ASSESSING THE EFFICIENCY POTENTIAL OF FUTURE …...Apr 18, 2018  · VFEL is proud to be an ISO...

34
<: ;Z - I.II ;:o C) 0 ,::(' INTERNATIONAL { PRO°t ASSESSING THE EFFICIENCY POTENTIAL OF FUTURE GASOLINE ENGINES SAE 2018 High Efficiency IC Engine Symposium April 8, 2018 Daniel Barba National Center for Advanced Technology Office of Transportation and Air Quality Office of Air and Radiation U.S. Environmental Protection Agency

Transcript of ASSESSING THE EFFICIENCY POTENTIAL OF FUTURE …...Apr 18, 2018  · VFEL is proud to be an ISO...

  • Research future advanced engine and drivetrain technologies

    VFEL is proud to be an ISO certified and ISO accredited lab

    • Research uture advanced eng·ne and drivetra·n technologies {involving modeling, advanced technology testing and demonstrafons)

    NVFEL is a state of the art test facility that provides a wide array of dynamometer and analytical testing

    NVFEL’s National Center for Advanced Technology EPA’s Advanced Technology Testing and Demonstration

    NVFEL is proud to be an ISO

    certified and ISO accredited lab

    ISO 14001:2004 and ISO 17025:2005

    EPA’s National Vehicle and Fuel Emissions Laboratory Part of EPA’s Office of Transportation and Air Quality in Ann Arbor, MI

    and engineering services for EPA’s motor vehicle, heavy-duty engine, and nonroad engine programs

    • Certify that vehicles and engines meet federal emissions and fuel economy standards

    • Analyze fuels, fuel additives, and exhaust compounds

    • Develop future emission and fuel economy regulations

    • Develop laboratory test procedures

    • (involving modeling, advanced technology testing and demonstrations)

    Test in-use vehicles and engines to assure continued compliance and process enforcement

    National Center for Advanced

    Technology (NCAT)

    SAE INTERNATIONAL US ENVIRONMENTAL PROTECTION AGENCY 2

  • OPCS TOPICS

    EPA’s program to Study the Efficiency Potential of Future Gasoline Engines

    1. Assessing Current Production Engines

    a) Develop benchmarking methods that yield good understanding of engine operation.

    b) Generate consistent fuel maps to appropriately compare engines.

    c) Use vehicle simulation (ALPHA) to assess vehicle fuel consumption.

    2. Assessing Potential Future Engines

    a) What engine technologies are still on the table?

    b) What might future engine maps look like?

    c) Use vehicle simulation (ALPHA) to assess vehicle fuel consumption.

    SAE INTERNATIONAL US ENVIRONMENTAL PROTECTION AGENCY 3

  • Engine Fuel Consumption Map r-------------r.- ,- ~ -r -=--=:.-=--~-...::-...::-_:;-~

    Component Data ,:, "

    Additional Details are Available from EPA's SAE Technical Papers SAE 2018-01-0319 SAE 2018-01-1412

    EPA's Quality Control Tools

    mg 1mulatron

    Overall Technology Assessment Program Relationships between Benchmarking, Modeling and Quality Control Methods

    SAE INTERNATIONAL

    EPA’s Quality Control Tools •Engine, Transmission, and Vehicle Test Data Package review and publication process

    •Share results with stakeholders including the supplier / manufacturer

    •Energy flow audit to ensure that the model agrees with proper physics.

    •Data visualization tool to compare and contrast simulation modeling results

    •Systematic comparison of simulation results against test data to verify understanding of the technology combinations

    •Publish technical papers in peer-reviewed journals / conferences

    •Conduct formal peer-reviews of major modeling and analysis methodologies

    Inter-dependent data sets are used to cross-validate each other in an iterative process, such as:

    a) Vehicle and component data informs development of the model vehicle control strategies

    b)The model informs benchmarking methods and understanding of vehicle and component technology

    Additional Details are Available from EPA’s SAE Technical Papers SAE 2018-01-0319 Benchmarking a 2016 Honda Civic 1.5-liter L15B7 Turbocharged Engine and Evaluating the Future Efficiency Potential of Turbocharged Engines SAE 2018-01-1412 Constructing Engine Maps for Full Vehicle Simulation Modeling

    US ENVIRONMENTAL PROTECTION AGENCY

    Modeling/Simulation

    QC Methods In-depth Analysis

    Engine Dyno Tests

    Vehicle Dyno Tests

    Component Data

    Vehicle Data

    Bringing “Data — Modeling — Analysis” Together

    Engine Fuel Consumption Map

    4

  • Test Phases: 1. Low-Mid Load 2. High Load 3. Idle-Low Load

    Benchmarkin est Data Points

    Test Phases: D D D 250

    20 160kW

    ..... -. 140 kW 200 ...

    ~ 15 120kW a. 150 ~ 100 kW UJ • • ::;; • Ill 10 • • • 80kW • • • • • 100 • • • • 60kW • • E • • Z 5 • 40kW 50 • • • ., • • :::,

    I I I 20kW e- I 10kW i2 0 0

    • • • • • • • -10kW • • -20kW -50

    1000 2000 3000 4000 5000 6000

    Speed (RPM)

    EPA’s Latest Benchmarking Methods Described in SAE Paper 2018-01-0319

    The design and performance of the 1.5-liter Honda L15B7 turbocharged engine are benchmarked

    and then compared to several other past, present, and future downsized-boosted engines.

    Benchmarking Test Data Points

    Contents

    A. Engine tethering setup

    B. Engine test phases 1. Steady-State operation during Low-Mid torque loading 2. Initial and Final intervals identified during High torque loading 3. Idle-Low torque loading

    C. Engine benchmarking test data points

    D. Suite of benchmarking data maps

    E. Complete ALPHA Input Map made from benchmarking data (SAE 2018-01-1412)

    F. ALPHA full vehicle simulation using fuel map

    G. Compare to BTE map published by Honda

    CITATION: Mark Stuhldreher, John Kargul, Daniel Barba, Joseph McDonald, Stanislav Bohac, Paul Dekraker, Andrew Moskalik, "Benchmarking a 2016 Honda Civic 1.5-liter L15B7 Turbocharged Engine and Evaluating the Future Efficiency Potential of Turbocharged Engines," SAE Technical Paper 2018-01-0319, 2018, doi:10.4271/2018-01-0319.

    SAE INTERNATIONAL US ENVIRONMENTAL PROTECTION AGENCY 5

  • 20

    18 - 200 ro 16 en -a. 14 w ~ 150 en 12

    10

    E Z 8 -Q) :::J 6 e-~

    2

    0 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

    Speed (RPM)

    150 kW

    135 kW

    120 kW

    105 kW

    90kW

    15 kW 7.5kW

    20

    18 -I.. ~ 16 ._

    a. 14 w ~ CO 12

    10 -E 8 z ._ Q) 6 ::, er I..

    ~ 4

    2

    0

    250

    200

    150

    100

    50

    0

    135 kW

    120 kW

    105 kW

    370/o 90kW

    75kW

    60kW

    45kW

    30kW

    15 kW 7.5kW

    1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

    Speed (RPM)

    2018-01-0319

    SAE INTERNATIONAL

    Generate Complete ALPHA Input Maps Fuel Consumption Map from Benchmarking Data (2016 Honda 1.5L Turbo Tier 2 fuel)

    6US ENVIRONMENTAL PROTECTION AGENCY

    mapped using Tier 2 fuel

    2016 Honda 1.5-liter L15B7 Engine Tier 2 Fuel

    Steady State and High Load Initial*

    BTE (%) - Brake Thermal Efficiency

    37%

    34%

    *refer to SAE paper 2018-01-0319

    2016 Honda 1.5-liter L15B7 Engine Tier 2 Fuel

    Steady State and High Load Initial*

    Brake Specific Fuel Consumption (g/kW-hr)

  • OPCS TOPICS

    EPA’s program to Study the Efficiency Potential of Future Gasoline Engines

    1. Assessing Current Production Engines

    a) Develop benchmarking methods that yield good understanding of engine operation.

    b) Generate consistent fuel maps to appropriately compare engines.

    c) Use vehicle simulation (ALPHA) to assess vehicle fuel consumption.

    2. Assessing Potential Future Engines

    a) What engine technologies are still on the table?

    b) What might future engine maps look like?

    c) Use vehicle simulation (ALPHA) to assess vehicle fuel consumption.

