Arturo Sanchez-Azofeifa, PhD, PEng Cassidy Rankine ... · Cassidy Rankine, Gilberto...

27
Arturo Sanchez-Azofeifa, PhD, PEng Cassidy Rankine, Gilberto Zonta-Pastorello Centre for Earth Observation Sciences (CEOS) Earth and Atmospheric Sciences Department University of Alberta Microsoft WSN Workshop Sao Paulo, Brazil November 2010

Transcript of Arturo Sanchez-Azofeifa, PhD, PEng Cassidy Rankine ... · Cassidy Rankine, Gilberto...

Arturo Sanchez-Azofeifa, PhD, PEng

Cassidy Rankine, Gilberto Zonta-PastorelloCentre for Earth Observation Sciences (CEOS)

Earth and Atmospheric Sciences Department

University of Alberta

Microsoft WSN Workshop

Sao Paulo, Brazil

November 2010

What do we know?

•Well… Very little to start with (although 47% of the tropics are tdfs).

•Dry forests lag on long term studies aimed to understand their response to climate change. In fact, dry forest lag on a ratio of 1:300 scientific papers when compared with tropical rainforests.

•Ecological studies in dry forestes are systematic in two regions: Chamela-Cuixmala biosphere reserve, Mexico; and Santa Rosa National Park; Costa Rica.

•Tropical Forests are not considered part of any global networks aimed to link climate change observations and models to phenological response; nor are part of long term monitoring efforts.

•Tropical dry forests present well define phenological signals allowing for unique opportunities to evaluate their response to climate change and specially drought effects.

Differential Response

of Tropical Dry

Forests to Climate

Change

Enviro-Net Project

Seven Sites Argentina, Brazil (3),

Canada, Costa Rica, Mexico

36 Deployments 14 Wired Phenology Towers

logger & 4-8 sensors

12 Wired Ground Deployments

logger & 3-8 sensors

2 Wireless Phenology Towers

logger, node & 6 sensors

8 Wireless Ground Deployments

logger, 5-10 node, 15-50 sensors

Wireless Optical Phenology Systems (WOPS® )

5-10m above canopy (5-20m total height)

Physical Variables Measured: Air/soil temperature

Air/soil humidity

Solar Radiation

Photosynthetically Active Radiation (PAR)

Derived Variables: Vegetation Indexes

APAR, fAPAR

Vapour Pressure Deficit

Carbon and water fluxes

Wireless Ground

Deployments Nodes:

Current deployments (2007-2010): 5 – 20 nodes per deployment

Planned deployments (2011-2014): up to 100 nodes per deployment

WSN Understory PAR

• Understory light environment highly variable

• Networks of ~12 wireless PAR sensors capture this variable nature to better estimate FAPAR

Chamela, Mexico

Sampling Design

Phenology tower

WSN Aggregator, Collector: PAR, T/RHWSN Collector: PAR, T/RH

Serra do Cipo, Minas Gerais, Brazil

Soil temperature station

CC4

MC6 MC8

IC7 ETCP

IC4

Phenology tower

Wireless sensor network (PAR, T/RH)

Understory meteorological station (rain, T/RH, PAR, Soil Moisture)

Understory Wireless sensor network PAR experiment

Phenology digital camera & logger

Mata Seca State Park, Minas Gerais, Brazil

Meteorological station

• Data management within Wireless

Sensor Networks (WSNs), e.g.,

algorithms for in-network query

processing

• Exploiting the (potential) synergy

between networking issues and

data management within WSNs,

e.g., logical topology and packet

scheduling oriented by query

semantics

• Indexing of spatio-temporal data

and time-series with a focus on

re-using sound and industrially

tested technologies, e.g., B+-trees

• Data mining, web data and social

network analysis

Precipitation

0

10

20

30

40

50

60

70

80

90

0,15

0,25

0,35

0,45

0,55

0,65

0,75

81

99

117

135

153

171

189

20

72

25

24

32

61

27

92

97

315

33

33

51 4

22

40

58 76

94

112

130

148

166

184

20

22

20

23

82

56

27

42

92

310

32

83

46

36

4 17 35

53 71

89

107

125

143

161

179

197

215

Da

ily

Su

m P

re

cip

ita

tio

n (

mm

)

