Areas of interest

7
Czestochowa University of Technology Areas of interest Areas of interest Energy and Aero Priorities Energy and Aero Priorities 1. 1. Mathematical modelling of flows in blade system of rotating machinery Mathematical modelling of flows in blade system of rotating machinery 2. 2. Modelling of free flows, jets and wakes in aeronautical industry Modelling of free flows, jets and wakes in aeronautical industry 3. 3. Modelling of flow and electrochemical phenomena in fuel cells Modelling of flow and electrochemical phenomena in fuel cells 4. 4. Modelling of complex thermal systems in power engineering Modelling of complex thermal systems in power engineering 5. 5. Modelling of aerodynamics, heat and mass transfer in gas-solid particles flows Modelling of aerodynamics, heat and mass transfer in gas-solid particles flows 6. 6. Renewable fuels Renewable fuels combustion modeling of aeroengine combustor and aircraft wake/engine jet interactions (prof. A. Boguslawski) wall transitional flow modeling in aeroengine gas turbine bladings and turbulent boundary layer simulations (prof. W. Elsner). Institute of Thermal Machinery Institute of Thermal Machinery al. Armii Krajowej 21, 42-200 Czestochowa, al. Armii Krajowej 21, 42-200 Czestochowa, Poland Poland www.imc.pcz.czest.pl www.imc.pcz.czest.pl

description

Institute of Thermal Machinery al. Armii Krajowej 21, 42-200 Czestochowa, Poland www.imc.pcz.czest.pl. Areas of interest. Energy and Aero Priorities Mathematical modelling of flows in blade system of rotating machinery Modelling of free flows, jets and wakes in aeronautical industry - PowerPoint PPT Presentation

Transcript of Areas of interest

Page 1: Areas of interest

Czestochowa University of Technology

Areas of interestAreas of interest

Energy and Aero PrioritiesEnergy and Aero Priorities

1.1. Mathematical modelling of flows in blade system of rotating machineryMathematical modelling of flows in blade system of rotating machinery

2.2. Modelling of free flows, jets and wakes in aeronautical industryModelling of free flows, jets and wakes in aeronautical industry

3.3. Modelling of flow and electrochemical phenomena in fuel cellsModelling of flow and electrochemical phenomena in fuel cells

4.4. Modelling of complex thermal systems in power engineeringModelling of complex thermal systems in power engineering

5.5. Modelling of aerodynamics, heat and mass transfer in gas-solid particles flowsModelling of aerodynamics, heat and mass transfer in gas-solid particles flows

6.6. Renewable fuelsRenewable fuels

• combustion modeling of aeroengine combustor and aircraft wake/engine jet interactions (prof. A. Boguslawski)

• wall transitional flow modeling in aeroengine gas turbine bladings and turbulent boundary layer simulations (prof. W. Elsner).

Institute of Thermal MachineryInstitute of Thermal Machinery

al. Armii Krajowej 21, 42-200 Czestochowa, Polandal. Armii Krajowej 21, 42-200 Czestochowa, Poland

www.imc.pcz.czest.plwww.imc.pcz.czest.pl

Page 2: Areas of interest

Czestochowa University of Technology

MOLECULESMOLECULES (5(5thth FP) FP) - Elaboration of modern software tools - Elaboration of modern software tools ( CFD ) for calculations and simulations of flows and combustion ( CFD ) for calculations and simulations of flows and combustion processes proceeding inside combustion chambers of aeroenginesprocesses proceeding inside combustion chambers of aeroengines

INTELLECTINTELLECT - - 66thth Framework Programme of UE. Framework Programme of UE. Elaboration of numerical models of modern aeroenginesElaboration of numerical models of modern aeroengines

TIMECOP-AETIMECOP-AE (6(6thth FP) FP) –– Toward Innovative Methods Toward Innovative Methods for Combustion Prediction in Aero-Enginesfor Combustion Prediction in Aero-Engines

Modeling of aeroengine combustion chamberAreas of interest -

„„Modeling of turbulent flows with combustion by Large Eddy Modeling of turbulent flows with combustion by Large Eddy Simulation in connection with Conditional Moment Closure modelSimulation in connection with Conditional Moment Closure model””

VrijeVrije Universiteit of BrusselsUniversiteit of Brussels - Czestochowa University of Technology - Czestochowa University of Technology Bilateral Bilateral projectproject

COST Action P20 LES-AIDLarge-Eddy Simulation for Advanced Industrial Design

Page 3: Areas of interest

Czestochowa University of Technology

Investigation of aeroengine aerodynamics

TRANSPRETURBTRANSPRETURB Thematic Network Thematic Network (5(5thth FP) FP) – – upgrading of current industrial CFD capabilities, defining upgrading of current industrial CFD capabilities, defining requirements for further RTD model and transitionrequirements for further RTD model and transition model model developmentdevelopment

