ars.els-cdn.com · Web viewa School of Chemical Engineering and Energy, Zhengzhou University,...

22
Supporting Information Porous Nafion nanofiber composite membrane with vertical pathways for efficient through-plane proton conduction Jingtao Wang a , Ping Li a , Yafang Zhang a , Yarong Liu a , Wenjia Wu a,b,* , Jindun Liu a a School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, P. R. China b Department of Civil and Environmental Engineering, Center for the Environmental Implications of NanoTechnology (CEINT), Duke University, Durham, North Carolina 27708, USA *To whom correspondence should be addressed. E-mail: [email protected]

Transcript of ars.els-cdn.com · Web viewa School of Chemical Engineering and Energy, Zhengzhou University,...

Page 1: ars.els-cdn.com · Web viewa School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, P. R. China b Department of Civil and Environmental Engineering, Center

Supporting Information

Porous Nafion nanofiber composite membrane with vertical

pathways for efficient through-plane proton conduction

Jingtao Wanga, Ping Lia, Yafang Zhanga, Yarong Liua, Wenjia Wua,b,*, Jindun Liua

a School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, P. R. Chinab Department of Civil and Environmental Engineering, Center for the Environmental Implications of NanoTechnology (CEINT), Duke University, Durham, North Carolina 27708, USA

*To whom correspondence should be addressed. E-mail: [email protected]

Page 2: ars.els-cdn.com · Web viewa School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, P. R. China b Department of Civil and Environmental Engineering, Center

Fig. S1. Chemical structure of (a) long alkyl chain contained [C8mim][Tf2N] and (b) short alkyl chain contained [C2mim][Tf2N].

Page 3: ars.els-cdn.com · Web viewa School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, P. R. China b Department of Civil and Environmental Engineering, Center

Fig. S2. SEM images of (a) NF/PAN and (b) NF/PAN-C8-20(with).

Page 4: ars.els-cdn.com · Web viewa School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, P. R. China b Department of Civil and Environmental Engineering, Center

Fig. S3. High-resolution SEM images of (a) NF/PAN-C8-15, (b) NF/PAN-C8-20, (c) NF/PAN-C8-

25, (d) NF/PAN-C2-15, (e) NF/PAN-C2-20, and (f) NF/PAN-C2-25.

Page 5: ars.els-cdn.com · Web viewa School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, P. R. China b Department of Civil and Environmental Engineering, Center

Fig. S4. Nitrogen adsorption/desorption isotherms of (a) NF/PAN and NF/PAN-C8-X and (b) NF/PAN and NF/PAN-C2-X.

Page 6: ars.els-cdn.com · Web viewa School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, P. R. China b Department of Civil and Environmental Engineering, Center

100 200 300 400 500 600 700 80040

60

80

100

Wei

ght (

%)

Temperature (oC)

NF/PAN NF/PAN-C2-15 NF/PAN-C2-20 NF/PAN-C2-25

b

0.0

0.5

1.0

1.5

2.0 NF/PAN-C2-25

IEC

(mm

ol g

-1)

NF/PANc

48h24h12h6h2400 2100 1800 1500 1200 900 600

*571*

Tran

smitt

ance

(a.u

.)

Wave number (cm-1)

1195

NF/PAN

NF/PAN-C2-25(with)

NF/PAN-C2-25

1058(SO3H)a

Fig. S5. (a) FTIR spectra of NF/PAN, NF/PAN-C2-25(with), and NF/PAN-C2-25. (b) TGA curves of NF/PAN and NF/PAN-C2-X. (c) dynamic IEC values of NF/PAN and NF/PAN-C2-25 as a

function of testing time.

Page 7: ars.els-cdn.com · Web viewa School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, P. R. China b Department of Civil and Environmental Engineering, Center

Fig. S6. Stress–strain curves of CS/NF/PAN and CS/NF/PAN-C2-X.

Page 8: ars.els-cdn.com · Web viewa School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, P. R. China b Department of Civil and Environmental Engineering, Center

Fig. S7. IEC values of CS/NF/PAN and CS/NF/PAN-C2-X.

