Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

59
Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002

Transcript of Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Page 1: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Array Design

David Woody

Owens Valley Radio Observatory

presented at

NRAO summer school 2002

Page 2: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Outline

• Statement of the problem• UV metrics• Imaging metrics• Beam metrics

– PSF and synthesized beam

– Sidelobe statistics

– Optimization

• ALMA configurations

Page 3: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Problem

• Given a collection of antennas, what is the the best array configuration?

• Considerations– Best science output

– Geography

– Flexibility

– Costs

• Need methods for evaluating configurations

Page 4: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

UV metrics• Brightness = FT of complex visibility

• Resolution >/max_baseline

• Nyquist theorem– UV sample spacing < 1/FOV

• Simple DFT would seem to require complete sampling of the UV-plane

less than Nyquist sampling

0 200 400 600 800 1000 1200 1400 1600 1800 20001

0.5

0

0.5

1

Page 5: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Filled Disk

Page 6: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

First Arrays

• Large telescopes on tracks– => linear, “Tee”, and star arrays

– Often with regular spacing

• Science was mostly small fields• Ryle strived for complete sampling

Page 7: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Westerbork

Page 8: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Minimum Redundancy

• Possible in 1-D– Earth rotation gives good 2-D coverage for polar

sources

• Not solved for 2-D snapshots

Page 9: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Early Configuration Design

• Layout antennas with some idea in mind• Look at UV coverage• Iterate• Seemed OK for small numbers of antennas

Page 10: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

VLA

Page 11: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

VLA Zenith Snapshot

Page 12: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

VLA Tracks

Page 13: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

VLBA

Page 14: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

VLBA UV Coverage

Page 15: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

More Recent UV Designs

• Optimize UV coverage• Good snapshot coverage

• Uniform UV coverage– Reuleaux triangles (SMA)

• Complete coverage– MMA circular configuration

• Match image visibility distribution– Gaussian UV coverage

Page 16: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Reuleaux Triangle

Page 17: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Reuleaux Triangle Tracks

Page 18: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Imaging Metrics

• Use the imaging tools we have to evaluate configurations

Page 19: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Image Evaluation

• Set of test pictures• Generate model visibilities• Process images• Compare images to pictures

– Dynamic range

– Fidelity

• Repeat for different configurations• Modify configuration?

• Iterate

Page 20: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

General Results

• More UV coverage gives better images• Guassian UV coverage gives better images,

especially for wide fields

Page 21: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Why are the images so good?

• Small fields greatly relaxes the Nyquist sampling• Many algorithms are essentially model fitting• Complete Nyquist sampling is not necessary

Page 22: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Generalized Nyquist Theorem

• Uniform complete sampling not requiredaverage sampling exceeds Nyquist

0 200 400 600 800 1000 1200 1400 1600 1800 20001

0.5

0

0.5

1

• Just need the average number of samples to exceed Nyquist

Page 23: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Imaging Approach to Array Design

• Selection of test pictures prejudices the design• Multiple definitions of dynamic range and fidelity• Time consuming• Difficult to evolve to better configuration

• But imaging is the bottom line for what we expect to get out of an array

• Part of the ALMA configuration design process

Page 24: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

• Can we quantify the effect of the missing UV data?

Page 25: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

• Optical– Optical transfer function

• Autocorrelation of field

• Radio– Spectral sensitivity function

• Transfer function or UV sampling

20 15 10 5 0 5 10 15 200

0.5

1

Aperture Field

distanc e

espo

nse

20 15 10 5 0 5 10 15 200

1

2

3Spectral Sensitivity Function

U

resp

onse

Page 26: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Beam Metrics

• Optical– Optical transfer function

• Autocorrelation of field

– Point Spread Function• FT of optical transfer function

• Radio– Spectral response function

• Transfer function or UV samples

– Synthesized beam x Primary Beam• FT of spectral response function

• The PSF is the optical image generated by a point source. It is a measure of the instrumental or array artifacts that the imaging algorithms must deal with.

