Aromatic Polyamides “Aramids” Beth Neilson CH 392N February 19, 2009.

21
Aromatic Polyamides “Aramids” Beth Neilson CH 392N February 19, 2009

Transcript of Aromatic Polyamides “Aramids” Beth Neilson CH 392N February 19, 2009.

Page 1: Aromatic Polyamides “Aramids” Beth Neilson CH 392N February 19, 2009.

Aromatic Polyamides“Aramids”

Beth NeilsonCH 392N

February 19, 2009

Page 2: Aromatic Polyamides “Aramids” Beth Neilson CH 392N February 19, 2009.

Outline

• Definition / Invention

• Preparation

• Physical properties

• Fiber spinning

• Applications

Page 3: Aromatic Polyamides “Aramids” Beth Neilson CH 392N February 19, 2009.

• Federal Trade Commission definition for aramid fiber: A manufactured fiber in which the fiber-forming substance is a long-chain synthetic polyamide in which at least 85% of the amide (-CO-NH-) linkages are attached directly between two aromatic rings

• Invention– DuPont – Morgan, Kwolek et. al.– Japan, Netherlands

ArHN C

O

Ar* *n

Aramids

C

O

H2N R

Amide Aromatic Aromatic polyamide

Page 4: Aromatic Polyamides “Aramids” Beth Neilson CH 392N February 19, 2009.

• Homopolymer repeat units:

• AB homopolymers – Type 3

• AABB homopolymers – Types 1 and 2

• Copolymers

HN Ar

HN Ar CC

O

HN Ar C

1 2 3

O O

Chemical Structure

Yang, H. H. Aromatic High-Strength Fibers, Wiley: New York, 1989.

ArHN C Ar* *

n

O

Page 5: Aromatic Polyamides “Aramids” Beth Neilson CH 392N February 19, 2009.

• Aromatic units

NN

O N

X

N

Chemical Structure

Backbone:X

X= Alkyl, Aryl, Halogen,Alkoxy, Cyano, Acetyl, Nitro

HN X

HN

X = ether, sulfide, sulfone, ketone, amine,isopropylidine, ethylene, fumaryl, azo

Pendent Groups:

Bridging Units:

Yang, H. H. Aromatic High-Strength Fibers, Wiley: New York, 1989.

Page 6: Aromatic Polyamides “Aramids” Beth Neilson CH 392N February 19, 2009.

• AB Homopolymers

Ar C

O

XCX

O

H2N Arn NH2 + n

HN Ar

HN C* Ar C *

O O

nA A B B

HX +

• AABB Homopolymers

– Polycondensation of diacid halides with diamines

• Solution polycondensation

• Interfacial polycondensation

• Melt or vapor phase polymerization

Preparation

Lin, J.; Sherrington, J. C. Adv. Polym. Sci. 1994, 111, 177.

H2N Ar C

O

Xn *HN Ar C

O

*n

+ HX

A B

Page 7: Aromatic Polyamides “Aramids” Beth Neilson CH 392N February 19, 2009.

Ar C ClCCl

O

H2N Arn NH2 + n

HN Ar

HN C* Ar C *

O O

nA A B B

HCl +O

• Diamine and diacid chloride – DuPont– Low temperature

– Monomer purity and concentration

– Amide solvent (NMP, HMPA, DMA)

N CH3

O

DimethylacetamideN-methylpyrrolidone Hexamethylphosphoramide

N

O

P

O

N

N

NCH3

CH3

CH3H3C

H3C

H3C

H3C

CH3

Solution Polycondensation

Lin, J.; Sherrington, J. C. Adv. Polym. Sci. 1994, 111, 177.

Page 8: Aromatic Polyamides “Aramids” Beth Neilson CH 392N February 19, 2009.

• Poly(m-phenylene isophthalamide) Nomex®

• Kwolek, S. L.; Morgan, P. W.; Sorenson, R. W. U.S. Patent 1 199 458, November 13, 1962.

• DuPont, 1967

HN

HN C C **

O O

n

+

H2N NH2

Cl Cl

O O

Amide Solvent

Solution Polycondensation

Page 9: Aromatic Polyamides “Aramids” Beth Neilson CH 392N February 19, 2009.

• Poly(p-phenylene terephthalamide) (PPTA) Kevlar®

• DuPont – Bair, Blades, Morgan, Kwolek

• AKZO – Leo Vollbracht, Twaron®

Solution Polycondensation

Kwolek, S. L. U.S. Patent 3 819 587, 1974.Blades, H. U.S. Patent 3 869 429, 1975.Bair, T. I.; Morgan, P. W. U.S. Patent 3 673 143, 1972.

NH2H2N +

HN

HN* C

O

C

O

*n

HMPA/NMP2:1

-15o CLiCl or CaCl2

Cl

Cl

O

O

Page 10: Aromatic Polyamides “Aramids” Beth Neilson CH 392N February 19, 2009.

