ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

81
ARQ PPP TDM Synchronous Optical Networks xDSL WLAN ETSF05 – Internet Protocols Jens A Andersson

Transcript of ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Page 1: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

ARQPPPTDM

Synchronous Optical NetworksxDSLWLAN

ETSF05 – Internet Protocols

Jens A Andersson

Page 2: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Routing

• Konsten att bygga least‐cost trees• Från sändare till mottagare• Från varje nod till varje annan nod

• Tre principer• Distance Vector• Link State• Path Vector

• Policy‐based routing

22014‐09‐29 ETSF05 Internet Protocols

Page 3: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Stop‐and‐wait ARQ

• Too much waiting• Solution

– Keep the pipe full– But not too full

• Sliding window– Size matters– Window size < 2m

Page 4: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Sliding window

2012‐10‐01

Page 5: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Sliding window (sender)

5

Page 6: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Sliding window (receiver)

6

Page 7: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Sliding window (max wnd sz = 7)

7

Page 8: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Go‐Back‐N

8

Page 9: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Go‐Back‐N ARQ (the Stalling Way; skiljersig från Kihl‐Andersson i detaljer)• Most commonly used error control• Based on sliding‐window• Use window size to control number of outstanding frames

• While no errors occur, the destination will acknowledge incoming frames as usual– RR=receive ready, or piggybacked acknowledgment

• If the destination station detects an error in a frame, it may send a negative acknowledgment– REJ=reject– Destination will discard that frame and all future frames until the frame in error is received correctly

– Transmitter must go back and retransmit that frame and all subsequent frames

Page 10: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Selective‐Reject (ARQ) (Stalling)

• Also called selective retransmission• Only rejected frames are retransmitted• Subsequent frames are accepted by the receiver and buffered

• Minimizes retransmission• Receiver must maintain large enough buffer• More complex logic in transmitter

– Less widely used• Useful for satellite links with long propagation delays

Page 11: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Selective Repeate

11

Page 12: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Selective repeat ARQ

• Why?– Too many datagrams to re‐transmit

• What if?– Just send lost frames

• Higher efficiency– To the cost of higher receiver complexity

2012‐10‐01

Page 13: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

RR (P bit = 1)

RR 2

RR 4

REJ 4

RR 5

RR 1

frame 0

frame 1

frame 2

frame 3

frame 5frame 6

frame 4frame 5

frame 6frame 7

frame 0

frame 1

frame 2

frame 4

RR 7

(a) Go-back-N ARQ

4, 5, and 6retransmitted

discarded byreceiver

Timeout

RR (P bit = 1)

RR 2

RR 4

SREJ 4

RR 7

RR 3

frame 0

frame 1

frame 2

frame 3

frame 5frame 6

frame 4frame 7

frame 0frame 1

frame 2

frame 3

frame 4

frame 4

RR 1

(b) Selective-reject ARQ

4 retransmitted

buffered byreceiver

Timeout

Figure 7.6 Sliding-Window ARQ Protocols

A B A B

Bra exempel för självstudier!

Page 14: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Point‐to‐point protocol (PPP)

• Direct connection between two nodes– Internet access– Home user to ISP

• Telephone line• Cable TV

2014‐09‐29 ETSF05 Internet Protocols 14

PPP

Page 15: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

State transitions in PPP

• We need more protocols

15

Network Control(NCP)

AuthenticationLink Control(LCP)

LCP

Data Transfer

2014‐09‐29 ETSF05 Internet Protocols

Page 16: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

PPP frame format

• Support for several (sub)protocols• Address & control not used• Maximum payload 1500 bytes

2014‐09‐29 16ETSF05 Internet Protocols

Page 17: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Link control protocol (LCP)• Establish• Configure• Terminate

2014‐09‐29 17ETSF05 Internet Protocols

Options• Maximum receive

unit (payload size)• Authentication

protocol(none/PAP/CHAP)

• Protocol fieldcompression(on/off),

• Address and controlfield compression(on/off)

Page 18: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Authentication protocols (AP)• Password authentication (PAP)

2014‐09‐29 18ETSF05 Internet Protocols

Page 19: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Authentication protocols (AP)• Challenge handshake authentication (CHAP)

2014‐09‐29 19ETSF05 Internet Protocols

Page 20: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Network control protocols (NCP)

• Preparations for the network layer– IPCP for Internet

2014‐09‐29 20ETSF05 Internet Protocols

Page 21: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

IP datagram encapsulation in PPP

2014‐09‐29 ETSF05 Internet Protocols 21

Page 22: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

PPP session example

2014‐09‐29 ETSF05 Internet Protocols 22

Page 23: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

PPP session example (cont.)

