ASPHALT SOLIDIFICATION THEORYpetersenasphaltconference.org/download/Pauli no 2 Asphalt... · 2009....

153
ASPHALT SOLIDIFICATION THEORY Troy Pauli, Appy Beemer, and Julie Miller 43 rd Petersen Asphalt Research Conference Pavement Performance Prediction Symposium June 21-23, 2005 Laramie, Wyoming Models Used to Predict Pavement Performance Compositional Models Session

Transcript of ASPHALT SOLIDIFICATION THEORYpetersenasphaltconference.org/download/Pauli no 2 Asphalt... · 2009....

  • ASPHALT SOLIDIFICATION THEORYTroy Pauli, Appy Beemer, and Julie Miller

    43rd Petersen Asphalt Research Conference Pavement Performance Prediction SymposiumJune 21-23, 2005Laramie, WyomingModels Used to Predict Pavement Performance Compositional Models Session

  • ACKNOWLEDGEMENTS

    FHWA for their Financial Support under Contract No. DTFH61-98-R-00093

    NCHRP 9-37: Using Surface Energy Measurements to Select Materials for Asphalt Performance

    ICAR-505: Surface Energy Measurements as Performance Indicatorsof Hot-Mix Asphalts (HMA) and Portland Cement Concrete (PCC) Performance

  • Towards a Unified Physico-ChemicalModel of Asphalt Binder

    Asphalt Microstructure Model Introduction to micro-Emulsion Colloid MechanicsThe Onion Model and Colligative PropertiesEquilibrium Thermodynamics in micro-Emulsion Colloid MechanicsKinetics in micro-Emulsion Colloid Mechanics

    Asphalt Solidification ModelEquilibrium Thermodynamics of Surfaces and InterfacesPhase Transformations and Colligative Propertiesnon-Equilibrium Thermodynamics of Surface micro-StructuringDissipative Structure TheoryApplication to Fracture Mechanics

    Further Thoughts on Fatigue and Moisture Damage, Rutting, and Thermal Cracking

  • Asphalt Surface EnergyAnd Molecular Structure

    Dependence of Surface EnergyOn Molecular Weight

    And Molecular Structure

  • Some onions may have thick layers

    While other onions will have thin layers

  • Number of Carbon Atoms in Molecule

    0 20 40 60 80 100

    Sur

    face

    Ene

    rgy,

    γ, e

    rgs/

    cm2

    0

    20

    40

    60

    80

    100

    120

    140 # of C vs alkanes predicted-alkanes

    Surface Energy vs. #C-atoms (Homologous Series)

    RCH3

    n-Alkanes

  • Number of Carbon Atoms in Molecule

    0 20 40 60 80 100

    Sur

    face

    Ene

    rgy,

    γ, e

    rgs/

    cm2

    0

    20

    40

    60

    80

    100

    120

    140 # of C vs alkanes # of C vs aromatic chains predicted-alkanes predicted-aromatics

    Aromatic Chains

  • Number of Carbon Atoms in Molecule

    0 20 40 60 80 100

    Sur

    face

    Ene

    rgy,

    γ, e

    rgs/

    cm2

    0

    20

    40

    60

    80

    100

    120

    140 # of C vs alkanes # of C vs aromatic chains # of C vs aromatic sheets predicted-alkanes predicted-aromatics

    Aromatic Chains

    Aromatic Sheets

  • Number of Carbon Atoms in Molecule

    0 20 40 60 80 100

    Sur

    face

    Ene

    rgy,

    γ, e

    rgs/

    cm2

    0

    20

    40

    60

    80

    100

    120

    140 # of C vs alkanes # of C vs alicyclic chains# of C vs aromatic chains # of C vs aromatic sheets predicted-alkanes predicted-aromatics predicted-cyclics

    Aromatic Chains

    Aromatic Sheets

    Alicyclic Chains

  • Number of Carbon Atoms in Molecule

    0 20 40 60 80 100

    Sur

    face

    Ene

    rgy,

    γ, e

    rgs/

    cm2

    0

    20

    40

    60

    80

    100

    120

    140 # of C vs alkanes # of C vs alicyclic chains# of C vs aromatic chains # of C vs ketones # of C vs aromatic sheets predicted-alkanes predicted-aromatics predicted-cyclics # of C vs alicyclic sheets

    Aromatic Chains

    Aromatic Sheets

    Alicyclic Chains

    Alicyclic Sheets

  • Molecular Formula = C42 H65 N S2Formula Weight = 648.104Composition = C(77.83%) H(10.11%) N(2.16%) S(9.90%)Index of Refraction = 1.556 ± 0.02Surface Tension = 39.8 ± 3.0 dyne/cmDensity = 1.006 ± 0.06 g/cm3

    AAD-1

    Jennings, P.W. et al., SHRP-A-335, Strategic Highway Research Program, National Research Council, Washington, DC, 1993.

    CH3

    CH3

    NHCH3

    CH3

    CH3

    Molecular Formula = C85 H135 NFormula Weight = 1170.988Composition = C(87.18%) H(11.62%) N(1.20%)Index of Refraction = 1.561 ± 0.03Surface Tension = 44.3 ± 5.0 dyne/cmDensity = 0.98 ± 0.1 g/cm3 AAM-1

  • Number of Carbon Atoms in Molecule

    0 20 40 60 80 100

    Sur

    face

    Ene

    rgy,

    γ, e

    rgs/

    cm2

    0

    20

    40

    60

    80

    100

    120

    140 # of C vs alkanes # of C vs alicyclic chains# of C vs aromatic chains # of C vs ketones # of C vs aromatic sheets # of C vs asphalt AMS predicted-alkanes predicted-aromatics predicted-cyclics # of C vs alicyclic sheets

    SHRP Asphalts

  • Number of Carbon Atoms in Molecule

    0 20 40 60 80 100

    Sur

    face

    Ene

    rgy,

    γ, e

    rgs/

    cm2

    0

    20

    40

    60

    80

    100

    120

    140 # of C vs alkanes # of C vs alicyclic chains# of C vs aromatic chains # of C vs ketones # of C vs aromatic sheets # of C vs asphalt AMS predicted-alkanes predicted-aromatics predicted-cyclics # of C vs alicyclic sheets# of C vs asphalt AFM

    SHRP Asphalts

  • Number of Carbon Atoms in Molecule

    0 20 40 60 80 100

    Sur

    face

    Ene

    rgy,

    γ, e

    rgs/

    cm2

    0

    20

    40

    60

    80

    100

    120

    140 # of C vs alkanes # of C vs alicyclic chains# of C vs aromatic chains # of C vs ketones # of C vs aromatic sheets # of C vs asphalt AMS predicted-alkanes predicted-aromatics predicted-cyclics # of C vs alicyclic sheets# of C vs asphalt NMR # of C vs asphalt AFM