    SAE INTERNATIONAL US ENVIRONMENTAL PROTECTION AGENCY 7

  • SAE INTERNATIONAL

    NCAT has developed a process* to generate well documented engine maps to:

    • Translate component data consistently into engine maps and vehicle model inputs

    • Ensure engine technologies are evaluated equitably in engine map comparisons, and in vehicle simulation modeling

    • Predict engine operation and behavior in real world operation

    • Consistently scale engine size when estimating the effectiveness of technologies across the vehicle fleet (small cars to large trucks)

    • Assess the potential effectiveness of new engine technologies

    • Enable modeling for assessments of current and future standards

    • Publish data and engine maps from EPA’s benchmarking efforts

    Published data can be found at https://www.epa.gov/regulations-emissions-vehicles-and-

    engines/midterm-evaluation-light-duty-vehicle-greenhouse-gas#technical-projects

    Generate Consistent Fuel Maps to Appropriately Compare Engines

    8

    * Described in SAE paper: Paul Dekraker, Daniel Barba, Andrew Moskalik, Karla Butters, "Constructing Engine Maps for Full Vehicle Simulation Modeling," SAE Technical Paper 2018-01-1412, 2018, doi:10.4271/2018-01-1412.

    US ENVIRONMENTAL PROTECTION AGENCY

  • 200 -;:' 10 ro co

    fu 8 150 ~ co

    E z ~ 4 Q) ::,

    e- 50 ~ 2

    135kW

    120 kW

    105kW

    90kW

    75kW

    60 kW

    45kW

    0 0------------------------'--_.__ ..... ___ _

    200 12

    ~ 180

    ~ CO 10 160

    Q. w 140

    ~ 8 120 6 100

    ~ 80 ~ 4 60 e-~ 40

    2 20

    1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

    \ \ \

    Speed (RPM)

    120kW

    110kW

    7 100 kW

    37~ oom j / .,>I :!,Y 80kW ~ /,, 70kW

    60 kW

    50kW

    40kW

    30kW

    -----20kW

    1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

    Speed (RPM)

    250 12

    ~ ~ 10 00 Q. w

    ~ 8 150

    ~ 6 E 100 z Q) 4 ::,

    e-~ 50

    2

    \ \ \ \

    ~

    150kW

    135kW

    120kW

    105kW

    90kW

    75kW

    60kW

    30kW

    15kW

    0 O t=:::i:=~lr:S:=:~=:::;:=:::::;:=~ =======7.5 kW

    250 12

    ~ 10 200 Q. w ~ co

    6 E z Q) 4 ::,

    e~

    2

    1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

    Speed (RPM)

    \ 150kW 135kW

    90 kW

    75 kW

    -- = 21! -::~i===========....:.~~'"-2:1§.:::::::--------------- 15 - 15 kW 5 10 1-8 - 7.5 kW

    1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

    Speed (RPM)

    Progression of Engine Brake Thermal Efficiency (BTE)

    Naturally Aspirated Engines

    Ricardo data EPA benchmarking data

    X X2007 Toyota Camry

    2013 GM

    EcoTec LCV

    34% 36%

    2.5-liter Engine 2.4-liter Engine

    Reg E10 Fuel

    EPA benchmarking data Data from 2016 Aachen paper

    37% 39%

    Prototype 2014 Mazda

    Toyota TNGA Skyactiv-G

    2.5-liter Engine 2.0-liter Engine X

    Tier 2 Fuel

    SAE INTERNATIONAL US ENVIRONMENTAL PROTECTION AGENCY 9

  • 20

    18

    ro 16 al

    0.. 14 w

    ~ 12

    E z Q) ::,

    I= ~

    10

    8

    6

    4

    2

    0

    20

    18

    250

    00

    50

    00

    50

    0

    ~ 200 ~ 16

    ~ 14

    ~ 12 150

    10

    ~ 8 100

    ~ 6 I= ~ 4 50

    2

    0 0

    \ 'O ~d'

    w-, 1000 1500 2000 2500 3000 3500 4000

    Speed (RPM)

    2

    ---------------

    4500 5000 5500

    150 kW

    135 kW

    120 kW

    105 kW

    90kW

    60kW

    45kW

    30kW

    15kW 7.5kW

    135 kW

    120 kW

    105 kW

    60 kW

    45 kW

    ------------ 15 kW 7.5 kW

    1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

    Speed (RPM)

    500 I 300 kW

    \ 450 275 kW ro 20 250 kW al 400

    225 kW a.. 350 w 200 kW

    ~ 15 al 300 175 kW

    250 150 kW

    E 10 200 z

    100 kW Q) 150 ::, 75kW I=

    5 100 ~ 50 kW 50 25kW

    12.5 kW 0 0

    1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

    Speed (RPM)

    450 \

    ~20 00

    ro al 350

    a.. W 15 00 ~ al

    250

    E 10 200

    z 150

    Q) ::,

    I= 5 100 ~

    50

    0 0 1000 1500 2000 2500 3000 3500 4000 4500 5000

    Speed (RPM)

    Progression of Engine Brake Thermal Efficiency (BTE)

    Turbocharged Engines

    EPA benchmarking data

    2013 Ford 34% EcoBoost

    1.6-liter Turbo

    Tier 2 Fuel

    EPA benchmarking data

    2016 Honda 37%

    L15B7

    1.5-liter Turbo

    Tier 2 Fuel

    EPA benchmarking data

    36% 2015 Ford

    EcoBoost

    2.7-liter Turbo

    Tier 2 Fuel

    37%

    preliminary EPA benchmarking

    data*

    2016 Mazda

    Skyactiv-G

    2.5-liter Turbo

    Tier 2 Fuel

    * EPA’s final data set will be published on EPA’s website.

    SAE INTERNATIONAL US ENVIRONMENTAL PROTECTION AGENCY 10

  • OPCS TOPICS

    EPA’s program to Study the Efficiency Potential of Future Gasoline Engines

    1. Assessing Current Production Engines

    a) Develop benchmarking methods that yield good understanding of engine operation.

    b) Generate consistent fuel maps to appropriately compare engines.

    c) Use vehicle simulation (ALPHA) to assess vehicle fuel consumption.

    2. Assessing Potential Future Engines

    a) What engine technologies are still on the table?

    b) What might future engine maps look like?

    c) Use vehicle simulation (ALPHA) to assess vehicle fuel consumption.

    SAE INTERNATIONAL US ENVIRONMENTAL PROTECTION AGENCY 11

  • ffim-~

    Result

    ··-= IL'.:':

    ,p

    EPA’s Vehicle Simulation Modeling Tool

    SAE INTERNATIONAL

    • ALPHA is EPA’s tool for understanding vehicle behavior, effectiveness of various powertrain

    technologies and their greenhouse gas

    emissions.

    • ALPHA is an Advanced Light-Duty Powertrain and Hybrid Analysis tool created by EPA to

    estimate greenhouse gas (GHG) emissions

    from current and future light-duty vehicles.

    12US ENVIRONMENTAL PROTECTION AGENCY

    • ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types combined with different powertrain technologies.

    • ALPHA is not a commercial product - e.g. there are no user manuals, tech support hotlines, graphical user interfaces, full libraries of components, etc.

    o ALPHA is freely available on EPA’s web-site, and open for use by interested stakeholders.

    Operational strategies Test cycle

    Engine Transmission Vehicle

    Result: CO2 within 2% of tested vehicle

  • SAE INTERNATIONAL

    Per

    f N

    eutr

    al S

    ized

    Dis

    pla

    cem

    ent

    (lit

    ers)

    Co

    mb

    ined

    Cyc

    le

    Engi

    ne

    Effi

    cien

    cy (

    %)

    Co

    mb

    ined

    Cyc

    le

    CO

    2 (

    gCO

    2/m

    i)

    Imp

    rove

    d E

    ffic

    ien

    cy

    [CO

    2 R

    edu

    ctio

    n]

    (%)

    Engine

    2013 Ford EcoBoost 1.6L Turbo Engine 1.7 19.8 246.6 0.0%

    2015 Ford EcoBoost 2.7L Turbo Engine 1.5 20.2 241.9 -1.9%

    2014 Mazda Skyactiv-G 2.0L NA Engine 2.5 20.7 237.1 -3.8%

    2016 Skyactiv-G 2.5L Turbo Engine 1.7 20.5 238.4 -3.3%

    2016 Honda L15B7 1.5L Turbo Engine 1.7 21.3 230.1 -6.7%

    2016

    Efficiency Comparison of 5 Production Engines Using ALPHA

    13US ENVIRONMENTAL PROTECTION AGENCY

    Comparison of

    ALPHA vehicle

    simulations with 5

    different engines

    Notes: • Refer to SAE paper 2018-01-0319 for road load values for this simulation. • Each of the engines in the table has a slightly different displacement

    since when adapting an engine to a specific vehicle’s technology package and roadload mix ALPHA resizes the engine displacement so that the vehicle’s acceleration performance remains within 2% of baseline vehicle (as described in SAE paper 2017-01-0899).