2014‐09‐29 ETSF05 Internet Protocols 23

Page 24: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Transmission modes

2014‐09‐29 ETSF05 Internet Protocols 24

Page 25: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Parallell transmission

2014‐09‐29 ETSF05 Internet Protocols 25

Page 26: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Serial transmission

2014‐09‐29 ETSF05 Internet Protocols 26

Page 27: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Transmission modes

• Asynchronous

• Synchronous

2014‐09‐29 ETSF05 Internet Protocols 27

Page 28: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

n inputs n outputs1 link, n channelsMUX DEMUX

Figure 8.1 Multiplexing

Multiplexing, princip

2014‐09‐29 ETSF05 Internet Protocols 28

Page 29: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

(a) Frequency division multiplexing

(b) Time division multiplexing

Figure 8.2 FDM and TDM

Cha

nnel

1C

hann

el 2

Cha

nnel

3C

hann

el 4

Cha

nnel

5C

hann

el 6

f1f2

f3f4

f5f6

Frequency

Time

Frequency

Time Cha

nnel

1C

hann

el 2

Cha

nnel

3C

hann

el 4

Cha

nnel

5C

hann

el 6

Cha

nnel

1C

hann

el 2

Cha

nnel

3C

hann

el 4

Cha

nnel

5et

c.

2014‐09‐29 ETSF05 Internet Protocols 29

FDM vs TDM

Page 30: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Figure 8.6 Synchronous TDM System

(a) Transmitter

(c) Receiver

(b) TDM Frames

Buffer

Frame

Time slot: may beempty or occupied

Frame

m1(t)

Modem

m2(t)s(t)

mn(t)

m1(t)

m2(t)

mn(t)

mc(t)

TDM stream modulatedTDM stream

Modems(t) mc(t)

TDM streammodulatedTDM stream

Buffer ScanOperation

ScanOperation

Buffer

Bufferm1(t)

m2(t)

mn(t)

Buffer

Buffer

1 2 N 1 2 n

2014‐09‐29 ETSF05 Internet Protocols 30

Synkron TDM

Page 31: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

TDM Link Control

• Data link control protocols not needed– Time is control parameter

• TDM system control data use control fields• No headers and trailers• Flow control

– Data rate of multiplexed line is fixed– If one channel receiver can not receive data, the others must 

carry on– Corresponding source must be quenched– Leaving empty slots

• Error control– Errors detected and handled on individual channel

2014‐09‐29 ETSF05 Internet Protocols 31

Page 32: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Framing

• No flag or SYNC characters bracketing TDM frames

• Must still provide synchronizing mechanism between source and destination clocks

Added digit framing is most 

common

One control bit added to each TDM frame

Identifiable bit pattern used as control channel

Alternating pattern 101010…unlikely to be sustained on a data channelReceivers 

compare incoming bits of frame 

position to the expected pattern

2014‐09‐29 ETSF05 Internet Protocols 32

Page 33: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

2014‐09‐29 ETSF05 Internet Protocols 33

Page 34: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Pulse Stuffing is a common solutionPulse Stuffing is a common solutionHave outgoing 

data rate (excluding framing bits) higher than sum of incoming 

rates

Have outgoing data rate 

(excluding framing bits) higher than sum of incoming 

rates

Stuff extra dummy bits or pulses into each incoming signal until it matches 

local clock

Stuff extra dummy bits or pulses into each incoming signal until it matches 

local clock

Stuffed pulses inserted at fixed locations in frame and removed at demultiplexer

Stuffed pulses inserted at fixed locations in frame and removed at demultiplexer

Problem of synchronizing various data sources Variation among clocks could cause loss of synchronization Issue of data rates from different sources not related by a simple rational number

