSMENT OF SHAPE MEMORY ALLOYS FROM ATOMS TO ACTUATORS VIA IN SITU NEUTRON DIFFRACTION Othmane Benafan Structures and Materials Division NASA Glenn Research Center Cleveland, OH 44135 The ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, September 8-10, 2014 Newport, Rhode Island https://ntrs.nasa.gov/search.jsp?R=20150002089 2019-08-31T14:09:12+00:00Z

Transcript of ASSESSMENT OF SHAPE MEMORY ALLOYS FROM ...stress (MPa) 30 ºC strain (%) (a) 100 200 300 400 0 40 80...

  • www.nasa.gov

    ASSESSMENT OF SHAPE MEMORY ALLOYS – FROM ATOMS TO ACTUATORS –

    VIA IN SITU NEUTRON DIFFRACTION

    Othmane Benafan

    Structures and Materials Division NASA Glenn Research Center

    Cleveland, OH 44135

    The ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, September 8-10, 2014 – Newport, Rhode Island

    https://ntrs.nasa.gov/search.jsp?R=20150002089 2019-08-31T14:09:12+00:00Z

  • www.nasa.gov

    It Takes a Team… S.A. Padula II, R.D. Noebe, A. Garg, D.J. Gaydosh,

    G.S. Bigelow and T.J. Halsmer Structures and Materials Division

    NASA Glenn Research Center

    R. Vaidyanathan and D. E. Nicholson Advanced Materials Processing and Analysis Center

    Materials Science and Engineering Department University of Central Florida

    B. Clausen and D. Brown Los Alamos Neutron Science Center

    Los Alamos National Laboratory

    K. An and H.D. Skorpenske Spallation Neutron Source

    Oak Ridge National Laboratory

    Acknowledgment • NASA Fundamental Aeronautics Program, Fixed-Wing and Aeronautical Sciences Projects

    • Basic Energy Sciences (DOE)

  • www.nasa.gov

    Motivation and Objectives • We examine microstructures of:

    • Conventional structural materials by quenching in the high temperature structure and examining at room temperature.

    • This cannot be done for SMA’s because of the diffusionless phase transformation (austenite/martensite) cannot be suppressed by quenching

    • Shape memory alloys (SMAs) have strong surface effects: thin films

    and surface methods (e.g., SEM, x-ray) are of limited use. Neutrons are a microscopic bulk probe: high penetration allows the examination of the interior of bulk materials.

    • Neutrons are non-destructive: complete, intact specimens/ components

    can be studied in small samples (~mm) or in bigger engineering components (~m)

    WE MUST EXAMINE IN SITU AT STRESS AND TEMPERATURE

  • www.nasa.gov

    Length Scale in Engineering Materials Where Does Neutron Diffraction Fit?

    10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2nm m mmÅ m

    TEM

    SEM / FIB

    OM

    10-1 100

    HRTEM / STEM

    ATOM PROBE / FIM

    NEUTRON / X-RAY DIFFRACTION

    STRUCTURAL SCALE(COMPONENTS)

    MICRO-SCALE (MICROSTRUCTURES)

    ATOMIC SCALE(NANOMATERIALS)

    LOAD FRAMES

    0

    200

    400

    600

    800

    0 5 10 15 20

    stre

    ss (M

    Pa)

    strain (%)

    15%

    10%

    5%

    8%

    13%

    18%

    (b)

    0%

  • www.nasa.gov

    Chemistry

    Physics

    Engineering

    Life sciences

    Biosciences

    Materials science

    Geological sciences

    Archeology

    Chemistry

    Engineering

    Materials science

    www.n

    W. Kockelmanna et al. Courtesy: Mario Bieringer

    Applications of Neutron Diffraction

  • www.nasa.gov

    Neutrons at the Experimental Area

    sample

    detector neutron beam

    0 0,E kk ,E kk 04 sinQ k k 4 sink k sin

    2 202

    0 2

    k kE E E

    m02

    2

    k: wavevector E: energy Q: scattering vector h: reduced Planck constant m: mass (1.67 x 10-24g) : wavelength

    2 : scattering angle

    Nomenclature

    • Now we have neutrons, what next?