    0.0%

    -1.9%-3.8% -3.3%

    -6.7%

    -45%

    -40%

    -35%

    -30%

    -25%

    -20%

    -15%

    -10%

    -5%

    0%

    Perc

    ent

    CO

    2R

    edu

    ctio

    n

    Comparison of an example 2016 Mid-sized Car with 5 different engines

    20

    13

    Fo

    rd E

    coB

    oo

    st1

    .6L

    Turb

    o E

    ngi

    ne

    (fro

    m E

    PA

    ben

    chm

    arki

    ng)

    20

    15

    Fo

    rd E

    coB

    oo

    st2

    .7L

    Turb

    o E

    ngi

    ne

    (fro

    m E

    PA

    ben

    chm

    arki

    ng)

    20

    14

    Sky

    acti

    v-G

    2.0

    L N

    A E

    ngi

    ne

    (fro

    m E

    PA

    ben

    chm

    arki

    ng)

    20

    16

    Sky

    acti

    v-G

    2.5

    L Tu

    rbo

    En

    gin

    e(f

    rom

    EP

    A b

    ench

    mar

    kin

    g)

    20

    16

    Ho

    nd

    a L1

    5B

    7 1

    .5L

    Turb

    o E

    ngi

    ne

    (fro

    m E

    PA

    ben

    chm

    arki

    ng)

  • OPCS TOPICS

    What Engine Technologies are Still on the Table?

    1. Assessing Current Production Engines

    a) Develop benchmarking methods that yield good understanding of engine operation.

    b) Generate consistent fuel maps to appropriately compare engines.

    c) Use vehicle simulation (ALPHA) to assess vehicle fuel consumption.

    2. Assessing Potential Future Engines

    a) What engine technologies are still on the table?

    b) What might future engine maps look like?

    c) Use vehicle simulation (ALPHA) to assess vehicle fuel consumption.

    SAE INTERNATIONAL US ENVIRONMENTAL PROTECTION AGENCY 14

  • SAE INTERNATIONAL

    EPA regularly conducts technology assessments to better understand the status of the

    industry’s engine development

    • Attend conferences, review papers and journal articles, meet with manufacturers and suppliers.

    • Determine technology content of recently introduced or announced engines.

    • Determine the technology frontier and possible future technology combinations.

    See 2018 SAE paper* for an example assessment performed by EPA to evaluate the degree of

    implementation of turbocharged engine technologies.

    What Engine Technology Combinations Remain Available for the Future?

    15US ENVIRONMENTAL PROTECTION AGENCY

    *CITATION: Mark Stuhldreher, John Kargul, Daniel Barba, Joseph McDonald, Stanislav Bohac, Paul Dekraker, Andrew Moskalik, "Benchmarking a 2016 Honda Civic 1.5-liter L15B7 Turbocharged Engine and Evaluating the Future Efficiency Potential of Turbocharged Engines," SAE Technical Paper 2018-01-0319, 2018, doi:10.4271/2018-01-0319. he color coding designations were determined for each technology in the table.

  • Example: Technology Frontier for Turbocharged Engines

    EPA’s technical paper* “technology frontier”

    charged engines in the US market.

    of each engine are compared against of 2025 engine technology

    the 2012 LD GHG FRM.

    Boosted Engines

    Intro

    Year Var

    iab

    le V

    alve

    Tim

    ing

    (VV

    T)

    Inte

    grat

    ed E

    xhau

    st M

    anif

    old

    Hig

    h G

    eom

    etri

    c C

    R

    Fric

    tio

    n R

    edu

    ctio

    n

    Hig

    her

    Str

    oke

    /Bo

    re R

    atio

    Bo

    ost

    ing

    Tech

    no

    logy

    coo

    led

    EG

    R

    Var

    iab

    le V

    alve

    Lif

    t (V

    VL)

    Mill

    er C

    ycle

    VN

    T/V

    GT

    Turb

    o

    Par

    tial

    Dis

    cree

    t C

    ylin

    der

    Dea

    c.

    Full

    Au

    tho

    rity

    Cyl

    ind

    er D

    eac.

    Var

    iab

    le C

    om

    pre

    ssio

    n R

    atio

    Gas

    olin

    e SP

    CC

    I / L

    ean

    Mo

    des

    Ford EcoBoost 1.6L 2010

    Ford EcoBoost 2.7L 2015

    Honda L15B7 1.5L 2016

    Mazda SKYACTIV-G 2.5L 2016 4 4

    VW EA888-3B 2.0L 2018

    VW EA211 EVO 1.5L 2019 ? 3

    VW/Audi EA839 3.0L V6 2018 ? 3

    Nissan MR20 DDT VCR 2.1L 2018 + ? 3 ? 3 ? 3 ? 3

    Mazda SKYACTIV-X SPCCI 2.0L SC1 2019 + ? 3 NA

    EPA/Ricardo EGRB24 1.2L2 N/A

    yellow = early implementation light & dark green = nearing maturity red = technology not present

    1- Supercharged 2- EPA Draft TAR 3- Not known at time of writing

    4- Mazda accomplishes equivalent of VNT/VGT using novel valving system

    Selecting Technologies for Assessment

    Selection Criteria for Benchmarking Programs

    1. Recent model year vehicles with emerging advanced fuel and emissions technologies (US-market strongly preferred)

    2. High potential for cost-effectiveness

    3. Heavy focus on advanced engine technology like those shown in the table.

    4. Little or no publically available data describing its operation or effectiveness

    SAE INTERNATIONAL

    • Chart is taken from describing the current for turbo- -

    • Features EPA’s projection (Ricardo EGRB 24) for

    *SAE paper 2018-01-0319

    US ENVIRONMENTAL PROTECTION AGENCY 16

  • Technology Comparison with Other Turbo Engines

    Takeaways*

    SAE INTERNATIONAL 17US ENVIRONMENTAL PROTECTION AGENCY

    • Engine parameters and technologies have been steadily advancing since 2010 – including: a) compression ratio (CR), b) stroke/bore ratio, c) intake cam phase authority, d) integrated exhaust manifolds, e) friction

    reduction, f) faster camshaft phasing control, g) advanced boosting technology, h) cooled EGR, and i) Miller Cycle.

    • No engine incorporates all potential improvements – significant untapped efficiency improvement potential is still available with application of:

    a) cylinder deactivation

    b) variable valve lift [VVL]

    c) variable compression ratio [VCR]

    d) variations of dilute combustion/spark assisted gasoline compression ignition

    *refer to SAE paper 2018-01-0319

  • OPCS TOPICS

    What Might Future Engine Maps Look Like?

    1. Assessing Current Production Engines

    a) Develop benchmarking methods that yield good understanding of engine operation.

    b) Generate consistent fuel maps to appropriately compare engines.

    c) Use vehicle simulation (ALPHA) to assess vehicle fuel consumption.

    2. Assessing Potential Future Engines

    a) What engine technologies are still on the table?

    b) What might future engine maps look like?

    c) Use vehicle simulation (ALPHA) to assess vehicle fuel consumption.

    SAE INTERNATIONAL US ENVIRONMENTAL PROTECTION AGENCY 18

  • What Might Future Engine Maps Look Like?

    EPA previous engine map projections and recent work

    SAE INTERNATIONAL

    Previous Engine Map Projections:

    1. Honda 1.5L turbo engine

    2. EPA GT-Power model of future Atkinson engine with cooled EGR

    (based on Skyactiv-G 2.0L)

    3. Toyota Prototype 2.5L TNGA engine

    (Atkinson w/cooled EGR)

    Recent Evaluations of Emerging Engine Technologies:

    4. Mazda Skyactiv-X 2.0L engine

    (gasoline compression ignition)

    5. Addition of Cylinder Deactivation to engine maps

    19US ENVIRONMENTAL PROTECTION AGENCY

  • eek rpm

    1.5L TC

    efficiency

    20 10 20 30 40 Engine speed (xlOO rpm) ___ _.

    >--------------+---+---+--('-'r-~,_., .,-,.

