ars.els-cdn.com  · Web viewFigure S2. Photographs of the annealed perovskite films on ZnO at...

9
ASSOCIATED CONTENT Supporting Information Figure S1. (a) UV–Vis spectra of the annealed perovskite films on ZnO before and after air exposure and (b) XRD patterns of the corresponding perovskite films. 1

Transcript of ars.els-cdn.com  · Web viewFigure S2. Photographs of the annealed perovskite films on ZnO at...

Page 1: ars.els-cdn.com  · Web viewFigure S2. Photographs of the annealed perovskite films on ZnO at different post-treatment temperatures.

ASSOCIATED CONTENT

Supporting Information

Figure S1. (a) UV–Vis spectra of the annealed perovskite films on ZnO before and after air

exposure and (b) XRD patterns of the corresponding perovskite films.

1

Page 2: ars.els-cdn.com  · Web viewFigure S2. Photographs of the annealed perovskite films on ZnO at different post-treatment temperatures.

Figure S2. Photographs of the annealed perovskite films on ZnO at different post-treatment

temperatures.

2

Page 3: ars.els-cdn.com  · Web viewFigure S2. Photographs of the annealed perovskite films on ZnO at different post-treatment temperatures.

Table S1. Fitting parameters for EIS measurements performed under white LED illumination.

Figure S3. (a) Transport resistance and (b) charge transfer resistance of TiCl4-treated ZnO based perovskite solar cell at different applied biases.

Figure S4. (a) Images of large-area devices and (b) J-V curves of the best performing device; (c) Statistical results of the large-area devices.

3

Page 4: ars.els-cdn.com  · Web viewFigure S2. Photographs of the annealed perovskite films on ZnO at different post-treatment temperatures.

REFERENCES

1. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 2009, 131, (17), 6050-1.2. Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; Gratzel, M.; Park, N. G., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2012, 2, 591.3. Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, (6240), 1234-1237.4. Miyata, A.; Mitioglu, A.; Plochocka, P.; Portugall, O.; Wang, J. T.-W.; Stranks, S. D.; Snaith, H. J.; Nicholas, R. J., Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nature Physics 2015, 11, (7), 582-587.5. Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K.; Losovyj, Y.; Zhang, X.; Dowben, P. A.; Mohammed, O. F.; Sargent, E. H.; Bakr, O. M., Low trap-state density and long carrier diffusion in organoleadtrihalide perovskite single crystals. Science 2015, 347, (6221), 519-522.6. Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J., Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 2013, 342, (6156), 341-344.7. Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C., Long-Range Balanced Electron and hole-transport lengths in Organic-Inorganic MAPbI3. Science 2015, 324.8. Green, M. A.; Ho-Baillie, A.; Snaith, H. J., The emergence of perovskite solar cells. Nature Photonics 2014, 8, (7), 506-514.9. Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I., Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater 2014, 13, (9), 897-903.10. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, (6107), 643-7.11. Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C.-S.; Chang, J. A.; Lee, Y. H.; Kim, H.-j.; Sarkar, A.; Nazeeruddin, M. K.; Grätzel, M.; Seok, S. I., Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics 2013, 7, (6), 486-491.12. Xiao, M.; Huang, F.; Huang, W.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray-Weale, A.; Bach, U.; Cheng, Y. B.; Spiccia, L., A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew Chem Int Ed Engl 2014, 53, (37), 9898-903.13. Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H. S.; Wang, H. H.; Liu, Y.; Li, G.; Yang, Y., Planar heterojunction perovskite solar cells via vapor-assisted solution process. J Am Chem Soc 2014, 136, (2), 622-5.

4

Page 5: ars.els-cdn.com  · Web viewFigure S2. Photographs of the annealed perovskite films on ZnO at different post-treatment temperatures.