    SHRP Asphalts

  • Number of Carbon Atoms in Molecule

    0 20 40 60 80 100 120

    Sur

    face

    Ene

    rgy,

    γ, e

    rgs/

    cm2

    0

    20

    40

    60

    80

    100

    120

    140 # of C vs alkanes # of C vs alicyclic chains# of C vs aromatic chains # of C vs ketones # of C vs aromatic sheets # of C vs asphalt AMS predicted-alkanes predicted-aromatics predicted-cyclics # of C vs alicyclic sheets# of C vs asphalt NMR # of C vs asphalt AFM # of C vs Col 20

    Alicyclic Sheets

  • Number of Carbon Atoms in Molecule

    0 20 40 60 80 100 120

    Sur

    face

    Ene

    rgy,

    γ, e

    rgs/

    cm2

    0

    20

    40

    60

    80

    100

    120

    140 # of C vs alkanes # of C vs alicyclic chains# of C vs aromatic chains # of C vs ketones # of C vs aromatic sheets # of C vs asphalt AMS predicted-alkanes predicted-aromatics predicted-cyclics # of C vs alicyclic sheets# of C vs asphalt NMR # of C vs asphalt AFM # of C vs Col 20

    Alicyclic Sheets

  • Number of Carbon Atoms in Molecule

    0 20 40 60 80 100 120

    Sur

    face

    Ene

    rgy,

    γ, e

    rgs/

    cm2

    0

    20

    40

    60

    80

    100

    120

    140 # of C vs alkanes # of C vs alicyclic chains# of C vs aromatic chains # of C vs ketones # of C vs aromatic sheets # of C vs asphalt AMS predicted-alkanes predicted-aromatics predicted-cyclics # of C vs alicyclic sheets# of C vs asphalt NMR # of C vs asphalt AFM # of C vs Col 20

    Alicyclic Sheets

  • Physical Properties, Number Average Molecular Weight, Density, Refractive Index and Surface Tensions (AFM Measurement)Measured and Reported for Eight SHRP Asphalts

    83.9, 5982.3, 6086.5, 7081.6, 5284.5, 6185.6, 5083.7, 6186.8, 87

    46.3± 4.747.3± 0.744.0± 6.440.1± 4.348.3± 5.4

    38.145.649.0

    1.5651.5601.5351.5551.5601.5401.5301.530

    1.0161.0241.0091.0231.0241.0181.0240.989

    8508709707708707008701200

    AAA-1AAB-1AAC-1AAD-1AAF-1AAG-1AAK-1AAM-1

    %C a, # of

    Carbons

    Surface Tension γ,ergs/cm2

    AFM

    Index ofRefraction

    n(RI)

    Density b ρ,g/mL

    Number AverageMolecular Weight

    a Mn , DaSample

  • Solubility Parameters Calculated, Based on AFM, NMR and Asphalt Average MolecularStructure Surface Tension, Density and Molecular Weight

    8.208.277.947.608.208.397.867.99

    8.06 ± 0.26

    8.138.197.807.768.267.698.067.90

    7.97 ± 0.21

    8.007.917.817.917.687.687.697.58

    7.78 ± 0.158.23

    8.18 b8.02

    AAA-1AAB-1AAC-1AAD-1AAF-1AAG-1AAK-1AAM-1AVERAGEAlicyclic sheet (C42 H60)CyclohexaneMethylcyclohexane

    δ, cal1/2/mL3/2 by γ(NMR) d

    δ, cal1/2/mL3/2 by γ(AFM) c

    δ, cal1/2/mL3/2 by γ(AMS) a

    Solubility ParameterSample

    ( )

    43.0

    3/1/M1.4 ⎟⎟

    ⎞⎜⎜⎝

    ργ

    ≈δ

  • Solubility Parameters Calculated, Based on AFM, NMR and Asphalt Average MolecularStructure Surface Tension, Density and Molecular Weight

    8.208.277.947.608.208.397.867.99

    8.06 ± 0.26

    8.138.197.807.768.267.698.067.90

    7.97 ± 0.21

    8.007.917.817.917.687.687.697.58

    7.78 ± 0.158.23

    8.18 b8.02

    AAA-1AAB-1AAC-1AAD-1AAF-1AAG-1AAK-1AAM-1AVERAGEAlicyclic sheet (C42 H60)CyclohexaneMethylcyclohexane

    δ, cal1/2/mL3/2 by γ(NMR) d

    δ, cal1/2/mL3/2 by γ(AFM) c

    δ, cal1/2/mL3/2 by γ(AMS) a

    Solubility ParameterSample

    ( )

    43.0

    3/1/M1.4 ⎟⎟

    ⎞⎜⎜⎝

    ργ

    ≈δ

  • Solubility Parameters Calculated, Based on AFM, NMR and Asphalt Average MolecularStructure Surface Tension, Density and Molecular Weight

    8.208.277.947.608.208.397.867.99

    8.06 ± 0.26

    8.138.197.807.768.267.698.067.90

    7.97 ± 0.21

    8.007.917.817.917.687.687.697.58

    7.78 ± 0.158.23

    8.18 b8.02

    AAA-1AAB-1AAC-1AAD-1AAF-1AAG-1AAK-1AAM-1AVERAGEAlicyclic sheet (C42 H60)CyclohexaneMethylcyclohexane

    δ, cal1/2/mL3/2 by γ(NMR) d

    δ, cal1/2/mL3/2 by γ(AFM) c

    δ, cal1/2/mL3/2 by γ(AMS) a

    Solubility ParameterSample

    ( )

    43.0

    3/1/M1.4 ⎟⎟

    ⎞⎜⎜⎝

    ργ

    ≈δ

  • P

    SS

    dTdGS ⎟⎟

    ⎞⎜⎜⎝

    ⎛=−

    dTdS Sγ

    =−

    SSS TSGH +=

    Definition of Total Surface Entropy and Total Surface Enthalpy

    Total surface entropy, SS, per surface area

    Total surface enthalpy, HS, per surface area

  • P

    SS

    dTdGS ⎟⎟

    ⎞⎜⎜⎝

    ⎛=−

    dTdS Sγ

    =−

    SSS TSGH +=

    Definition of Total Surface Entropy and Total Surface Enthalpy

    Total surface entropy, SS, per surface area

    Total surface enthalpy, HS, per surface area

  • VTroΔ

    =SvapΔγ2

    PVHvap +=Δ 2δ V

    Gvap0 = Δ HvapΔ SvapTΔ= −

    Thermodynamic Derivation of Gibbs Surface Free Energy

    An Alternate View of the Regular Solution Model

    TPTo

    ro Δ+= )(2

    2δγ !