    >--------------+-----+---+---+I· t-' , ~,_.,

    2so ~~-~-~-~--~-~~ 20

    ~ ti 28 15kW

    1000 1500 2000 2500 3000 3500 4000

    S eed RPM

    E A's BTE map made from ... te~:...:.::=.:..:i.:: 250

    20

    ~ 18 ~ 200 ~ 16

    [lj 14 ::!, 150 IO 12

    10

    ~ 8 100

    ~ 6 e-~ 4 50

    2

    0 0

    20

    18

    cij 16 O'.I

    ~14

    1000

    200

    w 150 ~ 12

    10

    E 8 100 z

    " 6 ::, e-~ 4 50

    2

    0

    ~30 kW

    ~ 15kW 7.5kW

    1500 2000 2500 3000 3500 4000 4500 5000 5500

    Speed (RPM)

    1000 1500

    100 kW

    ~~ ·-: 80 kW

    ' ' ' ' 0- ' : 60 kW

    ...:,----"'- ----1 , 40 kW ' ' '

    - - --------- I -~-:-s_;;_=-=:~:;:;-: 0 : 20kW =-==--:; =------- 1 I . -. . .......... 2...... . : 10 kW

    2000 2500 3000 3500 4000

    Speed (RPM)

    Example 1: Projection of Honda 1.5L Turbo Engine

    based on Honda Published Data (and later verified with benchmarking data)

    EPA’s BTE map made from Honda’s BSFC map image of the Prototype Engine* EPA’s BTE map made from test data from SAE World Congress: EPA benchmarking data

    Data from Honda’s 2016 SAE paper

    38%

    37%

    Outside extent of original Honda image

    The dotted black line reflects the extent of the original Honda image.

    37%

    Veh.

    Tech. EngineSized Displ.

    (liters) Co

    mb

    ined

    Cyc

    le

    Fuel

    Eco

    no

    my

    (MP

    G)

    Co

    mb

    ined

    Cyc

    le

    CO

    2 (

    gCO

    2/m

    i)

    Map

    : %

    CO

    2 D

    elta

    (EP

    A/H

    on

    da

    - 1

    )

    Ye

    ar:

    % C

    O2 D

    elta

    (20

    25

    /20

    16

    - 1

    )

    Baseline 2016 mid-sized car 2.437 (I4) 36.8 241.4 -- --

    Honda L15B7 Earth Dreams Turbo

    (map from Honda published image)1.653 (I4) 39.0 227.8 --

    2016 Honda L15B7 Turbo

    (map from EPA test data)1.654 (I4) 38.6 230.4 --

    Honda L15B7 Earth Dreams Turbo

    (map from Honda published image)1.427 (I4) 52.6 168.9 -26%

    2016 Honda L15B7 Turbo

    (map from EPA test data)1.420 (I4) 52.2 170.4 -26%

    2016

    1.1%

    2025 0.9%

    See paper for vehicle and road load definitions.

    Efficiency (BTE) Difference Plot EPA map from test data minus EPA map from Honda image

    ✓ALPHA runs only predict about a 1% difference in CO2 over the regulatory cycles for both 2016 and 2025 mid-sized vehicles.

    ✓ CO2 is higher using the map from EPA’s test data.

    For ALPHA engine input maps, go to:

    https://www.epa.gov/regul ations-emissions-vehicles-and-engines/midterm-evaluation-light-duty-vehicle-greenhouse-gas#technical-projects

    And click link to:

    Test Data for Light-duty Greenhouse Gas (GHG) Technology

    SAE INTERNATIONAL US ENVIRONMENTAL PROTECTION AGENCY *refer to SAE paper 2018-01-0319 20

    https://www.epa.gov/regulations-emissions-vehicles-and-engines/midterm-evaluation-light-duty-vehicle-greenhouse-gas#technical-projectshttps://www.epa.gov/vehicle-and-fuel-emissions-testing/test-data-light-duty-greenhouse-gas-ghg-technology

  • 2014 Mazda Skyactiv G 2.0L Engine Tier 2 Fuel Future Atkinson Concept Engine with cEGR

    12

    -,._ ro

    CO 10 ........ a. w ~ co

    E z ........ Q) ::::J

    E" ~

    8

    6

    4

    2

    0

    1

    2

    200

    180

    160

    140

    120

    100

    80

    60

    40

    20

    0

    1,2

    -,._ ro co 10 160

    kW ........

    31'0/o O kW fu 140 ~ 8

    0 kW co 120

    ,......_ 6 100

    E z 80

    a> 4 60 ::::J

    _:::::;.;;......,,,~--

    120 kW

    110 kW

    100 kW

    90 kW

    80 kW

    70 kW

    60 kW

    50 kW

    40 kW

    ::::::::;;;;.....~~--30kW e-~ 40

    ~ .....,,...-----30 kW

    ----20 r-=---=======18

    1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 Speed (RPM)

    20 kW

    10 kW 5kW

    2 ------20

    0 0 1--.1.-_..__ ..... _ ...... _.....__ ...... ____ __._ __________ _

    500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

    Speed (RPM)

    20 kW

    10 kW 5kW

    Example 2: Projection of Future Atkinson w/ Cooled EGR

    based on EPA GT-Power model of a Skyactiv-G 2.0L

    • EPA used GT-Power modeling used to add cooled EGR technology to the Skyactiv-G 2.0L engine.

    -1,2

    EPA benchmarking data

    GT-Power modeling EPA GT-Power modeling

    37% 38%

    1

    2

    CITATION: Lee, S., Schenk, C., and McDonald, J., "Air Flow Optimization and Calibration in High-Compression-Ratio Naturally Aspirated SI Engines with Cooled-EGR," SAE Technical Paper 2016-01-0565, 2016, doi:10.4271/2016-01-0565. EPA’s engine map process document is at: https://www.epa.gov/regulations-emissions-vehicles-and-engines/midterm-evaluation-light-duty-vehicle-greenhouse-gas#technical-projects, and then click link to Test Data for Light-duty Greenhouse Gas (GHG) Technology

    SAE INTERNATIONAL US ENVIRONMENTAL PROTECTION AGENCY 21

    https://www.epa.gov/regulations-emissions-vehicles-and-engines/midterm-evaluation-light-duty-vehicle-greenhouse-gas#technical-projectshttps://www.epa.gov/vehicle-and-fuel-emissions-testing/test-data-light-duty-greenhouse-gas-ghg-technology

  • 1

    2

    3

    250 12

    ~ 10 200 a. w ~ 8 OJ

    - 6 E z

    4

    2

    0

    150

    5

    39% 90kW

    75kW

    45kW

    30kW

    15 kW --19 7.5 kW

    1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

    Speed (RPM)

    Example 3: Projection of Toyota’s 2.5L TNGA Engine (Atkinson w/cooled EGR)

    based on Toyota published data

    Prototype TNGA 2.5L conventional engine Prototype Toyota 2.5L TNGA Engine 1 1Data from 2016 Aachen paper Toyota’s data from 2016 Aachen paper

    Converted using techniques described in SAE 2018-01-1412 2,3

    39%

    1 Data from Toyota’s 2016 Aachen paper: Innovative Gasoline Combustion Concepts for Toyota New Global Architecture, Eiji Murase, Rio Shimizu, Toyota Motor Corporation.

    2 CITATION: Paul Dekraker, Daniel Barba, Andrew Moskalik, Karla Butters, "Constructing Engine Maps for Full Vehicle Simulation Modeling ," SAE Technical Paper 2018-01-1412, 2018, doi:10.4271/2018-01-1412.

    3 EPA’s engine map process document is at: https://www.epa.gov/regulations-emissions-vehicles-and-engines/midterm-evaluation-light-duty-vehicle-greenhouse-gas#technical-projects, and then click link to Test Data for Light-duty Greenhouse Gas (GHG) Technology

    SAE INTERNATIONAL US ENVIRONMENTAL PROTECTION AGENCY 22

    https://www.epa.gov/regulations-emissions-vehicles-and-engines/midterm-evaluation-light-duty-vehicle-greenhouse-gas#technical-projectshttps://www.epa.gov/vehicle-and-fuel-emissions-testing/test-data-light-duty-greenhouse-gas-ghg-technology

  • 2014 Mazda Skyactiv G 2.0L Engine Tier 2 Fuel

    200 12

    180 i I 10 160 -

    140 8

    120

    6 100

    80

    4 60

    40 2

    20

    0 0

    \ \ \

    80 kW

    70 kW

    60 kW

    50 kW

    40kW

    30 kW

    - 2

    _____ 20kW

    1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 Speed (RPM)

  • /

    BREAKTHROUGH

    SPARK IGNITION (51) HOMOGENEOUS CHARGE COMPRESSION IGNITION (HCCI)

    ........ IJ..141:/•l;J:t:Jll(◄·\..Y·l■•l~li;JIJlfl·iil•I;

    MAZDA GLOBAL TECH FORUM 201 7 I SKYACTIV-X. NEXT GENERATION GASOLINE ENGINE - ICHIRO HIROSE

    2- PRE-IGNITION - ABNORMAL COMBUSTION CONTROL

    COUNTERMEASURE: INJECT AIR • FUEL MIXTURE OURING COMPRESSION STROKE AND UTILIZE IGNITION DELAY

    MEANS: SUPER HIGH-PRESSURE FUEL INJECTION SYSTEM

    "-AN AI R• f'UEL MIXTURE LEAN ENOUGH THAT IT WON'T IGNITE

    7

    AIR INTAKE ~OCHS

    IGNITION DELAY • TEMP. INCREASE PERIOD + VAPORIZATION PERIOD+CHEMICALREACTION PERIOD

    SHORTER THAN IGNITION LAG

    IUPl!R HIGH•l'RHSUAI!