14. Liu, M.; Johnston, M. B.; Snaith, H. J., Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, (7467), 395-8.15. Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y., Photovoltaics. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, (6196), 542-6.16. Heo, J. H.; Lee, M. H.; Jang, M. H.; Im, S. H., Highly efficient CH3NH3PbI3−xClxmixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating. J. Mater. Chem. A 2016, 4, (45), 17636-17642.17. Xiao, Z.; Bi, C.; Shao, Y.; Dong, Q.; Wang, Q.; Yuan, Y.; Wang, C.; Gao, Y.; Huang, J., Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 2014, 7, (8), 2619-2623.18. Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J.-C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A.; Wang, H.-L.; Mohite, A. D., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015, 347, (6221), 522-525.19. Meng, L.; You, J.; Guo, T. F.; Yang, Y., Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells. Acc Chem Res 2016, 49, (1), 155-65.20. Ke, W.; Fang, G.; Liu, Q.; Xiong, L.; Qin, P.; Tao, H.; Wang, J.; Lei, H.; Li, B.; Wan, J.; Yang, G.; Yan, Y., Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J Am Chem Soc 2015, 137, (21), 6730-3.21. Liu, D.; Kelly, T. L., Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics 2013, 8, (2), 133-138.22. Wang, K.; Shi, Y.; Li, B.; Zhao, L.; Wang, W.; Wang, X.; Bai, X.; Wang, S.; Hao, C.; Ma, T., Amorphous Inorganic Electron-Selective Layers for Efficient Perovskite Solar Cells: Feasible Strategy Towards Room-Temperature Fabrication. Adv Mater 2016, 28, (9), 1891-7.23. Shin, S. S.; Yang, W. S.; Noh, J. H.; Suk, J. H.; Jeon, N. J.; Park, J. H.; Kim, J. S.; Seong, W. M.; Seok, S. I., High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 degrees C. Nat Commun 2015, 6, 7410.24. Heo, J. H.; Lee, M. H.; Han, H. J.; Patil, B. R.; Yu, J. S.; Im, S. H., Highly efficient low temperature solution processable planar type CH3NH3PbI3perovskite flexible solar cells. J. Mater. Chem. A 2016, 4, (5), 1572-1578.25. Dkhissi, Y.; Meyer, S.; Chen, D.; Weerasinghe, H. C.; Spiccia, L.; Cheng, Y. B.; Caruso, R. A., Stability Comparison of Perovskite Solar Cells Based on Zinc Oxide and Titania on Polymer Substrates. ChemSusChem 2016, 9, (7), 687-95.26. Dong, X.; Hu, H.; Lin, B.; Ding, J.; Yuan, N., The effect of ALD-Zno layers on the formation of CH(3)NH(3)PbI(3) with different perovskite precursors and sintering temperatures. Chem Commun (Camb) 2014, 50, (92), 14405-8.27. Cheng, Y.; Yang, Q. D.; Xiao, J.; Xue, Q.; Li, H. W.; Guan, Z.; Yip, H. L.; Tsang, S. W., Decomposition of Organometal Halide Perovskite Films on Zinc Oxide Nanoparticles. ACS Appl Mater Interfaces 2015, 7, (36), 19986-93.28. Yang, J.; Siempelkamp, B. D.; Mosconi, E.; De Angelis, F.; Kelly, T. L., Origin of the Thermal Instability in CH3NH3PbI3Thin Films Deposited on ZnO. Chemistry of Materials 2015, 27, (12), 4229-4236.

5

Page 6: ars.els-cdn.com  · Web viewFigure S2. Photographs of the annealed perovskite films on ZnO at different post-treatment temperatures.

