Architecture & Protocols for Supporting Routing & QoS in MANET Navid NIKAEIN nikaeinn © Navid...

66
Architecture & Protocols for Supporting Routing & QoS in MANET Navid NIKAEIN ttp://www.eurecom.fr/~nikaeinn © Navid Nikaein 2003

Transcript of Architecture & Protocols for Supporting Routing & QoS in MANET Navid NIKAEIN nikaeinn © Navid...

  • Slide 1
  • Architecture & Protocols for Supporting Routing & QoS in MANET Navid NIKAEIN http://www.eurecom.fr/~nikaeinn Navid Nikaein 2003
  • Slide 2
  • Outline Introduction: Issues and Trade-Offs Related Work Architecture Topology Management Route Determination Quality of Service Support Conclusion and Open Issues
  • Slide 3
  • Issues in MANET Mobile ad hoc networks: Wireless low-capacity Collision Mobility time-varying resources Lack of infrastructure fully-distributed Small devices Limited resources Routing & QoS Multihop Routing Link failure
  • Slide 4
  • Routing Issues Dilemma at a node: Do I keep track of routes to all destinations, or instead keep track of only those that are of immediate interest? Three strategies: Proactive: keep track of all. Reactive: only those of immediate interest. Hybrid: partial proactive / partial reactive. Trade-off between routing overhead and delay
  • Slide 5
  • QoS Routing Issues State of communication path should be considered in QoS routing: Resource availability and its stability Cause longer path than shortest path Trade-off between shortest path and optimal path
  • Slide 6
  • Assumption Fully symmetric environment All nodes have identical capabilities Capabilities: Transmission range, Battery life, processing capacity, buffer capacity Each node periodically sends a Beacon All nodes participate in protocol operation and packet forwarding [Michardi, Molva, Crowcroft]
  • Slide 7
  • Related Work Ad Hoc Routing Topology-basedPosition-based Proactive Reactive Hybrid OLSR TBRPF DSDV WRP CGSR FSH-HSR LANMAR Proactive Reactive Hybrid DSR AODV RDMAR ABR SSR TORA ZHLS ZRP CBRP DDR+ HARP DREAM LAR Terminodes GLS ALM
  • Slide 8
  • Architecture Application HARP DDR Network Topology Management With respect to Quality of Network Route Determination With respect to Application requirements AN ARCHITECTURE THAT SEPARATES [1]: QoS Classes QoS: Delay TPut BE Network Quality QoC: Power, buffer Stability QoS extensionProtocol stack
  • Slide 9
  • Outline Topology Management [2,3] DDR- Distributed Dynamic Routing Algorithm Route Determination HARP- Hybrid Ad hoc Routing Protocol Quality of Service Routing LQoS- Layered Quality of Service
  • Slide 10
  • Topology Management Intuition DDR- Distributed Dynamic Routing Algorithm Forest Construction Zone Partitioning Zone Behaviors Simulation Model Performance Results Summary
  • Slide 11
  • Intuition Generate a set of preferred paths in the network Network Topology Forest TREE TREE . TREE ZONE ZONE . ZONE Time BEACON Criteria
  • Slide 12
  • Forest Construction Each node select the best node in its neighborhood according to the given unique criteria, e.g. degree If identical nodes, select the one with the higher ID Theorem: Connecting each node to its preferred neighbor yields to a forest [2] a b e f c d g h 2 4 3 4 3 5 3 1 Forest Reduces the number of forwarding nodes MPR-tree [Qayyum] used in OLSR [Jaquet]
  • Slide 13
  • Zone Partitioning Tree Zone Maintained using periodical beaconing a b f c s y k d t x g v w z h u e in a b f c s y k d t x g v w z h u e i n DDR z1z1 z2z2 z3z3 Zones : Improves delay performance Contributes in protocol scalability
  • Slide 14
  • Criteria for FC [4]: Quality of Connectivity (QoC) Power level p battery lifetime Buffer level b available unallocated buffer Stability level s t=t 1 -t 2 : period QoC = s + b (+ p ) The set of forwarding nodes belongs to the nodes with the high quality
  • Slide 15
  • Zone Behaviors Whatever the network density is, the zone diameter is bounded to 8 The average ratio of tree-path to shortest path is no longer than 2 Low Complexity O(N) Zone Diameter Tree Path / Shortest Path
  • Slide 16
  • Protocol Model To study the effect of the proposed topology management on routing performance ? Hybrid Ad Hoc Routing Protocol (HARP) [5] Dual mode: node level and zone level Intra-zone and inter-zone routing Discover the shortest path Establish forward and reverse path Maintenance
  • Slide 17
  • Simulation Model [Johansson, Perkins, Broach] Traffic model: CBR 512 byte/packet 4 packets/second Source 10, 20, 30 Performance Metrics: Packet delivery fraction Avg. E2E delay Routing overhead Movement model: Random way point [Yoon] 50 nodes 1500mx300m 0-20 m/s (or 1-20m/s) 900 simulated seconds Pause time=0, 30, 60, 150, 300, 600, 900 10 scenarios for each pause time