    • Neutron beam with a known

    wavevector (k0) and energy (E0)

    • Detect number of scattered neutrons with a wavevector (k) as a function of the scattering function S(Q,ω)

    INCIDENT NEUTRON BEAM

    DE

    TE

    CT

    OR

    DIFFRACTED BEAM

    DE

    TE

    CT

    OR

    BEAM STOP LOADING AXIS

    LATTICE PLANES// AND

    d

    k0 k

    2

    n = 2dsin

  • www.nasa.gov

    1.0 2.0 3.0 lattice plane spacing (Å)

    norm

    aliz

    ed in

    tens

    ity (a

    rbitr

    ary

    units

    )

    100

    110

    111

    data and Rietveld fit

    difference curve

    peak positions

    200

    210

    211

    norm

    aliz

    ed in

    tens

    ity

    d-spacing (Å)

    norm

    aliz

    ed in

    tens

    ity

    d-spacing (Å)

    norm

    aliz

    ed in

    tens

    ity

    d-spacing (Å)

    norm

    aliz

    ed in

    tens

    ity

    d-spacing (Å)

    norm

    aliz

    ed in

    tens

    ity

    d-spacing (Å)

    norm

    aliz

    ed in

    tens

    ity

    d-spacing (Å)

    norm

    aliz

    ed in

    tens

    ity

    d-spacing (Å)

    norm

    aliz

    ed in

    tens

    ity

    d-spacing (Å)

    norm

    aliz

    ed in

    tens

    ity

    d-spacing (Å)

    norm

    aliz

    ed in

    tens

    ity

    d-spacing (Å)

    Peak position •Elastic lattice strain •Intergranular strains

    Peak intensity •Texture changes •Phase fraction

    Peak width •Qualitative information

    Neutron Diffraction Data

  • www.nasa.gov

    Neutron/Synchrotron Sources in the USA

  • www.nasa.gov

    Neutron and Synchrotron Sources Around the World

  • www.nasa.gov

    Oak Ridge National Laboratories-SNS

  • www.nasa.gov

    Los Alamos National Laboratory-LANSCE

  • www.nasa.gov

    Isothermal Deformation - Loading Actuators

    Binary 55NiTi

  • www.nasa.gov

    Isothermal Deformation - Loading Actuators

    Binary 55NiTi d-spacing (Å)

    inte

    nsity

    (a.u

    .)

    stra

    in (%

    )lo

    adun

    load

    inte

    nsity

    (a.u

    .)

    stra

    in (%

    )lo

    adun

    load (

    011)

    M

    (100

    ) M

    (110

    ) M

    (020

    ) M

    (111

    ) M

    (111

    ) M(1

    20) M

    (121

    ) M(1

    20) M

    (030

    ) M

    (031

    ) M

    (013

    ) M

    (230

    ) M

    (150

    ) M

    (141

    ) M

    1 1.5 2 2.5 3

    1 1.5 2 2.5 3planes //

    planes

    (b)

  • www.nasa.gov

    Isothermal Deformation - Loading Actuators

    300

    400

    500

    600

    200 300 400temperature (ºC)

    0.2%

    offs

    et-s

    tres

    s (M

    Pa)

    44.14 10330

    T

    SIMT e

    Elastic*

    SIM33.09 10

    1003T

    plT e

    Plastic{001}{110}{114}{112}

    Slip:

    Twinning:

    Md

    0

    200

    400

    600

    800

    1000

    0 5 10 15 20

    stres

    s (M

    Pa)

    strain (%)

    Region II

    Region III

    Region IVRegion I

    Ni49.9Ti50.1Room temperature

    Self-accommodatedMartensite

    Reverse reorientation

    Reorientation and detwinning

    (20-1)B19' twinning system

    Possible slip

    Martensite Austenite

    • Deformation mechanisms revealed- complexity and multiplicity of mechanisms can’t be resolved another way

    • e.g., reorientation planes/limits, stress- induced-martensite region, martensite desist...

    O. Benafan, et al., Journal of Applied Physics, 2012, 112, 093510, p. 1–11.

  • www.nasa.gov

    • No major differences in transformation strains • Large strain evolution (ratcheting) difference

    Isothermal Deformation – Where to Load Actuators? Does it Matter?

    Loading in martensite Loading in Austenite

    O. Benafan et al., International Journal of Plasticity, 2014, 56, p. 99–118.

  • www.nasa.gov

    SMA Properties – Can they be Optimized for Actuators?