2014‐09‐29 ETSF05 Internet Protocols 34

Page 35: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

From source 1

4 bitA/D

Scanoperation

Pulsestuffing

Pulsestuffing

Pulsestuffing

Figure 8.8 TDM of Analog and Digital Sources

2 kHz, analog

4 kHz, analog

TDM PCM signal64 kbps

TDM PAM signal16 ksamples/sec

TDM PCMoutput signal128 kbps

From source 2

f = 4 kHz

From source 32 kHz, analog

From source 47.2 kbps, digital

From source 57.2 kbps, digital

8 kbps, digital

8 kbps, digital

8 kbps, digitalFrom source 117.2 kbps, digital

f

2014‐09‐29 ETSF05 Internet Protocols 35

8 kanaler

Page 36: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Table 8.3

North American and International TDM Carrier Standards

North American

Designation Number of

Voice Channels

Data Rate (Mbps)

DS-1 24 1.544 DS-1C 48 3.152

DS-2 96 6.312

DS-3 672 44.736

DS-4 4032 274.176

International (ITU-T)

Level Number of

Voice Channels

Data Rate (Mbps)

1 30 2.048 2 120 8.448

3 480 34.368

4 1920 139.264

5 7680 565.148

2014‐09‐29 ETSF05 Internet Protocols 36

Page 37: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Synchronous Optical Networks

• SONET, developed by ANSI

2014‐09‐29 37ETSF05 Internet Protocols

Synchronous Digital Hierarchy

• SDH, developed by ITU‐T

Page 38: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Digital hierarchy on optical links

2014‐09‐29 ETSF05 Internet Protocols 38

Page 39: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

2014‐09‐29 ETSF05 Internet Protocols 39

Page 40: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Network architecture

• Devices and connections

2014‐09‐29 40ETSF05 Internet Protocols

Page 41: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Network architecture

• Devices and layers

2014‐09‐29 41

Data link layer

Physical layer

ETSF05 Internet Protocols

Page 42: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

SONET add/drop multiplexer

• Replaces a signal with another one• Operates at line layer• Similar to a switch

2014‐09‐29 42ETSF05 Internet Protocols

InterleavingInterleaving

Page 43: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

SONET/SDH• Synchronous Optical Network (ANSI)• Synchronous Digital Hierarchy (ITU‐T)• High speed capability of optical fiber• Defines hierarchy of signal rates

• Synchronous Transport Signal level 1 (STS‐1) or   Optical Carrier level 1 (OC‐1) is 51.84Mbps

• Carries one DS‐3 or multiple (DS1 DS1C DS2) plus ITU‐T rates (e.g., 2.048Mbps)

• Multiple STS‐1 combine into STS‐N signal• ITU‐T lowest rate is 155.52Mbps (STM‐1)

2014‐09‐29 ETSF05 Internet Protocols 43

Page 44: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Table 8.4SONET/SDH Signal Hierarchy 

SONET Designation ITU-T Designation Data Rate Payload Rate (Mbps)

STS-1/OC-1 51.84 Mbps 50.112 Mbps STS-3/OC-3 STM-1 155.52 Mbps 150.336 Mbps

STS-12/OC-12 STM-4 622.08 Mbps 601.344 Mbps

STS-48/OC-48 STM-16 2.48832 Gbps 2.405376 Gbps

STS-192/OC-192 STM-64 9.95328 Gbps 9.621504 Gbps

STS-768 STM-256 39.81312 Gbps 38.486016 Gbps

STS-3072 159.25248 Gbps 153.944064 Gbps

2014‐09‐29 ETSF05 Internet Protocols 44

Page 45: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

SONET frames

• Proportional to data rates

2014‐09‐29 45ETSF05 Internet Protocols

Page 46: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

SONET frames in transmission

2014‐09‐29 ETSF05 Internet Protocols 46

Page 47: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Transport overhead3 octets

Synchronous payload envelope (SPE)87 octets

90 octets

Section overhead9 N octets

STM-N payload261 N octets

270 N octets

Section overhead3 octets

Line overhead6 octets

Path overhead1 octet

(a) STS-1 frame format

(b) STM-N frame format

9 octets

Figure 8.10 SONET/SDH Frame Formats2014‐09‐29 ETSF05 Internet Protocols 47

Page 48: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Multiplexing and byte interleaving

2014‐09‐29 ETSF05 Internet Protocols 48

Interleaving

Page 49: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Linear SONET topology

• Without add/drop multiplexer

• With add/drop multiplexer

2014‐09‐29 49ETSF05 Internet Protocols

Page 50: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Automatic protection switching