  • r( )22

    RTrT

    Tn cbi −Δ

    = γε

    2εiS nG =

    TT

    H bSΔ

    = γ

    r( )RrS cS 21=

    Gibbs Surface or Interfacial Free Energy(defined by a point interaction energy)

    Surface Enthalpy (related to change in surface tension per change in temperature

    Surface Entropy

    Energy Balance Expression Defining the Surface of an Ideal Liquid

  • Radius Ratio, κ = rc/

    0 20 40 60 80 100 120

    Vap

    or P

    ress

    ure,

    Pva

    p(29

    3.15

    K),

    atm

    0

    200

    400

    600

    800

    AlcoholHC-AromaticAlkaneAminesHalohydrocarbonsEsters

    r( )RrS cS 21=

  • Molar Radius, ,

    0 2 4 6 8 10 12 14

    Crit

    ical

    Rad

    ius,

    r o,

    0

    5

    10

    15

    20

    25

    30

    AlkanesCyclicsAromaticsAlcohols,WaterAsphaltsrc = 0.52587 + 0.45138, r ² = 0.9965

    D

    D

  • Molar Radius, ,

    5 6 7 8 9 10 11 12 13

    Crit

    ical

    Rad

    ius,

    r o,

    0

    5

    10

    15

    20

    25

    30

    35

    n-pentane

    n-hexane

    C7-C12 C14, C16, C20, C24, & C40

    8-SHRP Asphalts

  • Towards a Unified Physico-ChemicalModel of Asphalt Binder

    Asphalt Microstructure Model Introduction to micro-Emulsion Colloid MechanicsThe Onion Model and Colligative PropertiesEquilibrium Thermodynamics in micro-Emulsion Colloid MechanicsKinetics in micro-Emulsion Colloid Mechanics

    Asphalt Solidification ModelEquilibrium Thermodynamics of Surfaces and InterfacesPhase Transformations and Colligative Propertiesnon-Equilibrium Thermodynamics of Surface micro-StructuringDissipative Structure TheoryApplication to Fracture Mechanics

    Further Thoughts on Fatigue and Moisture Damage, Rutting, and Thermal Cracking

  • Γ=Δ κT

    21

    112rrdV

    drV +=Α∝=κ

    SΔ=Γ

    γ

    Definition of Gibbs-Thomson Capillary Undercooling

    Kurz, W., and D. J. Fisher (1998). Fundamentals of Solidification, 4th Ed., Trans Tech Publications, Inc., Switzerland, 12, 24, 99, and 205.

    Undercooling in Metals Casting (Science of Solidification)

    Curvature of Grain Boundary

    Gibbs-Thomson Relationship

  • Asphalt

    AAM-1 AAG-1 AAF-1 AAA-1 AAB-1 AAK-1 AAD-1

    Perc

    ent F

    ract

    ion

    0

    20

    40

    60

    80

    100

    ASPHALTENES RESINS WAXES NEUTRALS-WAX

    But what about the WAX ?!,

  • Asphalt

    AAM-1 AAG-1 AAF-1 AAA-1 AAB-1 AAK-1 AAD-1

    Perc

    ent F

    ract

    ion

    0

    20

    40

    60

    80

    100

    ASPHALTENES RESINS WAXES NEUTRALS-WAX

  • AsphaltSurface Tension

    (Dynes/cm2)

    Density(g/mL)

    Number AverageMolecular Weight

    (Daltons)

    Solubility Parameter((cal/mL) ½)

    Viscosity(Pa*s)

    AAA-1AAB-1AAC-1AAD-1AAF-1AAG-1AAK-1AAM-1

    32.426.232.425.833.632.232.534.0

    0.8290.8740.6980.7440.8990.8480.8700.850

    5906607505107005905901140

    7.146.466.736.507.167.147.196.65

    3615536020

    48026146

    1191

    Some physical properties of IEC-Neutral Fractions of SHRP Core Asphalts

  • AsphaltSurface Tension

    (Dynes/cm2)

    Density(g/mL)

    Number AverageMolecular Weight

    (Daltons)

    Solubility Parameter((cal/mL) ½)

    Viscosity(Pa*s)

    AAA-1AAB-1AAC-1AAD-1AAF-1AAG-1AAK-1AAM-1

    32.426.232.425.833.632.232.534.0

    0.8290.8740.6980.7440.8990.8480.8700.850

    5906607505107005905901140

    7.146.466.736.507.167.147.196.65

    3615536020

    48026146

    1191

  • AsphaltSurface Tension

    (Dynes/cm2)

    Density(g/mL)

    Number AverageMolecular Weight

    (Daltons)

    Solubility Parameter((cal/mL) ½)

    Viscosity(Pa*s)

    AAA-1AAB-1AAC-1AAD-1AAF-1AAG-1AAK-1AAM-1

    32.426.232.425.833.632.232.534.0

    0.8290.8740.6980.7440.8990.8480.8700.850

    5906607505107005905901140

    7.146.466.736.507.167.147.196.65

    3615536020

    48026146

    1191

  • Temperature, T oC

    20 30 40 50 60 70 80 90 100 110 120

    Surfa

    ce T

    ensi

    on, γ

    , dyn

    es/c

    m

    0

    10

    20

    30

    40

    AAAAAB AACAAD AAF AAG AAKAAM = 0.94 +/- 0.03

  • Temperature, T oC

    20 30 40 50 60 70 80 90 100 110 120

    Surfa

    ce T

    ensi

    on, γ

    , dyn

    es/c

    m

    0

    10

    20

    30

    40

    AAAAAB AACAAD AAF AAG AAKAAM = 0.94 +/- 0.03

  • Temperature, T oC

    20 30 40 50 60 70 80 90 100 110 120

    Surfa

    ce T

    ensi

    on, γ

    , dyn

    es/c

    m

    0

    10

    20

    30

    40

    AAAAAB AACAAD AAF AAG AAKAAM = 0.94 +/- 0.03

  • Temperature, T oC

    20 30 40 50 60 70 80 90 100 110 120

    Surfa

    ce T

    ensi

    on, γ

    , dyn

    es/c

    m

    0

    10

    20

    30

    40

    AAAAAB AACAAD AAF AAG AAKAAM = 0.94 +/- 0.03

    AAA-1

  • Temperature, T oC

    20 30 40 50 60 70 80 90 100 110 120

    Surfa

    ce T

    ensi

    on, γ

    , dyn

    es/c

    m

    0

    10

    20

    30

    40

    AAAAAB AACAAD AAF AAG AAKAAM = 0.94 +/- 0.03

    AAA-1

    AAG-1

  • Temperature, T oC

    20 30 40 50 60 70 80 90 100 110 120

    Surfa

    ce T

    ensi

    on, γ

    , dyn

    es/c

    m

    0

    10

    20

    30

    40

    AAAAAB AACAAD AAF AAG AAKAAM = 0.94 +/- 0.03

    AAA-1

    AAG-1

    Both of which exhibit Non-dramatic (unobservable) “bee” micro-structuring

  • Temperature, T oC

    20 30 40 50 60 70 80 90 100 110 120

    Surfa

    ce T

    ensi

    on, γ

    , dyn

    es/c

    m

    0

    10

    20

    30

    40

    AAAAAB AACAAD AAF AAG AAKAAM = 0.94 +/- 0.03

    AAA-1

    AAG-1

    Both of which exhibit Non-dramatic (unobservable) “bee” micro-structuring

    r( )RrS cS 21=

    ?

