AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A...

66
A Short Introduction to Index Coding with Side Information Dau Son Hoang [email protected] SPMS, Nanyang Technological University A Short Introduction to Index Coding with Side Information

Transcript of AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A...

Page 1: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

A Short Introduction to Index Coding with Side Information

Dau Son [email protected]

SPMS, Nanyang Technological University

A Short Introduction to Index Coding with Side Information

Page 2: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Basic Definitions

S

R1 R2 R3

Has

Requests

x2 x3 x1, x2

x1 x2 x3

x1

x2x3

A Short Introduction to Index Coding with Side Information

Page 3: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Basic Definitions

S

R1 R2 R3

Has

Requests

x2 x3 x1, x2

x1 x2 x3

x1

x2x3

S broadcasts (2 transmissions):

{

x1 + x2

x2 + x3

Trivial solution: 3 transmissions

A Short Introduction to Index Coding with Side Information

Page 4: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Basic Definitions

S

R1 R2 R3

Has

Requests

x2 x3 x1, x2

x1 x2 x3

x1

x2x3

S broadcasts (2 transmissions):

{

x1 + x2

x2 + x3

Trivial solution: 3 transmissions

1

32

Digraph of Side Information D

A Short Introduction to Index Coding with Side Information

Page 5: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Basic Definitions

S

R1 R2 R3

Has

Requests

x2 x3 x1, x2

x1 x2 x3

x1

x2x3

S broadcasts (2 transmissions):

{

x1 + x2

x2 + x3

Trivial solution: 3 transmissions

1

32

Digraph of Side Information D

M =

1 1 00 1 11 0 1

has rank two. An n × n matrix Mfits a digraph D of order n if

mi,j =

{

1, j = i

0, (i , j) /∈ E(D)

A Short Introduction to Index Coding with Side Information

Page 6: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Basic Definitions

S

R1 R2 R3

Has

Requests

x2 x3 x1, x2

x1 x2 x3

x1

x2x3

S broadcasts (2 transmissions):

{

x1 + x2

x2 + x3

Trivial solution: 3 transmissions

1

32

Digraph of Side Information D

M =

1 1 00 1 11 0 1

has rank two. An n × n matrix Mfits a digraph D of order n if

mi,j =

{

1, j = i

0, (i , j) /∈ E(D)

minrkq(D) = min{

rankq(M) : M fits D}

A Short Introduction to Index Coding with Side Information

Page 7: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Basic Definitions

S

R1 R2 R3

Has

Requests

x2 x3 x1, x2

x1 x2 x3

x1

x2x3

S broadcasts (2 transmissions):

{

x1 + x2

x2 + x3

Trivial solution: 3 transmissions

1

32

Digraph of Side Information D

M =

1 1 00 1 11 0 1

has rank two. An n × n matrix Mfits a digraph D of order n if

mi,j =

{

1, j = i

0, (i , j) /∈ E(D)

minrkq(D) = min{

rankq(M) : M fits D}

Bar-Yossef et al. (2006): 1/minrk2(D) is the best rate for scalar linear index codes(IC)

A Short Introduction to Index Coding with Side Information

Page 8: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Bar-Yossef et al.’ Conjecture

Definition (Capacity)

A Short Introduction to Index Coding with Side Information

Page 9: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Bar-Yossef et al.’ Conjecture

Definition (Capacity)

a (t, k)-IC: broadcast k q-ary symbols; xi ∈ Ftq

A Short Introduction to Index Coding with Side Information

Page 10: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Bar-Yossef et al.’ Conjecture

Definition (Capacity)

a (t, k)-IC: broadcast k q-ary symbols; xi ∈ Ftq

a (t, k)-IC: t/k is the rate

A Short Introduction to Index Coding with Side Information

Page 11: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Bar-Yossef et al.’ Conjecture

Definition (Capacity)

a (t, k)-IC: broadcast k q-ary symbols; xi ∈ Ftq

a (t, k)-IC: t/k is the rate

general capacity: C(D) = sup{t/k : ∃ a (t, k)-IC}

A Short Introduction to Index Coding with Side Information

Page 12: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Bar-Yossef et al.’ Conjecture

Definition (Capacity)

a (t, k)-IC: broadcast k q-ary symbols; xi ∈ Ftq

a (t, k)-IC: t/k is the rate

general capacity: C(D) = sup{t/k : ∃ a (t, k)-IC}

scalar capacity: Cs(D) = sup{1/k : ∃ a (1, k)-IC}

A Short Introduction to Index Coding with Side Information

Page 13: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Bar-Yossef et al.’ Conjecture