• Failure protection through line redundancy

2014‐09‐29 50ETSF05 Internet Protocols

Page 51: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Ring SONET topology

2014‐09‐29 51ETSF05 Internet Protocols

Page 52: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Mesh SONET topology

• Better scalability– Multiplexing/demultiplexing at switches

2014‐09‐29 52ETSF05 Internet Protocols

Page 53: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Asymmetrical Digital Subscriber Line (ADSL)

• Link between subscriber and network• Uses currently installed twisted pair cable• Is Asymmetric ‐ bigger downstream than up• Uses Frequency Division Multiplexing

– Reserve lowest 25kHz for voice (POTS)– Uses echo cancellation or FDM to give two bands

• Has a range of up to 5.5km

2014‐09‐29 ETSF05 Internet Protocols 53

Page 54: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

2014‐09‐29 ETSF05 Internet Protocols 54

Page 55: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Discrete Multitone (DMT)

• Multiple carrier signals at different frequencies• Divide into 4kHz subchannels• Test and use subchannels with better SNR• 256 downstream subchannels at 4kHz (60kbps)

– In theory 15.36Mbps, in practice 1.5‐9Mbps

Frequency

Bits per hertz

Frequency

Bits per hertz

Frequency

Figure 8.15 DMT Bits per Channel Allocation

Line Gain

2014‐09‐29 ETSF05 Internet Protocols 55

Page 56: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

2014‐09‐29 ETSF05 Internet Protocols 56

QAM=Quadrature Amplitude Modulation

Page 57: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Internet

PSTN

Central Office

Customer Premises

Figure 8.17 DSL Broadband Access

Router

DSLAM

Telephone

ATM = Asynchronous Transfer ModeDSLAM = Digital Subscriber Line Access MultiplexerPSTN = Public Switched Telephone NetworkG.DMT = G.992.1 Discrete Multitone

Splitter Splitter

Set-topbox

G.DMTmodem

Voiceswitch

ATMswitch

Wirelessmodem/router

Wirelessmodem

Wirelessmodem

Home Wireless LAN

2014‐09‐29 ETSF05 Internet Protocols 57

Page 58: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Table 8.6Comparison of xDSL Alternatives 

ADSL HDSL SDSL VDSL Data rate 1.5 to 9 Mbps

downstream 16 to 640 kbps

upstream

1.544 or 2.048 Mbps

1.544 or 2.048 Mbps

13 to 52 Mbps downstream

1.5 to 2.3 Mbps upstream

Mode Asymmetric Symmetric Symmetric Asymmetric

Copper pairs 1 2 1 1

Range (24-gauge UTP)

3.7 to 5.5 km 3.7 km 3.0 km 1.4 km

Signaling Analog Digital Digital Analog

Line code CAP/DMT 2B1Q 2B1Q DMT

Frequency 1 to 5 MHz 196 kHz 196 kHz ≥ 10 MHz

Bits/cycle Varies 4 4 Varies UTP = unshielded twisted pair 2014‐09‐29 ETSF05 Internet Protocols 58

Page 59: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

WLAN

• IEEE 802.11• ”Trådlöst Ethernet”• Tre konfigurationsprinciper

2014‐09‐29 ETSF05 Internet Protocols 59

Page 60: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

System med en accesspunkt

2014‐09‐29 ETSF05 Internet Protocols 60

Page 61: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

System med flera accesspunkter

2014‐09‐29 ETSF05 Internet Protocols 61

Page 62: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Ad Hoc (ingen accesspunkt)

2014‐09‐29 ETSF05 Internet Protocols 62

Page 63: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Wireless LAN Requirements

• Throughput• Number of nodes• Connection to backbone LAN• Service area • Battery power consumption• Transmission robustness and security• Collocated network operation• License‐free operation• Handoff/roaming• Dynamic configuration2014‐09‐29 ETSF05 Internet Protocols 63

Page 64: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Wi‐Fi Alliance• There is always a concern whether products from different vendors will successfully interoperate

• Wireless Ethernet Compatibility Alliance (WECA)– Industry consortium formed in 1999

• Renamed the Wi‐Fi (Wireless Fidelity) Alliance– Created a test suite to certify           interoperability for 802.11 products

2014‐09‐29 ETSF05 Internet Protocols 64

Page 65: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Table  13.1  Key IEEE 802.11 Standards 

St andar d Scope IEEE 802.11a Physical layer: 5-GHz OFDM at rates from 6 to 54 Mbps

