Aquasafe Lds Usermanual

download Aquasafe Lds Usermanual

of 61

Transcript of Aquasafe Lds Usermanual

  • 7/27/2019 Aquasafe Lds Usermanual

    1/61

    AQUASAFE

    Leakage Detection System

    USER MANUAL

  • 7/27/2019 Aquasafe Lds Usermanual

    2/61

  • 7/27/2019 Aquasafe Lds Usermanual

    3/61

    TABLEOFCONTENTS

    1 ABOUTAQUASAFE.............................................................................................. 6

    1.1 Overview............................................................................................................6

    1.2 AQUASAFEArchitecture...................................................................................7

    1.2.1 AQUASAFEServer......................................................................................7

    1.2.2 AQUASAFELDS..........................................................................................8

    1.3 Aboutthismanual..............................................................................................8

    1.4 Projectreferences..............................................................................................8

    1.5 Permissionsanduseraccounts..........................................................................9

    2 LEAKAGEDETECTIONBASICS............................................................................ 10

    2.1 Whatcausesleakage?......................................................................................11

    2.2

    Topdown

    approaches

    .....................................................................................

    12

    2.3 Bottomupapproaches....................................................................................12

    2.4 LeakdetectionusingSCADAdata....................................................................12

    2.4.1 Monitoringpressuretransients................................................................14

    2.4.2 MonitoringfloworpressureandflowinaLDZ........................................14

    2.4.3

    Real

    time

    modelling

    support

    ....................................................................

    14

    2.5 Limitationsoftheleakagedetectionprocedures............................................15

    3 LEAKAGEDETECTIONAPPROACHESIMPLEMENTEDINAQUASAFE...................17

    3.1 Patternsestimation.........................................................................................18

    3.2 Massbalance...................................................................................................19

  • 7/27/2019 Aquasafe Lds Usermanual

    4/61

    3.3 Nightflowsanalysis.........................................................................................20

    3.4

    Modelresults

    analysis

    ......................................................................................

    21

    3.5 Criticalsegmentanalysisandoperationmodelling.........................................22

    3.6 OverallAQUASAFELDSanalysis.......................................................................23

    3.7 LeakLocationaccuracy....................................................................................27

    4 SYSTEMIMPLEMENTATION.GETTINGSTARTED................................................30

    4.1 InstallingtheSetup..........................................................................................30

    4.2 Technicalsupport.............................................................................................30

    5 MAINWINDOW................................................................................................ 31

    6 ADMINISTRATIONMENU.................................................................................. 32

    6.1 UsersManagementControls...........................................................................33

    6.1.1 UserAccounts...........................................................................................33

    6.1.2 UserWorkspaces......................................................................................34

    6.1.3 ManageWorkspaces................................................................................34

    6.1.4 DistributionLists.......................................................................................34

    6.1.5 GraphsManagement................................................................................36

    6.2 Basecontrols....................................................................................................36

    6.2.1

    System......................................................................................................

    36

    6.2.2 MonitoringStations..................................................................................37

    6.2.3 Parameters...............................................................................................39

    6.3 SourcesControls..............................................................................................40

    6.3.1 Alarms.......................................................................................................40

  • 7/27/2019 Aquasafe Lds Usermanual

    5/61

    6.4 ReportsControls..............................................................................................42

    6.4.1

    ReportTemplate

    .......................................................................................

    43

    6.4.2 Reports.....................................................................................................44

    6.4.3 ReportPublishers.....................................................................................47

    6.4.4 ReportPublication....................................................................................50

    7 OPERATIONMENU............................................................................................ 53

    7.1 Creatinganewworkspace...............................................................................53

    7.1.1 AddaLineChart.......................................................................................54

    7.1.2 AddaMap................................................................................................56

    7.1.3 AskforaLogViewer.................................................................................59

    8 References........................................................................................................ 60

  • 7/27/2019 Aquasafe Lds Usermanual

    6/61

    AQUASAFELDSUserManual P a g e 6/61

    1 ABOUT AQUASAFE

    1.1 Overview

    AQUASAFEisabusinessintelligencesoftwareplatformsupportedbymodellingtools

    and advanceddataanalysissystems developedby HIDROMOD,Lda.AQUASAFEcan

    integrate

    real

    time

    data

    captured

    by

    sensors

    (local

    and

    remote)

    and

    run

    periodic

    numericalmodels(scheduledatuserdefined intervals)toproduceautomaticreports

    forcustomdataanalysisandcomparisonsbetweenmodelresultsandmeasureddata.