Definition (Capacity)

a (t, k)-IC: broadcast k q-ary symbols; xi ∈ Ftq

a (t, k)-IC: t/k is the rate

general capacity: C(D) = sup{t/k : ∃ a (t, k)-IC}

scalar capacity: Cs(D) = sup{1/k : ∃ a (1, k)-IC}

scalar linear capacity: Csl (D) = sup{1/k : ∃ a linear (1, k)-IC}

A Short Introduction to Index Coding with Side Information

Page 14: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Bar-Yossef et al.’ Conjecture

Definition (Capacity)

a (t, k)-IC: broadcast k q-ary symbols; xi ∈ Ftq

a (t, k)-IC: t/k is the rate

general capacity: C(D) = sup{t/k : ∃ a (t, k)-IC}

scalar capacity: Cs(D) = sup{1/k : ∃ a (1, k)-IC}

scalar linear capacity: Csl (D) = sup{1/k : ∃ a linear (1, k)-IC}

Bar-Yossef et al. (2006) conjectured: Csl (D) (= 1/minrk2(D)) is the best rate

A Short Introduction to Index Coding with Side Information

Page 15: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Bar-Yossef et al.’ Conjecture

Definition (Capacity)

a (t, k)-IC: broadcast k q-ary symbols; xi ∈ Ftq

a (t, k)-IC: t/k is the rate

general capacity: C(D) = sup{t/k : ∃ a (t, k)-IC}

scalar capacity: Cs(D) = sup{1/k : ∃ a (1, k)-IC}

scalar linear capacity: Csl (D) = sup{1/k : ∃ a linear (1, k)-IC}

Bar-Yossef et al. (2006) conjectured: Csl (D) (= 1/minrk2(D)) is the best rate

Lubetzky and Stav (2007): q-ary ICsoutperform binary ICs, mixed-field ICoutperform q-ary ICs (Cs(D) >> Csl (D))

Gn

A Short Introduction to Index Coding with Side Information

Page 16: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Bar-Yossef et al.’ Conjecture

Definition (Capacity)

a (t, k)-IC: broadcast k q-ary symbols; xi ∈ Ftq

a (t, k)-IC: t/k is the rate

general capacity: C(D) = sup{t/k : ∃ a (t, k)-IC}

scalar capacity: Cs(D) = sup{1/k : ∃ a (1, k)-IC}

scalar linear capacity: Csl (D) = sup{1/k : ∃ a linear (1, k)-IC}

Bar-Yossef et al. (2006) conjectured: Csl (D) (= 1/minrk2(D)) is the best rate

Lubetzky and Stav (2007): q-ary ICsoutperform binary ICs, mixed-field ICoutperform q-ary ICs (Cs(D) >> Csl (D))

Gn

minrk2(Gn) ≥ n1−ε

A Short Introduction to Index Coding with Side Information

Page 17: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Bar-Yossef et al.’ Conjecture

Definition (Capacity)

a (t, k)-IC: broadcast k q-ary symbols; xi ∈ Ftq

a (t, k)-IC: t/k is the rate

general capacity: C(D) = sup{t/k : ∃ a (t, k)-IC}

scalar capacity: Cs(D) = sup{1/k : ∃ a (1, k)-IC}

scalar linear capacity: Csl (D) = sup{1/k : ∃ a linear (1, k)-IC}

Bar-Yossef et al. (2006) conjectured: Csl (D) (= 1/minrk2(D)) is the best rate

Lubetzky and Stav (2007): q-ary ICsoutperform binary ICs, mixed-field ICoutperform q-ary ICs (Cs(D) >> Csl (D))

Gn

minrk2(Gn) ≥ n1−ε

minrkq(Gn) ≤ nε

A Short Introduction to Index Coding with Side Information

Page 18: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Bar-Yossef et al.’ Conjecture

Definition (Capacity)

a (t, k)-IC: broadcast k q-ary symbols; xi ∈ Ftq

a (t, k)-IC: t/k is the rate

general capacity: C(D) = sup{t/k : ∃ a (t, k)-IC}

scalar capacity: Cs(D) = sup{1/k : ∃ a (1, k)-IC}

scalar linear capacity: Csl (D) = sup{1/k : ∃ a linear (1, k)-IC}

Bar-Yossef et al. (2006) conjectured: Csl (D) (= 1/minrk2(D)) is the best rate

Lubetzky and Stav (2007): q-ary ICsoutperform binary ICs, mixed-field ICoutperform q-ary ICs (Cs(D) >> Csl (D))