IEEE 802.11b

Physical layer: 2.4-GHz DSSS at 5.5 and 11 Mbps

IEEE 802.11c Bridge operation at 802.11 MAC layer

IEEE 802.11d

Physical layer: Extend operation of 802.11 WLANs to new regulatory domains (countries)

IEEE 802.11e

MAC: Enhance to improve quality of service and enhance security mechanisms

IEEE 802.11g Physical layer: Extend 802.11b to data rates >20 Mbps

IEEE 802.11i

MAC: Enhance security and authentication mechanisms

IEEE 802.11n Physical/MAC: Enhancements to enable higher throughput

IEEE 802.11T

Recommended practice for the evaluation of 802.11 wireless performance

IEEE 802.11ac

Physical/MAC: Enhancements to support 0.5–1 Gbps in 5-GHz band

IEEE 802.11ad

Physical/MAC: Enhancements to support ≥ 1 Gbps in the 60-GHz band

(Table can be found on 

page 424 in the textbook)2014‐09‐29 ETSF05 Internet Protocols 65

Page 66: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Table 13.2IEEE 802.11 Terminology

Access point (AP) Any entity that has station functionality and provides access to the distribution system via the wireless medium for associated stations

Basic service set (BSS)

A set of stations controlled by a single coordination function

Coordination function The logical function that determines when a station operating within a BSS is permitted to transmit and may be able to receive PDUs

Distribution system (DS)

A system used to interconnect a set of BSSs and integrated LANs to create an ESS

Extended service set (ESS)

A set of one or more interconnected BSSs and integrated LANs that appear as a single BSS to the LLC layer at any station associated with one of these BSSs

Frame Synonym for MAC protocol data unit

MAC protocol data unit (MPDU)

The unit of data exchanged between two peer MAC entities using the services of the physical layer

MAC service data unit (MSDU)

Information that is delivered as a unit between MAC users

Station Any device that contains an IEEE 802.11 conformant MAC and physical layer

(Table can be found on page 424 in the textbook)2014‐09‐29 ETSF05 Internet Protocols 66

Page 67: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Basic serviceset (BSS)

STA2

STA3

STA = station

STA4 BasicService Set

Extendedservice set (ESS)

Figure 13.4 IEEE 802.11 Architecture

STA6 STA7

IEEE 802.x LAN

STA1

Accesspoint(AP)

STA5

Accesspoint(AP)

portal

Distribution System (DS)

2014‐09‐29 ETSF05 Internet Protocols 67

Page 68: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Table 13.3IEEE 802.11 Services

Ser vi ce Pr ovi der Used t o suppor t

Association Distribution system

MSDU delivery

Authentication Station LAN access and security

Deauthentication Station LAN access and security

Dissassociation Distribution system

MSDU delivery

Distribution Distribution system

MSDU delivery

Integration Distribution system

MSDU delivery

MSDU delivery Station MSDU delivery

Privacy Station LAN access and security

Reassocation Distribution system

MSDU delivery

2014‐09‐29 ETSF05 Internet Protocols 68

Page 69: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Medium Access Control

MAC layer covers three functional areas:

Reliabledata 

delivery

Access control

Security

2014‐09‐29 ETSF05 Internet Protocols 69

Page 70: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Reliable Data Delivery

• Can be dealt with at a higher layer

• More efficient to deal with errors at MAC level

• 802.11 includes frame exchange protocol– Station receiving frame 

returns acknowledgment (ACK) frame

– Exchangetreated as atomic unit

– If no ACK within short period of time, retransmit

• 802.11 physical and MAC layers unreliable– Noise, interference, and 

other propagation effects result in loss of frames

– Even with error‐correction codes, frames may not successfully be received

2014‐09‐29 ETSF05 Internet Protocols 70

Page 71: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Hidden Node/Station Problem

2014‐09‐29 ETSF05 Internet Protocols 71

Page 72: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Four Frame Exchange

• RTS alerts all stations within range of source that exchange is under way

• CTS alerts all stations within range of destination 

• Other stations don’t transmit to avoid collision

• RTS/CTS exchange is a required function of MAC but may be disabled

• Can use four‐frameexchange for better reliability 

Source issues a Request to Send (RTS) frame

Destination responds with Clear to Send (CTS)

After receiving CTS, source transmits data 

Destination responds with ACK

2014‐09‐29 ETSF05 Internet Protocols 72

Page 73: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

PointCoordination

Function (PCF)