    1. Material and Geometry‡ • Binary 55NiTi → = 5.08mm (0.2in) • Stress free transformation temperatures

    • • • •

    • Effective coefficient of thermal expansion • •

    • Effective elastic moduli • •

    • Effective Poisson’s ratios • •

    * 6

    * 6

    13.0 10 /

    6.4 10 /A

    M

    C

    C

    *

    *

    74

    50A

    M

    E GPa

    E GPa

    *

    *

    0.33

    0.387A

    M

    92105

    7155

    s

    f

    s

    f

    A CA C

    M CM C

    0.10

    0.15

    0.20

    0.25

    0.30

    0 50 100 150 200 250

    heatingcooling

    Stra

    in (%

    )

    Temperature (ºC)

    *M

    *A

    0

    100

    200

    300

    400

    500

    600

    0 1 2 3 4 5 6

    austenitemartensite

    Stre

    ss (M

    Pa)

    Strain (%)

    As

    Mf

    Ms

    AE

    ME

  • www.nasa.gov

    Transformation Temperatures: DSC vs. Strain-Temperature vs. Neutrons

    d-spacing (Å)1 1.5 2 2.5 3

    0

    10

    1

    inte

    nsity

    (a.u

    .)

    (b)

    (c)

    tem

    pera

    ture

    (ºC

    )

    30

    heat

    ing

    cool

    ing

    230

    inte

    nsity

    (a.u

    .)

    30

    As

    Af

    Ms

    Mf

    (100

    ) A

    (110

    ) A

    (111

    ) A

    (210

    ) A

    (221

    ) A

    (211

    ) A

    (011

    ) M

    (100

    ) M

    (110

    ) M

    (111

    ) M(1

    10) M

    (111

    ) M

    (102

    ) M

    (030

    ) M

    (202

    ) M

    (320

    ) A

    reta

    ined

    B19

    '

    Asneutron

    0 40 80 120 160 200

    stra

    in (%

    )

    temperature (ºC)

    0.1%

    in situ

    ex situ(a)

    heatingcooling

    • Transformation temperatures during the reverse transformation measured from strain-temperature and DSC data were found to differ from the actual onset of transformation as revealed from neutron spectra.

    • The austenite phase starting to form at ~75 ºC, O. Benafan et al., Scripta Materialia, 2013 68(18), p. 571–574

  • www.nasa.gov

    Dynamic Young’s Modulus for Ni49.9Ti50.1

    50

    60

    70

    80

    90

    0 40 80 120 160 200

    You

    ng's

    mod

    ulus

    (GPa

    )

    temperature (ºC)

    cooling(a)

    T = 200 ºC/h.

    L =50

    h =4

    w = 3

    heating

    50

    60

    70

    80

    90

    0 40 80 120 160 200

    You

    ng's

    mod

    ulus

    (GPa

    )

    temperature (ºC)

    heating

    (b)

    T = 765 ºC/h.

    L =50

    w = 4.9

    w

    50

    60

    70

    80

    90

    0 40 80 120 160 200

    You

    ng's

    mod

    ulus

    (GPa

    )

    temperature (ºC)

    heating

    (c)

    T = 200 ºC/h.

    L =50.2d = 4.95

    50

    60

    70

    80

    90

    0 40 80 120 160 200Y

    oung

    's m

    odul

    us (G

    Pa)

    temperature (ºC)

    heating

    (d)

    T = 200 ºC/h.

    L = 50

    h = 4

    5

    • Dynamic Young’s modulus data obtained from the impulse excitation of vibration tests. • The average dynamic modulus of martensite at room temperature was about 70 GPa, but

    decreased with increasing temperature with an average minimum value of 60 GPa at ~80 ºC.

    O. Benafan et al., Scripta Materialia, 2013 68(18), p. 571–574

    ASTM E1876-09

  • www.nasa.gov

    0.2% Offset “Yield” Stress Behavior of Ni49.9Ti50.1

    0

    200

    400

    600

    800

    0 4 8 12 16

    180 ºC150 ºC

    160 ºC120 ºC

    100 ºC

    80 ºC90 ºC

    70 ºC60 ºC50 ºC40 ºC30 ºC

    stre

    ss (M

    Pa)

    strain (%)

    (a)

    100

    200

    300

    400

    0 40 80 120 160 200

    0.2%

    off

    set-

    stre

    ss (M

    Pa)

    temperature (ºC)

    (b)

    • The onset of inelastic deformation (generally referred to as ‘yield’) in the martensite phase is dominated by reorientation and detwinning mechanisms.