Gn

minrk2(Gn) ≥ n1−ε

minrkq(Gn) ≤ nε

Hn = Gn ∪ Gn

minrkq(Hn) ≥ 2√n, ∀q

A Short Introduction to Index Coding with Side Information

Page 19: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Bar-Yossef et al.’ Conjecture

Definition (Capacity)

a (t, k)-IC: broadcast k q-ary symbols; xi ∈ Ftq

a (t, k)-IC: t/k is the rate

general capacity: C(D) = sup{t/k : ∃ a (t, k)-IC}

scalar capacity: Cs(D) = sup{1/k : ∃ a (1, k)-IC}

scalar linear capacity: Csl (D) = sup{1/k : ∃ a linear (1, k)-IC}

Bar-Yossef et al. (2006) conjectured: Csl (D) (= 1/minrk2(D)) is the best rate

Lubetzky and Stav (2007): q-ary ICsoutperform binary ICs, mixed-field ICoutperform q-ary ICs (Cs(D) >> Csl (D))

Gn

minrk2(Gn) ≥ n1−ε

minrkq(Gn) ≤ nε

Hn = Gn ∪ Gn

minrkq(Hn) ≥ 2√n, ∀q

minrk2(Gn) + minrk3(Gn) ≤ nε

A Short Introduction to Index Coding with Side Information

Page 20: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Bar-Yossef et al.’ Conjecture

Definition (Capacity)

a (t, k)-IC: broadcast k q-ary symbols; xi ∈ Ftq

a (t, k)-IC: t/k is the rate

general capacity: C(D) = sup{t/k : ∃ a (t, k)-IC}

scalar capacity: Cs(D) = sup{1/k : ∃ a (1, k)-IC}

scalar linear capacity: Csl (D) = sup{1/k : ∃ a linear (1, k)-IC}

Bar-Yossef et al. (2006) conjectured: Csl (D) (= 1/minrk2(D)) is the best rate

Lubetzky and Stav (2007): q-ary ICsoutperform binary ICs, mixed-field ICoutperform q-ary ICs (Cs(D) >> Csl (D))

Gn

minrk2(Gn) ≥ n1−ε

minrkq(Gn) ≤ nε

Hn = Gn ∪ Gn

minrkq(Hn) ≥ 2√n, ∀q

minrk2(Gn) + minrk3(Gn) ≤ nε

Alon et al. (2008): block nonlinear ICsoutperform scalar nonlinear ICs(C(D) >> Cs(D))

A Short Introduction to Index Coding with Side Information

Page 21: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Bar-Yossef et al.’ Conjecture

Definition (Capacity)

a (t, k)-IC: broadcast k q-ary symbols; xi ∈ Ftq

a (t, k)-IC: t/k is the rate

general capacity: C(D) = sup{t/k : ∃ a (t, k)-IC}

scalar capacity: Cs(D) = sup{1/k : ∃ a (1, k)-IC}

scalar linear capacity: Csl (D) = sup{1/k : ∃ a linear (1, k)-IC}

Bar-Yossef et al. (2006) conjectured: Csl (D) (= 1/minrk2(D)) is the best rate

Lubetzky and Stav (2007): q-ary ICsoutperform binary ICs, mixed-field ICoutperform q-ary ICs (Cs(D) >> Csl (D))

Gn

minrk2(Gn) ≥ n1−ε

minrkq(Gn) ≤ nε

Hn = Gn ∪ Gn

minrkq(Hn) ≥ 2√n, ∀q

minrk2(Gn) + minrk3(Gn) ≤ nε

Alon et al. (2008): block nonlinear ICsoutperform scalar nonlinear ICs(C(D) >> Cs(D))

An IC instance ↪→ Confusion graph C

Best rate = 1/χ(C)

A Short Introduction to Index Coding with Side Information

Page 22: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Bar-Yossef et al.’ Conjecture

Definition (Capacity)

a (t, k)-IC: broadcast k q-ary symbols; xi ∈ Ftq

a (t, k)-IC: t/k is the rate

general capacity: C(D) = sup{t/k : ∃ a (t, k)-IC}

scalar capacity: Cs(D) = sup{1/k : ∃ a (1, k)-IC}

scalar linear capacity: Csl (D) = sup{1/k : ∃ a linear (1, k)-IC}

Bar-Yossef et al. (2006) conjectured: Csl (D) (= 1/minrk2(D)) is the best rate

Lubetzky and Stav (2007): q-ary ICsoutperform binary ICs, mixed-field ICoutperform q-ary ICs (Cs(D) >> Csl (D))

