ars.els-cdn.com · Web view1State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong...

11
Simultaneously enhancing the strength, ductility and conductivity of copper matrix composites with graphene nanoribbons Ming Yang 1 , Lin Weng 1 , Hanxing Zhu 2 , Tongxiang Fan 1 *, Di Zhang 1 1 State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China 2 School of Engineering, Cardiff University, Cardiff CF24 3AA, UK 1

Transcript of ars.els-cdn.com · Web view1State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong...

Simultaneously enhancing the strength, ductility and conductivity of copper matrix composites with graphene nanoribbons

Ming Yang1, Lin Weng1, Hanxing Zhu2, Tongxiang Fan1*, Di Zhang1

1State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China

2School of Engineering, Cardiff University, Cardiff CF24 3AA, UK

*Corresponding author. Tel: +86-21-54747779. E-mail: [email protected] (Tongxiang Fan)

Fig. S1. (a) High-resolution SEM and (b) TEM images of raw MWCNTs.

Fig. S2. Images demonstrating the fabrication process of bulk Cu/GNR composites: (a) GNR dispersions. (b) Cu slurry dispersed in ethanol solutions. (c) The sendiment of Cu/GNR mixtures after co-blending, the upper supernatant is pure ethanol. (d) Dried Cu/GNR mixture powders. (e) As-SPSed Cu/GNR disks with a diameter of 28mm. (f) As-rolled plates of Cu/GNR composites.

Table S1. The amount of chemicals for preparation of Cu/GNR composite powders.

GNR Volume fraction (%)

GNR dispersion

Cu powder dispersion

GNR (g)

Ethanol (mL)

Cu powder (g)

Ethanol (mL)

0.5

0.024

240

20

2000

1.0

0.048

480

20

2000

3.0

0.144

1440

20

2000

Note: The density of GNR is 2.0 g cm-3 and the density of Cu is 8.96 g cm-3.

Fig. S3. (a-b) TEM images and (c) the corresponding SAED pattern of an individual GNR. (c) HRTEM image of the edge of a single-layered GNR.

Fig. S4. FTIR spectra of GNRs and raw MWCNTs. Chemical oxidation imparts a large number of epoxide, hydroxyl and carbonxyl groups to GNR surfaces, as designated.

Fig. S5. (a) SEM image of Cu/GNR composites. Arrows indicate the embedded GNRs. (b-c) the corresponding EDS elemental mapping of copper and carbon, repstively.

Fig. S6. Bending load-displacement curves of neat Cu and Cu/GNRs.

Table S2. Change in yield strength (σs) and failure strain (εb), and electrical conductance (κ) for different copper-matrix composites, with comparison to those of the matrix.

Reinforcement

Fraction

Change in σs

Change in εb

κ [IACS%]

Reference

GNRs

0 vol.%

--

--

90.2%

This Work

0.5 vol.%

32.3%

3.3%

93.9%

1.0 vol.%

55.4%

30.4%

94.6%

3.0 vol.%

126.9%

-13.1%

92.6%

um-SiC

10 vol.%

27.2%

-18%

82.63%

Mater. Lett. 2003, 57, 4583-4591

nano-SiC

4 vol.%

35%

--

--

Mater. Design 2013, 52, 881-887

TiB2

3.5 wt.%

54.8%

-71.9%

64.3%

Mater. Lett. 2002, 52, 448-452

TiC

5 vol.%

100.6%

-79%

78.6%

Mater. Design 2016, 92, 58-63

Al2O3

5 vol.%

88%

-77.5

80%

J. Alloys Compd. 2016, 682, 590-593

Si3N4

whisker

5 vol.%

10.7%

--

--

Mater. Sci. Eng. A 2014, 607, 287-293

10 vol.%

23.9%

--

--

15 vol.%

9.4%

--

--

Ternary carbides

5 vol.%

94.8%

--

86.9%

Scr. Mater. 2009, 60, 976-979

10 vol.%

83.8%

--

76.1%

20 vol.%

60.6%

--

50.7%

SiC fiber

13 wt.%

116.3%

-42.6%

85%

Mater. Sci. Eng. A 2007, 449-451, 778-781

SWCNTs

5 vol.%

30.4%

-25%

83.6%

Mater. Sci. Eng. A 2016, 675, 82-91

DWCNTs

0.5 vol%

10%

12.7%

93-97%

Carbon 2016, 96, 212-215

MWCNTs

5 vol.%

83.3%

-47%

80.5%

Mater. Sci. Eng. A 2009, 513-514, 247-253

10 vol.%

167.5%

-87%

72.6%

15 vol.%

185%

-93.7%

71.8%

Fig. S7. Orientation distribution function sections depicting the component of textures: (a) unreinfored Cu with strong copper type , Brass type and weak S-type textures, and (b) Cu/1%GNRs with Brass type and S-type textures.

2