    • Decrease with increasing temperature, reaching an averaged minimum value of 140 MPa between 65 and 80 ºC.

    • The onset stress then sharply increased in the two-phase region and reached near saturation (with a still slightly positive slope) at 350 MPa near 130 ºC.

    • Inelastic deformation over this temperature range (~90 – 130 ºC), which includes the B19'→ B2 phase transition, is attributed to the nearly concurrent operation of stress-induced martensite and plastic deformation.

    O. Benafan et al., Scripta Materialia, 2013 68(18), p. 571–574

  • www.nasa.gov

    Transformation Temperatures: DSC vs. Strain-Temperature vs. Neutrons

    d-spacing (Å)1 1.5 2 2.5 3

    0

    10

    1

    inte

    nsity

    (a.u

    .)

    (b)

    (c)

    tem

    pera

    ture

    (ºC

    )

    30

    heat

    ing

    cool

    ing

    230

    inte

    nsity

    (a.u

    .)

    30

    As

    Af

    Ms

    Mf

    (100

    ) A

    (110

    ) A

    (111

    ) A

    (210

    ) A

    (221

    ) A

    (211

    ) A

    (011

    ) M

    (100

    ) M

    (110

    ) M

    (111

    ) M(1

    10) M

    (111

    ) M

    (102

    ) M

    (030

    ) M

    (202

    ) M

    (320

    ) A

    reta

    ined

    B19

    '

    Asneutron

    0 40 80 120 160 200

    stra

    in (%

    )

    temperature (ºC)

    0.1%

    in situ

    ex situ(a)

    heatingcooling

    • Transformation temperatures during the reverse transformation measured from strain-temperature and DSC data were found to differ from the actual onset of transformation as revealed from neutron spectra.

    • The austenite phase starting to form at ~75 ºC, O. Benafan et al, Scripta Materialia, 2013 68(18), p. 571–574

  • www.nasa.gov

    Thermomechanical Cycling of Actuators

    (400)H

    ZA:[110]B2||[010]H

    (001)B2

    200nm500nm

    0

    30

    6090

    120

    150

    180

    210

    240270

    300

    330

    {110}A

    latt

    ice

    stra

    in (%

    )

    0.5

    0

    -0.5

    55N

    iTi

    NiT

    iPd

    NiT

    iHf

    Outcome In situ diffraction Electron diffraction

    10 nm precipitates

    20 nm precipitates

    114M,T

    110T002T

    112T

    110M

    002M112M

    –0.0

    –5.0

    –2.5

    20 cy

    cles

    50 cy

    cles

    0 cy

    cles

    –0.0

    –3.0

    –1.5

  • www.nasa.gov

    SMA Properties – Can they be Optimized for Actuators?

    1. Material and Geometry‡ • Binary 55NiTi → = 5.08mm (0.2in) • Stress free transformation temperatures

    • • • •

    • Effective coefficient of thermal expansion • •

    • Effective elastic moduli • •

    • Effective Poisson’s ratios • •

    * 6

    * 6

    13.0 10 /

    6.4 10 /A

    M

    C

    C

    *

    *

    74

    50A

    M

    E GPa

    E GPa

    *

    *

    0.33

    0.387A

    M

    92105

    7155

    s

    f

    s

    f

    A CA C

    M CM C

    0.10

    0.15

    0.20

    0.25

    0.30

    0 50 100 150 200 250

    heatingcooling

    Stra

    in (%

    )

    Temperature (ºC)

    *M

    *A

    0

    100

    200

    300

    400

    500

    600

    0 1 2 3 4 5 6

    austenitemartensite

    Stre

    ss (M

    Pa)

    Strain (%)

    As

    Mf

    Ms

    AE

    ME

  • www.nasa.gov

    Coefficient of Thermal Expansion: Large Anisotropy

    -0.4

    -0.2

    0

    0.2

    0.4

    20 40 60 80 100

    calculation (isotropic average)extensometryself-consistent model

    latti

    ce s

    trai

    n (%

    )

    temperature (°C)

    B19' NiTi (heating)

    110

    001

    101

    111

    020

    111

    120

    solid symbols: neutron datasolid lines: calculation

    201

    (a)

    0.20

    0.25

    0.30

    0.35

    0

    20

    40

    60

    80

    100

    20 40 60 80 100 120 140 160

    heating (strain%)cooling (strain%)

    heating (vol.%)cooling (vol.%)

    mac

    rosc

    opic

    str

    ain

    (%)

    temperature (°C)

    volu

    me

    perc

    ent o

    f B19

    ' NiT

    i (%

    )

