Assessing Bioenergy Potentials in Rural Landscapes Oludunsin Tunrayo Arodudu Alexey Voinov Iris van...

download Assessing Bioenergy Potentials in Rural Landscapes Oludunsin Tunrayo Arodudu Alexey Voinov Iris van Duren.

If you can't read please download the document

Transcript of Assessing Bioenergy Potentials in Rural Landscapes Oludunsin Tunrayo Arodudu Alexey Voinov Iris van...

  • Slide 1
  • Assessing Bioenergy Potentials in Rural Landscapes Oludunsin Tunrayo Arodudu Alexey Voinov Iris van Duren
  • Slide 2
  • INTRODUCTION Depletion of global fossil fuel reserves Climate change challenges Shortage of fossil fuel supply
  • Slide 3
  • Research Problem Developing a more holistic approach for assessing bioenergy potential under an SEA framework Known measures of bioenergy potential Available land Some biomass are not grown on land Biomass yield Not a function of energy obtainable Energy yield Energy invested not considered Money invested and gained Susceptible to political and market mechanisms
  • Slide 4
  • ALTERNATIVE APPROACH: NEG/EROEI Net Energy Gain (NEG) NEG = Energy Output - Energy Input Net Energy Gain becomes a loss when it is less than 0 & Energy Return on Energy Invested (EROEI) EROEI = Energy Output / Energy Input Energy production activity becomes incapable of supporting continuous socio-economic function when EROEI is less than 3
  • Slide 5
  • SCOPE OF THE STUDY (RURAL LANDSCAPES) Crop residues Farm manure Surplus pasturelands Natural grasslands WHY? Relative benignity and favourability in terms of existing policy constraints: Food security Nature conservation: soil, water, biodiversity Competitive use of biomass and well being of the local people
  • Slide 6
  • Reasons for choice of crop and animal For crops (Scarlat et al, 2010): Corn, Rye, Triticale, Wheat, Barley, Oat, Rapeseed Availability in commercial quantity Good Crop to Residue Yield For animal (Fehrs, 2000): Beef Cattle, Dairy cattle, Pig, Chicken large Population of animal % collectable on barns and hard surfaces For Grasses on Surplus pasturelands (Prochnow et al, 2009)- Alfalfa Prevent a total change in ecosystem structure Meet future fodder needs
  • Slide 7
  • Factors influencing potential availability of biomass for bioenergy production For Crop residue (Scarlat et al, 2010) Use for soil conservation purposes Use as substrates for mushroom (Wheat) Use for animal beddings For Animal waste (Fehrs, 2000) % collectable on barns and hard surfaces For Grasses (van Vuuren et al, 2010) Use for animal beddings and animal feed
  • Slide 8
  • Method: Combination of Life Cycle Inventory (LCI) and GIS From the LCI: List of energy inputs and outputs, biomass and energy conversion models and coefficients Estimation of Potential Biomass and Biomass Potentially available for Bioenergy Production Estimation of Energy Input and Output of the different bioenergy production options Estimation of NEG and EROEI of the different bioenergy production options From the GIS: Estimation of area under natural grassland using GIS coverages (LGN 6 Land cover map)
  • Slide 9
  • RESULTS: PERCENTAGE COMPOSITION Biomass typePercentage (%) Manure89.56 Crop residue9.99 Natural Grassland0.44 Surplus pasturelands0.01 Manure by far has the largest biomass and bioenergy potential
  • Slide 10
  • RESULTS: FARM MANURE Large NEG, not necessarily high EROEI
  • Slide 11
  • RESULT: CROP RESIDUE Biomass type NEG (TJ)EROEI Corn 6684.7816.68 Rye 6.939.23 Triticale 7.758.52 Wheat 44.809.59 Oat 1.427.91 Barley 33.968.96 Rapeseed 2.559.04 Corn residues: most energy efficient : High EROEI most energy profitable: High NEG
  • Slide 12
  • Results: Choice of grass harvest for bioenergy production Biomass typeNEG (TJ)EROEI Natural Grassland : Early Harvest (< 12cm) 153-2567.44 Intermediate Harvest (15-20cm) 216-36111.62 Late Harvest (>25cm) 136-22813.09 Surplus Pasturelands: Early Harvest (< 12cm) 2.472.12 Intermediate Harvest (15-20cm) 4.714.09 Late Harvest (>25cm) 3.347.06 Natural grassland (Intermediate Harvest): Natural Grassland Management Policy in the Netherlands Surplus Pasturelands (Late Harvest): Highest energy efficiency value (EROEI).
  • Slide 13
  • Comparison of EROEI levels
  • Slide 14
  • Form of energy Bioenergy target (60PJ) Conversion Efficiency of biogas Bioenergy potential NEG-66PJ Net Gain to EU targets elsewhere Transport fuel 23PJ96%23PJ- Heat (CHP) 13PJ70%28PJ+15PJ of heat Electricity (CHP) 14PJ35%14PJ- Industrial raw material 10PJAs liquid fertilizer 5.94PJ-3.06PJ Evaluation of Overijssels bioenergy potential Extra 2PJ of biogas still exists.
  • Slide 15
  • Conclusions NEG/EROEI approach is quite holistic: Opens up room for broad analysis of bioenergy potential issues Alternatives : minimizing constraints and maximizing energy gains Unconventional biomass sources Farm scale wet anaerobic co-digestion technology Better animal management options and farm structures Energy efficiency component: EROEI Accurate evaluation of bioenergy targets: NEG Basis for stakeholder interactions
  • Slide 16
  • Thank you!!!