    ~ UANIE.R IUAH ANO SHOflTUl TIMI! TO COMPAf.SS AIA•n.il!L WIJTUR(

    COMFtAIESSION PROCESS

    IGNITION

    >

    SPCCI COMBUSTION

    SPCCI SPARK CONTROLLED COMPRESSION IGNITION

    Cl COMAU-.TION

    How it Works:

    UPANDING f'IRIE BALL 11.a"'fTQJC1

    Example 4: Projection of Skyactiv-X 2.0L Engine

    Summary of New Mazda SPCCI - Spark Controlled Compression Ignition

    As Mazda explained at their 2017 Global Tech Forum*, a

    breakthrough was needed to enable compression ignition

    gasoline engines

    How it Works:

    • Lean premixture injected during intake stroke that won’t ignite

    • 2nd high pressure injection during compression stroke to create a combustible mixture near spark plug

    • Spark initiates combustion

    • Expanding fireball creates final push to cause the whole mixture to combust

    SAE INTERNATIONAL

    *https://www.greencarreports.com/news/1112524_mazdas-skyactiv-x-diesel-fuel-economy-from-gasoline-engine/page-2 24

    https://www.greencarreports.com/news/1112524_mazdas-skyactiv-x-diesel-fuel-economy-from-gasoline-engine/page-2

  • Real world driving done by using Mazda’s dataloggers

    https://www.greencarreport s.com/news/1112524_mazd

    Drastic improvement in fue l consumpt ion rate

    0 200

    \ .. \ \

    \ \.

    Old MZR

    "",, Current SKYACTlV-G

    ' .......... ____ , ..... .

    ... .. . .. ... . SKYACTIV· X

    @2000rpm

    400 600 800 1000 1200 1400 Engine load (8MEP) [kPa]

    Data under development as Aug. 2017 Mild.I Motor Corpor•hon

    £2. Dr IY IOA RIIMI J I Co mo..LLlu..n...

    Orlve, '~I ___ o_._r_1u_s_~---SKY A CT IV ·X

    To1'11 38.6 1-

    Clty/SUOI 37.3 1-Y o ur Dr l• lllf d tll ~ ~--

    Mazd13 SKY·G

    ~~ 1m~::-n1

    113.2% 1

    113.6% 1

    £2. O th,iag Bg:,,1,,,1 I, :a ~gmg:a [higa

    Driver : ! J . V(US)

    S KYA C T IV-X Mazda3 SKY•G

    To1al l 39.9 1-.. 34.1 1-..

    CltyfSubl 39 .9 1-.. 33.6 1-.. Your 01 ,ving dil\.lt

    •.,,,1u!u1!m ~-~--_..,

    Mazda announced new Skyactiv-X engine

    CURRENT SKYACTIV·G SKYACTIV·X

    ·--~ i' '-. .,,:

    i' .\ z ·, ~ iii .., ::, ~ ::, ~ 0 0 a: a: 0 0 ... ...

    1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000 6000

    (RPM] (RPM]

    95RON 91 RON

    SKYACTIV·X

    CURRENT SKYACTIV·G

    ....... Improvem en t

    jhl/,_I

    114.3% 1 PREVIOUS MZR

    11s.4% 1

    1000 2:000 3000 ,ooo 5000 6000 1000 2000 3000 4000 5000 6000 ENGINE SPEED (RPMI ENGINE SPEEDIRPM)

    Example 4: Projection of Skyactiv-X 2.0L Engine based on Mazda published Information (gasoline spark controlled compression ignition)

    Mazda announced new Skyactiv-X engine (SPCCI -Spark Control Combustion Ignition)

    Mazda images published in: MAZDA Next-generation Technology – PRESS INFORMATION, October 2017

    https://jalopnik.com/i-drove-mazda-s-holy-grail-of-gasoline-engines-and-it-w-1800874806

    as-skyactiv-x-diesel-fuel-economy-from-gasoline- Mazda’s press release: “With an engine displacement of 2.0L, engine/page-2

    on their demo vehicle. - automotive press

    the SKYACTIV-X delivers at least 10 percent more torque than the

    current SKYACTIV-G, and up to 30 percent more at certain rpms”

    Mazda’s press release: “SKYACTIV-X delivers a 20 percent improvement in fuel economy compared to the SKYACTIV-G”

    SAE INTERNATIONAL US ENVIRONMENTAL PROTECTION AGENCY 25

    https://jalopnik.com/i

  • Suggested Reading / Sources

    SAE INTERNATIONAL 26US ENVIRONMENTAL PROTECTION AGENCY

    1. MAZDA Next-generation Technology - PRESS INFORMATION, October 2017, https://1ijylmozio83m2nkr2v293mp-wpengine.netdna-ssl.com/wp-content/uploads/2017/10/02_ENG_Mazda_Next_Generation_Technology_Press_Information.pdf

    2. Briefing on Mazda’s Long-Term Vision for Technology Development -Technical Overview of SKYACTIV-X, Kiyoshi Fujiwara, https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwjRk9jqu 6HaAhUuTd8KHc4gCOIQFgg4MAI&url=http%3A%2F%2Fwww.autopareri.com%2Fapplications%2Fcore%2Finterfac e%2Ffile%2Fattachment.php%3Fid%3D17652&usg=AOvVaw26JAUTbUZBDs_lP8NW0vZw

    3. Mazda Global Tech Forum 2017, https://www.mazda-press.com/ch-de/news/mazda-global-tech-forum-2017/

    4. Mazda's Skyactiv-X: diesel fuel economy from gasoline engine - Page 2, Green Car Reports, https://www.greencarreports.com/news/1112524_mazdas-skyactiv-x-diesel-fuel-economy-from-gasoline-engine/page-2

    5. Mazda’s ‘Holy Grail’ Of Gasoline Engines Is Completely Fascinating, David Tracy, 9/07/17, https://jalopnik.com/mazda-s-holy-grail-of-gasoline-engines-is-completely-1801820285

    6. I Drove Mazda’s Holy Grail Of Gasoline Engines And It Was Incredibly Impressive, David Tracy, 9/07/17, https://jalopnik.com/i-drove-mazda-s-holy-grail-of-gasoline-engines-and-it-w-1800874806

    https://1ijylmozio83m2nkr2v293mp-wpengine.netdna-ssl.com/wp-content/uploads/2017/10/02_ENG_Mazda_Next_Generation_Technology_Press_Information.pdfhttps://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwjRk9jqu6HaAhUuTd8KHc4gCOIQFgg4MAI&url=http://www.autopareri.com/applications/core/interface/file/attachment.php?id%3D17652&usg=AOvVaw26JAUTbUZBDs_lP8NW0vZwhttps://www.mazda-press.com/ch-de/news/mazda-global-tech-forum-2017/https://www.greencarreports.com/news/1112524_mazdas-skyactiv-x-diesel-fuel-economy-from-gasoline-engine/page-2https://jalopnik.com/mazda-s-holy-grail-of-gasoline-engines-is-completely-1801820285https://jalopnik.com/i-drove-mazda-s-holy-grail-of-gasoline-engines-and-it-w-1800874806

  • Brake Thermal Efficiency (BTE) 95 RON Fuel

    2014 Mazda Skyactiv G 2.0L Engine Tier 2 Fuel

    Skyactiv-G Skyactiv-X CURRENT SKYACTIV·G SKYACTIV·X

    ■ ■ • 1000 2000

    • 3000 4000 SOOO 6000

    (RPM]

    -1000 2000 )000 4000 S000 6000

    (RPM] . - -----------------------• ••

    12

    lii CO 10

    0.. LJ.J :::E 8 co

    200

    180

    160

    140

    120

    6 100

    E 80 z

    ~

    Q) 4 60 :, !: ~ 40 2

    20

    0 0 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

    Speed (RPM)

    EPA Projection of Mazda's newly announced Skyactiv-X engine

    Assum tions EPA Projection

    15

    iii 200

    ID

    a.. 10 ~ 150 ID

    E z

    0

    34%

    1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 Speed (RPM)

    90 f

  • SAE INTERNATIONAL

    nifal ALPHA

    Estimate

    B11u111 Cgmg1 c l1gn

    D. T{US)

    SKYACTIV-X Mazda3 SKY-G

    Total l 38.6

    Clty/Subl 37.3

    You r Or Iv Ing d I t I

    Dnve

    lmpg

    lmpg

    " l., ] .. r:

    33.1

    32.2

    . . . .. . . . . .. .. .. ...

    lmpg

    lmpg

    0 • • • • • ...............