    [1] S. Qiu et al., Appl. Phys. Lett. 95, 141906 (2009)

    • Atomic scale measurements of thermal strains

    Heating(10-6/ C)

    Cooling(10-6/ C)

    B19'NiTi

    Thermal expansion

    tensor components

    11 -47.2 -30.8

    22 43.8 32.1

    33 22.7 27.3

    31 29.0 32.4

    CTE* 6.4 9.5

    CTE† 8.1 10.9

    CTE (extensometry) 10.3 9.0

    B2NiTi

    CTE* 13.0 13.1

    CTE (extensometry) 12.4 12.3*isotropic average †self-consistent model

    • Outcome • First report on NiTi CTE tensor (monoclinic

    martensite) including negative expansion in certain crystal orientations

    • Parametric input for most SMA models

  • www.nasa.gov

    Coefficient of Thermal Expansion: Large Anisotropy

    • Similar observation in HTSMAs (e.g., NiTiPt – B19)

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    40 80 120 160 200 240

    latt

    ice

    stra

    in (%

    )

    temperature (oC)

    B19 Ni29

    Ti50

    Pt21

    heating

    solid symbols: neutron datasolid lines: calculation....... extensometry

    011

    030

    013

    121

    111

    102

    120

    0

    0.05

    0.1

    0.15

    240 260 280 300 320 340

    100110111210

    latt

    ice

    stra

    in (%

    )

    temperature (oC)

    solid symbols: neutron data. . . . . extensometry-------calculation (isotropic average)

    B2 Ni29

    Ti50

    Pt21

    (heating)

    O. Benafan et al., unpublished work

  • www.nasa.gov

    SMA Properties – Can they be Optimized for Actuators?

    1. Material and Geometry‡ • Binary 55NiTi → = 5.08mm (0.2in) • Stress free transformation temperatures

    • • • •

    • Effective coefficient of thermal expansion • •

    • Effective elastic moduli • •

    • Effective Poisson’s ratios • •

    * 6

    * 6

    13.0 10 /

    6.4 10 /A

    M

    C

    C

    *

    *

    74

    50A

    M

    E GPa

    E GPa

    *

    *

    0.33

    0.387A

    M

    92105

    7155

    s

    f

    s

    f

    A CA C

    M CM C

    0.10

    0.15

    0.20

    0.25

    0.30

    0 50 100 150 200 250

    heatingcooling

    Stra

    in (%

    )

    Temperature (ºC)

    *M

    *A

    0

    100

    200

    300

    400

    500

    600

    0 1 2 3 4 5 6

    austenitemartensite

    Stre

    ss (M

    Pa)

    Strain (%)

    As

    Mf

    Ms

    AE

    ME

  • www.nasa.gov

    Elastic Moduli: Hard and Soft Orientations

    -400

    -200

    0

    200

    400

    -4 -2 0 2 4 6

    stre

    ss (M

    Pa)

    strain (%)

    macroscopic detwinning start

    macroscopic detwinning start

    -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

    -400

    -200

    0

    200

    400

    100012102100 model012 model102 model100 single crystal012 single crystal102 single crystal

    lattice strain (%)

    appl

    ied

    stre

    ss(M

    Pa)

    macroscopic detwinning start

    macroscopic detwinning start

    • Strain anisotropy and texture measurements

    • Outcome • First validation of ab initio calculation • Entire compliance matrix, not just a

    Young's modulus • Revealed mechanisms responsible for

    deflated modulus values obtained from conventional macroscopic tests

    # of points R100 128.2 129.8 132.2 6 0.997012 136.0 146.7 145.4 6 0.978102 157.3 152.8 167.1 6 0.999-120 33.8 106.0 101.4 6 0.997121 84.2 116.3 104.6 6 0.996-112 177.6 147.6 165.1 6 0.999-122 120.2 143.7 110.5 5 0.991-111 85.9 130.2 104.7 5 0.999011 175.9 155.7 117.1 6 0.995-121 53.4 122.0 93.3 5 1.000-110 41.0 105.1 78.2 6 0.997