Mid

-Da

y A

ve

ra

ge

EV

I2

Day of Year

EVI2 Precipitation

Chamela: Phenology Cues

Soil Moisture

0

0,05

0,1

0,15

0,2

0,25

0,3

0,15

0,25

0,35

0,45

0,55

0,65

0,75

81

100

119

138

157

176

195

214

23

32

52

27

12

90

30

93

28

34

7 12

03

95

8 77

96

115

134

153

172

191

210

22

92

48

26

72

86

30

53

24

34

33

62 16 35

54

73

92

111

130

149

168

187

20

6

Pe

rc

en

t S

oil

Mo

istu

re

Mid

-Da

y A

ve

ra

ge

EV

I2

Day of Year

EVI2 Soil Moisture

Chamela: Phenology Cues

Vapour Pressure Deficit

0

2

4

6

8

10

12

14

16

18

0,15

0,25

0,35

0,45

0,55

0,65

0,75

81

100

119

138

157

176

195

214

23

32

52

27

12

90

30

93

28

34

7 12

03

95

8 77

96

115

134

153

172

191

210

22

92

48

26

72

86

30

53

24

34

33

62 16 35

54

73

92

111

130

149

168

187

20

6

Va

po

ur

Pr

es

su

re

De

fic

it (

hP

a)

Mid

-Da

y A

ve

ra

ge

EV

I2

Day of Year

EVI2 VPD

Chamela: Phenology Cues

0,035

0,045

0,055

0,065

0,075

0,085

0,095

0,15

0,25

0,35

0,45

0,55

0,65

0,75

81

101

121

141

161

181

20

12

21

24

12

61

28

13

01

32

13

41

36

116 36

56

76

96

116

136

156

176

196

216

23

62

56

27

62

96

316

33

63

56 11 31

51

71

91

111

131

151

171

191

211

Ca

no

py

Alb

ed

o (

PA

R O

ut/

PA

R I

n)

Mid

-Da

y C

an

op

y E

VI2

Day of Year

EVI2 Albedo

2008 2009 2010

Chamela, Mexico

Albedo Shifts

0,15

0,25

0,35

0,45

0,55

0,65

0,75

1 8 15 22

29

36

43

50 57

64 71

78

85

92

99

106

113

120

127

134

141

148

155

162

169

176

183

190

197

20

42

112

182

25

23

22

39

24

62

53

26

02

67

27

42

81

28

82

95

30

23

09

316

32

33

30

33

73

44

35

13

58

36

5

Mid

-Da

y C

an

op

y E

VI2

Day of Year

2008 2009 2010

Chamela: Phenology Cues

Phenology Shifts

0

10

20

30

40

50

60

70

80

0,15

0,25

0,35

0,45

0,55

0,65

0,75

171

09

179

09

187

09

195

09

20

3 0

92

11 0

92

19 0

92

27

09

23

5 0

92

43

09

25

1 0

92

59

09

26

7 0

92

75

09

28

3 0

92

91

09

29

9 0

93

07

09

315

09

32

3 0

93

31

09

33

9 0

93

47

09

35

5 0

93

63

09

6 1

014

10

22

10

30

10

38

10

46

10

54

10

62

10

70

10

78

10

86

10

94

10

102

10

110

10

118

10

126

10

134

10

142

10

150

10

158

10

Da

ily

Su

m P

re

cip

ita

tio

n (

mm

)

Ca

no

py

EV

I2

Day of Year 2009-2010 (DDD YY)