29. Kim, J.; Kim, G.; Kim, T. K.; Kwon, S.; Back, H.; Lee, J.; Lee, S. H.; Kang, H.; Lee, K., Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer. J. Mater. Chem. A 2014, 2, (41), 17291-17296.30. Mahmud, M. A.; Elumalai, N. K.; Upama, M. B.; Wang, D.; Chan, K. H.; Wright, M.; Xu, C.; Haque, F.; Uddin, A., Low temperature processed ZnO thin film as electron transport layer for efficient perovskite solar cells. Solar Energy Materials and Solar Cells 2017, 159, 251-264.31. Song, D. J.; Zheng, E.; Liu, P. L.; Wang, P. X.-F.; Chen, P. G.; Tian, P. W.; Miyasaka, P. T., Magnesium-doped zinc oxide as electron selective contact layers for efficient perovskite solar cells. CHEMSUSCHEM 2016, 9, (18), 2640-2647.32. Tseng, Z.-L.; Chiang, C.-H.; Chang, S.-H.; Wu, C.-G., Surface engineering of ZnO electron transporting layer via Al doping for high efficiency planar perovskite solar cells. Nano Energy 2016, 28, 311-318.33. Song, J.; Zheng, E.; Wang, X.-F.; Tian, W.; Miyasaka, T., Low-temperature-processed ZnO–SnO 2 nanocomposite for efficient planar perovskite solar cells. Solar Energy Materials and Solar Cells 2016, 144, 623-630.34. Si, H.; Liao, Q.; Zhang, Z.; Li, Y.; Yang, X.; Zhang, G.; Kang, Z.; Zhang, Y., An innovative design of perovskite solar cells with Al 2 O 3 inserting at ZnO/perovskite interface for improving the performance and stability. Nano Energy 2016, 22, 223-231.35. Song, J.; Hu, W.; Wang, X.-F.; Chen, G.; Tian, W.; Miyasaka, T., HC(NH2)2PbI3as a thermally stable absorber for efficient ZnO-based perovskite solar cells. J. Mater. Chem. A 2016, 4, (21), 8435-8443.36. Sun, Y.; Seo, J. H.; Takacs, C. J.; Seifter, J.; Heeger, A. J., Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO Film as an electron transport layer. Adv Mater 2011, 23, (14), 1679-83..37. Baikie, T.; Fang, Y.; Kadro, J. M.; Schreyer, M.; Wei, F.; Mhaisalkar, S. G.; Graetzel, M.; White, T. J., Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. Journal of Materials Chemistry A 2013, 1, (18), 5628.38. Manspeaker, C.; Scruggs, P.; Preiss, J.; Lyashenko, D. A.; Zakhidov, A. A., Reliable Annealing of CH3NH3PbI3Films Deposited on ZnO. The Journal of Physical Chemistry C 2016, 120, (12), 6377-6382.39. Dualeh, A.; Gao, P.; Seok, S. I.; Nazeeruddin, M. K.; Grätzel, M., Thermal Behavior of Methylammonium Lead-Trihalide Perovskite Photovoltaic Light Harvesters. Chemistry of Materials 2014, 26, (21), 6160-6164.40. Raga, S. R.; Jung, M.-C.; Lee, M. V.; Leyden, M. R.; Kato, Y.; Qi, Y., Influence of Air Annealing on High Efficiency Planar Structure Perovskite Solar Cells. Chemistry of Materials 2015, 27, (5), 1597-1603.41. Znaidi, L., Sol–gel-deposited ZnO thin films: A review. Materials Science and Engineering: B 2010, 174, (1-3), 18-30.42. Ko, Y.; Choi, W. Y.; Yun, Y. J.; Jun, Y., A PbI2−xClx seed layer for obtaining efficient planar-heterojunction perovskite solar cells via an interdiffusion process. Nanoscale 2017, 9, (27), 9396-9403.43. Ren, X.; Yang, D.; Yang, Z.; Feng, J.; Zhu, X.; Niu, J.; Liu, Y.; Zhao, W.; Liu, S. F., Solution-Processed Nb:SnO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells. ACS Appl Mater Interfaces 2017, 9, (3), 2421-2429.

6

Page 7: ars.els-cdn.com  · Web viewFigure S2. Photographs of the annealed perovskite films on ZnO at different post-treatment temperatures.

44. Bag, M.; Renna, L. A.; Adhikari, R. Y.; Karak, S.; Liu, F.; Lahti, P. M.; Russell, T. P.; Tuominen, M. T.; Venkataraman, D., Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability. J Am Chem Soc 2015, 137, (40), 13130-7.45. Pockett, A.; Eperon, G. E.; Peltola, T.; Snaith, H. J.; Walker, A.; Peter, L. M.; Cameron, P. J., Characterization of Planar Lead Halide Perovskite Solar Cells by Impedance Spectroscopy, Open-Circuit Photovoltage Decay, and Intensity-Modulated Photovoltage/Photocurrent Spectroscopy. The Journal of Physical Chemistry C 2015, 119, (7), 3456-3465.

7