• Higashi synthesis - phosphorus-containing activating agent

Ar CP(OPh)3 /

N

NMP/LiClO Ar CP

N

Ar'O OAr'

H P H

N

OAr'Ar'O

OAr'

H2N Ar' NH2

C Ar*

O

CHN

O

Ar'HN *n

+ HO P(OAr')222 Ar'OH +

OAr'

C OHHO

O O

C

O

O

O

Advantages:• Eliminates acid chloride

starting material• Can tune reactivity by

changing Ar’

Solution Polycondensation

Lin, J.; Sherrington, J. C. Adv. Polym. Sci. 1994, 111, 177.Odian, G. Principles of Polymerization, 4th Ed. Wiley: New York, 2004.

Page 11: Aromatic Polyamides “Aramids” Beth Neilson CH 392N February 19, 2009.

• Silylated diamine with diacid chloride

H2N Ar NH2

Me3SiClAr NN

Ar'(COCl)2

HN Ar*

HN C

O

Ar' C *

O

n

H SiMe3

HMe3Si

Me3SiCl +

•Increases reactivity of aromatic diamine•Faster reaction

•Elimination of Me3SiCl rather than HCl

•Higher molecular weight

Solution Polycondensation

Lin, J.; Sherrington, J. C. Adv. Polym. Sci. 1994, 111, 177.

Page 12: Aromatic Polyamides “Aramids” Beth Neilson CH 392N February 19, 2009.

• Copolymers– Copolymerization of three or more aromatic diamines

and diacid halides.

– Improved solubility, thermal properties, fiber properties

– Technora®

Solution Polycondensation

HN

HN* C

O

C

O

*HN O

HN

m n

Page 13: Aromatic Polyamides “Aramids” Beth Neilson CH 392N February 19, 2009.

• Preparation of AABB homopolymers, copolymers

• Aromatic diamine with diacid halide

• High molecular weight– Low temperature

– Monomer stoichiometry, purity, concentration

– Solvent

– Salt concentration

– Monomer structure (silylated amines)

– Reagents (triarylphosphites, pyridine)

Solution Polycondensation Summary

Page 14: Aromatic Polyamides “Aramids” Beth Neilson CH 392N February 19, 2009.

• High thermal stability (Td ≥ 400°C)

• High tenacity (tensile strength)• Chemical resistance • Unique solution properties

– Low solubility– Liquid crystallinity in p-aramids due to chain rigidity

• Structure dependent– Meta vs. para linkages– Structure of aromatic backbone

Physical Properties

Yang, H. H. Aromatic High-Strength Fibers, Wiley: New York, 1989.Hearle, J. S. High Performance Fibers, Woodhead Publishing Limited: Cambridge, 2001.

Page 15: Aromatic Polyamides “Aramids” Beth Neilson CH 392N February 19, 2009.

• Liquid crystal – substance that has properties of both a solid and a liquid– Thermotropic – phase transition occurs with

temperature change

– Lyotropic • Liquid crystallinity occurs only in solution• Varies as a function of polymer concentration and

temperature

Liquid Crystallinity

Odian, G. Principles of Polymerization, 4th Ed. Wiley: New York, 2004.

Page 16: Aromatic Polyamides “Aramids” Beth Neilson CH 392N February 19, 2009.

• In solution of proper concentration, liquid crystalline domains form, in which there is a high degree of order of the solute molecules. – Para linkages result in rod-like extended chain structure.

– Hydrogen bonding

• Crystallization from liquid crystal solutions results in polymers with highly ordered extended-chain morphology

• Gives rise to polymers with higher strength and modulus

Liquid Crystallinity of p-Aramids

Odian, G. Principles of Polymerization, 4th Ed. Wiley: New York, 2004.

Page 17: Aromatic Polyamides “Aramids” Beth Neilson CH 392N February 19, 2009.

Dry-jet Wet Spinning

• Spinning Solution– 10-20 wt% polymer

– 100% H2SO4 (H2O free)

• Elongation aligns crystalline domains

• Precipitates out of coagulation bath

• Crystallinity of solution is translated to fiber

Aramid Fiber Spinning

Hearle, J. S. High Performance Fibers, Woodhead Publishing Limited: Cambridge, 2001.

Page 18: Aromatic Polyamides “Aramids” Beth Neilson CH 392N February 19, 2009.

• Tenacity and Modulus

– Spinning and drawing conditions

• Wet vs. dry

• Heat treatment

– Polymer composition

– Molecular weight

Properties of Aramid Fibers

Yang, H. H. Aromatic High-Strength Fibers, Wiley: New York, 1989.

Page 19: Aromatic Polyamides “Aramids” Beth Neilson CH 392N February 19, 2009.

Kevlar®HN

HN* C

O

C

O

*n

http://en.wikipedia.org/wiki/Aramid#Major_industrial_uses

Applications of Aramids

Page 20: Aromatic Polyamides “Aramids” Beth Neilson CH 392N February 19, 2009.

HN

C

O

C*

HN

O

* n

Nomex® Technora®

HN

HN* C

O

C

O

*HN O

HN

m n

Applications of Aramids

Page 21: Aromatic Polyamides “Aramids” Beth Neilson CH 392N February 19, 2009.

Applications of Aramids

Hearle, J. S. High Performance Fibers, Woodhead Publishing Limited: Cambridge, 2001.