• A good PSF => good images

Page 27: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

PSF and Radio Astronomy• Voltage pattern of array beam

nN

nnPSF rpkipU

NpU

exp)(1

)(1

.

.

• Point Spread Function = synthesized beam plus single antenna response

• Same as the power from the array used as a transmitter

N

mnm

N

nmn

PSF

rrpkipBN

pUpPSF

1 12

2

)(exp)(1

)()(

Page 28: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Synthesized Beam and PSF

1 0.5 0 0.5 10

0.5

1

Synthesized & Primary Beam

angle

1 0.5 0 0.5 10

0.5

1

Point Spread Function

angle

Page 29: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Sidelobes

• Near sidelobes from large scale distribution• Far sidelobes from small scale distribution and

gaps

• Visibility data can be weighted to improve the sidelobes at the expense of S/N

• At mm and sub-mm, sensitivity is a dominant design criteria and data weighting should be avoided

Page 30: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Near Sidelobes for Cylindrical Antenna Distributions

r 0 .01 1

0 0.2 0.4 0.6 0.8 10

0.5

1

radius

Antenna distribution

b 0 .01 1.5

0 0.2 0.4 0.6 0.8 1 1.2 1.40

0.5

1

baseline

0 .01 10

0.1 1 101 10

3

0.01

0.1

1

angle

Point Spread Function

UV distribution

Page 31: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Far Sidelobes

• Caused by gaps in UV coverage• Average of PSF

– Including single dish measurements • PSF > 0• Average = 1/(N-1)

– Interferometric data only• PSF > -1/(N-1)• Average = 0

• Standard deviation– > 1/N for Magnification >> N– N = number of antennas– Magnification = (primary beam width)/(synthesized beam width)

Page 32: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Standard Deviation vs. Magnificationx 1 1.02 3

10 100 1 1031 10

3

0.01

0.1Standard Deviation of PSF Sidelobes

Array Magnification

Sta

ndar

d D

evia

tion

minimum for bell shaped and uniform UV distributions for N =64

1.6%

Page 33: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Sidelobe Calculation

• Sidelobes are sum of N unit vectors of different orientations

2

12

exp)( 1

)(

N

nnrpkipB

NpPSF

Vector rotation = rp

2

Page 34: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Vector Random Walkfr 0

1 0.5 0 0.5 11

0.5

0

0.5

1field vector sum

Page 35: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Vector Random Walkfr 1

1 0.5 0 0.5 11

0.5

0

0.5

1field vector sum

Page 36: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Vector Random Walkfr 2

1 0.5 0 0.5 11

0.5

0

0.5

1field vector sum

Page 37: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Vector Random Walkfr 100

1 0.5 0 0.5 11

0.5

0

0.5

1field vector sum

Page 38: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Vector Random Walkfr 101

1 0.5 0 0.5 11

0.5

0

0.5

1field vector sum

Page 39: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Statistical Distribution of Sidelobes

• Should have a Rayleigh distribution

NsNsg exp)(

)ln(2

max magN

s

• Expected maximum sidelobe

Page 40: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

• Test against three configurations– UV coverage optimized circular array

– Random Gaussian array

– Systematic Gaussian array

Page 41: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Circularuvdata UV config( ) U Re uvdata( ) V Im uvdata( )

1 0.5 0 0.5 1

1

0.5

0

0.5

1

UV coverage

V

U psfplot PSFlog psf .05 .15( ) PSF plot

psfplot

LPlot Rbeam psf( ) i 0 1000

1 10 100 1 1030

0.05

0.1

0.15

Angle/PSF_HW HM

PSF

pea

k, a

vera

ge a

nd r

ms

X Re config( ) Y Im config( ) Antenna positions

0.5 0 0.5

0.5

0

0.5

Y

X

Peak sidelobe vs. radius

Antenna distribution UV distribution

PSF

Page 42: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Pseudo RandomX Re config( ) Y Im config( ) Antenna positions