  • AsphaltSurface Tension

    (Dynes/cm2)

    Density(g/mL)

    Number AverageMolecular Weight

    (Daltons)

    Solubility Parameter((cal/mL) ½)

    Viscosity(Pa*s)

    AAA-1AAB-1AAC-1AAD-1AAF-1AAG-1AAK-1AAM-1

    32.426.232.425.833.632.232.534.0

    0.8290.8740.6980.7440.8990.8480.8700.850

    5906607505107005905901140

    7.146.466.736.507.167.147.196.65

    3615536020

    48026146

    1191

  • Number Average Molecular Weight of Neutrals, Mn

    0 200 400 600 800 1000 1200

    Visc

    osity

    of I

    EC N

    eutra

    ls, η

    N, P

    a*s

    0

    200

    400

    600

    800

    1000

    1200

    1400

    AAG-1

    AAF-1

    AAD-1

  • SHRP Asphalt “n-Heptane Soluble” MalteneViscosity, η as a Function of 1/k

    1/k(Abs*s) @ T=25°C and 50°C

    0 200 400 600 800 1000

    "n-H

    epta

    ne" M

    alte

    ne V

    isco

    sity

    , η 0

    @ 2

    5.0°

    C(P

    a*s)

    0.0

    2.0e+4

    4.0e+4

    6.0e+4

    8.0e+4

    1.0e+5

    1.2e+5

    AAG-1

    AAF-1

  • 1/k, Inverse rate constant @ 50°C

    0 200 400 600 800 1000

    Ln(η

    n-he

    ptan

    e) @

    60°C

    0

    20

    40

    60

    80

    100

    120

    140

    160

    AAG-1

    AAF-1

  • 25°C

    AAB-1-Neat AAB-1-Maltenes

    AAB-1-Neutrals

  • Towards a Unified Physico-ChemicalModel of Asphalt Binder

    Asphalt Microstructure Model Introduction to micro-Emulsion Colloid MechanicsThe Onion Model and Colligative PropertiesEquilibrium Thermodynamics in micro-Emulsion Colloid MechanicsKinetics in micro-Emulsion Colloid Mechanics

    Asphalt Solidification ModelEquilibrium Thermodynamics of Surfaces and InterfacesPhase Transformations and Colligative Propertiesnon-Equilibrium Thermodynamics of Surface micro-StructuringDissipative Structure TheoryApplication to Fracture Mechanics

    Further Thoughts on Fatigue and Moisture Damage, Rutting, and Thermal Cracking

  • dAdnTdS

    dVPdnTdSdVPdnTdS

    dUdUdUdU

    ii

    iiii

    γμ

    μμϕϕ

    ββββαααα

    ϕβα

    +++

    −++−+=

    ++=

    ∑∑∑

    Gibbs Equation Describing Interfacial Dynamics of a Binary System

    U: Internal EnergyS: EntropyT: TemperatureP: Pressuren: Number of Molesμ: Chemical Potentialγ: Surface EnergyA: Surface Area

    α-phase

    β-phase

  • Point in Time0 2 4 6 8 10

    Film

    Tem

    pera

    ture

    , T°C

    20

    25

    30

    35

    40

    45

    Thin Asphalt Film Allowed to Relax for Several Months

  • Point in Time0 2 4 6 8 10

    Film

    Tem

    pera

    ture

    , T°C

    20

    25

    30

    35

    40

    45

  • Point in Time0 2 4 6 8 10

    Film

    Tem

    pera

    ture

    , T°C

    20

    25

    30

    35

    40

    45

  • Point in Time0 2 4 6 8 10

    Film

    Tem

    pera

    ture

    , T°C

    20

    25

    30

    35

    40

    45

  • Point in Time0 2 4 6 8 10

    Film

    Tem

    pera

    ture

    , T°C

    20

    25

    30

    35

    40

    45

  • Point in Time0 2 4 6 8 10

    Film

    Tem

    pera

    ture

    , T°C

    20

    25

    30

    35

    40

    45

  • Point in Time0 2 4 6 8 10

    Film

    Tem

    pera

    ture

    , T°C

    20

    25

    30

    35

    40

    45

  • Point in Time0 2 4 6 8 10

    Film

    Tem

    pera

    ture

    , T°C

    20

    25

    30

    35

    40

    45

  • 0111

    1

    2

    2

    1

    1,

    2

    2,1,

    21

    1 ≥⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−+⎟⎟

    ⎞⎜⎜⎝

    ⎛−+⎟⎟

    ⎞⎜⎜⎝

    ⎛−=

    =

    TTdtdA

    TTdtdn

    TTdtdU

    dtdSS

    rrr

    prodprod

    γγμμϕϕ

    ϕϕ&

    Definition of Rate of Entropy Production Between Two micro-States (ϕ -phase)

  • 011

    ≥⎟⎠⎞

    ⎜⎝⎛

    ∂∂−

    +⎟⎠⎞

    ⎜⎝⎛

    ∂∂−

    ==Φ ∑∑ ==n

    kT

    kT

    n

    ii

    i xJ

    xJT

    γμσ

    ( ) ( ) 0≥∇−+∇−==Φ ∑∑ k=1i=1n

    Txkn

    ixi JJT γμσ

    Rate of Entropy Production DensityDefined in terms of Force Gradients

    (Isothermal Condition)

    (Vector Notation)

  • TA

    T

    rn x

    Jx

    J ⎟⎠⎞

    ⎜⎝⎛

    ∂∂

    −≥⎟⎠⎞

    ⎜⎝⎛

    ∂∂ γμ

    γ∇( ) ( )TxATrxn JJ μ −≥∇

    Rate of Free Energy Production Defined in terms of Force Gradients

    (Mass Transport Coupled to Stress Gradient)

    Interface-plane Y-axis, μm0 1 2 3 4 5 6

    Inte

    rfac

    e Z-

    axis

    , nm

    0

    20

    40

    60

    80

    100

    120

    ε&γ−∇≥∇cD ! ∇Τ

  • TA

    T

    rn x

    Jx

    J ⎟⎠⎞

    ⎜⎝⎛

    ∂∂

    −≥⎟⎠⎞

    ⎜⎝⎛

    ∂∂ γμ

    γ∇( ) ( )TxATrxn JJ μ −≥∇

    Rate of Free Energy Production Defined in terms of Force Gradients

    (Mass Transport Coupled to Stress Gradient)

    Interface-plane Y-axis, μm0 1 2 3 4 5 6

    Inte

    rfac

    e Z-

    axis

    , nm

    0

    20

    40

    60

    80

    100

    120

    γ∇

    ε&γ−∇≥∇cD !