  • Slide 18
  • Packet Delivery Fraction 10 sources 20 sources30 sources Simple routing has a slightly better PDF in low traffic load Routing+TM outperforms simple routing up to 20% as the traffic load increases
  • Slide 19
  • Avg. E2E Delay Routing +TM significantly improves the delay performance up to 200ms as the network conditions become stressful 10 sources20 sources30 sources
  • Slide 20
  • Routing Overhead (pkt) Simple Routing outperforms Routing+TM in low/medium traffic load Most of the packets produced by Routing+TM are the beacons Reaction to link failure : Beacon vs. PREQ Forest does reduce the broadcasting overhead NOTE: Beacon is local while PREQ is global 10 sources 20 sources30 sources
  • Slide 21
  • Routing Overhead (bytes) 10 sources 20 sources 30 sources Simple Routing outperforms Routing+TM in low/medium traffic load Forest does reduce the broadcasting overhead
  • Slide 22
  • Packet Delivery Fraction 10 sources 20 sources30 sources The effect of mobility rate and traffic load on PDF The fluctuation The congestion Adaptive Routing Congestion Fluctuation
  • Slide 23
  • Avg. E2E Delay The effect of mobility rate and traffic load on DELAY Shortest path is not enough ! The load balancing Note: QoC = s + b, where =2 & = 1 10 sources20 sources30 sources Load Balancing Shortest path is not enough
  • Slide 24
  • Summary Overall Performance Low traffic load Medium traffic load High traffic load Low Mobility RoutingSimilar Routing +TM Medium Mobility Routing Routing +TM High Mobility Similar Routing +TM
  • Slide 25
  • Outline Topology Management DDR- Distributed Dynamic Routing Algorithm Route Determination [5,6] HARP- Hybrid Ad hoc Routing Protocol Quality of Service Routing LQoS- Layered Quality of Service
  • Slide 26
  • Route Determination [5,6] HARP- Hybrid Ah Hoc Routing Protocol Intra-zone and Inter-zone routing Query localization technique [Aggelou, Tafazolli] Performance Results [Osafune] Summary
  • Slide 27
  • Routing a b f c s y k d t x g v w z h u e i n z1z1 z2z2 z3z3 Zone abstraction Z1 Z3 Z2 Intra-zone Routing Inter-zone Routing mr z4z4 Z4 src zone dst zone Shortcut intra-zone routing - Zone level routing - Distance estimation
  • Slide 28
  • Simulation Model [Johansson, Perkins, Broach] Traffic model: CBR 512 byte/packet 4 packets/second Source 10, 20, 30 Performance Metrics: Packet delivery fraction Avg. E2E delay Routing overhead Movement model: Random way point [Yoon] 50 nodes 1500mx300m 0-20 m/s (or 1-20m/s) 900 simulated seconds Pause time=0, 30, 60, 150, 300, 600, 900 10 scenarios for each pause time
  • Slide 29
  • Packet Delivery Fraction 10 sources20 sources30 sources Congestion The effect of mobility and traffic load is not uniform Congestion stems from the lack of load balancing in the protocols Fluctuation point is a function of network parameters The effect of cashing and/or neighboring table in high mobility Fluctuation
  • Slide 30
  • Avg. E2E Delay 10 sources 20 sources30 sources The effect of traffic load and mobility on the delay performance is non-uniform Caching (DSR), route request (AODV), and beaconing/PREQ (HARP+TM) Load balancing
  • Slide 31
  • Routing Overhead (pkt) 10 sources 20 sources30 sources Reaction to mobility (main cause of link failure) Caching (DSR), route request (AODV), beaconing and PREQ (HARP+TM) Effect of beaconing on battery lifetime [Toh] No handshaking is required for beaconing
  • Slide 32
  • Routing Overhead (bytes) 10 sources20 sources30 sources Reaction to mobility (main cause of link failure) Caching (DSR), route request (AODV), beaconing and PREQ (HARP+TM) Effect of beaconing on battery lifetime [Toh] No handshaking is required for beaconing
  • Slide 33
  • Summary Overall Performance Low traffic load Medium traffic load High traffic load Low Mobility HARP +TM Medium Mobility HARP +TM Similar HARP +TM High Mobility HARP +TM Similar HARP +TM
  • Slide 34
  • Outline Topology Management DDR- Distributed Dynamic Routing Algorithm Route Determination HARP- Hybrid Ad hoc Routing Protocol Quality of Service Routing [7] LQoS- Layered Quality of Service
  • Slide 35
  • Quality of Service Routing [8] Motivation Architecture and Intuition Network Metrics Application Metrics Performance Results
  • Slide 36
  • Motivation Application QoS Network QoC Whether the communication path can support any particular application delay, or bandwidth? Ad Hoc QoS means to provide a set of parameters in order to adapt application to the quality of communication path while routing through the network [7]
