ars.els-cdn.com · Web viewFillery, I., De Datta, S., Craswell, E.J.F.r., 1986. Effect of phenyl...

47
Supplementary information Table S1 Heterogeneity of groups in each explanatory variable Databa se Explanatory variables Crop fertilizer-N recovery Soil Residual fertilizer-N Q between Q total Prob Q between Q total Prob UI UI species 0.509 9.92 7 0.065 0.173 2.499 0.06 5 N application rate 0.581 8.04 9 0.073 0 0.051 2.298 0.66 8 N application times 0.635 10.2 49 0.125 0.199 2.865 0.01 3 * Field condition 1.012 9.23 7 <0.00 1 * 0.299 2.865 0.00 3 * Soil pH 0.485 9.54 2 0.088 0.053 2.319 0.43 6 Soil organic matter 0.256 6.45 0 0.427 0.142 1.226 0.08 5 Soil texture 0.517 10.0 41 0.077 0.016 2.746 0.79 2 NI NI species 0.873 18.9 01 0.531 0.699 11.33 5 0.11 7 N application rate 0.879 18.2 73 0.337 0.799 12.56 6 0.21 1 N application times 0.139 19.0 06 0.405 0.851 12.57 8 0.02 2 * Fertilizer types 1.106 19.0 06 0.059 1.762 12.57 8 0.00 9 * Field condition 2.563 19.0 06 <0.00 1 * 0.189 12.57 8 0.30 6 Soil pH 0.478 18.6 43 0.333 0.009 11.81 8 0.97 2 Soil organic matter 0.233 4.81 7 0.253 0.905 11.44 5 0.19 8 Soil texture 1.297 15.0 59 0.038 * 1.634 11..4 69 0.01 3 * Overall 2.847 35.1 29 <0.00 1 * 0.515 17.66 6 0.08 1 Databa se Explanatory variables Total fertilizer-N recovery Unaccounted fertilizer-N

Transcript of ars.els-cdn.com · Web viewFillery, I., De Datta, S., Craswell, E.J.F.r., 1986. Effect of phenyl...