    ∇c

    ∇Τ

  • Morphological Stability Theory:Hill and Valley Model

    ∫∝ dSGS )(nγ

    mc

    m

    ccc rrr

    r )()()()()( 221

    0nnnnn,

    γγγγγ ++++= L

    Herring, C., (1951). Some Theorems on the Free Energies of Crystal Surfaces. Physical Review, 82(1), 87-93.

  • x-axis

    -6 -4 -2 0 2 4 6 8 10z-ax

    is

    -4

    -2

    0

    2

    4

    ψ

    θ T < T0

    T > T0

    T = T0

    ⊕ y-axis

    Galatola, P., J. B. Fournier, and G. Durand, 1994.Spontaneous Undulation of Equilibrium Interfaces with Positive Surface Stiffness, Phys Rev. Lett. 73(16),

    ( )xxz ϖεsin)( =

    Hill and Valley

  • ϖ( )yTSTCmTG mflleffeff εϖγ sin)(2=ΔΔ−=Δ∝Δ

    ( )yTdS mf ϖεϖ sin2∝∫

    Derivation of Effective Gibbs Free Energy of a Perturbed Interface

  • ϖ( )yTSTCmTG mflleffeff εϖγ sin)(2=ΔΔ−=Δ∝Δ

    ( )yTdS mf ϖεϖ sin2∝∫

    Derivation of Effective Gibbs Free Energy of a Perturbed Interface

  • Coupling Equations αα

    TT ∑Δ=Δ

    rCT TTTT Δ+Δ+Δ=Δ

    mzT TTT −=Δ =ϕ

    lt

    lC CmT =Δ

    )sin(2 yTT mr ϖεϖΓ=Δ

    Tiller, W. A., , W., and D. J. Fisher (1991). The Science of Crystallization: Macroscopic Phenomena and Defect Generation, 4th Ed. Trans Tech Publications, Inc. Switzerland.

  • Point in Time0 2 4 6 8 10

    Film

    Tem

    pera

    ture

    , T°C

    20

    25

    30

    35

    40

    45

  • Point in Time0 2 4 6 8 10

    Film

    Tem

    pera

    ture

    , T°C

    20

    25

    30

    35

    40

    45

    So Now, what’s all this stuff?

  • Point in Time0 2 4 6 8 10

    Film

    Tem

    pera

    ture

    , T°C

    20

    25

    30

    35

    40

    45

    So Now, what’s all this stuff?

  • Towards a Unified Physico-ChemicalModel of Asphalt Binder

    Asphalt Microstructure Model Introduction to micro-Emulsion Colloid MechanicsThe Onion Model and Colligative PropertiesEquilibrium Thermodynamics in micro-Emulsion Colloid MechanicsKinetics in micro-Emulsion Colloid Mechanics

    Asphalt Solidification ModelEquilibrium Thermodynamics of Surfaces and InterfacesPhase Transformations and Colligative Propertiesnon-Equilibrium Thermodynamics of Surface micro-StructuringDissipative Structure TheoryApplication to Fracture Mechanics

    Further Thoughts on Fatigue and Moisture Damage, Rutting, and Thermal Cracking

  • 34°C

    AAB-1-Neat AAB-1-Maltenes

    AAB-1-Neutrals

  • 34°C

    AAC-1-Neat AAC-1-Maltenes

    AAC-1-Neutrals

  • 34°C

    AAK-1-Neat

    AAK-1-Maltenes

    AAK-1-Neutrals

    AAK-1-Neutrals-Dewaxed

  • Marangoni convection: Shear stress balance at an interface “surface” between two fluid phases

    zc

    czT

    Txu

    xu

    zxx

    ∂∂

    ∂∂

    +∂∂

    ∂∂

    =∂

    ∂−

    ∂∂

    =∂∂ 2

    221

    21γγηηγ

    ∂∂∂∂∂∂

    T

    c2

    ux2

    ux1

    γ2η1η

    Flow velocity of fluid 1

    Flow velocity of fluid 1

    Viscosity of fluid 1

    Viscosity of fluid 2

    Interfacial surface tension

    Temperature

    Concentration of fluid 2

    Tiller, W. A., 1991, The Science of Crystallization: Macroscopic Phenomena and Defect Generation, Cambridge University Press, Great Britain, New York, NY.

  • T∇

    c∇

    γ∇

    ρ∇

    μ∇

    Material property gradients potentially induced by a thermal gradient

    zc

    czT

    Txu

    xu

    zxx

    ∂∂

    ∂∂

    +∂∂

    ∂∂

    =∂

    ∂−

    ∂∂

    =∂∂ 2

    221

    21γγηηγ

    ∂∂∂∂∂∂

    z

    x

  • T∇

    c∇

    γ∇

    ρ∇

    μ∇

    Material property gradients potentially induced by a thermal gradient

    zc

    czT

    Txu

    xu

    zxx

    ∂∂

    ∂∂

    +∂∂

    ∂∂

    =∂

    ∂−

    ∂∂

    =∂∂ 2

    221

    21γγηηγ

    ∂∂∂∂∂∂

    z

    x

  • dzdTCh

    NJh

    NdzdT

    dTd

    V

    MaqMa

    ρ

    ηαηγ2

    2

    −=

    −=

    Thermal diffusivity coefficient

    The Marangoni number, NMa , quantifies the surface or interfacial “turbulence” resulting fromconcentration and surface tension gradients, ,

    induced by a thermal gradient, , resulting in undulations

    on the surface of a thin film composed of two fluids

    c∇ γ∇

    dzdT

  • AAK-1-G1

    All images were collected at room temperature ~23°CFilm was spin cast on 11/18/2004

    Film was kept under nitrogen purgeFilm thickness is 1553 nm

    First thermal cycle: heated to 45°C and cooled to room tempSecond thermal cycle: heated to 50°C and cooled to room temp

    Images collected 1 day after the last thermal cycle

  • x-Length, nm

    0 500 1000 1500 2000

    z-H

    eigh

    t, nm

    0

    10

    20

    30

    40

    50

    60

    70

  • x-Length, nm

    200 300 400 500 600 700

    z-H

    eigh

    t, nm

    0

    10

    20

    30

    40

    50

    60

    x-Length, nm

    0 500 1000 1500 2000

    z-H

    eigh

    t, nm

    0

    10

    20

    30

    40

    50

    60

    70

  • AAC-1-C5All images were collected at room temperature ~25°C

    Film Thickness: 1098.5 nmFilm was spin cast on 11/18/2004

    Film was kept under nitrogen purge1st thermal cycle: heated to 50°C in 3° steps, cooled in 10°steps2nd thermal cycle: heated to 35 in 2° steps, cooled to room temp