0.5 0 0.5

0.5

0

0.5

Y

X

uvdata UV config( ) U Re uvdata( ) V Im uvdata( )

1 0.5 0 0.5 1

1

0.5

0

0.5

1

UV coverage

V

U psfplot PSFlog psf .05 .15( ) PSF plot

psfplot

LPlot Rbeam psf( ) i 0 1000

1 10 100 1 1030

0.05

0.1

0.15

Angle/PSF_HWHM

PSF

pea

k, a

ver

age

and

rms

Peak sidelobe vs. radius

Antenna distribution UV distribution

PSF

Page 43: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

SystematicX Re config( ) Y Im config( ) Antenna positions

0.5 0 0.5

0.5

0

0.5

Y

X

uvdata UV config( ) U Re uvdata( ) V Im uvdata( )

1 0.5 0 0.5 1

1

0.5

0

0.5

1

UV coverage

V

U psfplot PSFlog psf .05 .15( ) PSF plot

psfplot

LPlot Rbeam psf( ) i 0 1000

1 10 100 1 1030

0.05

0.1

0.15

Angle/PSF_HWHM

PSF

pea

k, a

vera

ge a

nd r

ms

Peak sidelobe vs. radius

Antenna distribution UV distribution

PSF

Page 44: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Distribution of Sidelobesj 0 200

0 0.05 0.1 0.151 10

3

0.01

0.1

1

10

100

sidelobe magnit ude

num

ber

of

sam

ple

s, n

orm

aliz

ed

Histograms of the PSF sidelobe amplitudes for the initial circular array (dotted), pseudo-random (dashed) and systematic (dot-dash). The solid line is the theoretical distribution for pseudo-random configurations.

Number of sidelobes vs. magnitude

Page 45: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Optimization• Minimize peak sidelobe

– Find peak sidelobe

– Adjust a single antenna to reduce this peak

– Check that no other peak now exceeds new peak

– Repeat

fr 100

1 0.5 0 0.5 11

0.5

0

0.5

1field vector sum

Page 46: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Sequential Optimization• Rotation of the antenna unit vectors is• • Near sidelobes require large antenna shifts • Farther sidelobes require small shifts that don’t effect the near sidelobes• You can start by minimizing the near sidelobes and then progress outward without degrading nearer

sidelobes• Expected maximum sidelobe after optimization is

)ln()ln(211

max, NmagN

s opt

rp

2

Page 47: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Optimized Arrays

X Re config( ) Y Im config( ) Antenna positions

0.5 0 0.5

0.5

0

0.5

Y

X

X Re config( ) Y Im config( ) Antenna positions

0.5 0 0.5

0.5

0

0.5

Y

X

X Re config( ) Y Im config( ) Antenna positions

0.5 0 0.5

0.5

0

0.5

Y

X

X Re config( ) Y Im config( ) Antenna positions

0.5 0 0.5

0.5

0

0.5

Y

X

X Re config( ) Y Im config( ) Antenna positions

0.5 0 0.5

0.5

0

0.5

Y

X

X Re config( ) Y Im config( ) Antenna positions

0.5 0 0.5

0.5

0

0.5

Y

X

Antenna distribution

UV distribution UV distributionUV distribution

Antenna distributionAntenna distribution

Page 48: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Optimized Sidelobe DistributionLPlot Rbeam psf( ) i 0 1000

