Aspen 1.pdf

6
Workshop Page 1 WORKSHOP # 1 The design of a heat exchanger is necessary for every industry using them. There are different manual ways to design them but with the advancement in technology, it has become possible to do so using the sotwares. One of these softwares is ASPEN HTFS +. The steps which are to be followed to perform the designing are as follows. From the list of all programs in the run window, open the interface of ASPEN HTFS +. Open the input window and proceed to the problem definition. In the application option, you can change the calculation mode, here we selected the design mode. Go to the process data and give all the input values. After this, proceed to the property data and define your hot and cold stream. After giving all the values, run the simulation and check the TEMA sheet for results. Objective and statement High Pressure Boiler Feed Water

description

ASPEN

Transcript of Aspen 1.pdf

Page 1: Aspen 1.pdf

Workshop Page 1

WORKSHOP # 1

The design of a heat exchanger is necessary for every industry using them. There are different

manual ways to design them but with the advancement in technology, it has become possible to

do so using the sotwares. One of these softwares is ASPEN HTFS +. The steps which are to be

followed to perform the designing are as follows.

From the list of all programs in the run window, open the interface of ASPEN HTFS +.

Open the input window and proceed to the problem definition.

In the application option, you can change the calculation mode, here we selected the

design mode.

Go to the process data and give all the input values.

After this, proceed to the property data and define your hot and cold stream.

After giving all the values, run the simulation and check the TEMA sheet for results.

Objective and statement

High Pressure Boiler Feed Water

Page 2: Aspen 1.pdf

Workshop Page 2

Some of the screens-shots are available here for easy understanding.

The first screen-shot shown above, is about the calculation mode. In calculation mode, we can

change the modes as

Design

Rating

Simulation

Maximum fouling

Screen-shot 1

Page 3: Aspen 1.pdf

Workshop Page 3

In the 2nd

screen-shot shown below, we have define the properties of our hot fluid.

Screen-shot 2

Page 4: Aspen 1.pdf

Workshop Page 4

The screen-shot 3 shows result summary after the simulation is performed. Using this window,

we can see the different results.

Results for optimization path are as below.

The first sheet is the Aspen Tasc + summary.

The 2nd

sheet show the Reslut summmary.

Screen-Shot 3

Page 5: Aspen 1.pdf

Workshop Page 5

78.8889

0

16.4167

0

N/m

0.1 0.107

1.94 3.37

2.34 2.18

880 910

0 00 0

78.8889 78.8889 16.4167 16.4167

W/(m² K)

kg/s

°C

m/s

kg/m³

mPa s

kJ/(kg K)

W/(m K)

11197.49 6446.03

45.4 68.66

213 167 50 167

12 11.42801 50 49.9768

0.0232

1.3 1.25 0.14 0.16

0 0

bar

bar

bar

kg/m³

mPa s

kJ/(kg K)

W/(m K)

kJ/kg

9393.9

1893.9

27664.7

1393.7

472.2

674.2

1370.7

0.00011

0.00053

0.00004

0.00072

0.00212

0.00148

0.00073

5.03

24.93

1.71

33.88

34.45

m² K/W

0.00873

0.00005

0.00129

0.00008

0.01306

0.21

5.56

0.34

37.62

56.28

0 0

0.6319 0.6845

0.5512 0.1761

4.186 4.275

990.58 900.94

4019.97 12579.42

3.65 1.1

0 0

0 0kW

0 0

0 0

76.1°C 76.1

0 0

0.00959

0.05975

0.32285

0.07018

0.06941

10.45

56.44

12.27

1.68

12.14

0.04022 7.03

m/s

0.14

1.18

1.3

1.2

2.59

1.28

2.46

100 100 100 100

0 0

8201.3 8086.6

0 0

kg/(m s²)

1223

6112

1633

5437

8143.9kW

0.92 1.32

mm

mm

mm

1

1

1

1

1

599

30

6000

23.81

515

595.98

595.98

40.83

mm

mm

mm

H

1Hor675 16000 BEM

141.3

114.3

323.85

219.08

Single segmental

215.1

1

208.9

208.9215.1 m²

mm

10

5827

15.75 19.05

Plain

mm

0.571991.5 1

None

No

Yes Possible

1.25

1.16

0.16

Design

/

/

/ Rho*V2

/Vibration problem: Tasc/TEMA

RhoV2 violation

Impingement protection

/

/

Dew / Bubble point

/

x

/

/

Surf/Shell (gross/eff/finned)

Shells/unit

seriesparallelConnected inType

Cut orientation

/

/

/

/

//

Tube SideShell Side

Spacing at outlet

Cut(%d)

Spacing: c/c

Spacing at inlet

Number

Type

Tube pattern

Tube pitch

Length act/eff

Tube passes

Tube No.