    3rd thermal cycle: heated to 51°C in steps of 2°, cooled to RT4th thermal cycle: heated to 51°C, cooled to RT in 4° steps

    Images were collected on the same day after the last thermal cycle

  • x-Length, nm

    0 500 1000 1500 2000 2500

    z-H

    eigh

    t, nm

    8

    10

    12

    14

    16

    18

    20

    22

    24

    26

    28

  • x-Length, nm

    0 500 1000 1500 2000 2500

    z-H

    eigh

    t, nm

    8

    10

    12

    14

    16

    18

    20

    22

    24

    26

    28

  • x-Length, nm

    1000 1100 1200 1300 1400 1500

    z-H

    eigh

    t, nm

    8

    10

    12

    14

    16

    18

    20

    22

    24

    26

    28

    x-Length, nm

    0 500 1000 1500 2000 2500

    z-H

    eigh

    t, nm

    8

    10

    12

    14

    16

    18

    20

    22

    24

    26

    28

  • x-Length, nm

    1600 1700 1800 1900 2000

    z-H

    eigh

    t, nm

    8

    10

    12

    14

    16

    18

    20

    22

    24

    26

    28

    x-Length, nm

    0 500 1000 1500 2000 2500

    z-H

    eigh

    t, nm

    8

    10

    12

    14

    16

    18

    20

    22

    24

    26

    28

  • x-Length, nm

    2000 2050 2100 2150 2200 2250 2300

    z-H

    eigh

    t, nm

    8

    10

    12

    14

    16

    18

    20

    22

    24

    26

    28

    x-Length, nm

    0 500 1000 1500 2000 2500

    z-H

    eigh

    t, nm

    8

    10

    12

    14

    16

    18

    20

    22

    24

    26

    28

  • Terrace-Ledge-Kink (TLK) Crystallization kineticsTiller, W. A., 1991, The Science of Crystallization: Microscopic Interfacial Phenomena, Cambridge University Press, Great Britain, New York, NY.

  • ii GGG Δ−Δ=Δ ∞→∞ii GGG Δ+Δ=Δ →∞∞

    EKi GGG Δ+Δ=Δ

    PDpdKi GGGGGGG Δ+Δ+Δ+Δ+Δ+Δ=Δ σγ

    Total Free Energy Coupling during Crystallization

  • Kink step distanceLedge step distanceRate of kink formationRate of ledge formationRate of solidifying surfaceCritical nucleating kernals

  • lλ kυ

    υa

    'a

    h

  • dRGRdRGGG E

    πγδπ υυ

    22 +=Δ+Δ=Δ

    RG

    VG γδ υ +=Δ

    Δ

    RG

    VG

    Vγδ +=

    ΔΔ

    =0

    κγ

    FE S

    TTTΔ

    −=−=Δ *

    zdz

    dGG fii δ

    γδ ⎟⎟

    ⎞⎜⎜⎝

    ⎛+Δ−=

    max⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛∝Δ

    dxd

    G fiγ

  • llh υρυ =

    lk

    khaλλυυ 2=

    RTGLLL

    Aeank /ˆ Δ−− = ν( ) RTGG

    SSKAeak /ˆ Δ+Δ−+ = ν

    +− −= kkkkak '=υ

  • ( ) ( ) *** ),(, dttTttDt it i

    qiqrrJ ∇−= ∫ ∞−

    ( ) ( ) *** ),(, dttCttDt it

    jiC rrJ ∇−= ∫ ∞−l,s-concentration fluxes

    Given relaxation functions of concentration and thermal gradients in both i = l,s, l-liquidand crystal s-solid phases of a melt leads to

    l,s-thermal fluxes

    Galenko, P.K., D.A. Danilov, 2004, Linear morphological stability analysis of the solid-liquid interface in rapid solidification of a binary system. Phys. Rev. E, 69 051608.

  • GTm mCTTT ΚΓ+=−=Δ φφ

    ( )xxx

    ωδωφφ sin1 22/3

    2

    2

    −=⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎠⎞

    ⎜⎝⎛

    ∂∂

    +=⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛∂∂

    =Κ−

    ( ) ( ) ( )xttxz ωδφ sin, =≡

    λπω 2=

    Undercoolings may then be defined as

    where curvature is given as

    An oscillating perturbed interface is then expressed as

    give the frequency

  • ( ) ( )xtbCCC ωδφ sin0 =−≡Δ

    ( ) ( )xtaTTT ωδφ sin0 =−≡Δwhere

    and

    Component Undercoolings may then be defined as

    and

    ssll

    ssss

    ssll

    llll

    aaaωω

    υωωω

    υωΚ+Κ

    −Κ+

    Κ+Κ−

    Κ= // GG

    υ

    ( )

    ⎪⎪⎪

    ⎪⎪⎪

    <

    −−

    −−

    =

    D

    D

    D

    C

    D

    C

    C

    Dk

    Db

    υυ

    υυ

    υυυω

    υυω

    ,0

    ,

    /11

    /1

    22

    22

    G

  • υ

    ( )

    ⎪⎪⎪

    ⎪⎪⎪

    <

    −−

    −−

    =

    D

    D

    D

    C

    D

    C

    C

    Dk

    Db

    υυ

    υυ

    υυυω

    υυω

    ,0

    ,

    /11

    /1

    22

    22

    G

  • ⎪⎪⎩

    ⎪⎪⎨

    ≥=Δ=Κ+Κ+Γ

    <=Δ−Δ+Δ+Δ=

    −Κ+Κ+Γ

    ∑ DssslllGT

    DCsl

    CCssslllGT

    T

    TTTTm

    υυξξω

    υυξξξω

    ζζ

    φ

    ,0

    ,0

    2

    2

    GG

    GGG

    Absolute stability is defined by

  • ⎪⎪⎩

    ⎪⎪⎨

    ≥=Δ=Κ+Κ+Γ

    <=Δ−Δ+Δ+Δ=

    −Κ+Κ+Γ

    ∑ DssslllGT

    DCsl

    CCssslllGT

    T

    TTTTm

    υυξξω

    υυξξξω

    ζζ

    φ

    ,0

    ,0

    2

    2

    GG

    GGG

    Absolute stability is defined by

  • ( )∞

    −=

    Γ=Δ mC

    kk

    DT

    CAGT

    C 21υ

    l

    TAGT

    T aT

    υΓ=Δ

    ( )D

    GTA k

    mCkD υυ <Γ−

    = ∞2

    1

    whereas marginal stability is defined by

  • ( )∞

    −=

    Γ=Δ mC

    kk

    DT

    CAGT

    C 21υ

    l

    TAGT

    T aT

    υΓ=Δ

    ( )D

    GTA k

    mCkD υυ <Γ−

    = ∞2

    1

    whereas marginal stability is defined by

    These expressions represent solute partitioningin the material microstructure

  • ( )∞

    −=

    Γ=Δ mC

    kk

    DT

    CAGT

    C 21υ

    l

    TAGT

    T aT

    υΓ=Δ

    ( )D

    GTA k

    mCkD υυ <Γ−

    = ∞2

    1

    whereas marginal stability is defined by

    These expressions represent solute partitioningin the material microstructure

  • ( )∞

    −=

    Γ=Δ mC

    kk

    DT

    CAGT

    C 21υ

    l

    TAGT

    T aT

    υΓ=Δ

    ( )D

    GTA k

    mCkD υυ <Γ−

    = ∞2

    1

    whereas marginal stability is defined by

    These expressions represent solute partitioningin the material microstructure

  • Point in Time0 2 4 6 8 10

    Film

    Tem

    pera

    ture

    , T°C

    20

    25

    30

    35

    40

    45

    So Now, what’s all this stuff?