    ·nnuunuu ........... ,,,.,.1 EnglM load frequency dl•trlbutlon

    '1mprov-:me"nr ( (b¥U100km)

    , 113.2% 1 .... __ 113.6% I

    -1 -... ... -... -~ = • SPC0 , .. ..

    CombwtJon Stat•

    i- - - .... I \ '- # - -

    P civioa Resu I ts Como a rison 8 n Driver : _I ____ J_. _V_(_U_S-) ___ ~

    SKYACTIV-X

    Total ,_l __ 3_9_.9 _ _..lmpg

    City/Sub,_l __ 3_9_.9 _ _..lmpg

    Your Driv in g da t o

    Mazda3 SKY-G

    ,___3_4_.1 _ _..l mpg

    ,___3_3_.6 _ ___.l mpg

    =r

    MuSPffd ..... ~ km/h .± - " , " J ,.

    r" - .. Av•G ..,_ .. ITDm1.•2 T ~ d . ·qnnunnu ........ #'11, ..... 1

    Engine load tnqu•ncy distribution

    "1m;;ov-;',r,e";;r, / (ltvL/lOOl.m)

    ' I 14.3% 1 ..._ __ 11s.4% 1

    ,.,. .... -,.. ... ... . .. ... • SPCO ,.. ... , .. ..

    Combustion State

    Example 4: Initial Projection of Skyactiv-X 2.0L Engine Comparison of Reduced Fuel Consumption from Test Drives v. Initial ALPHA Estimate

    Per

    f N

    eutr

    al S

    ized

    Dis

    pla

    cem

    ent

    (lit

    ers)

    Co

    mb

    ined

    Cyc

    le

    Engi

    ne

    Effi

    cien

    cy (

    %)

    Co

    mb

    ined

    Cyc

    le

    CO

    2 (

    gCO

    2/m

    i)

    Imp

    rove

    d E

    ffic

    ien

    cy

    [CO

    2 R

    edu

    ctio

    n]

    (%)

    Engine2014 Mazda Skyactiv-G 2.0L Engine 2.5 20.7 237.1 0.0%

    2019 Skyactiv-X 2.0L SPCCI Engine5 2.1 23.6 207.6 12.5%

    2016 Mid-sized Car

    *using data from ALPHA using Mazda's published information

    Initial ALPHA

    Estimate

    The 12.5% efficiency improvement in ALPHA results compare reasonably with real-world driving results in the automotive press test drives (13%-14%).

    ▪ This is just an initial estimate to gain a sense of the potential impact of this technology. Since the technology is not yet in the market place, it is too early to project if Skyactiv-X technology could be widely used in the industry and in what time frame.

    ▪ EPA plans to confirm this estimate with vehicle and engine benchmarking data as soon as the vehicle becomes available.

    Test Drive Notes:

    ▪ It appears that the test drive involved a comparison to a European Skyactiv-G (14:1 CR), probably operating on European premium fuel.

    ▪ Some of the drive cycle was standard traffic around suburban Frankfurt, Germany, including low-speed residential and town stop-and-go, but they also spent a few miles at up to 160 km/h

    28 (100 mph) during two short Autobahn stints.* Driver BDriver A

    US ENVIRONMENTAL PROTECTION AGENCY *Mazda's Skyactiv-X: diesel fuel economy from gasoline engine - Page 2, Green Car Reports

    28

  • SAE INTERNATIONAL

    Example 5: Projection of Adding Cylinder Deactivation to Current and Future Engines Adding Full Continuous Cylinder Deactivation (deacFC)

    29US ENVIRONMENTAL PROTECTION AGENCY

    • Full Continuous Cylinder Deactivation (deacFC*) allows any of the cylinders to be deactivated, and the number of deactivated cylinders can be varied in a continuous fashion.

    This is an advanced form of cylinder deactivation that involves all cylinders (e.g, all 8 cylinders in V8)

    rather than a fixed subset (e.g., only 4 specific cylinders in a V8).

    • deacFC engine can be run on a non-integer number of cylinders (e.g., 2.5 cylinders) by varying number and pattern of firing cylinders from cycle to cycle.

    • deacFC can command complete cylinder cutout during decelerations, cutting both fuel and air to the engine, reducing aftertreatment cooling and vehicle deceleration.

    • Tula Technology developed an implementation of deacFC called Dynamic Skip Fire (DSF) and applied it to V8 and I4 engines.

    *Bohac, S. V., 2018 “Benchmarking and Characterization of a Full Continuous Cylinder Deactivation System,” Oral Only, SAE World Congress, Detroit, MI, April 10-12, 2018. Presentation to be made available following SAE World Congress at: https://www.epa.gov/regulations-emissions-vehicles-and-engines/midterm-evaluation-light-duty-vehicle-greenhouse-gas

  • 200 12

    180

    -::-10 mo (1) Ill - 140 a.. w 8 ~ 120 Ill

    - 5 E

    100

    z 80 Q)

    5- 4 ... 60 ~

    40 2

    20

    0 0

    ~ 120kW ~ 110kW

    .1< 100 kW

    1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 Speed (RPM)

    90 kW

    80 kW

    70 kW

    60 kW

    50 kW

    40 kW

    30 kW

    20 kW

    10 kW 5kW

    200 12

    180

    -::-10 mo (1) Ill

    - 140 a.. w 8 ~ 120

    _ 5 100 E 2 80 Q)

    :::J 4 e- 60 ~

    2 40

    20

    ~~~ 120kW

    ~ 110kW

    .1< ~ ~ 100 kW 90 kW

    80 kW

    70 kW

    60 kW

    50 kW

    40 kW

    30 kW

    l-~ ~~~~~~~~~ii~f-;;:;-=-:;::~:.:§== 20kW :;;;;;. 10kW

    5kW

    1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

    Speed (RPM)

    Example 5: Projection of Adding Cylinder Deactivation to Current and Future Engines Adding deacFC to Skyactiv-G 2.0L Engine

    2014 Mazda Skyactiv-G 2.0L Engine with deacFC Tier 2 Fuel 2014 Mazda Skyactiv-G 2.0L Engine Tier 2 Fuel

    SAE INTERNATIONAL US ENVIRONMENTAL PROTECTION AGENCY 30

  • OPCS TOPICS

    EPA’s program to Study the Efficiency Potential of Future Gasoline Engines

    1. Assessing Current Production Engines

    a) Develop benchmarking methods that yield good understanding of engine operation.

    b) Generate consistent fuel maps to appropriately compare engines.

    c) Use vehicle simulation (ALPHA) to assess vehicle fuel consumption.

    2. Assessing Potential Future Engines

    a) What engine technologies are still on the table?

    b) What might future engine maps look like?

    c) Use vehicle simulation (ALPHA) to assess vehicle fuel consumption.

    SAE INTERNATIONAL US ENVIRONMENTAL PROTECTION AGENCY 31

  • 32

    0.0%

    -1.9%

    -3.8%-3.3%

    -6.7%

    -7.7% -6.9%

    -9.5%

    -15.8%

    -25.7%

    -28.1%-28.6%

    -29.0%

    -31.0%-30.8%

    -31.8%

    -35.3%

    -36.3%

    -40%

    -35%

    -30%

    -25%

    -20%

    -15%

    -10%

    -5%

    0%

    CO

    2R

    ed

    uct

    ion

    Comparison of Reduced CO2 Emissions of 2016 and 2025 Mid-Sized Cars

    2016 vintage2016 vintage with deacFC2025 vintage2025 vintage with deacFC

    20

    25

    Ric

    ard

    o C

    on

    celp

    t Tu

    rbo

    En

    gin

    e(f

    rom

    an

    alyi

    sis

    for

    20

    12

    FR

    M)20

    13

    Fo

    rd E

    coB

    oo

    st1

    .6L

    Turb

    o E

    ngi

    ne

    (fro

    m E

    PA

    ben

    chm

    arki

    ng)

    20

    15

    Fo

    rd E

    coB

    oo

    st2

    .7L

    Turb

    o E

    ngi

    ne

    (fro

    m E

    PA

    ben

    chm

    arki

    ng)