Gn

minrk2(Gn) ≥ n1−ε

minrkq(Gn) ≤ nε

Hn = Gn ∪ Gn

minrkq(Hn) ≥ 2√n, ∀q

minrk2(Gn) + minrk3(Gn) ≤ nε

Alon et al. (2008): block nonlinear ICsoutperform scalar nonlinear ICs(C(D) >> Cs(D))

An IC instance ↪→ Confusion graph C

Best rate = 1/χ(C)

El Rouayheb et al. (2008): block nonlinearICs outperform block linear ICs; blocklinear ICs outperform scalar linear ICs

A Short Introduction to Index Coding with Side Information

Page 23: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Index Coding, Network Coding, and Matroid

A Short Introduction to Index Coding with Side Information

Page 24: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Index Coding, Network Coding, and Matroid

Index Coding is a special case ofNetwork Coding (NC)

A Short Introduction to Index Coding with Side Information

Page 25: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Index Coding, Network Coding, and Matroid

Index Coding is a special case ofNetwork Coding (NC)

1

32

Digraph of Side Information D

A Short Introduction to Index Coding with Side Information

Page 26: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Index Coding, Network Coding, and Matroid

Index Coding is a special case ofNetwork Coding (NC)

1

32

Digraph of Side Information D

x1 x2 x3

x1 x2 x3

k

b b b

b b b

Corresponding Network Coding instance

A Short Introduction to Index Coding with Side Information

Page 27: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Index Coding, Network Coding, and Matroid

Index Coding is a special case ofNetwork Coding (NC)

1

32

Digraph of Side Information D

x1 x2 x3

x1 x2 x3

k

b b b

b b b

Corresponding Network Coding instance

NC can be reduced to IC

A Short Introduction to Index Coding with Side Information

Page 28: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Index Coding, Network Coding, and Matroid

Index Coding is a special case ofNetwork Coding (NC)

1

32

Digraph of Side Information D

x1 x2 x3

x1 x2 x3

k

b b b

b b b

Corresponding Network Coding instance

NC can be reduced to IC

NC instance ↪→ IC instance

∃ a linear block NC ⇐⇒ ∃ a linear block IC

∃ a nonlinear block NC =⇒ ∃ a nonlinear block IC

Page 29: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Index Coding, Network Coding, and Matroid

Index Coding is a special case ofNetwork Coding (NC)

1

32

Digraph of Side Information D

x1 x2 x3

x1 x2 x3

k

b b b

b b b

Corresponding Network Coding instance

NC can be reduced to IC

NC instance ↪→ IC instance

∃ a linear block NC ⇐⇒ ∃ a linear block IC

∃ a nonlinear block NC =⇒ ∃ a nonlinear block IC

nonlinear vs. linear results in NC

nonlinear vs. linear results in IC

A Short Introduction to Index Coding with Side Information

Page 30: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Index Coding, Network Coding, and Matroid

Index Coding is a special case ofNetwork Coding (NC)

1

32

Digraph of Side Information D

x1 x2 x3

x1 x2 x3

k

b b b

b b b

Corresponding Network Coding instance

NC can be reduced to IC

NC instance ↪→ IC instance

∃ a linear block NC ⇐⇒ ∃ a linear block IC

∃ a nonlinear block NC =⇒ ∃ a nonlinear block IC

nonlinear vs. linear results in NC

nonlinear vs. linear results in IC

Matroid can be reduced to IC

A Short Introduction to Index Coding with Side Information

Page 31: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Index Coding, Network Coding, and Matroid

Index Coding is a special case ofNetwork Coding (NC)

1

32

Digraph of Side Information D

x1 x2 x3

x1 x2 x3

k

b b b

b b b

Corresponding Network Coding instance

NC can be reduced to IC

NC instance ↪→ IC instance

∃ a linear block NC ⇐⇒ ∃ a linear block IC

∃ a nonlinear block NC =⇒ ∃ a nonlinear block IC

nonlinear vs. linear results in NC

nonlinear vs. linear results in IC

Matroid can be reduced to IC

matroid ↪→ IC instance

∃ a t-representation ⇐⇒ ∃ a linear t-block IC

Page 32: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Index Coding, Network Coding, and Matroid

Index Coding is a special case ofNetwork Coding (NC)

1

32

Digraph of Side Information D

x1 x2 x3

x1 x2 x3

k

b b b

b b b

Corresponding Network Coding instance

NC can be reduced to IC

NC instance ↪→ IC instance

∃ a linear block NC ⇐⇒ ∃ a linear block IC

∃ a nonlinear block NC =⇒ ∃ a nonlinear block IC

nonlinear vs. linear results in NC

nonlinear vs. linear results in IC

Matroid can be reduced to IC

matroid ↪→ IC instance

∃ a t-representation ⇐⇒ ∃ a linear t-block IC

matroid: 2-rep. but not 1-rep.