Supplementary information

Table S1 Heterogeneity of groups in each explanatory variable

Database

Explanatory variables

Crop fertilizer-N recovery

Soil Residual fertilizer-N

Qbetween

Qtotal

Prob

Qbetween

Qtotal

Prob

UI

UI species

0.509

9.927

0.065

0.173

2.499

0.065

N application rate

0.581

8.049

0.0730

0.051

2.298

0.668

N application times

0.635

10.249

0.125

0.199

2.865

0.013*

Field condition

1.012

9.237

<0.001*

0.299

2.865

0.003*

Soil pH

0.485

9.542

0.088

0.053

2.319

0.436

Soil organic matter

0.256

6.450

0.427

0.142

1.226

0.085

Soil texture

0.517

10.041

0.077

0.016

2.746

0.792

NI

NI species

0.873

18.901

0.531

0.699

11.335

0.117

N application rate

0.879

18.273

0.337

0.799

12.566

0.211

N application times

0.139

19.006

0.405

0.851

12.578

0.022*

Fertilizer types

1.106

19.006

0.059

1.762

12.578

0.009*

Field condition

2.563

19.006

<0.001*

0.189

12.578

0.306

Soil pH

0.478

18.643

0.333

0.009

11.818

0.972

Soil organic matter

0.233

4.817

0.253

0.905

11.445

0.198

Soil texture

1.297

15.059

0.038*

1.634

11..469

0.013*

Overall

2.847

35.129

<0.001*

0.515

17.666

0.081

Database

Explanatory variables

Total fertilizer-N recovery

Unaccounted fertilizer-N

Qbetween

Qtotal

Prob

Qbetween

Qtotal

Prob

UI

UI species

0.192

4.164

0.161

2.936

37.348

0.071

N application rate

0.396

3.091

0.021*

0.663

30.209

0.736

N application times

0.274

4.218

0.017*

0.192

37.726

0.581

Field condition

0.278

4.218

<0.001*

0.302

37.726

0.495

Soil pH

0.211

3.962

0.133

6.371

36.206

0.005*

Soil organic matter

0.084

2.832

0.628

3.116

29.609

0.166

Soil texture

0.086

4.044

0.429

1.717

63.929

0.412

NI

NI species

0.484

10.123

0.197

2.162

66.746

0.267

N application rate

0.749

10.393

0.170

0.182

67.557

0.981

N application times

0.262

10.400

0.182

0.439

67.564

0.459

Fertilizer types

1.492

10.400

0.010*

0.762

67.564

0.562

Field condition

0.599

10.400

0.044*

3.871

67.564

0.379

Soil pH

0.166

9.892

0.599

0.490

66.963

0.742

Soil organic matter

1.251

9.619

0.051

1.582

59.237

0.651

Soil texture

1.869

9.988

0.005*

1.717

63.929

0.415

Overall

0.569

16.824

0.051

5.126

115.323

0.022*

Note: * means the groups in relative explanatory variable being significant difference.

Table S2 Changes of the effects of N stabilizers on the fertilizer-N fate in the soil-crop system under different study method

Variables

Categories

Number

Means

Lower CI

Upper CI

Qbetween

Prob

UI amendment

Crop recovery

Field

39

18.06

10.72

26.06

0.27

0.10

Pot

60

27.77

20.76

35.59

Soil retention

Field

32

8.43

2.99

14.61

0.05

0.24

Pot

49

4.43

0.92

8.09

Total recovery

Field

33

11.18

6.24

16.46

0.18

0.05

Pot

49

19.42

14.1

25.51

Unaccounted

Field

33

-19.85

-30.67

-7.30

0.13

0.06

Pot

49

-37.13

-49.72

-26.52

NI amendment

Crop recovery

Field

72

13.10

4.79

21.99

0.20

0.32

Pot

37

5.51

-3.94

19.90

Soil retention

Field

51

16.10

5.71

28.61

0.03

0.70

Pot

26

12.70

5.07

21.07

Total recovery

Field

51

14.47

5.58

25.43

0.40

0.11

Pot

27

2.02

-5.08

10.05

Unaccounted

Field

51

-12.05

-21.99

-2.40

0.22

0.62

Pot

27

-19.28

-48.21

13.45

DI amendment

Crop recovery

Field

10

35.66

12.91

42.42

0.32

0.06

Pot

6

73.24

37.86

164.77

Soil retention

Field

8

16.39

3.41

35.34

0.24

0.17

Pot

6

-3.52

-29.76

15.59

Total recovery

Field

8

13.78

2.29

33.91

0.31

0.06

Pot

7

40.86

27.38

68.83

Unaccounted

Field

8

-22.31

-36.75

-2.08

0.58

0.05

Pot

7

-55.12

-61.81

-36.32

Table S3 Changes of the effects of N stabilizers on the fertilizer-N fate in the soil-crop system under different sampling procedure

Variables

Categories

Number

Means

Lower CI

Upper CI

Qbetween

Prob

UI amendment

Crop recovery

Premature

29

16.18

9.31

24.09

0.29

0.06

Mature

70

28.13

21.35

35.91

Soil retention

Premature

23

4.19

-1.44

10.87

0.02

0.47

Mature

58

6.63

3.07

10.16

Total recovery

Premature

24

11.40

7.85

15.99

0.14

0.08

Mature

58

18.93

13.30

25.06

Unaccounted

Premature

24

-53.87

-22.86

-38.49

0.57

0.34

Mature

58

-37.71

-21.92

-30.04

NI amendment

Crop recovery

Premature

10

15.65

5.76

25.27

0.04

0.64

Mature

99

10.03

3.00

18.38

Soil retention

Premature

6

15.27

0.19

33.88

0.00

0.99

Mature

71

14.97

6.77

23.84

Total recovery

Premature

6

18.12

4.78

35.17

0.05

0.60

Mature

72

9.63

2.70

17.82

Unaccounted

Premature

6

-22.11

-39.82

-7.17

0.09

0.70

Mature

72

-13.89

-27.75

-0.37

Note: the observation data from DI amendment obtained from maturity sampling procedure.