    Single crystal Modelhkl

    Neutron diffractioncrystalhklE neutronhklE

    modelhklE

    [1] S. Qiu et al., Acta Mat., 2010

  • www.nasa.gov

    Elastic Moduli: Hard and Soft Orientations

    O. Benafan et al., unpublished work

    0

    200

    400

    600

    800

    1000

    0 1 2 3 4 5 6 7

    50Ti50.5Ti

    stre

    ss (M

    Pa)

    strain (%)

    0

    200

    400

    600

    800

    1000

    1200

    -0.5 0 0.5 1 1.5 2 2.5 3 3.5

    011002

    111120

    102121

    030013

    122032

    appl

    ied

    stre

    ss (M

    Pa)

    lattice strain (%)

    NiTiPt

  • www.nasa.gov

    Elastic Moduli: Hard and Soft Orientations

    O. Benafan et al., unpublished work

    NiTiPt

    0

    50

    100

    150

    200

    250

    -0.1 0 0.1 0.2 0.3 0.4

    011002

    111120

    102121

    030013

    122032

    appl

    ied

    stre

    ss (M

    Pa)

    lattice strain (%)

    E011=257.8 GPa R=0.985 E002=138.7 GPa R=0.994 E111=99.2 GPa R=0.997 E120=55.1 GPa R= 0.988 E102=138.3 GPa R=0.993 E121=75.3 GPa R=0.995 E030=173.0 GPa R=0.998 E013=132.3 GPa R=0.988 E122=88.3 GPa R=0.996 E032=218.6 GPa R=0.886

  • www.nasa.gov

    Optimization of Two-Way Shape Memory Effect • Uniaxial deformation at room temperature

    followed by free recovery

    • Outcome • Established a quick and efficient method

    for creating a strong and stable TWSME • Texture maps were used to determine

    deformation modes – correlated with TWSME stability and magnitude (not possible another way)

    strain (%)

    stres

    s (M

    Pa)

    50

    100

    150

    200

    0 2 4 6 8 10 12 1416 18 20 22

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    12

    34

    56

    7

    A

    B

    CD

    0.00

    3.50

    3.00

    0.50

    1.00

    1.50

    2.00

    2.50

    0.00

    8.00

    1.00

    2.00

    3.00

    4.00

    5.00

    6.00

    7.00

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    0 2 4 6 8 10 12cycle number (#)

    = 6%

    = 22% = 20% = 18%

    = 16% = 14%

    = 10%

    tran

    sfor

    mat

    ion

    stra

    in (%

    )

    (a)

  • www.nasa.gov

    Shape Setting of SMA Actuators

    heating

    cooling

    pre-strain

    1pr

    1pr

    • In situ neutron diffraction during shape setting of bulk polycrystalline NiTi

    • Outcome • Guidelines for shape setting any actuator: stress

    and temperature limits for shape setting • Neutrons revealed mechanisms responsible for

    the stress generation and relaxation during shape setting.

    -0.4

    0.0

    0.4

    0.8

    100 200 300 400

    100110111210211220221311CTE

    (c)

    stra

    in (%

    )

    temperature (ºC)

    heating

    CTE

    B2 planes to loading direction

    0

    100

    200

    300

    400

    0 100 200 300 400

    stre

    ss (M

    Pa)

    temperature (oC)

    2nd shape set

    1st shape set

    T = 30 ºC

    T = 300 ºC

    [1] O. Benafan et al. (2012)

  • www.nasa.gov

    Torsional Characteristics of 55NiTi

  • www.nasa.gov

    Torsional Characteristics of 55NiTi

    0

    20

    40

    60

    80

    100

    300 330 360 390 420 450

    T = 5.17 N-m

    temperature (K)

    (a)

    angl

    e of

    twis

    t (de

    g)

    heatingcooling

    0

    20

    40

    60

    80

    100

    300 330 360 390 420 450temperature (K)

    (b)an

    gle

    of tw

    ist (

    deg)

    heatingcooling

    T = 0 N-m (TWSME)

    0

    20

    40

    60

    80

    100

    300 330 360 390 420 450temperature (K)

    (d)

    angl

    e of

    twis

    t (de

    g)

    heatingcooling

    T = 0 N-m (TWSME)0

    20

    40

    60

    80

    100

    300 330 360 390 420 450temperature (K)

    (c)

    angl

    e of

    twis

    t (de

    g)

    heatingcooling

    T = 5.17 N-m

    Solid

    tube

    d-spacing (Å)

    Nor

    mal

    ized

    inte

    nsity

    (a.u

    .)