linear 2-block IC with better rate than linear scalar IC

A Short Introduction to Index Coding with Side Information

Page 33: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Capacity: Hardness and Bounds

Hardness

A Short Introduction to Index Coding with Side Information

Page 34: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Capacity: Hardness and Bounds

Hardness

1 Csl : hard to compute

A Short Introduction to Index Coding with Side Information

Page 35: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Capacity: Hardness and Bounds

Hardness

1 Csl : hard to compute(Peeters 1996): Csl (G) = 1/3? (or minrkq(G) = 3?) is NP-complete

A Short Introduction to Index Coding with Side Information

Page 36: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Capacity: Hardness and Bounds

Hardness

1 Csl : hard to compute(Peeters 1996): Csl (G) = 1/3? (or minrkq(G) = 3?) is NP-complete(Dau, Skachek, Chee, 2011): Csl (D) = 1/2? (or minrkq(D) = 2?) is NP-complete

A Short Introduction to Index Coding with Side Information

Page 37: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Capacity: Hardness and Bounds

Hardness

1 Csl : hard to compute(Peeters 1996): Csl (G) = 1/3? (or minrkq(G) = 3?) is NP-complete(Dau, Skachek, Chee, 2011): Csl (D) = 1/2? (or minrkq(D) = 2?) is NP-complete(Langberg, Sprintson, 2008): finding an IC with rate > αCsl (D) (α ∈ (0, 1]) isNP-hard

A Short Introduction to Index Coding with Side Information

Page 38: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Capacity: Hardness and Bounds

Hardness

1 Csl : hard to compute(Peeters 1996): Csl (G) = 1/3? (or minrkq(G) = 3?) is NP-complete(Dau, Skachek, Chee, 2011): Csl (D) = 1/2? (or minrkq(D) = 2?) is NP-complete(Langberg, Sprintson, 2008): finding an IC with rate > αCsl (D) (α ∈ (0, 1]) isNP-hard

2 Cs and C : the hardness is not known

A Short Introduction to Index Coding with Side Information

Page 39: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Capacity: Hardness and Bounds

Hardness

1 Csl : hard to compute(Peeters 1996): Csl (G) = 1/3? (or minrkq(G) = 3?) is NP-complete(Dau, Skachek, Chee, 2011): Csl (D) = 1/2? (or minrkq(D) = 2?) is NP-complete(Langberg, Sprintson, 2008): finding an IC with rate > αCsl (D) (α ∈ (0, 1]) isNP-hard

2 Cs and C : the hardness is not known(Blasiak et al. 2011): polynomial time algo. to approx. C with ratio O( log n

n log log n)

A Short Introduction to Index Coding with Side Information

Page 40: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Capacity: Hardness and Bounds

Hardness

1 Csl : hard to compute(Peeters 1996): Csl (G) = 1/3? (or minrkq(G) = 3?) is NP-complete(Dau, Skachek, Chee, 2011): Csl (D) = 1/2? (or minrkq(D) = 2?) is NP-complete(Langberg, Sprintson, 2008): finding an IC with rate > αCsl (D) (α ∈ (0, 1]) isNP-hard

2 Cs and C : the hardness is not known(Blasiak et al. 2011): polynomial time algo. to approx. C with ratio O( log n

n log log n)

Bounds

A Short Introduction to Index Coding with Side Information

Page 41: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Capacity: Hardness and Bounds

Hardness

1 Csl : hard to compute(Peeters 1996): Csl (G) = 1/3? (or minrkq(G) = 3?) is NP-complete(Dau, Skachek, Chee, 2011): Csl (D) = 1/2? (or minrkq(D) = 2?) is NP-complete(Langberg, Sprintson, 2008): finding an IC with rate > αCsl (D) (α ∈ (0, 1]) isNP-hard

2 Cs and C : the hardness is not known(Blasiak et al. 2011): polynomial time algo. to approx. C with ratio O( log n

n log log n)

Bounds

1 α(G) ≤ 1Csl (G)

≤ χ(G): χ - chromatic number, α(G) - independent number

A Short Introduction to Index Coding with Side Information

Page 42: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Capacity: Hardness and Bounds

Hardness

1 Csl : hard to compute(Peeters 1996): Csl (G) = 1/3? (or minrkq(G) = 3?) is NP-complete(Dau, Skachek, Chee, 2011): Csl (D) = 1/2? (or minrkq(D) = 2?) is NP-complete(Langberg, Sprintson, 2008): finding an IC with rate > αCsl (D) (α ∈ (0, 1]) isNP-hard