Precipitation Canopy EVI2

Mata Seca, Minas Gerais, Brazil

Precipitation

0,0%

5,0%

10,0%

15,0%

20,0%

25,0%

0,15

0,25

0,35

0,45

0,55

0,65

0,75

171

09

180

09

189

09

198

09

20

7 0

9

216

09

22

5 0

9

23

4 0

9

24

3 0

9

25

2 0

9

26

1 0

9

27

0 0

9

27

9 0

9

28

8 0

9

29

7 0

9

30

6 0

9

315

09

32

4 0

9

33

3 0

9

34

2 0

9

35

1 0

9

36

0 0

9

4 1

0

13 1

0

22

10

31

10

40

10

49

10

58

10

67

10

76

10

85

10

94

10

103

10

112

10

121

10

130

10

139

10

148

10

157

10

So

il M

ois

tur

e

(%)

Ca

no

py

EV

I2

Day of Year 2009-2010 (DDD YY)

Canopy EVI2 Soil Moisture

Mata Seca, Minas Gerais, Brazil

Soil Moisture

0

5

10

15

20

25

30

35

0,15

0,25

0,35

0,45

0,55

0,65

0,75

17

1 0

9

18

0 0

9

18

9 0

9

19

8 0

9

20

7 0

9

21

6 0

9

22

5 0

9

23

4 0

9

24

3 0

9

25

2 0

9

26

1 0

9

27

0 0

9

27

9 0

9

28

8 0

9

29

7 0

9

30

6 0

9

31

5 0

9

32

4 0

9

33

3 0

9

34

2 0

9

35

1 0

9

36

0 0

9

4 1

0

13

10

22

10

31

10

40

10

49

10

58

10

67

10

76

10

85

10

94

10

10

3 1

0

11

2 1

0

12

1 1

0

13

0 1

0

13

9 1

0

14

8 1

0

15

7 1

0

Vap

ou

r P

ress

ure

Def

icit

(h

Pa)

Can

op

y EV

I2

Day of Year (DDD YY)

Canopy EVI2 VPD

VPD has strong implications for plant physiology and is the earliest

micro-climatic cue for leaf flush at this site

Mata Seca, Minas Gerais, Brazil

Vapour Pressure Deficit

0,03

0,035

0,04

0,045

0,05

0,055

0,06

0,065

0,07

0,075

0,08

0,15

0,25

0,35

0,45

0,55

0,65

0,75

171

09

180

09

189

09

198

09

20

7 0

9

216

09

22

5 0

9

23

4 0

9

24

3 0

9

25

2 0

9

26

1 0

9

27

0 0

9

27

9 0

9

28

8 0

9

29

7 0

9

30

6 0

9

315

09

32

4 0

9

33

3 0

9

34

2 0

9

35

1 0

9

36

0 0

9

4 1

0

13 1

0

22

10

31

10

40

10

49

10

58

10

67

10

76

10

85

10

94

10

103

10

112

10

121

10

130

10

139

10

148

10

157

10 Ca

no

py

Alb

ed

o (

PA

R O

ut/

PA

R I

n)

Ca

no

py

EV

I2

Day of Year (DDD YY)

Canopy EVI2 Canopy Albedo

Important implications for phenological remote sensing

Mata Seca, Minas Gerais, Brazil

Alberdo Shifts

This Year’s Leaf Flush in Chamela

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

45

52

59

66

73

80 87

94

101

108

115

122

129

136

143

150

157

164

171

178

185

192

199

20

62

132

20

22

72

34

24

12

48

25

52

62

26

92

76

28

32

90

29

7

WS

N f

AP

AR

Ch

am

ela

To

we

r N

DV

I

Day of Year

Tower NDVI (Wilson)

R² = 0.97

0,3

0,35

0,4

0,45

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

To

we

r N

DV

I

WSN fAPAR

R² = 0.97

0,4

0,45

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,7 0,75 0,8 0,85 0,9 0,95

To

we

r N

DV

I

WSN fAPAR

WSN fAPAR and Tower

NDVI have a strong linear

relationship

Chamela, Mexico

Primary TDF

Mata Seca, Brazil

(Intermediate stage TDF)

Conclusion

• WSN for environmental monitoring are providing

important information on cues controlling phenological

processes in tropical dry forests.

• Not all dry forests follow the common “soil moisture”

model, other sites indicate less dependence on this

variable.

• New data analysis and visualization tools are necessary

to handle MASSIVE amounts of information specially on

real time transmissions.