  • 25°C

    AAB-1-Neat AAB-1-Maltenes

    AAB-1-Neutrals

  • Effect of adding resins to neutrals

  • Effect of adding asphaltenes to maltenes

  • ( )∫∫=

    =

    =

    =

    ⎟⎠⎞

    ⎜⎝⎛

    ∂∂

    ⎟⎠⎞

    ⎜⎝⎛

    ∂∂=

    ∂∂

    ⎥⎦⎤

    ⎢⎣⎡

    ∂−=

    ∂∂ lx

    x

    Ulx

    x

    UtotalX dxx

    JtT

    Tdx

    xJ

    tT

    tS

    02

    0

    11

    tTC

    xJ

    VU

    ∂∂−=

    ∂∂

    ρ

    00

    2

    2≤⎟

    ⎠⎞

    ⎜⎝⎛

    ∂∂−=

    ∂∂ ∫

    =

    =

    lx

    x

    VtotalX dxtT

    TC

    tS ρ

    Total Entropy Production in a Dissipative Structure

    i.e., through thermal dissipation

  • 00

    2

    2≤⎟

    ⎠⎞

    ⎜⎝⎛

    ∂∂−=

    ∂∂ ∫

    =

    =

    lx

    x

    VtotalX dxtT

    TC

    tS ρ

    01

    0

    2

    0

    2

    2≤⎟⎟

    ⎞⎜⎜⎝

    ⎛∂∂⎟

    ⎠⎞

    ⎜⎝⎛

    ∂∂−⎟

    ⎠⎞

    ⎜⎝⎛

    ∂∂−=

    ∂∂ ∫∫

    =

    =

    =

    =

    lx

    x n,T,Vr

    rrlx

    x

    VtotalX dxctTdxtT

    TC

    tS

    μρ

    C 01

    00

    2

    2≤

    ∂∂⎟

    ⎠⎞

    ⎜⎝⎛

    ∂∂+⎟

    ⎠⎞

    ⎜⎝⎛

    ∂∂−=

    ∂∂ ∫∫

    =

    =

    llx

    x

    VtotalX dxxtT

    dxtT

    TtS ε&γρ

    i.e., through thermal dissipation

    i.e., bulk material dissipation

    and, i.e., surface material dissipation

  • H( ) ( )( )

    V

    rrrrrr RTccccccTΔ

    −−−−≤Δ

    ∗∗∗ 2lnln

    εΔ⎟⎠⎞

    ⎜⎝⎛

    ∂∂≥Δ

    xCTT

    V

    γρ

    HH x( ) ( ) ( )( )

    V

    rrrrrr

    V

    RTccccccTTΔ

    −−−+Δ⎟

    ⎠⎞

    ⎜⎝⎛

    ∂∂

    Δ≥Δ

    ∗∗∗ 2lnlnεγ

    The undercooling in the dissipative structure

  • Point in Time0 2 4 6 8 10

    Film

    Tem

    pera

    ture

    , T°C

    20

    25

    30

    35

    40

    45

    So Now, what’s all this stuff?

  • 25°C

    AAB-1-Neat AAB-1-Maltenes

    AAB-1-Neutrals

  • Towards a Unified Physico-ChemicalModel of Asphalt Binder

    Asphalt Microstructure Model Introduction to micro-Emulsion Colloid MechanicsThe Onion Model and Colligative PropertiesEquilibrium Thermodynamics in micro-Emulsion Colloid MechanicsKinetics in micro-Emulsion Colloid Mechanics

    Asphalt Solidification ModelEquilibrium Thermodynamics of Surfaces and InterfacesPhase Transformations and Colligative Propertiesnon-Equilibrium Thermodynamics of Surface micro-StructuringDissipative Structure TheoryApplication to Fracture Mechanics

    Further Thoughts on Fatigue and Moisture Damage, Rutting, and Thermal Cracking

  • n)m/(nc aaJ && ≅∝

    +21

    The visco-elastic J-dissipation energydefined in terms of the constant line zone stress, σc, the crack tip opening displacement, δ = 2y, and α, the wave velocity, or line zone length

    Jc-critical dissipation energy

    ( )[ ] ταττ

    τσ

    δ α dxfKdd

    tCt

    cx )()(

    1 20

    / ∫ −=

    ( )ττ

    τατ d

    tdxdftCKJ

    t

    ⎟⎠⎞

    ⎜⎝⎛−= ∫ ')(

    '

    0

    20

  • CbGT c

    ρ=Δ *

    CktG

    ktCberfciTT c

    b πρρ =⎟

    ⎟⎠

    ⎞⎜⎜⎝

    ⎛−Δ=Δ

    → 1641*lim

    22

    0

    Thermal Stability in Slow Crack GrowthThermal Hardening or Softening

    Williams, J. C., Fracture Mechanics of Polymers, 1984. Ellis Horwood Limited, Chichester, England.

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+Δ=

    aaddK

    KT

    addT c

    c &&& 211

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−Δ

    ∝ 011

    TTRHn

    nc eaK &

    ,

  • TA

    T

    rn x

    Jx

    J ⎟⎠⎞

    ⎜⎝⎛

    ∂∂

    −≥⎟⎠⎞

    ⎜⎝⎛

    ∂∂ γμ

    γ∇( ) ( )TxATrxn JJ μ −≥∇

    Rate of Free Energy Production Defined in terms of Force Gradients

    (Mass Transport Coupled to Stress Gradient)

    Interface-plane Y-axis, μm0 1 2 3 4 5 6

    Inte

    rfac

    e Z-

    axis

    , nm

    0

    20

    40

    60

    80

    100

    120

    ε&γ−∇≥∇cD ! ∇Τ

  • TA

    T

    rn x

    Jx

    J ⎟⎠⎞

    ⎜⎝⎛

    ∂∂

    −≥⎟⎠⎞

    ⎜⎝⎛

    ∂∂ γμ

    γ∇( ) ( )TxATrxn JJ μ −≥∇

    Rate of Free Energy Production Defined in terms of Force Gradients

    (Mass Transport Coupled to Stress Gradient)

    Interface-plane Y-axis, μm0 1 2 3 4 5 6

    Inte

    rfac

    e Z-

    axis

    , nm

    0

    20

    40

    60

    80

    100

    120

    γ∇

    ε&γ−∇≥∇cD !