2 Cs and C : the hardness is not known(Blasiak et al. 2011): polynomial time algo. to approx. C with ratio O( log n

n log log n)

Bounds

1 α(G) ≤ 1Csl (G)

≤ χ(G): χ - chromatic number, α(G) - independent number

2 α(G) ≤ 1Csl (G)

≤ n − µ(G): µ(G) - maximum size of a matching

A Short Introduction to Index Coding with Side Information

Page 43: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Capacity: Hardness and Bounds

Hardness

1 Csl : hard to compute(Peeters 1996): Csl (G) = 1/3? (or minrkq(G) = 3?) is NP-complete(Dau, Skachek, Chee, 2011): Csl (D) = 1/2? (or minrkq(D) = 2?) is NP-complete(Langberg, Sprintson, 2008): finding an IC with rate > αCsl (D) (α ∈ (0, 1]) isNP-hard

2 Cs and C : the hardness is not known(Blasiak et al. 2011): polynomial time algo. to approx. C with ratio O( log n

n log log n)

Bounds

1 α(G) ≤ 1Csl (G)

≤ χ(G): χ - chromatic number, α(G) - independent number

2 α(G) ≤ 1Csl (G)

≤ n − µ(G): µ(G) - maximum size of a matching

3 α(D) ≤ 1Csl (D)

≤ cc(D): α(D) - size of maximum acyclic induced subgraph,

cc(D) - clique cover number

A Short Introduction to Index Coding with Side Information

Page 44: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Capacity: Hardness and Bounds

Hardness

1 Csl : hard to compute(Peeters 1996): Csl (G) = 1/3? (or minrkq(G) = 3?) is NP-complete(Dau, Skachek, Chee, 2011): Csl (D) = 1/2? (or minrkq(D) = 2?) is NP-complete(Langberg, Sprintson, 2008): finding an IC with rate > αCsl (D) (α ∈ (0, 1]) isNP-hard

2 Cs and C : the hardness is not known(Blasiak et al. 2011): polynomial time algo. to approx. C with ratio O( log n

n log log n)

Bounds

1 α(G) ≤ 1Csl (G)

≤ χ(G): χ - chromatic number, α(G) - independent number

2 α(G) ≤ 1Csl (G)

≤ n − µ(G): µ(G) - maximum size of a matching

3 α(D) ≤ 1Csl (D)

≤ cc(D): α(D) - size of maximum acyclic induced subgraph,

cc(D) - clique cover number

4 α(D) ≤ 1Csl (D)

≤ n − ν(D): ν(D) - maximum number of disjoint circuits

A Short Introduction to Index Coding with Side Information

Page 45: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Capacity: Hardness and Bounds

Hardness

1 Csl : hard to compute(Peeters 1996): Csl (G) = 1/3? (or minrkq(G) = 3?) is NP-complete(Dau, Skachek, Chee, 2011): Csl (D) = 1/2? (or minrkq(D) = 2?) is NP-complete(Langberg, Sprintson, 2008): finding an IC with rate > αCsl (D) (α ∈ (0, 1]) isNP-hard

2 Cs and C : the hardness is not known(Blasiak et al. 2011): polynomial time algo. to approx. C with ratio O( log n

n log log n)

Bounds

1 α(G) ≤ 1Csl (G)

≤ χ(G): χ - chromatic number, α(G) - independent number

2 α(G) ≤ 1Csl (G)

≤ n − µ(G): µ(G) - maximum size of a matching

3 α(D) ≤ 1Csl (D)

≤ cc(D): α(D) - size of maximum acyclic induced subgraph,

cc(D) - clique cover number

4 α(D) ≤ 1Csl (D)

≤ n − ν(D): ν(D) - maximum number of disjoint circuits

5 α(G) ≤ b2 ≤ 1C(G)

≤ bn = χf (G): b2, bn - solutions of linear programs

A Short Introduction to Index Coding with Side Information

Page 46: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

(Di)Graphs with Easy-to-Compute Capacities

A Short Introduction to Index Coding with Side Information

Page 47: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

(Di)Graphs with Easy-to-Compute Capacities

Scalar Linear Capacity Csl

A Short Introduction to Index Coding with Side Information

Page 48: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

(Di)Graphs with Easy-to-Compute Capacities

Scalar Linear Capacity Csl

(Haemers 1978): perfect graphs (1/α(G))

A Short Introduction to Index Coding with Side Information

Page 49: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

(Di)Graphs with Easy-to-Compute Capacities

Scalar Linear Capacity Csl

(Haemers 1978): perfect graphs (1/α(G))