Contention-freeservice

Contentionservice

Figure 13.5 IEEE 802.11 Protocol Architecture

MAClayer

Distributed Coordination Function (DCF)

LOGICAL LINK CONTROL (LLC)

PHYSICAL LAYER(802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.11ad)

2014‐09‐29 ETSF05 Internet Protocols 73

Page 74: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Distributed Coordination Function (DCF)

• DCF sublayer uses CSMA algorithm  

• Does not include a collision detection function because it is not practical on a wireless network

• Includes a set of delays that amounts as a priority scheme

If station has frame to send it listens to 

medium

If medium is idle, station may transmit

Else waits until current transmission is complete

2014‐09‐29 ETSF05 Internet Protocols 74

Page 75: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Wait for frameto transmit

Wait IFS

Figure 13.6 IEEE 802.11 Medium Access Control Logic

No

Yes

Yes

Yes

No

No

Wait IFS

Mediumidle?

Stillidle?

Wait until currenttransmission ends

Exponential backoffwhile medium idle

Transmit frame

Transmit frame

Stillidle?

2014‐09‐29 ETSF05 Internet Protocols 75

Page 76: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Priority IFS Values

SIFS (short IFS) 

For all immediate response actions

PIFS (point coordination 

function IFS)

Used by the centralized controller in PCF scheme when issuing 

polls

DIFS (distributed 

coordination function IFS)

Used as minimum delay for 

asynchronous frames 

contending for access

2014‐09‐29 ETSF05 Internet Protocols 76

Page 77: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Point Coordination Function (PCF)Alternative access method implemented on top of DCF

Polling by centralized polling master (point coordinator)

Uses PIFS when issuing polls

Point coordinator polls in round‐robin to stations configured for polling

When poll issued, polled station may respond using SIFS

If point coordinator receives response, it issues another poll using PIFS

If no response during expected turnaround time, coordinator issues poll

Coordinator could lock out asynchronous traffic by issuing polls

Have a superframe interval defined2014‐09‐29 ETSF05 Internet Protocols 77

Page 78: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Frame Control

Figure 13.8 IEEE 802.11 MAC Frame Format

2

Duration/ID2

Address 16

Sequence Control2

QoS Control2

High Throughput Control4

Frame Check Sequence (FCS)4

Always present0—7951

Address 46

Address 26

Address 3 MACheader

6

octets

Present only incertain frametypes and subtypes

802.11 MAC ramformatTvå ramtyper• Kontroll• Data• Management

Notera fyra adressfält!

2014‐09‐29 ETSF05 Internet Protocols 78

Page 79: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Table 13.4IEEE 802.11 Physical Layer Standards

Standard 802.11a 802.11b 802.11g 802.11n 802.11ac 802.11ad

Year introduced

1999 1999 2003 2000 2012 2014

Maximum data transfer speed

54 Mbps 11 Mbps 54 Mbps 65 to

600 Mbps

78 Mbps to 3.2 Gbps

6.76 Gbps

Frequency band

5 GHz 2.4 GHz 2.4 GHz 2.4 or 5 GHz

5 GHz 60 GHz

Channel bandwidth

20 MHz 20 MHz 20 MHz 20, 40 MHz

40, 80, 160 MHz

2160 MHz

Highest order modulation

64 QAM 11 CCK 64 QAM 64 QAM 256 QAM 64 QAM

Spectrum usage

DSSS OFDM DSSS, OFDM

OFDM SC-OFDM SC, OFDM

Antenna configuration

11 SISO 11 SISO 11 SISO Up to 44 MIMO

Up to 88 MIMO, MU-

MIMO 11 SISO

(Table is on page 436 in textbook)2014‐09‐29 ETSF05 Internet Protocols 79

Page 80: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

0

5

10

15

20

25

25201510

Figure 13.12 Average Throughput per User

Simultaneous users/AP802.11n802.11g

Thro

ughp

ut (M

bps)

5

2014‐09‐29 ETSF05 Internet Protocols 80

Page 81: ARQ PPP TDM Synchronous Optical Networks xDSL WLAN

Access and Privacy Services Deauthentication and Privacy

• Privacy–Used to prevent messages being read by others–802.11 allows optional use of encryption

• Original WEP security features were weak• Subsequently 802.11i and WPA alternatives evolved giving better security

• Deauthentication– Invoked whenever an existing authentication is to be terminated

2014‐09‐29 ETSF05 Internet Protocols 81