    1.0 2.0 3.0

    data and Rietveld fit

    difference curve peak positions

    303 K

    438 K

    {100

    }

    {110

    }{11

    1}

    {210

    }

    {221

    }

    (011

    )(1

    00)

    (110

    )

    (120

    )

    (120

    )

    (111

    )

    B2 austenite

    B19' martensite

    (030

    )

    (e)

  • www.nasa.gov

    Extension of Neutrons to Novel High Temperature SMAs

    33

    • Microstructural evolution during isothermal and isobaric deformation of NiTiHf

    • Outcome • High work output and dimensional stability • Texture measurements were correlated to the lack

    of evolution in this alloy • Confirmed relationship of microstructure and

    load-biased tests: From Neutron spectra • Neutrons showed why training of Hf alloy is not

    necessary [1] O. Benafan et al. Metall. Trans. A, 43, 4539 (2012)

    lattice plane spacing (Å)

    (100

    )

    (021

    )

    (121

    )(102

    )

    (110

    )

    1.0 2.0 3.0

    norm

    alize

    d in

    tens

    ity (a

    rbitr

    ary

    units

    )

    (111

    )

    data and Rietveld fit

    difference curve

    peak positions

    (a)

    (011

    )

    prec

    ipita

    tes

    2.16 Å

    400 MPa thermal cycle 2

    0 MPa initial 0 MPa initial

    400 MPa no thermal cycle

    400 MPa thermal cycle 1

    400 MPa thermal cycle 2

    400 MPa thermal cycle 3

    400 MPa no thermal cycle

    400 MPa thermal cycle 1

    400 MPa thermal cycle 3

    400 MPa no thermal cycle

    400 MPa thermal cycle 1

    400 MPa thermal cycle 2

    210

    110

    120

    020

    130

    012 210

    110

    120

    020

    130

    012

    0 MPa after no load thermal cycle 0 MPa after no load thermal cycle

    4.00

    3.75

    3.50

    3.25

    3.00

    2.75

    2.50

    2.25

    2.00

    1.75

    1.50

    1.25

    1.00

    0.75

    0.50

    0.25

    0.00

    9.00

    8.50

    8.00

    7.50

    7.00

    6.50

    6.00

    5.50

    5.00

    4.50

    4.00

    3.50

    3.00

    2.50

    2.00

    1.50

    1.00

    0.50

    0.00

    1

    2

    3

    4

    0 100 200 300 400

    heating (cycle 1)cooling (cycle 1)heating (cycle 2)cooling (cycle 2)heating (cycle 3)cooling (cycle 3)

    strai

    n (%

    )temperature (ºC)

    400 MPa

  • www.nasa.gov

    -150 MPa/25 °C, Cycle 0 -150 MPa/25 °C, Cycle 1 -150 MPa/25 °C, Cycle 4

    -4 MPa/25 °C, Cycle 7 -4 MPa/25 °C, Cycle 8

    34

    • The role of retained martensite during thermal-mechanical cycling in NiTiPd high temperature shape memory alloy was revealed

    • Outcome • Direct correlations were made between

    macroscopic changes in actuator performance parameters, and atomic-scale evolution from neutron spectra

    • The rate of evolution of texture and volume fraction of the retained martensite plays a key role in the stability of the actuator

    -4

    -3

    -2

    -1

    0

    0 50 100 150 200

    Cycle 1Cycle 2Cycle 3Cycle 4Cycle 5Cycle 6Cycle 7Cycle 8

    stra

    in (%

    )

    temperature (°C)

    (b)

    NiTiPd

    loading

    2.8 2.9 3 3.1 3.2

    Cycle 1Cycle 2Cycle 3Cycle 4Cycle 5Cycle 6Cycle 7

    B19 (011)

    B19 (100)

    B2 (100)

    d-spacing (Å)

    norm

    aliz

    ed in

    tens

    ity

    (d)

    NiTiPd

    2.8 2.9 3 3.1 3.2

    Cycle 1Cycle 2Cycle 3Cycle 4Cycle 5Cycle 6Cycle 7

    B19 (011)

    B19 (100)

    B2 (100)

    d-spacing (Å)

    norm

    aliz

    ed in

    tens

    ity

    (c)

    NiTiPd

    Extension of Neutrons to Novel High Temperature SMAs

    S. Qiu et al.,

  • www.nasa.gov

    Neutrons can be used to study most actuator forms

  • www.nasa.gov

    Thank You