(Bar-Yossef et al. 2006): odd cycles ( 1bn/2c

) and complements (3), acyclic

digraphs (orders)

A Short Introduction to Index Coding with Side Information

Page 50: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

(Di)Graphs with Easy-to-Compute Capacities

Scalar Linear Capacity Csl

(Haemers 1978): perfect graphs (1/α(G))

(Bar-Yossef et al. 2006): odd cycles ( 1bn/2c

) and complements (3), acyclic

digraphs (orders)

(Berliner, Langberg 2011): outerplanar graphs (dynamic programming)

A Short Introduction to Index Coding with Side Information

Page 51: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

(Di)Graphs with Easy-to-Compute Capacities

Scalar Linear Capacity Csl

(Haemers 1978): perfect graphs (1/α(G))

(Bar-Yossef et al. 2006): odd cycles ( 1bn/2c

) and complements (3), acyclic

digraphs (orders)

(Berliner, Langberg 2011): outerplanar graphs (dynamic programming)

(Dau, Skachek, Chee 2011): Koenig-Egervary graphs (1/α(G)), connectivelyreducible digraphs, line digraphs of partially planar digraphs ( 1

n−ν(D)), graphs

having tree structure of Type I (dynamic programming)

A Short Introduction to Index Coding with Side Information

Page 52: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

(Di)Graphs with Easy-to-Compute Capacities

Scalar Linear Capacity Csl

(Haemers 1978): perfect graphs (1/α(G))

(Bar-Yossef et al. 2006): odd cycles ( 1bn/2c

) and complements (3), acyclic

digraphs (orders)

(Berliner, Langberg 2011): outerplanar graphs (dynamic programming)

(Dau, Skachek, Chee 2011): Koenig-Egervary graphs (1/α(G)), connectivelyreducible digraphs, line digraphs of partially planar digraphs ( 1

n−ν(D)), graphs

having tree structure of Type I (dynamic programming)

Scalar Capacity Cs and General Capacity C

A Short Introduction to Index Coding with Side Information

Page 53: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

(Di)Graphs with Easy-to-Compute Capacities

Scalar Linear Capacity Csl

(Haemers 1978): perfect graphs (1/α(G))

(Bar-Yossef et al. 2006): odd cycles ( 1bn/2c

) and complements (3), acyclic

digraphs (orders)

(Berliner, Langberg 2011): outerplanar graphs (dynamic programming)

(Dau, Skachek, Chee 2011): Koenig-Egervary graphs (1/α(G)), connectivelyreducible digraphs, line digraphs of partially planar digraphs ( 1

n−ν(D)), graphs

having tree structure of Type I (dynamic programming)

Scalar Capacity Cs and General Capacity C

(Bar-Yossef et al. 2006): Cs = Csl for perfect graphs, odd cycles andcomplements, acyclic digraphs

A Short Introduction to Index Coding with Side Information

Page 54: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

(Di)Graphs with Easy-to-Compute Capacities

Scalar Linear Capacity Csl

(Haemers 1978): perfect graphs (1/α(G))

(Bar-Yossef et al. 2006): odd cycles ( 1bn/2c

) and complements (3), acyclic

digraphs (orders)

(Berliner, Langberg 2011): outerplanar graphs (dynamic programming)

(Dau, Skachek, Chee 2011): Koenig-Egervary graphs (1/α(G)), connectivelyreducible digraphs, line digraphs of partially planar digraphs ( 1

n−ν(D)), graphs

having tree structure of Type I (dynamic programming)

Scalar Capacity Cs and General Capacity C

(Bar-Yossef et al. 2006): Cs = Csl for perfect graphs, odd cycles andcomplements, acyclic digraphs

(Blasiak et al. 2011): n-cycles (C = 2/n), complements of n-cycles (C =bn/2c

n),

3-regular Cayley graphs of Zn (C = 2/n)

A Short Introduction to Index Coding with Side Information

Page 55: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Error Correction for Index Coding

A Short Introduction to Index Coding with Side Information

Page 56: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Error Correction for Index Coding

xencoding

y = xLClassical ECC:noisy

channely + ε

decodingx

A Short Introduction to Index Coding with Side Information

Page 57: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Error Correction for Index Coding

xencoding

y = xLClassical ECC:noisy

channely + ε

decodingx

xencoding

y = xLECIC:

decodingx1y + ε1

decodingx2y + ε2

b

b

b

decodingxny + εn

side info.

b

b

b

b

b

b

noisybroadcast channel

side info.

side info.