1 10 100 1 1030

0.05

0.1

0.15

Angle/PSF_HWHM

PSF

pea

k, a

ver

age

and

rms

LPlot Rbeam psf( ) i 0 1000

1 10 100 1 1030

0.05

0.1

0.15

Angle/PSF_HWHM

PSF

pea

k,

aver

age

and

rm

s

LPlot Rbeam psf( ) i 0 1000

1 10 100 1 1030

0.05

0.1

0.15

Angle/PSF_HWHM

PSF

pea

k,

aver

age

and

rm

s

j 0 200

0 0.05 0.1 0.151 10

3

0.01

0.1

1

10

100

sidelobe magnit ude

num

ber

of

sam

ple

s, n

orm

aliz

ed

Peak sidelobe vs. radius Peak sidelobe vs. radius

Peak sidelobe vs. radius Number of sidelobes vs. magnitude

Page 49: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Add more short spacingsX Re config( ) Y Im config( ) Antenna pos itions

0.5 0 0.5

0.5

0

0.5

Y

X

uvrdist Nrdist uvdata nbins 1.5( ) j 0 nbins

0 0.2 0.4 0.6 0.8 10

1

2

UV radius

UV

den

sity

LPlot Rbeam psf( ) i 0 1000

1 10 100 1 1030

0.05

0.1

0.15

Angle/PSF_HWHM

PSF

pea

k, a

vera

ge a

nd

rms

psfp lot PSFlog psf .001 .05( ) PSF plot

psfp lot

Peak sidelobe vs. radius

Antenna distributionRadial UV distribution

PSF

Page 50: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Results for several design studies

0

0.05

0.1

0.15

0.2

0.25

10 100 1000

Magnification

Sid

elob

e P

eak

Circle

random #1

Random #2

Systematic

ln(mag)*2/N

Circle, opt

Random #1, opt

Random #2, opt

Systematic, opt

Opt for 2.5%

[2*ln(mag)-ln(N)]/N

[1+2*ln(mag)-ln(N)]/N

Page 51: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Earth Rotation

plot st

10 100 1 1031 10

3

0.01

0.1Standard Deviation of PSF Sidelobes

Array Magnification

Sta

ndar

d D

evia

tion

Lower limit to the standard deviation for bell shaped (red curves) and uniform UV coverage (blue curves) for 64 antenna arrays for snapshot (solid), 6 min (dashed) and 1 hr tracks (dotted).

Page 52: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

PSF Metric

• Simple to calculate• Gives quantifiable results• Can be compared to idealized expectations• Directly related to imaging artifacts• Easy to evolve into better configurations

– Can easily incorporate physical constraints

• Major part of ALMA configuration design

Page 53: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

ALMA configurations

• Geography and boundaries are significant constraints

• Design approach– Large scale Gaussian UV distribution – Logarithmic spiral for zooming– Finally sidelobe optimization

• Multiple configurations– Start in compact, close packed– Transition to self similar logarithmic spiral– Largest configuration circle or star

• Final design in progress

Page 54: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Conway: Mag=14, XYscale=168m

psfplot

PSF plotpsfplot PSFlog psf .02 .06( )

psf PSFin aconfig samp grdext mag( )

samp 2 maggrdext 2 N3dB *N3dB 1mag 14

1 0 1

1

0

1

UV coverage

normalized U [m/Dant*mag]

norm

aliz

ed V

[m

/Dan

t*m

ag]

0.5 0 0.5

0.5

0

0.5

Antenna positions

normalized X [E/Dant*mag]

norm

aliz

ed Y

[N

/Dan

t*m

ag]

V Im uvdata( )U Re uvdata( )uvdata UV config( )Y Im config( )X Re config( )

mag 14ifig 20file "Conways configs ascii.txt"

Page 55: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Conway: Mag=14, peak sidelobe=5.8%

1 103

0.01 0.1 1 100

0.05

0.1

0.15

Array Beam maximum vs. angle

Angle/Primary Beam_HWHM

PS

F p

eak

an

d a

verag

e

i 0 1000

0 0.05 0.1 0.151 10

3

0.01

0.1

1

10

100Histogram of PSF sidelobes

sidelobe magnitude

nu

mber o

f s

am

ple

s,

no

rm

ali

zed

0 0.5 10

0.5

1

1.5UV radial distribution

UV radius

UV

den

sit

y

k 0 200j 0 nbinsuvrdist Nrdist uvdata nbins 1.5( )nbins 50

LargeSL LPlot grdext( ) 0.0581LPlot Rbeam psf( )HistPlot PSFhisto psf 1.5 grdext 1 grdextmag