Table S4 BRT model running parameters and outputs

Process

Database

Learning rate

Bag fraction

CV deviance

CV correlation

Number of trees

Crop

UI

0.005

0.75

0.045±0.009

0.648±0.101

2700

NI

0.005

0.75

0.067±0.012

0.617±0.072

950

Soil

UI

0.005

0.75

0.02±0.004

0.251±0.112

1500

NI

0.005

0.75

0.058±0.008

0.43±0.158

5450

Total

UI

0.005

0.75

0.012±0.002

0.754±0.08

6450

NI

0.005

0.75

0.039±0.01

0.628±0.103

7150

Fig. S1 Partial dependence plots (left column) and fitted values (right column) of explanatory variables for crop fertilizer-N recovery under UI amendment.

Fig. S2 Partial dependence plots (left column) and fitted values (right column) of explanatory variables for crop fertilizer-N recovery under NI amendment.

Fig. S3 Partial dependence plots (left column) and fitted values (right column) of explanatory variables for retention fertilizer-N in soil under UI amendment.

Fig. S4 Partial dependence plots (left column) and fitted values (right column) of explanatory variables for retention fertilizer-N in soil under NI amendment.

Fig. S5 Partial dependence plots (left column) and fitted values (right column) of explanatory variables for total fertilizer-N in soil-crop system under UI amendment.

Fig. S6 Partial dependence plots (left column) and fitted values (right column) of explanatory variables for total fertilizer-N in soil-crop system under NI amendment

Reference list

Arkoun, M., Sarda, X., Jannin, L., Laîné, P., Etienne, P., Garcia-Mina, J., Yvin, j.-c., Ourry, A., 2012. Hydroponics versus field lysimeter studies of urea, ammonium and nitrate uptake by oilseed rape(Brassica napus L.). Journal of experimental botany 63, 5245-5258.

Blackmer, A.M., Sanchez, C.A., 1988. Response of Corn to Nitrogen-15-Labeled Anhydrous Ammonia with and without Nitrapyrin in Iowa. Agronomy Journal 80, 95-102.

Bronson, K.F., Touchton, J.T., Hauck, R.D., Kelley, K.R., 1991. Nitrogen-15 Recovery in Winter Wheat as Affected by Application Timing and Dicyandiamide. Soil Science Society of America Journal 55, 130-135.

Buresh, R.J., De Datta, S.K., Padilla, J.L., Chua, T.T., 1988. Potential of Inhibitors for Increasing Response of Lowland Rice to Urea Fertilization. Agronomy Journal 80, 947-952.

Buresh, R.J., Vlek, P.L.G., Stumpe, J.M., 1984. Labeled nitrogen fertilizer research with urea in the semi-arid tropics. Plant and Soil 80, 3-19.

Buresh, R.J., Vlek, P.L.G., Harmsen, K.J.F.r., 1990. Fate of fertilizer nitrogen applied to wheat under simulated mediterranean environmental conditions. Nutrient Cycling in Agroecosystems 23, 25-36.

Byrnes, B., Gutser, R., Amberger, A., 1989. Greenhouse Study on the Effects of the Urease Inhibitors Phenyl Phosphorodiamidate and N‐(n‐butyl) Thiophosphoric Triamide on the Efficiency of Urea Applied to Flooded Rice. Journal of Plant Nutrition and Soil Science 152, 67-72.

Byrnes, B.H., Savant, N.K., Craswell, E.T., 1983. Effect of a Urease Inhibitor Phenyl Phosphorodiamidate on the Efficiency of Urea Applied to Rice1. Soil Science Society of America Journal 47, 270-274.

Cai, G., Yang, N.C., Lu, W.F., Chen, W., Xia, B.Q., Wang, X.Z., Zhu, Z.L., 1992. Gaseous loss of nitrogen from fertilizers applied to a paddy soil in southeastern China. Pedosphere 2, 209-217.

Chen, W., Lu, W., F., 1997. Effect of paddy urease inhibitor on fate of 15N-urea. Acta Agriculturae Nucleatae Sinica 11, 151-156. (Chinese with English abstract)

Dawar, K., Zaman, M., Rowarth, J., Blennerhassett, J., Turnbull, M., 2010. The impact of urease inhibitor on the bioavailability of nitrogen in urea and in comparison with other nitrogen sources in ryegrass ( Lolium perenne L.). Crop and Pasture Science 61.