    20

    14

    Sky

    acti

    v-G

    2.0

    L N

    A E

    ngi

    ne

    (fro

    m E

    PA

    ben

    chm

    arki

    ng)

    20

    16

    Sky

    acti

    v-G

    2.5

    L Tu

    rbo

    En

    gin

    e(f

    rom

    EP

    A b

    ench

    mar

    kin

    g)

    20

    16

    Ho

    nd

    a L1

    5B

    7 1

    .5L

    Turb

    o E

    ngi

    ne

    (fro

    m E

    PA

    ben

    chm

    arki

    ng)

    20

    18

    To

    yota

    TN

    GA

    2.5

    L N

    A E

    ngi

    ne

    (fro

    mTo

    yota

    20

    16

    Aac

    hen

    pap

    er)

    20

    19

    Sky

    acti

    v-X

    2.0

    L SP

    CC

    I En

    gin

    e(f

    rom

    Maz

    da

    info

    rmat

    ion

    )

    Lab Benchmarks Projections

    Futu

    re A

    tkin

    son

    2.0

    L N

    A E

    ngi

    ne

    w/c

    EGR

    (fro

    mEP

    A G

    T-P

    ow

    er m

    od

    elin

    g)

    ... (

    .. ' ■

    ' ' ' ■ ,, ' '

    ,, ' ' '

    ,, ' ' .-" ' ' ' .. ' ' ' ' . ' ~ ,,

    ----- -' ' ' ' -- -' ' ' ' ' ' ; ' \ ' ' \ ' \ ' ' \ ' \ ' ' • ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' .... '•, ' ' ' ' ' ' ' _..._ ' ' --- .... ' ' .... '■ ;

    ........ ' ' ' ..... ' ' ' ' ..... ' ' ' ..... ' ' ' ' ..... ' ' ' ■ ' :

    Using ALPHA to Compare Engine Maps

    in a Mid-sized Car

    ALPHA vehicle simulations of current and potential future engines*

    Mid-Sized CarP

    erf

    Neu

    tral

    Siz

    ed

    Dis

    pla

    cem

    ent

    (lit

    ers)

    Co

    mb

    ined

    Cyc

    le

    Engi

    ne

    Effi

    cien

    cy (

    %)

    Co

    mb

    ined

    Cyc

    le

    CO

    2 (

    gCO

    2/m

    i)

    Imp

    rove

    d E

    ffic

    ien

    cy

    [CO

    2 R

    edu

    ctio

    n]

    (%)

    Per

    f N

    eutr

    al S

    ized

    Dis

    pla

    cem

    ent

    (lit

    ers)

    Co

    mb

    ined

    Cyc

    le

    Engi

    ne

    Effi

    cien

    cy (

    %)

    Co

    mb

    ined

    Cyc

    le

    CO

    2 (

    gCO

    2/m

    i)

    Imp

    rove

    d E

    ffic

    ien

    cy

    [CO

    2 R

    edu

    ctio

    n]

    (%)

    Engine

    2013 Ford EcoBoost 1.6L Turbo Engine1 1.7 19.8 246.6 0.0% 1.5 23.8 183.2 -25.7%

    2015 Ford EcoBoost 2.7L Turbo Engine 1.5 20.2 241.9 -1.9% 1.3 24.5 177.4 -28.1%

    2014 Mazda Skyactiv-G 2.0L NA Engine 2.5 20.7 237.1 -3.8% 2.1 24.7 176.2 -28.6%

    2016 Skyactiv-G 2.5L Turbo Engine 1.7 20.5 238.4 -3.3% 1.5 24.8 175.1 -29.0%

    2016 Honda L15B7 1.5L Turbo Engine 1.7 21.3 230.1 -6.7% 1.4 25.6 170.2 -31.0%

    Future Atkinson Engine w/cEGR2 2.5 21.5 227.7 -7.7% 2.1 25.5 170.6 -30.8%

    2018 Toyota TNGA 2.5L N/A Engine3 2.4 21.4 229.5 -6.9% 2.0 25.9 168.2 -31.8%

    2025 Ricardo Concept Turbo Engine4 1.5 21.9 223.0 -9.5% 1.2 27.3 159.5 -35.3%

    2019 Skyactiv-X 2.0L SPCCI Engine5 2.1 23.6 207.6 -15.8% 1.8 27.8 157.0 -36.3%

    1- baseline 2- from EPA GT-Power model 3- from Toyota 2016 Aachen paper

    4- from Ricardo for EPA's 2012 FRM 5- from Mazda published information

    2016 2025

    *refer to SAE paper 2018-01-0319 for roadload values.

    SAE INTERNATIONAL US ENVIRONMENTAL PROTECTION AGENCY deacFC - Full Continuous cylinder deactivation

  • 33

    0.0%

    -2.4% -0.2%

    -3.6%

    -6.0%-4.2%

    -3.0%

    -10.9%

    -13.1%

    -25.8%

    -26.1% -25.9%

    -28.6%

    -30.7%-28.4% -28.8%

    -33.7%

    -35.5%

    -40%

    -35%

    -30%

    -25%

    -20%

    -15%

    -10%

    -5%

    0%

    CO

    2R

    ed

    uct

    ion

    Comparison of Reduced CO2 Emissions 2016 and 2025 Sport Utility Vehicles (SUVs)

    2016 vintage2016 vintage with deacFC2025 vintage2025 vintage with deacFC

    20

    25

    Ric

    ard

    o C

    on

    celp

    t Tu

    rbo

    En

    gin

    e(f

    rom

    an

    alyi

    sis

    for

    20

    12

    FR

    M)

    20

    13

    Fo

    rd E

    coB

    oo

    st1

    .6L

    Turb

    o E

    ngi

    ne

    (fro

    m E

    PA

    ben

    chm

    arki

    ng)

    20

    15

    Fo

    rd E

    coB

    oo

    st2

    .7L

    Turb

    o E

    ngi

    ne

    (fro

    m E

    PA

    ben

    chm

    arki

    ng)

    20

    14

    Sky

    acti

    v-G

    2.0

    L N

    A E

    ngi

    ne

    (fro

    m E

    PA

    ben

    chm

    arki

    ng)

    20

    16

    Sky

    acti

    v-G

    2.5

    L Tu

    rbo

    En

    gin

    e(f

    rom

    EP

    A b

    ench

    mar

    kin

    g)

    20

    16

    Ho

    nd

    a L1

    5B

    7 1

    .5L

    Turb

    o E

    ngi

    ne

    (fro

    m E

    PA

    ben

    chm

    arki

    ng)

    20

    18

    To

    yota

    TN

    GA

    2.5

    L N

    A E

    ngi

    ne

    (fro

    mTo

    yota

    20

    16

    Aac

    hen

    pap

    er)

    20

    19

    Sky

    acti

    v-X

    2.0

    L SP

    CC

    I En

    gin

    e(f

    rom

    Maz

    da

    info

    rmat

    ion

    )

    Futu

    re A

    tkin

    son

    2.0

    LN

    A E

    ngi

    ne

    w/c

    EGR

    (fro

    mEP

    A G

    T-P

    ow

    er m

    od

    elin

    g)

    Lab Benchmarks Projections

    I I I I

    '

    .. ... ...... ... .... ... ... ... ... .... -

    --• ... ... ...

    i '•----• ... ... ... t

    ,---=~--L_-~_ ~ l ~ -: i

    ' ' ' "

    ... '•

    Using ALPHA to Compare Engine Maps

    in Sport Utility Vehicles (SUVs)

    ALPHA vehicle simulations of current and potential future engines*

    Sport Utility VehicleP

    erf

    Neu

    tral

    Siz

    ed

    Dis

    pla

    cem

    ent

    (lit

    ers)

    Co

    mb

    ined

    Cyc

    le

    Engi

    ne

    Effi

    cien

    cy (

    %)

    Co

    mb

    ined

    Cyc

    le

    CO

    2 (

    gCO

    2/m

    i)

    Imp

    rove

    d E

    ffic

    ien

    cy

    [CO

    2 R

    edu

    ctio

    n]

    (%)

    Per

    f N

    eutr

    al S

    ized

    Dis

    pla

    cem

    ent

    (lit

    ers)

    Co

    mb

    ined

    Cyc

    le

    Engi

    ne

    Effi

    cien

    cy (

    %)

    Co

    mb

    ined

    Cyc

    le

    CO

    2 (

    gCO

    2/m

    i)

    Imp

    rove

    d E

    ffic

    ien

    cy

    [CO

    2 R

    edu

    ctio

    n]

    (%)