  • Slide 37
  • Architecture Application HARP DDR Network AN ARCHITECTURE THAT SEPARATES [8]: QoS Classes App. Metrics Delay TPut BE Network Metrics: QoC: Power, buffer Stability, # hops QoS extensionProtocol stack Path selection phase Path Discovery phase
  • Slide 38
  • Network Metrics Hop count resource conservation Power level Buffer Level Stability Level Load balancing Trade-off between load balancing & resource conservation Compute during path discovery using concave function Reflect the quality of the communication paths Map this quality to application metrics
  • Slide 39
  • Application Metrics 2nd Class 3rd Class Delay Throughput App. MetricsService Best-Effort 1st Class h.(r-b)/c Net. Metrics c/(2h.(r-b)) 1/s Legend h : hop count r : buffer size b : buffer occupancy c : nodes throughput s : stability Compute during path selection Reflect the quality of service requirement
  • Slide 40
  • Avg. E2E Delay 10 sources20 sources30 sources Delay performance has significant improved QoS metric is the key factor for the delay performance due to its load balancing effect
  • Slide 41
  • Packet Delivery Fraction 10 sources20 sources30 sources QoS metrics has no significant effect on PDF Route discovery and route maintenance are the key factors for improving PDF Deal with Traffic load/pattern and mobility model/rate
  • Slide 42
  • Conclusion- Architecture Routing Topology management Route determination Quality of connectivity (QoC)Quality of Service (QoS) Pro-Network Pro-Application
  • Slide 43
  • Conclusion Topology management improves routing Load balancing HARP QoS metrics DDR QoC metrics Control flooding overhead Forest redundancy & collision Query localization technique scope Scalability zone abstraction
  • Slide 44
  • Conclusion Routing requires: Adaptive topology management Load balancing Congestion avoidance mechanisms Neighboring information Factors affecting routing performance Network size, mobility rate and model, traffic load and pattern, network density Traffic locality vs. network size
  • Slide 45
  • Future Work Optimal criteria of forest Construction Introduce an adaptive routing mechanisms Extend the QoS model to support metrics at the link layer (e.g. SNR)
  • Slide 46
  • Publications [1] N. Nikaein and C. Bonnet, An Architecture for Improving Routing and Network Performance in Mobile Ad Hoc Network, Kluwer/ACM MONET, 2003. [2] N. Nikaein, H. Labiod, and C. Bonnet, DDR-- Distributed Dunamic Routing Algorithm for Mobile Ad Hoc Networks, MobiHoc, 2000. [3] N. Nikaein, S. Wu, C. Bonnet and H. Labiod, Designing Routing Protocol for Mobile Ad Hoc Networks, DNAC, 2000. [4] N. Nikaein and C. Bonnet, Improving Routing and Network Performance in MANET using Quality of Nodes, WiOpt, 2003
  • Slide 47
  • Publications [5] Navid Nikaein, C. Bonnet and Neda Nikaein, HARP- Hybrid Ad Hoc Routing Protocol , IST, 2001. [6] Navid Nikaein, C. Bonnet, N. Akhtar and R. Tafazolli, HARP-v2 Hybrid Ad Hoc Routing Protocol , To be submitted, 2003. [7] N. Nikaein and C. Bonnet, A Glance at Quality of Service models in Mobile Ad Hoc Networks,DNAC, 2002. [8] N. Nikaein, C. Bonnet, Y. Moret and I. A. Rai, LQoS- Layered Quality of Service Model for Routing in Mobile Ad Hoc Networks, SCI, 2002. [9] N. Nikaein and C. Bonnet, ALM-- Adaptive Location Management Model Incorporating Fuzzy Logic For Mobile Ad Hoc Networks , Med-Hoc-Net, 2002.
  • Slide 48
  • Architecture
  • Slide 49
  • Problem Definition ? Trade-off between routing overhead and delay while maximizing network utilization Trade-off between load balancing and resource conservation Separation between topology management and route determination What are the design elements of routing and how they must interact ?
  • Slide 50
  • Zone Behaviors As the number of zone increases, the overhead within a zone decreases but the overhead between zones increases Whatever the network density is, the zone diameter is bounded to 8 What is the optimal number of zones to achieve the minimum overall overhead ? M opt < N Diameter of zonesNumber of Zones Size of Zones
  • Slide 51
  • Buffer Drop Distribution for No/Low Mobility with High Load
  • Slide 52
  • Delay Distribution for No and Low Mobility
  • Slide 53
  • Query Localization Technique SRCDST Src Offset Dst Offset RD_Offset d x R Offset= mobility x elapsed time
  • Slide 54
  • Query Localization Technique SRCDST Src Offset Path_offset RD_Offset d x R Offset= mobility x elapsed time
  • Slide 55
  • Query Localization Technique dst d=1 d=2 d=3 d=k src x x if (rd(x,dst) > rd(src,d)) Drop PREQ; else if (rd(x,dst)