2 100

nless 0fRan Dant 0random perturbation.mag 14ifig 20file "Conways configs ascii.txt"

Page 56: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Conway: Mag=70, XYscale=840m

psfplot

PSF plotpsfplot PSFlog psf .02 .15( )

psf PSFin aconfig samp grdext mag( )

samp 2 maggrdext 2 N3dB *N3dB 1mag 70

1 0 1

1

0

1

UV coverage

normalized U [m/Dant*mag]

norm

aliz

ed V

[m

/Dan

t*m

ag]

0.5 0 0.5

0.5

0

0.5

Antenna positions

normalized X [E/Dant*mag]

norm

aliz

ed Y

[N

/Dan

t*m

ag]

V Im uvdata( )U Re uvdata( )uvdata UV config( )Y Im config( )X Re config( )

mag 70ifig 9file "Conways configs ascii.txt"

Page 57: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Conway: Mag=70, peak sidelobe=13.2%

1 103

0.01 0.1 1 100

0.05

0.1

0.15

Array Beam maximum vs. angle

Angle/Primary Beam_HWHM

PS

F p

eak

an

d a

verag

e

i 0 1000

0 0.05 0.1 0.151 10

3

0.01

0.1

1

10

100Histogram of PSF sidelobes

sidelobe magnitude

nu

mber o

f s

am

ple

s,

no

rm

ali

zed

0 0.5 10

0.5

1

1.5UV radial distribution

UV radius

UV

den

sit

y

k 0 200j 0 nbinsuvrdist Nrdist uvdata nbins 1.5( )nbins 50

LargeSL LPlot grdext( ) 0.13248LPlot Rbeam psf( )HistPlot PSFhisto psf 1.5 grdext 1 grdextmag

2 100

nless 0fRan Dant 0random perturbation.mag 70ifig 9file "Conways configs ascii.txt"

Page 58: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Conway: Mag=240, XYscale=2,880m

psfplot

PSF plotpsfplot PSFlog psf .02 .15( )

psf PSFin aconfig samp grdext mag( )

samp 2 maggrdext 2 N3dB *N3dB 1mag 240

1 0 1

1

0

1

UV coverage

normalized U [m/Dant*mag]

norm

aliz

ed V

[m

/Dan

t*m

ag]

0.5 0 0.5

0.5

0

0.5

Antenna positions

normalized X [E/Dant*mag]

norm

aliz

ed Y

[N

/Dan

t*m

ag]

V Im uvdata( )U Re uvdata( )uvdata UV config( )Y Im config( )X Re config( )

mag 240ifig 2file "Conways configs ascii.txt"

Page 59: Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.

Conway: Mag=240, peak sidelobe=16.0%

1 103

0.01 0.1 1 100

0.05

0.1

0.15

Array Beam maximum vs. angle

Angle/Primary Beam_HWHM

PS

F p

eak

an

d a

verag

e

i 0 1000

0 0.05 0.1 0.151 10

3

0.01

0.1

1

10

100Histogram of PSF sidelobes

sidelobe magnitude

nu

mber o

f s

am

ple

s,

no

rm

ali

zed

0 0.5 10

0.5

1

1.5UV radial distribution

UV radius

UV

den

sit

y

k 0 200j 0 nbinsuvrdist Nrdist uvdata nbins 1.5( )nbins 50

LargeSL LPlot grdext( ) 0.16048LPlot Rbeam psf( )HistPlot PSFhisto psf 1.5 grdext 1 grdextmag

2 100

nless 0fRan Dant 0random perturbation.mag 240ifig 2file "Conways configs ascii.txt"