Page 9: ars.els-cdn.com · Web viewa School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, P. R. China b Department of Civil and Environmental Engineering, Center

Fig. S8. (a) Water uptake and (b) volume swelling of CS/NF/PAN and CS/NF/PAN-C8-X.

Page 10: ars.els-cdn.com · Web viewa School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, P. R. China b Department of Civil and Environmental Engineering, Center

Fig. S9. (a) Water uptake and (b) volume swelling of CS/NF/PAN and CS/NF/PAN-C8-X.

Page 11: ars.els-cdn.com · Web viewa School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, P. R. China b Department of Civil and Environmental Engineering, Center

Fig. S10. TGA curves of CS/NF/PAN and CS/NF/PAN-C8-X.

Page 12: ars.els-cdn.com · Web viewa School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, P. R. China b Department of Civil and Environmental Engineering, Center

Fig. S11. Arrhenius-plots of (a) perpendicular conductivity (σ⊥) and (b) parallel conductivity (σ∥) of CS/NF/PAN and CS/NF/PAN-C8-X under 0 % RH.

Page 13: ars.els-cdn.com · Web viewa School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, P. R. China b Department of Civil and Environmental Engineering, Center

0 30 60 90

50

100

150

200

250RH=60%RH=40%RH=20%

Con

duct

ivity

σ ⊥(m

S cm

-1)

Time(min)

CS/NF/PAN CS/NF/PAN-C2-20 CS/NF/PAN-C2-15 CS/NF/PAN-C2-25

30 45 60 75 90 105 1200

50

100

150

Through-plane 0 % RH,

Membrane Ea / kJ mol-1

Con

duct

ivity

σ⊥

(mS

cm-1

)

Temperature (oC)

CS/NF/PAN 26.1 CS/NF/PAN-C2-15 12.8 CS/NF/PAN-C2-20 11.4 CS/NF/PAN-C2-25 10.7

30 45 60 75 90 105 1200

50

100

150

200

250

300

In-plane, 0 % RH

Membrane Ea / kJ mol-1

Con

duct

ivity

σ∥ (

mS

cm-1

)

Temperature (oC)

CS/NF/PAN 7.31 CS/NF/PAN-C2-15 5.26 CS/NF/PAN-C2-20 4.26 CS/NF/PAN-C2-25 3.86

b c

d e f

a

0

50

100

150

200

250 σ∥

Con

duct

ivity

(mS

cm-1

)

σ⊥

1.5

2.0

2.5

3.0 σ∥ /σ⊥ values

CS/NF/PAN-C2-25CS/NF/PAN-C2-20CS/NF/PAN-C2-15CS/NF/PAN

σ∥ /σ⊥

0 20 40 60 80 100

50

100

150

200

250

300

Through-plane, 80 oC

Con

duct

ivity

σ ⊥(m

S cm

-1)

RH(%)

CS/NF/PAN CS/NF/PAN-C2-15 CS/NF/PAN-C2-20 CS/NF/PAN-C2-25

0

50

100

150

200

250

300

350

30 40 50 60 70 80 90

Con

duct

ivit

y σ ⊥

(mS

cm-1

)

Temperature(°C)

CS/NF/PANCS/NF/PAN-C₂-15CS/NF/PAN-C₂-20CS/NF/PAN-C₂-25

Fig. S12. CS/NF/PAN and CS/NF/PAN-C2-X: (a) Temperature-dependent perpendicular conductivity (σ⊥) under 100% RH; (b) RH-dependent perpendicular conductivity (σ⊥) at 80 oC; (c)

Time-dependent perpendicular conductivity (σ⊥) at 80 oC and different RH; (d) Temperature-dependent perpendicular conductivity (σ⊥) at 0% RH; (e) Parallel conductivity (σ∥) at 0% RH; (f)

Perpendicular conductivity (σ⊥), parallel conductivity (σ∥), and transfer anisotropy coefficient (σ∥/σ⊥) at 120 oC and 0% RH.