    Engine

    2013 Ford EcoBoost 1.6L Turbo Engine1 2.3 20.8 318.4 0.0% 2.0 25.1 236.3 -25.8%

    2015 Ford EcoBoost 2.7L Turbo Engine 2.0 21.3 310.9 -2.4% 1.7 25.2 235.4 -26.1%

    2014 Mazda Skyactiv-G 2.0L NA Engine 3.4 20.9 317.7 -0.2% 2.8 25.1 235.9 -25.9%

    2016 Skyactiv-G 2.5L Turbo Engine 2.4 21.6 306.9 -3.6% 2.0 26.1 227.3 -28.6%

    2016 Honda L15B7 1.5L Turbo Engine 2.3 22.1 299.3 -6.0% 1.9 26.8 220.8 -30.7%

    Future Atkinson Engine w/cEGR2 3.4 21.7 305.1 -4.2% 2.8 26.0 228.2 -28.4%

    2018 Toyota TNGA 2.5L N/A Engine3 3.3 21.5 308.8 -3.0% 2.7 26.1 226.8 -28.8%

    2025 Ricardo Concept Turbo Engine4 1.9 23.3 283.8 -10.9% 1.6 28.1 211.1 -33.7%

    2019 Skyactiv-X 2.0L SPCCI Engine5 2.8 24.0 276.7 -13.1% 2.3 28.9 205.5 -35.5%

    1- baseline 2- from EPA GT-Power model 3- from Toyota 2016 Aachen paper

    4- from Ricardo for EPA's 2012 FRM 5- from Mazda published information

    2016 2025

    *refer to SAE paper 2018-01-0319 for roadload values.

    SAE INTERNATIONAL US ENVIRONMENTAL PROTECTION AGENCY deacFC - Full Continuous cylinder deactivation

  • SAE INTERNATIONAL

    Engine

    2013 Ford EcoBoost 1.6L Turbo Engine1

    2015 Ford EcoBoost 2.7L Turbo Engine

    2014 Mazda Skyactiv-G 2.0L NA Engine

    2016 Skyactiv-G 2.5L Turbo Engine

    2016 Honda L15B7 1.5L Turbo Engine

    Future Atkinson Engine w/cEGR2

    2018 Toyota TNGA 2.5L N/A Engine3

    2025 Ricardo Concept Turbo Engine4

    2019 Skyactiv-X 2.0L SPCCI Engine5

    Effect on CO• Engine size • Implementation

    (e.g., I4, V6 • Implementation of

    (e.g., cylinder

    • Other (e.g., engine to

    .. .. ' ' ' ■ ' .... ' ' ' ' ' ' ' ' - ..... ' ' ' ·- ' ' ' ' ' ,, ' ' ' ' ' ' ' .-" ' ' .... ' .. ' ' ' ' 1 ' : ,' ... , ; ' -~ .. ' " ' ' ' ' ! ... ... ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' \ ' ll ' ' ' \ ' ' \ ' ' ' ' • ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' - -■. ' ' .. - ' ' ' ' ' ' ' ' ' ., ' ' ' ' ' ' ' ' ; ' ' ' --- ' ' ' ' '11-- i -----'■ .... J

    ' ' ' ' ' ' ' ' -+- ' -+- ' ' ' ' ' ..... ' ..... ' ' ' ' ' ' ' -+- ' -+- ' • ' ' ' ' ' ' ..... ' • ..... ' ' ' ' ' ! :

    Using ALPHA to compare engine maps

    0.0%

    -1.9%

    -3.8%-3.3%

    -6.7%

    -7.7% -6.9%

    -9.5%

    -15.8%

    -25.7%

    -28.1%-28.6%

    -29.0%

    -31.0%-30.8%

    -31.8%

    -35.3%

    -36.3%

    -40%

    -35%

    -30%

    -25%

    -20%

    -15%

    -10%

    -5%

    0%

    CO

    2R

    ed

    uct

    ion

    Comparison of Reduced CO2 Emissions of 2016 and 2025 Mid-Sized Cars

    2016 vintage2016 vintage with deacFC2025 vintage2025 vintage with deacFC

    20

    25

    Ric

    ard

    o C

    on

    celp

    t Tu

    rbo

    En

    gin

    e(f

    rom

    an

    alyi

    sis

    for

    20

    12

    FR

    M)20

    13

    Fo

    rd E

    coB

    oo

    st1

    .6L

    Turb

    o E

    ngi

    ne

    (fro

    m E

    PA

    ben

    chm

    arki

    ng)

    20

    15

    Fo

    rd E

    coB

    oo

    st2

    .7L

    Turb

    o E

    ngi

    ne

    (fro

    m E

    PA

    ben

    chm

    arki

    ng)

    20

    14

    Sky

    acti

    v-G

    2.0

    L N

    A E

    ngi

    ne

    (fro

    m E

    PA

    ben

    chm

    arki

    ng)

    20

    16

    Sky

    acti

    v-G

    2.5

    L Tu

    rbo

    En

    gin

    e(f

    rom

    EP

    A b

    ench

    mar

    kin

    g)

    20

    16

    Ho

    nd

    a L1

    5B

    7 1

    .5L

    Turb

    o E

    ngi

    ne

    (fro

    m E

    PA

    ben

    chm

    arki

    ng)

    20

    18

    To

    yota

    TN

    GA

    2.5

    L N

    A E

    ngi

    ne

    (fro

    mTo

    yota

    20

    16

    Aac

    hen

    pap

    er)

    20

    19

    Sky

    acti

    v-X

    2.0

    L SP

    CC

    I En

    gin

    e(f

    rom

    Maz

    da

    info

    rmat

    ion

    )

    Lab Benchmarks Projections

    Futu

    re A

    tkin

    son

    2.0

    L N

    A E

    ngi

    ne

    w/c

    EGR

    (fro

    mEP

    A G

    T-P

    ow

    er m

    od

    elin

    g)

    deacFC - Full Continuous cylinder deactivation

    2 Depends on Factors v. vehicle loading

    & architecture etc.)

    strategies deacFC fly zone)

    elements in powertrain where transmission allows

    operate)

    0.0%

    -2.4% -0.2%

    -3.6%

    -6.0%-4.2%

    -3.0%

    -10.9%

    -13.1%

    -25.8%

    -26.1% -25.9%

    -28.6%

    -30.7%-28.4% -28.8%

    -33.7%

    -35.5%

    -40%

    -35%

    -30%

    -25%

    -20%

    -15%

    -10%

    -5%

    0%

    CO

    2R

    ed

    uct

    ion

    Comparison of Reduced CO2 Emissions 2016 and 2025 Sport Utility Vehicles (SUVs)

    2016 vintage2016 vintage with deacFC2025 vintage2025 vintage with deacFC

    20

    25

    Ric

    ard

    o C

    on

    celp

    t Tu

    rbo

    En

    gin

    e(f

    rom

    an

    alyi

    sis

    for

    20

    12

    FR

    M)

    20

    13

    Fo

    rd E

    coB

    oo

    st1

    .6L

    Turb

    o E

    ngi

    ne

    (fro

    m E

    PA

    ben

    chm

    arki

    ng)

    20

    15

    Fo

    rd E

    coB

    oo

    st2

    .7L

    Turb

    o E

    ngi

    ne

    (fro

    m E

    PA

    ben

    chm

    arki

    ng)

    20

    14

    Sky

    acti

    v-G

    2.0

    L N

    A E

    ngi

    ne

    (fro

    m E

    PA

    ben

    chm

    arki

    ng)

    20

    16

    Sky

    acti

    v-G

    2.5

    L Tu

    rbo

    En

    gin

    e(f

    rom

    EP

    A b

    ench

    mar

    kin

    g)

    20

    16

    Ho

    nd

    a L1

    5B

    7 1

    .5L

    Turb

    o E

    ngi

    ne

    (fro

    m E

    PA

    ben

    chm

    arki

    ng)

    20

    18

    To

    yota

    TN

    GA

    2.5

    L N

    A E

    ngi

    ne

    (fro

    mTo

    yota

    20

    16

    Aac

    hen

    pap

    er)

    20

    19

    Sky

    acti

    v-X

    2.0

    L SP

    CC

    I En

    gin

    e(f

    rom

    Maz

    da

    info

    rmat

    ion

    )

    Futu

    re A

    tkin

    son

    2.0

    LN

    A E

    ngi

    ne

    w/c

    EGR

    (fro

    mEP

    A G

    T-P

    ow

    er m

    od

    elin

    g)

    Lab Benchmarks Projections

    deacFC - Full Continuous cylinder deactivation

    US ENVIRONMENTAL PROTECTION AGENCY 34