UTATUTAT (5(5thth FP) FP) - Understanding of mechanisms of - Understanding of mechanisms of blade-rowblade-row interactions as well as unsteady laminar-turbulent transition interactions as well as unsteady laminar-turbulent transition process process in axial-flow turbinesin axial-flow turbines U

TA

T

Aircraft aerodynamics

FarWakeFarWake (6(6thth FP) FP) – – interaction of vortices with airplane for interaction of vortices with airplane for AirbusAirbus

WallTurbWallTurb (6(6thth FP) FP) –– basic research on turbulent boundary layer basic research on turbulent boundary layer affected by affected by adverse pressure gradientadverse pressure gradient for for AirbusAirbus

Areas of interest -

„„Turbulence and transition modelling methods in Turbulence and transition modelling methods in turbomachinery applicationsturbomachinery applications””Ghent UniversityGhent University - - Czestochowa University of Technology Czestochowa University of Technology Bilateral Bilateral projectproject

Areas of interest -

Page 4: Areas of interest

Czestochowa University of Technology

Experimental Facilities, Equipment and SoftwareExperimental Facilities, Equipment and Software

turbine bladings - rotor simulatorturbine bladings - rotor simulator environmental aerodynamicsenvironmental aerodynamics heated jetsheated jets countercurrent / heated jetscountercurrent / heated jets

open-loop wind tunnelsopen-loop wind tunnels

Computational resourcesComputational resources

Software toolsSoftware tools

• Fluent, GambitFluent, Gambitacademic codesacademic codes

• unNEWT+PUIM (Cambridge)unNEWT+PUIM (Cambridge)• Sparc (Karlsruhe)Sparc (Karlsruhe)• BOFFIN (Imperial College)BOFFIN (Imperial College)• SAILOR (IMC Częstochowa)SAILOR (IMC Częstochowa)

• Procesor type: Dual-Core AMD Opteron 8214, Number of processors 8 (number of nodes 16) 32 GB RAM

• Procesor type: Dual-Core AMD Opteron 8222, Number of processors 8 (number of nodes 16), 64 GB RAM

Page 5: Areas of interest

Czestochowa University of Technology

• jet velocity 12.5 m/s • spark on the jet axis: 10D, 30D, 40D, 50D • spark radius 2.5 mm, Gaussian shape

Spark ignition of the methane jet: BOFFIN-LES solver with Eulerian PDF method

LES+PDF Experiment

SPARK

Animation 5

drobniak
iskara modelowana jako czlon zródlowy w równaniu entalpii mapa prawdopodobienstawa zaplonu z eksperymentu iskara ulokowana w obszarze wysokiego prawdopodobieństwa na dolnym rysunku pokazane ró żne rzeczy w eksperymencie OH radicals temepratura ale dala pokazania płaskiego frontu, płomień zapala sie i propaguje w dół jako płaszczyzna co zgadza się z eksperymentem (film Nondasa)do animacji - gładie ro\kłady bo rzadka siatka i małe Re = 2000 i przy zbliżeniu widać ze płomień jest lekko oddalony od dyszy - zgodność z eksperymentem własne badania AT i Jonesaostzrksze rozklady prawdopodobieństaw w obliczeniach niz w eksperymencie jeśli eksp. 70% to w obliczeniach 100%
Page 6: Areas of interest

Czestochowa University of Technology

Animation(successful ignition)

Animations correspond to ignition at this location

Animation(unsuccessful ignition)

Modelling of the spray ignition: animations illustrating unsuccessful

and successful ignition process

SPARK10mm

SPARK15 m

m

Initial spark temperature growthSpark is modelled by adding the source term in the enthalpy equation.

6

drobniak
trzy izpowierzchnie temeratury - pokazane na lewym, na wykeresie czerwona to maksymalna temperatura w obszarze, iskra za mala to ze nie dzieje sie nic to nie znaczy się nic nie dzieje bo pokazane izolinie tempweratury tuylko z pewnego zakresu, widać mały obszar palącuch sie kropel zasysanych do strefy recyrkulacji, ktory dopiero powoduje zapłon w calej objetosci kolory kropel odpowiadaja temeraturze (max 680 k)
Page 7: Areas of interest

Czestochowa University of Technology

Modelling of the spark ignition and light across using BOFFIN code

Animation

Spark

Due to extremely time consuming simulations for three sector configuration the spark parameters (location and size) are chosen such to guarantee successful ignition in selected sector. Basing on previous experiments performed for single sector case the spark was located close to the edge of the recirculation zone, the size of the spark was equal to 15 mm. Three-steps solution procedure: (cold flow spray ignition (flame propagation)) took more than 3 months, this corresponds to less than one second of real life !

View of the instantaneous axial velocity before ignition. Blue colour denotes negative

velocity (recirculation zone).

View of the instantaneous droplets distribution and spark kernel just after ignition.

7

drobniak
dla 3 sektorów - light across - zapalano tam gdzie na pewno byl zapłon i sprawdzano czy plomień bedzie sie propagowal na inne sektory48 procesorow 3 miesiace