Page 14: ars.els-cdn.com · Web viewa School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, P. R. China b Department of Civil and Environmental Engineering, Center

Fig. S13. Arrhenius-plots of (a) perpendicular conductivity (σ⊥) and (b) parallel conductivity (σ∥) of CS/NF/PAN and CS/NF/PAN-C2-X under 0 % RH.

Page 15: ars.els-cdn.com · Web viewa School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, P. R. China b Department of Civil and Environmental Engineering, Center

Table S1. Thickness of the membranes.

MembraneCS/NF/PAN CS/NF/PAN-

C8-15

CS/NF/PAN-

C8-20

CS/NF/PAN-

C8-25

CS/NF/PAN-

C2-15

CS/NF/PAN-

C2-20

CS/NF/PAN-

C2-25

Thickness

(μm)90 92 99 96 92 98 93

Page 16: ars.els-cdn.com · Web viewa School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, P. R. China b Department of Civil and Environmental Engineering, Center

Table S2. Proton conduction behaviors of other NFCMs in the literatures.

Samples σ∥(mS cm-1) σ⊥(mS cm-1) σ∥/σ⊥ Conditions Ref.

Electrospun SPPESK membrane80 7 11.4 30 oC, 100% RH

1165 37 4.50 80 oC, 100% RH

Electrospun 6FDA-BDSA-r-APPF membrane 212 81 2.62 90 oC, 98% RH 2

S-PS fiber/Nafion hybrid membranes 180 - - 100 oC, 80% RH 3

S-ZrO2 fiber-Nafion hybrid membrane 310 - - 80 oC, 100% RH 4

Electrospun F-SPFEK composite membrane - 61 - 80 oC, 100% RH 5

Electrospun PVDFNF-Nafion membrane - 91 - 90 oC, 95% RH 6

Electrospun SPES + Nafion - 88 - 25 oC, 95% RH 7

Phy-doped PBINf and Nafion matrix 130 - - 80 oC, 95% RH 8

Nafion/PSSA-g-PVDFNF membrane - 106 - 95 oC, 95% RH 9

Nonwoven PAN resin + SPAES50 copolymer 164 - - 80 oC, 100% RH 10

Nonwoven PI + GPTMS / H3PO4 mixture 166 - - 80 oC, 80% RH 11

Nonwoven PAI-PTM + SPAES 110 - - 80 oC, 100% RH 12

Electrospun PFSA + (NOA) 63160 - - 80 oC, 80% RH

1348 - - 80 oC, 50% RH

SPS/PEO fiber + PDMS 100 - - 25 oC, 98% RH 14

SiO2/SPEEK composite nanofiber + Nafion - 77 - 90 oC, 100% RH 15

SPAES nanofiber + silicate 60 - - 30 oC, 100% RH 16

Polysulfone/POSS Nanofiber+NOA 94 - - 30 oC, 80% RH 17

Pd-SiO2 nanofiber+Nafion 129 - - 25 oC, 100% RH 18

Nafion nanofiber+ (NOA) 63 80 - - 25 oC, 100% RH 19

SPEEK nanofiber+CS - 60 - 120 oC, 0% RH 20

Electrospun SPPESK + SPPESK matrix 213 - - 120 oC, 100%RH 21

PFSA/SPOSS/PAA+NOA6321 - - 120 oC, 20% RH

22107 - - 120 oC, 50% RH

SPEEK nanofibers + Nafion matrix 90 - - 20 oC, 100% RH 23

BPPO nanofiber+SPPO matrix 80 - - 25 oC, 100% RH 24

PBI nanofiber-reinforced PBI membranes 170 - - 160 oC, 0% RH 25

CS/NF/PAN180

-

56

97

3.19

-

120 oC, 0% RH

90 oC, 100% RHthis work

CS/NF/PAN-C8-25301

-

129

294

2.33

-

120 oC, 0% RH

90 oC, 100% RHthis work

CS/NF/PAN-C2-25270

-

150

307

1.80

-

120 oC, 0% RH

90 oC, 100% RHthis work

Page 17: ars.els-cdn.com · Web viewa School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, P. R. China b Department of Civil and Environmental Engineering, Center

References

[1] X. Gong, G. He, Y. Wu, S. Zhang, B. Chen, Y. Dai, X. Wu, Aligned electrospun nanofibers

as proton conductive channels through thickness of sulfonated poly (phthalazinone ether

sulfone ketone) proton exchange membranes, J. Power Sources. 358 (2017) 134–141.