Actual/Reqd area ratio - fouled/clean

Total heat load

Heat Transfer Parameters

2-Phase liquid

Liquid only

Molecular weight

Tube nozzle interm

Tube nozzle outlet

Tubes

Tube nozzle inlet

Shell nozzle interm

Shell nozzle outlet

Shell baffle window

Velocity

Shell nozzle inlet

Shell bundle Xflow

Intermediate nozzle

Eff. MTD/ 1 pass MTD

Latent heat

2-Phase vapor

Vapor only

Intermediate nozzle

/

Inlet space Xflow

Inlet nozzle

1

2

3

4

7

8

9

10

11

12

13

14

Size

PERFORMANCE OF ONE UNIT

Total flow

Vapor

Liquid

Noncondensable

Condensed/Evaporated

Temperature

22

21

20

19

18

17

16

15 Quality

Pressure

Pressure drop, allow./calc.

Velocity

Liquid Properties

Density

Viscosity

30

29

28

27

26

25

24

23 Specific heat

Therm. cond.

Surface tension

Vapor Properties

Density

Viscosity

Specific heat

38

37

36

35

34

33

32

31 Therm. cond.

Latent heat

Molecular weight

Reynolds No. vapor

Reynolds No. liquid

Prandtl No. vapor

46

45

44

43

42

41

40

39

Prandtl No. liquid

54

53

52

51

50

49

48

47

Tubes

Type

ID/OD

6

5

Shell Side

Tube side fouling

Tube wall

Outside fouling

Outside film

Overall fouled

Overall clean

Tube Side Pressure Drop

Inlet nozzle

Entering tubes

Inside tubes

Exiting tubes

Outlet nozzle

Shell Side Pressure Drop

Baffle Xflow

Baffle window

Outlet space Xflow

Outlet nozzle

Heat Load

Coef./Resist.

Tube side film

Tube Side

In Out In Out

Surf/Unit (gross/eff/finned)

55

56

57

Baffles

Intermediate

Outlet

Inlet

Nozzles: (No./OD)

%

Two-Phase Properties

Heat Transfer Parameters

Process Data

%

%

Page 6: Aspen 1.pdf

Workshop Page 6

0

595.98

515

R - refinery service

Compressed Fiber 1/16

ASME Code Sec VIII Div 1

-

Compressed Fiber 1/16

Single segmentalCarbon Steel

-

Exp.

-

mm

ASPEN TASC+ WORKSHOP

675 6000 BEM 1 1

208.9 m² 1 208.9 m²

Light Oil Water

78.8889 16.4167kg/s

0 0kg/s 0 0

78.8889 78.8889kg/s 16.4167 16.4167

kg/s 0

213 167°C 50 167

°C

kg/m³

mPa s

kJ/(kg K)

W/(m K)

kJ/kg

12 50bar

1.3 0.16m/s

1.5 0.57199bar 1 0.0232

0.00053 0.00009m² K/W

kW8143.9 °C76.1

512.3 472.2 W/(m² K)674.2

bar 59

310 270°C

1 1

3.18 3.18mm

304.8 - 127 -

203.2 - 101.6 -

- -

mm

5754.2 7697.6 kg3487.8

1223 1436 kg/(m s²)1841

40.83

mm

mm

599 23.8119.05 1.65 6000mm mm mm

Plain Carbon Steel 30

mm695

Carbon Steel

Carbon Steel

- None

-

-

-

Carbon Steel

Hor

H

Avg

675

0 0

11.42801 49.9768

14

880 910 990.58 900.94

1.94 3.37 0.5512 0.1761

2.34 2.18 4.186 4.275

0.1 0.107 0.6319 0.6845

0.00011

#/m

Nominal

Size/rating

Ao based

Vapor/Liquid

--

Code

Remarks

TEMA class

Intermediate

BundleFilled with waterWeight/Shell

Code requirements

Floating head

Tube SideGaskets - Shell side

Bundle exitBundle entrance

TypeExpansion joint

Tube-tubesheet jointBypass seal

TypeU-bendSupports-tube

Impingement protection

Tubesheet-floating

Channel cover

Floating head cover

Tubesheet-stationary

Channel or bonnet

Out

In

Surf/shell (eff.)Shells/unitSurf/unit(eff.)

seriesparallelConnected inTypeSize

OD

Sketch

1

2

3

4

5

6

7

PERFORMANCE OF ONE UNIT8

Fluid allocation9

Fluid name10

Fluid quantity, Total11

Vapor (In/Out)12

Liquid13

Noncondensable14

Temperature (In/Out)

15

Dew / Bubble point

16

17

18

19

20

21

22

23

24

25

26

27

28

Heat exchanged29

Transfer rate, Service30

CONSTRUCTION OF ONE SHELL31

Design/Test pressure

32

Design temperature

33

Number passes per shell

34

Corrosion allowance

35

Connections

36

37

38

Tube No.

39

Tks-40

41

Length

42

Pitch

43

Tube type

44

Material

45

Shell

46

ID

47

OD

48

Shell Side

49

Tube Side

50

Shell cover

51

Tube pattern

52

Baffle-crossing

53

Type

54

Cut(%d)

55

Spacing: c/c

56

Baffle-long

57

Seal type

58

Inlet

RhoV2-Inlet nozzle

Shell Side Tube Side

Fouling resist. (min)

Pressure drop, allow./calc.

Velocity

Pressure

Latent heat

Thermal conductivity

Specific heat

Molecular wt, NC

Molecular wt, Vap

Viscosity

Density

MTD corrected

Dirty Clean

Heat Exchanger Specification Sheet

Code