Dawar, K., Zaman, M., Rowarth, J.S., Blennerhassett, J., Turnbull, M.H., 2011. Urease inhibitor reduces N losses and improves plant-bioavailability of urea applied in fine particle and granular forms under field conditions. Agriculture, Ecosystems & Environment 144, 41-50.

Dawar, K., Zaman, M., Rowarth, J.S., Turnbull, M.H., 2012. Applying urea with urease inhibitor (N-(n-butyl) thiophosphoric triamide) in fine particle application improves nitrogen uptake in ryegrass (Lolium perenne L.). Soil Science and Plant Nutrition 58, 309-318.

Delgado, J.A., Mosier, A.R., 1996. Mitigation Alternatives to Decrease Nitrous Oxides Emissions and Urea-Nitrogen Loss and Their Effect on Methane Flux. Journal of Environmental Quality 25, 1105-1111.

Fillery, I., De Datta, S., Craswell, E.J.F.r., 1986. Effect of phenyl phosphorodiamidate on the fate of urea applied to wetland rice fields. Nutrient Cycling in Agroecosystems 9, 251-263.

Fillery, I.R.P., De Datta, S.K., 1986. Ammonia Volatilization from Nitrogen Sources Applied to Rice Fields: I. Methodology, Ammonia Fluxes, and Nitrogen-15 Loss. Soil Science Society of America Journal 50, 80-86.

Gans, W., Herbst, F., Merbach, W., 2006. Nitrogen balance in the system plant - Soil after urea fertilization combined with urease inhibitors. Plant, Soil and Environment 52.

Gonzatto, R., Chantigny, M.H., Aita, C., Giacomini, S.J., Rochette, P., Angers, D.A., Pujol, S.B., Zirbes, E., De Bastiani, G.G., Ludke, R.C., 2016. Injection and Nitrification Inhibitor Improve the Recovery of Pig Slurry Ammonium Nitrogen in Grain Crops in Brazil. Agronomy Journal 108, 978.

Graham, C.J., Varco, J.J., 2017. The Effects of Stabilized Urea and Split-Applied Nitrogen on Sunflower Yield and Oil Content. American Journal of Plant Sciences 08, 1842-1854.

Guardia, G., Vallejo, A., Cardenas, L.M., Dixon, E.R., García-Marco, S., 2018. Fate of 15N-labelled ammonium nitrate with or without the new nitrification inhibitor DMPSA in an irrigated maize crop. Soil Biology and Biochemistry 116, 193-202.

Harris, R., Armstrong, R., Wallace, A., 2015. Recovery of 15N urea fertiliser applied to wheat under different management strategies, in the High Rainfall Zone of south western Victoria. Proceedings of the 17th ASA Conference. agronomy2015, Hobart, pp. 20-24.

Henning, S.W., Branham, B.E., Mulvaney, R.L., 2012. Response of turfgrass to urea-based fertilizers formulated to reduce ammonia volatilization and nitrate conversion. Biology and Fertility of Soils 49, 51-60.

Hou, X., K., Hua, J., F., Liang, W., J., Yang, D., F., 2006. Effect of Combined Application of Urease and Nitrification Inhibitors on Yield and Quality of Wheat. Agricultural Journal 1, 109-112.

Jamali, H., Quayle, W., Scheer, C., Baldock, J., 2016. Mitigation of N2O emissions from surface-irrigated cropping systems using water management and the nitrification inhibitor DMPP. Soil Research 54, 481.

Joo, Y.K., Christians, N.E., Blackmer, A.M., 1991. Kentucky Bluegrass Recovery of Urea-Derived Nitrogen-15 Amended with Urease Inhibitor. Soil Science Society of America Journal 55, 528-530.

Karwat, H., Moreta, D., Arango, J., Núñez, J., Rao, I., Rincón, Á., Rasche, F., Cadisch, G., 2017. Residual effect of BNI by Brachiaria humidicola pasture on nitrogen recovery and grain yield of subsequent maize. Plant and Soil 420, 389-406.

Katyal, J.C., Singh, B., Vlek, P.L.G., Buresh, R.J., 1987. Efficient Nitrogen Use as Affected by Urea Application and Irrigation Sequence1. Soil Science Society of America Journal 51, 366-370.