A Short Introduction to Index Coding with Side Information

Page 58: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Error Correction for Index Coding

xencoding

y = xLClassical ECC:noisy

channely + ε

decodingx

xencoding

y = xLECIC:

decodingx1y + ε1

decodingx2y + ε2

b

b

b

decodingxny + εn

side info.

b

b

b

b

b

b

noisybroadcast channel

side info.

side info.

(Dau, Skachek, Chee, 2011): scalar linear error-correcting index code (ECIC)

optimal IC + optimal ECC 6= optimal ECIC for small alphabets

A Short Introduction to Index Coding with Side Information

Page 59: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Error Correction for Index Coding

xencoding

y = xLClassical ECC:noisy

channely + ε

decodingx

xencoding

y = xLECIC:

decodingx1y + ε1

decodingx2y + ε2

b

b

b

decodingxny + εn

side info.

b

b

b

b

b

b

noisybroadcast channel

side info.

side info.

(Dau, Skachek, Chee, 2011): scalar linear error-correcting index code (ECIC)

optimal IC + optimal ECC 6= optimal ECIC for small alphabets

optimal IC + optimal ECC = optimal ECIC for large alphabets

A Short Introduction to Index Coding with Side Information

Page 60: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Error Correction for Index Coding

xencoding

y = xLClassical ECC:noisy

channely + ε

decodingx

xencoding

y = xLECIC:

decodingx1y + ε1

decodingx2y + ε2

b

b

b

decodingxny + εn

side info.

b

b

b

b

b

b

noisybroadcast channel

side info.

side info.

(Dau, Skachek, Chee, 2011): scalar linear error-correcting index code (ECIC)

optimal IC + optimal ECC 6= optimal ECIC for small alphabets

optimal IC + optimal ECC = optimal ECIC for large alphabets

develop bounds and constructions for length of an optimal ECIC

A Short Introduction to Index Coding with Side Information

Page 61: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Error Correction for Index Coding

xencoding

y = xLClassical ECC:noisy

channely + ε

decodingx

xencoding

y = xLECIC:

decodingx1y + ε1

decodingx2y + ε2

b

b

b

decodingxny + εn

side info.

b

b

b

b

b

b

noisybroadcast channel

side info.

side info.

(Dau, Skachek, Chee, 2011): scalar linear error-correcting index code (ECIC)

optimal IC + optimal ECC 6= optimal ECIC for small alphabets

optimal IC + optimal ECC = optimal ECIC for large alphabets

develop bounds and constructions for length of an optimal ECIC

syndrome decoding

A Short Introduction to Index Coding with Side Information

Page 62: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Security for Index Coding

A Short Introduction to Index Coding with Side Information

Page 63: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Security for Index Coding

A scalar linear IC: x 7→ xL, where L is an n × k matrix; Rate: 1/k

A Short Introduction to Index Coding with Side Information

Page 64: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Security for Index Coding

A scalar linear IC: x 7→ xL, where L is an n × k matrix; Rate: 1/k

Setting

S

R1

R2

Rn

xLbbb

Adversary A

owns t xj ’slistens to µ transmissions

introduces δ errors

GOAL:Ri can decode xi

adversary has no information about other xj ’s

A Short Introduction to Index Coding with Side Information

Page 65: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Security for Index Coding

A scalar linear IC: x 7→ xL, where L is an n × k matrix; Rate: 1/k

Setting

S

R1

R2

Rn

xLbbb

Adversary A

owns t xj ’slistens to µ transmissions

introduces δ errors

GOAL:Ri can decode xi

adversary has no information about other xj ’s

Construction

(Dau, Skachek, Chee, 2011):

xindex coding

−→ xL(0)coset codinga

−→ (xL(0)|g)M

A Short Introduction to Index Coding with Side Information

Page 66: AShortIntroductiontoIndexCodingwithSideInformation Dau Son ...ccrg/documents/...Coding.pdf · A Short Introduction to Index Coding with Side Information. Basic Definitions S R1 R2

Security for Index Coding

A scalar linear IC: x 7→ xL, where L is an n × k matrix; Rate: 1/k

Setting

S

R1

R2

Rn

xLbbb

Adversary A

owns t xj ’slistens to µ transmissions

introduces δ errors

GOAL:Ri can decode xi

adversary has no information about other xj ’s

Construction

(Dau, Skachek, Chee, 2011):

xindex coding

−→ xL(0)coset codinga

−→ (xL(0)|g)M

G.M. of

G.M. of an MDS code µ

n

minrk + µ+ 2δ

M =an MDS code

aintroduced by Ozarow and Wyner in “Wiretap Channel II,” 1985

A Short Introduction to Index Coding with Side Information