[2] T. Tamura, R. Takemori, H. Kawakami, Proton conductive properties of composite

membranes containing uniaxially aligned ultrafine electrospun polyimide nanofiber, J.

Power Sources. 217 (2012) 135–141.

[3] Y. Yao, L. Ji, Z. Lin, Y. Li, M. Alcoutlabi, H. Hamouda, X. Zhang, Sulfonated polystyrene

fiber network-induced hybrid proton exchange membranes, ACS Appl. Mater. Interfaces. 3

(2011) 3732–3737.

[4] Y. Yao, Z. Lin, Y. Li, M. Alcoutlabi, H. Hamouda, X. Zhang, Superacidic electrospun

fiber-Nafion hybrid proton exchange membranes, Adv. Energy Mater. 1 (2011) 1133–1140.

[5] W. Liu, S. Wang, M. Xiao, D. Han, Y. Meng, A proton exchange membrane fabricated

from a chemically heterogeneous nonwoven with sandwich structure by the program-

controlled co-electrospinning process, Chem. Commun. 48 (2012) 3415–3417.

[6] H.Y. Li, Y.L. Liu, Nafion-functionalized electrospun poly(vinylidene fluoride) (PVDF)

nanofibers for high performance proton exchange membranes in fuel cells, J. Mater. Chem.

A. 2 (2014) 3783–3793.

[7] I. Shabani, M.M. Hasani-Sadrabadi, V. Haddadi-Asl, M. Soleimani, Nanofiber-based

polyelectrolytes as novel membranes for fuel cell applications, J. Memb. Sci. 368 (2011)

233–240.

[8] M. Tanaka, Y. Takeda, T. Wakiya, Y. Wakamoto, K. Harigaya, T. Ito, T. Tarao, H.

Kawakami, Acid-doped polymer nanofiber framework: Three-dimensional proton

Page 18: ars.els-cdn.com · Web viewa School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, P. R. China b Department of Civil and Environmental Engineering, Center

conductive network for high-performance fuel cells, J. Power Sources. 342 (2017) 125–

134.

[9] H.Y. Li, Y.Y. Lee, J.Y. Lai, Y.L. Liu, Composite membranes of Nafion and poly(styrene

sulfonic acid)-grafted poly(vinylidene fluoride) electrospun nanofiber mats for fuel cells, J.

Memb. Sci. 466 (2014) 238–245.

[10] D.M. Yu, S. Yoon, T.H. Kim, J.Y. Lee, J. Lee, Y.T. Hong, Properties of sulfonated

poly(arylene ether sulfone)/electrospun nonwoven polyacrylonitrile composite membrane

for proton exchange membrane fuel cells, J. Memb. Sci. 446 (2013) 212–219.

[11] H.J. Lee, J.H. Kim, J.H. Won, J.M. Lim, Y.T. Hong, S.Y. Lee, Highly flexible, proton-

conductive silicate glass electrolytes for medium-temperature/low-humidity proton

exchange membrane fuel cells, ACS Appl. Mater. Interfaces. 5 (2013) 5034–5043.

[12] D.M. Yu, S. Yoon, T.H. Kim, J.Y. Lee, J. Lee, Y.T. Hong, Poly(amide-co-imide)-poly

(trimellitic anhydride chloride-co-4,4′- methylenedianiline) nonwoven/sulfonated poly

(arylene ether sulfone) composite membrane for proton exchange membrane fuel cells,

Macromol. Res. 22 (2014) 79–84.