Keerthisinghe, D.G., Xin-Jian, L., Qi-xiang, L., Mosier, A.R.J.F.r., 1996. Effect of encapsulated calcium carbide and urea application methods on denitrification and N loss from flooded rice. Nutrient Cycling in Agroecosystems 45, 31-36.

Keerthisinghe, D.G., Freney, J.R., Mosier, A.R.J.B., Soils, F.o., 1993. Effect of wax-coated calcium carbide and nitrapyrin on nitrogen loss and methane emission from dry-seeded flooded rice. Biology and Fertility of Soils 16, 71-75.

Koci, J., Nelson, P.N., 2016. Tropical dairy pasture yield and nitrogen cycling: effect of urea application rate and a nitrification inhibitor, DMPP. Crop and Pasture Science 67, 766.

Kurdali, F., 2001. N2-Fixation in Chickpea: Effect of Hydroquinone as a Urease Inhibitor on the Stability of 15N Enrichment. Communications in Soil Science and Plant Analysis 32, 453-464.

Liantie, L., Wang, Z.P., Van Cleemput, O., Baert, L.J.B., Soils, F.o., 1993. Urea N uptake efficiency of ryegrass (Lolium perenne L.) in the presence of urease inhibitors. Biology and Fertility of Soils 15, 225-228.

Liu, P., Zhou, H.K., Yang, C., Li, X.F., Wang, W., Y., 2018. Ammonia volatilization and N recovery of nitrogen fertilizer on alpine artificial grassland based on nitrogen isotope labelling technique. Ecological Science 37, 77-84. (Chinese with English abstract)

Liu, S., B., 2017. Effects of Nitrification Inhibitor 3, 4-Dimethylpyrazole Phosphate (DMPP) on Nitrate Nitrogen Contents and N Utilization and Absorption in Peach Orchards. Shangdong Agricultural University. Shangdong Agricultural University, p. 39. (Chinese with English abstract)

Mahapatra, P., Sachdev, M., S., Sachdev, P., 1997. Nitrogen recovery by wheat as influenced by dicyandiamide and urea pellet. Journal of Nuclear Agriculture & Biology 26, 203-210.

Mahmood, T., Ali, R., Latif, Z., Ishaque, W., 2011. Dicyandiamide increases the fertilizer N loss from an alkaline calcareous soil treated with 15N-labelled urea under warm climate and under different crops. Biology and Fertility of Soils 47, 619-631.

Martínez-Alcántara, B., Quiñones, A., Polo, C., Primo-Millo, E., Legaz, F., 2013. Use of Nitrification Inhibitor DMPP to Improve Nitrogen Uptake Efficiency in Citrus Trees. Journal of Agricultural Science 5.

Martins, M.R., Sant’Anna, S.A.C., Zaman, M., Santos, R.C., Monteiro, R.C., Alves, B.J.R., Jantalia, C.P., Boddey, R.M., Urquiaga, S., 2017. Strategies for the use of urease and nitrification inhibitors with urea: Impact on N2O and NH3 emissions, fertilizer- 15N recovery and maize yield in a tropical soil. Agriculture, Ecosystems & Environment 247, 54-62.

Massimiliano, D.A.M., Bell, M.J., Grace, P.R., Rowlings, D.W., Scheer, C., Strazzabosco, A., 2014. Assessing agronomic and environmental implications of different N fertilisation strategies in subtropical grain cropping systems on Oxisols. Nutrient Cycling in Agroecosystems 100, 369-382.

Menneer, J., Ledgard, S., Sprosen, M., 2008. Soil N process inhibitors alter nitrogen leaching dynamics in a pumice soil. Australian Journal of Soil Research - AUST J SOIL RES 46.

Monem, M., A., Lindsay, W.L., Sommer, R., Ryan, J., 2010. Loss of nitrogen from urea applied to rainfed wheat in varying rainfall zones in northern Syria. Nutrient Cycling in Agroecosystems 86, 357-366.

Mouchová, H., Apltauer, J.J.F.r., 1983. Effects of the nitrification inhibitor N-Serve on the utilization of fall-applied urea by wheat. Nutrient Cycling in Agroecosystems 4, 165-180.