    ∇c

    ∇Τ

  • Thermal Stability in Slow Crack GrowthThermal Hardening or Softening

    Williams, J. C., Fracture Mechanics of Polymers, 1984. Ellis Horwood Limited, Chichester, England.

    aERTT

    2o2∝ΔAsphalt Thermal Softening, or Hardening,

    Modeled as a Colligative Property

    ε&22

    δoo

    rcDTT ∇=Δ

    CktGc

    πρ=

    Molecular Reorganization due to temperature change, particle

    diffusion and work of cohesion

    Stain energy release rate perMaterial parameters

  • tCtCT c

    VV

    c

    πκρκπρGG 11 ==Δ

    H( ) ( ) ( )( )

    ( )221

    2

    '

    lnln

    TT

    RTccccccxH

    TCV

    rrrrrr

    Vc

    λλκ

    γκπρ

    +≥

    ⎥⎦

    ⎤⎢⎣

    Δ−−−

    +Δ⎟⎠⎞

    ⎜⎝⎛

    ∂∂

    Δ≥

    ∗∗∗

    εG

    ( )( ) aKTcR

    Hc

    Vc &24

    2

    2

    '1 ∝≥

    ΔΔ

    κG

    Critical Stress Intensity Factor

  • tCtCT c

    VV

    c

    πκρκπρGG 11 ==Δ

    H( ) ( ) ( )( )

    ( )221

    2

    '

    lnln

    TT

    RTccccccxH

    TCV

    rrrrrr

    Vc

    λλκ

    γκπρ

    +≥

    ⎥⎦

    ⎤⎢⎣

    Δ−−−

    +Δ⎟⎠⎞

    ⎜⎝⎛

    ∂∂

    Δ≥

    ∗∗∗

    εG

    ( )( ) aKTcR

    Hc

    Vc &24

    2

    2

    '1 ∝≥

    ΔΔ

    κG

    Critical Stress Intensity FactorCrack Propagation Rate

  • tCtCT c

    VV

    c

    πκρκπρGG 11 ==Δ

    H( ) ( ) ( )( )

    ( )221

    2

    '

    lnln

    TT

    RTccccccxH

    TCV

    rrrrrr

    Vc

    λλκ

    γκπρ

    +≥

    ⎥⎦

    ⎤⎢⎣

    Δ−−−

    +Δ⎟⎠⎞

    ⎜⎝⎛

    ∂∂

    Δ≥

    ∗∗∗

    εG

    ( )( ) aKTcR

    Hc

    Vc &24

    2

    2

    '1 ∝≥

    ΔΔ

    κG

    Critical Stress Intensity FactorCrack Propagation Rate

    Material Dissipation Term

  • AAK-1-G6 097 Room Temp (25°C) 4/4/06

  • AAK-1-G6 104 Room Temp (25°C) 4/5/06

  • AAK-1-G6 108 Room Temp (25°C) 4/6/06

  • AAK-1-G6 109 Room Temp (25°C) 4/6/06

  • AAK-1-G6 112 Room Temp (25°C) 4/6/06

  • AAK-1-G6 120 Room Temp (25°C) 4/13/06

  • AAK-1-G6 122 Room Temp (23°C) 4/17/06

  • AAK-1-G6 123 Room Temp (23°C) 4/17/06

  • AAK-1-G6 126 Room Temp (23°C) 4/24/06

  • AAK-1-G6 132 Room Temp (22°C) 5/4/06

  • AAK-1-G6 133 Room Temp (22°C) 5/4/06

  • AAK-1-G6 135 Room Temp (22°C) 5/4/06

  • Towards a Unified Physico-ChemicalModel of Asphalt Binder

    Asphalt Microstructure Model Introduction to micro-Emulsion Colloid MechanicsThe Onion Model and Colligative PropertiesEquilibrium Thermodynamics in micro-Emulsion Colloid MechanicsKinetics in micro-Emulsion Colloid Mechanics

    Asphalt Solidification ModelEquilibrium Thermodynamics of Surfaces and InterfacesPhase Transformations and Colligative Propertiesnon-Equilibrium Thermodynamics of Surface micro-StructuringDissipative Structure TheoryApplication to Fracture Mechanics

    Further Thoughts on Fatigue and Moisture Damage, Rutting, and Thermal Cracking

  • A Bottom-line Opinion?

    Performance properties of asphalt at higher temperatures, like rutting, may be more influenced by the compositional properties of the asphaltenes, the asphaltenes coupling to resins, and the maltenes’viscosity

  • A Bottom-line Opinion?

    Performance properties of asphalt at higher temperatures, like rutting, may be more influenced by the compositional properties of the asphaltenes, the asphaltenes coupling to resins, and the maltenes’viscosity

    whereas

    At lower temperatures, wax and neutral-fraction properties (compositional and physical) are more likely to affect pavement failure such as thermal cracking.

  • A Bottom-line Opinion?

    Performance properties of asphalt at higher temperatures, like rutting, may be more influenced by the compositional properties of the asphaltenes, the asphaltenes coupling to resins, and the maltenes’viscosity

    whereas

    At lower temperatures, wax and neutral-fraction properties (compositional and physical) are more likely to affect pavement failure such as thermal cracking.

    Finally, knowledge of synergy between wax, asphaltenes, and resins at midrange temperatures, especially at the surface, may help to explain pavement failure such as fatigue cracking and moisture damage, both of which are compounded by oxidative age-hardening.

  • U: Internal Energy�S: Entropy�T: Temperature�P: Pressure�n: Number of Moles�: Chemical Potential�: Surface Energy�A: SurfaceMorphological Stability Theory:�Hill and Valley Model�Hill and Valley �Coupling EquationsAAK-1-G1AAC-1-C5AAK-1-G6 097 Room Temp (25°C) 4/4/06AAK-1-G6 104 Room Temp (25°C) 4/5/06AAK-1-G6 108 Room Temp (25°C) 4/6/06AAK-1-G6 109 Room Temp (25°C) 4/6/06AAK-1-G6 112 Room Temp (25°C) 4/6/06AAK-1-G6 120 Room Temp (25°C) 4/13/06AAK-1-G6 122 Room Temp (23°C) 4/17/06AAK-1-G6 123 Room Temp (23°C) 4/17/06AAK-1-G6 126 Room Temp (23°C) 4/24/06AAK-1-G6 132 Room Temp (22°C) 5/4/06AAK-1-G6 133 Room Temp (22°C) 5/4/06AAK-1-G6 135 Room Temp (22°C) 5/4/06