[13] J. Choi, K.M. Lee, R. Wycisk, P.N. Pintauro, P.T. Mather, Nanofiber composite

membranes with low equivalent weight perfluorosulfonic acid polymers, J. Mater. Chem.

20 (2010) 6282–6290.

[14] C. Subramanian, R.A. Weiss, M.T. Shaw, Fabrication and characterization of conductive

nanofiber-based composite membranes, Ind. Eng. Chem. Res. 52 (2013) 15088–15093.

[15] C. Lee, S.M. Jo, J. Choi, K.Y. Baek, Y.B. Truong, I.L. Kyratzis, Y.G. Shul, SiO2/sulfonated

poly ether ether ketone (SPEEK) composite nanofiber mat supported proton exchange

membranes for fuel cells, J. Mater. Sci. 48 (2013) 3665–3671.

Page 19: ars.els-cdn.com · Web viewa School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, P. R. China b Department of Civil and Environmental Engineering, Center

[16] J.H. Won, H.J. Lee, J.M. Lim, J.H. Kim, Y.T. Hong, S.Y. Lee, Anomalous behavior of

proton transport and dimensional stability of sulfonated poly(arylene ether sulfone)

nonwoven/silicate composite proton exchange membrane with dual phase co-continuous

morphology, J. Memb. Sci. 450 (2014) 235–241.

[17] J. Choi, K.M. Lee, R. Wycisk, P.N. Pintauro, P.T. Mather, Sulfonated Polysulfone/POSS

Nanofiber Composite Membranes for PEM Fuel Cells, J. Electrochem. Soc. 157 (2010)

B914.

[18] H.S. Thiam, W.R.W. Daud, S.K. Kamarudin, A.B. Mohamad, A.A.H. Kadhum, K.S. Loh,

E.H. Majlan, Nafion/Pd-SiO2 nanofiber composite membranes for direct methanol fuel cell

applications, Int. J. Hydrogen Energy. 38 (2013) 9474–9483.

[19] K.M. Lee, J. Choi, R. Wycisk, P.N. Pintauro, P. Mather, Nafion Nanofiber Membranes,

ECS Trans. 25 (2009) 1451–1458.

[20] J. Wang, Y. He, L. Zhao, Y. Li, S. Cao, B. Zhang, H. Zhang, Enhanced proton

conductivities of nanofibrous composite membranes enabled by acid-base pairs under

hydrated and anhydrous conditions, J. Memb. Sci. 482 (2015) 1–12.

[21] S. Zhang, G. He, X. Gong, X. Zhu, X. Wu, X. Sun, X. Zhao, H. Li, Electrospun nanofiber

enhanced sulfonated poly (phthalazinone ether sulfone ketone) composite proton exchange

membranes, J. Memb. Sci. 493 (2015) 58–65.

[22] J. Choi, R. Wycisk, W. Zhang, P.N. Pintauro, K.M. Lee, P.T. Mather, High conductivity

perfluorosulfonic acid nanofiber composite fuel-cell membranes, ChemSusChem. 3 (2010)

1245–1248.

Page 20: ars.els-cdn.com · Web viewa School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, P. R. China b Department of Civil and Environmental Engineering, Center

[23] X. Xu, L. Li, H. Wang, X. Li, X. Zhuang, Solution blown sulfonated poly(ether ether

ketone) nanofiber-Nafion composite membranes for proton exchange membrane fuel cells,

RSC Adv. 5 (2015) 4934–4940.

[24] S.H. Yun, J.J. Woo, S.J. Seo, L. Wu, D. Wu, T. Xu, S.H. Moon, Sulfonated poly(2,6-

dimethyl-1,4-phenylene oxide) (SPPO) electrolyte membranes reinforced by electrospun

nanofiber porous substrates for fuel cells, J. Memb. Sci. 367 (2011) 296–305.

[25] H.Y. Li, Y.L. Liu, Polyelectrolyte composite membranes of polybenzimidazole and

crosslinked polybenzimidazole-polybenzoxazine electrospun nanofibers for proton

exchange membrane fuel cells, J. Mater. Chem. A. 1 (2013) 1171–1178.