Norman, R.J., Moldenhauer, K.A.K., Wells, B.R., 1989. Effect of Application Method and Dicyandiamide on Urea-Nitrogen-15 Recovery in Rice. Soil Science Society of America Journal 53, 1269-1274.

Peng, G., Y., Wang, F., J., Wu, X., J., Su, B., L., 1984. Studies on the Effects of Anhydrous Ammonia Fertilizer and Nitrifying Inhibitor (CP) in Rice on Yield Increasie by Applying 15N. ACTA Agriculture Universitatis Pfkinesis 10, 183-187. (Chinese with English abstract)

Phongpan, S., Byrnes, B.H.J.F.r., 1990. The effect of the urease inhibitor N-(n-butyl) thiophosphoric triamide on the efficiency of urea application in a flooded rice field trial in Thailand. Nutrient Cycling in Agroecosystems 25, 145-151.

Phongpan, S., Freney, J.R., Keerthisinghe, D.G., Chaiwanakupt, P., 1997. Use of urease inhibitors to reduce ammonia loss from broadcast urea and increase grain yield of flooded rice in Thailand. Soil Science and Plant Nutrition 43, 1057-1060.

Rawluk, C., Racz, G., Grant, C., 2000. Uptake of foliar or soil application of 15N-labelled urea solution at anthesis and its affect on wheat grain yield and protein. Canadian Journal of Plant Science 80, 331-334.

Rezaei Rashti, M., Wang, W.J., Chen, C.R., Reeves, S.H., Scheer, C., 2017. Assessment of N2O emissions from a fertilised vegetable cropping soil under different plant residue management strategies using (15)N tracing techniques. Sci Total Environ 598, 479-487.

Rodgers, A., G., Pruden, G., 1984. Field estimation of ammonia volatilisation from15N-labelled urea fertiliser. Journal of The Science of Food and Agriculture 35, 1290-1293.

Romero, C.M., Engel, R.E., Chen, C., Wallander, R., Jones, C.A., 2017. Late-Fall, Winter, and Spring Broadcast Applications of Urea to No-Till Winter Wheat II. Fertilizer N recovery, Yield, and Protein as Affected by NBPT. Soil Science Society of America Journal 81, 331.

Rowlings, D.W., Scheer, C., Liu, S., Grace, P.R., 2016. Annual nitrogen dynamics and urea fertilizer recoveries from a dairy pasture using 15N; effect of nitrification inhibitor DMPP and reduced application rates. Agriculture, Ecosystems & Environment 216, 216-225.

Shalmani, M.A., Mousavi, Lakzian, A., Khorassani, R., Khavazi, K., Zaman, M., 2017. Interaction of Different Wheat Genotypes and Nitrification Inhibitor 3,4-Dimethylpyrazole Phosphate Using 15N Isotope Tracing Techniques. Communications in Soil Science and Plant Analysis 48, 1247-1258.

Shi, Y., Xu, X., K., Zhou, L., K., Cleemput, O., 1998. Effect of inhibitors and their combination on the behavior and fate of urea 15N in wheat-soil system. Chinese Journal of Applied Ecology 9, 168-170. (Chinese with English abstract)

Simpson, J.R., Freney, J.R., Muirhead, W.A., Leuning, R., 1985. Effects of Phenylphosphorodiamidate and Dicyandiamide on Nitrogen Loss from Flooded Rice1. Soil Science Society of America Journal 49, 1426-1431.

Singh, Y., Beauchamp, E.G., 1988. RESPONSE OF WINTER WHEAT TO FALL-APPLIED LARGE UREA GRANULES WITH DICYANDIAMIDE. Canadian Journal of Soil Science 68, 133-142.

Snitwongse, P., Satrusajang, A., Buresh, R.J., 1988. Fate of nitrogen fertilizer applied to lowland rice on a Sulfic Tropaquept. Nutrient Cycling in Agroecosystems 16, 227-240.

Soliman, S., Monem, M., 1996. Effect of method of N-application and modified urea on N-15 recovery by rice. Nutrient Cycling in Agroecosystems 43, 143-148.

Sun, H.J., Min, J., Shi, W.M., Feng, Y., F., Li, W., Z., Chu, L., 2015. Effects of Nitrification Inhibitor on Rice Production and Ammonia Volatilization in Paddy Rice Field. Soils 47, 1027-1033. (Chinese with English abstract)

Tang, J.Y., Weng, B., Q., He, P., Lin, Y., H., Chen, B., H., 1998. Some methodological and mechanical explanation on increasing urea-N efficiency in paddy rice. Journal of Plant Nutrition and Fertilizer 4, 242-248. (Chinese with English abstract)

Throop, P.A., Hanson, E.J., 1998. Nitrification and utilization of fertilizer nitrogen by highbush blueberry. Journal of Plant Nutrition 21, 1731-1742.

Vilsmeier, K.J.F.r., 1991. Fate of ammonium-N in pot studies as affected by DCD addition. Nutrient Cycling in Agroecosystems 29, 187-189.

Walters, D.T., Malzer, G.L., 1990. Nitrogen Management and Nitrification Inhibitor Effects on Nitrogen-15 Urea: II. Nitrogen Leaching and Balance. Soil Science Society of America Journal 54, 122-130.

Wang, Z.Y., Xu, W.H., Huang, Y., Yuan, L.J., Jia, Z.Y., Zhou, J., Ding, S.Y., 1992. Effects of plant urease inhibitor on crop nutrition and soil characters. Acta Agriculturae Nucleatae Sinica 16, 109-114. (Chinese with English abstract)

Watson, C.J., Miller, H., 1996. Short-term effects of urea amended with the urease inhibitor N-(n-butyl) thiophosphoric triamide on perennial ryegrass. Plant and Soil 184, 33-45.

Watson, C.J., Poland, P., Miller, H., Allen, M.B.D., Garrett, M.K., Christianson, C.B.J.P., Soil, 1994. Agronomic assessment and 15N recovery of urea amended with the urease inhibitor nBTPT (N-(n-butyl) thiophosphoric triamide) for temperate grassland. Plant and Soil 161, 167-177.

Wei, Y.S., Teng, Y.X., Lv, X.J., Xu, R.Z., Tao, Y.Z., 1985. Study on the Performance of Combining Nitrification Inhibitor with P and N fertilizer in Cedarwood using 15N Labeling Method. Journal of Zhejiang Forestry College 2, 102-104. (Chinese with English abstract)

Wells, B.R., Bollich, P.K., Ebelhar, W., Mikkelsen, D.S., Norman, R.J., Brandon, D.M., Helms, R.S., Turner, F.T., Westcott, M.P., 1989. Dicyandiamide (DCD) as a nitrification inhibitor for rice culture in the United States. Communications in Soil Science and Plant Analysis 20, 2023-2047.

Wen, X.F., Wang, B.Z., Wang, F.J., Peng, G., Y., 1979. Study of the Effect of Nitrification Inhibitors on the Rice Yield Applied with Isotope 15N. ACTA PEDOLOGICA SINICA 16, 380-386. (Chinese with English abstract)

Wilson, C.E., Wells, B.R., Norman, R.J., 1990. Dicyandiamide Influence on Uptake of Preplant-Applied Fertilizer Nitrogen by Rice. Soil Science Society of America Journal 54, 1157-1161.

Xu, X., Zhou, L., Cleemput, O., Wang, Z., 2000. Fate of urea-15N in a soil-wheat system as influenced by urease inhibitor hydroquinone and nitrification inhibitor dicyandiamide. Plant and Soil 220, 261-270.

Zhang, L., Wu, Z., Jiang, Y., Chen, L., Song, Y., Wang, L., Xie, J., Ma, X., 2010. Fate of applied urea15N in a soil-maize system as affected by urease inhibitor and nitrification inhibitor. Plant, Soil and Environment 56, 8-15.

Zhang, W.X., Sun, G., He, P., Liang, G.Q., Wang, X.B., liu, G.R., Zhou, W., 2013. Effects of urease and nitrification inhibitors on ammonia volatilization from paddy fields. Journal of Plant Nutrition and Fertilizer 19, 1411-1419. (Chinese with English abstract)