    Based on a ClientServer architecture and developed with a modular philosophy,

    AQUASAFEishighlyversatile,andiscompatiblewithalmosteverykindofdatasource

    and model type. This capability is a truly innovative approach, guaranteeing a safe

    investmentsinceitseamlesslyaddsnewcapabilitiesasneeded.

    TheAQUASAFEplatformboostsefficiencyinoperationsmanagement,providingreal

    timeinformationandintegrationwithforecastanddiagnostictools.Accordingtothese

    concepts, AQUASAFE works as an integrator for models and external data sources

    (includingrealtimedataacquisitionsystems):

    1. Modellingresults inrealtimeby integratingrealtimedataorotherexternaldatasources

    with

    models,

    without

    human

    intervention.

    2. Advance troubleshooting through personalized alarms, combining data fromseveralsources(realormodelled).

    3. Automaticpersonalizedscenariosimulationstoassessmanagementoptionsinrealtime.

    4. Automatic reports for modelling results and/or measurements, based onpredefinedusertemplates.

  • 7/27/2019 Aquasafe Lds Usermanual

    7/61

    AQUASAFELDSUserManual P a g e 7/61

    5. Practical use of modelling results in operations control room, through the knowhow

    of

    current

    users.

    1.2 AQUASAFEArchitecture

    The AQUASAFE platform has three main

    components:

    AQUASAFEserver AQUASAFELDS

    1.2.1 AQUASAFEServer

    TheAQUASAFEserverstoresandindexesinternallygeneratedsystemdata(models),

    or through external links (Scada systems, FTP, Open DAP, etc.). Apart from this

    distributor role, it also schedules tasks, such as

    runningmodels,creatingreports,etc.

    Communication with the server is done through 2

    Webservicechannels: Adataexchangechannel; Anadministrationchannel.

  • 7/27/2019 Aquasafe Lds Usermanual

    8/61

    AQUASAFELDSUserManual P a g e 8/61

    1.2.2 AQUASAFE LDS

    TheAQUASAFELDS

    connects

    with

    the

    platforms

    server

    to

    interpret

    and

    manage

    data

    andprocesses.

    TheAQUASAFEclientcanconnectwiththeplatformsservertointerpretandmanage

    dataandprocesses.Thisapplicationcreatesalocaldatacache,updatedautomatically

    by a dedicated web service. In this way, the user has access to the latest data

    (measured and modelled) available in the server. Even if the connection with the

    server

    is

    disconnected,

    the

    user

    has

    information

    to

    work

    with.

    This

    can

    be

    critical

    in

    crisissituations.

    The features (GIS, graphics, reports, etc.) have been encapsulated in controls which

    maybegroupedbytheadministratorinworkspaces.Eachworkspacemaybeassigned

    toanindividualuserorgroupofusers.

    1.3 About this manualThis manual explains how the AQUASAFE LDS interface It provides a stepbystep

    guideforusingitsmanytools.ThemainfeaturesoftheAQUASAFELDSaredescribed

    inSection2.ThesoftwareinstallationprocesscanbefoundinSection3.Mainwindow

    isdescribed inSection4.Thetoolsoftheadministrationmenuandsystemoperation

    aredescribedinSection5and6.

    1.4 Project references

    TheAQUASAFE Smartmanagementtoolwasdistinguishedby InternationalWater

    Association (IWA) through the Implementation to wastewater system of Simtejo

    Lisboa, Portugal. The software received the Honour Award of the IWA Project

    InnovationAwards2012(bothintheGlobalandEurope&WestAsiaRegionalAwards

    competitions)inthecategoryofOperationsandManagement.

  • 7/27/2019 Aquasafe Lds Usermanual

    9/61

    AQUASAFELDSUserManual P a g e 9/61

    1.5 Permissions and user accounts

    User

    accounts

    available

    on

    the

    AQUASAFE

    platform

    can

    be

    associated

    with

    various

    typesofpermissions;for instance,there isauserwithmaximumpermissions, i.e.the

    administrator.For theremaining typesofusers thepermissionsassigned include the

    following options: create workspaces, share workspaces, send notifications to the

    administratorsandusedatabases.

  • 7/27/2019 Aquasafe Lds Usermanual

    10/61

    AQUASAFELDSUserManual P a g e 10/61

    2 LEAKAGE DETECTION BASICS

    Different definitions of leakage in distribution systems exist. The most frequently used one

    defines the leakage as (amount of) water which escapes from the pipe network by means

    other than through a controlled action. Water leakage in distribution systems is typically

    classified into background and burst related leakage. Bursts (i.e. main breaks) represent

    structural pipe failures and background leaks represent the water escaping through

    inadequatejoints,cracks,etc.Leakscanalsoexistinservicereservoirsandtanks(Puustetal,

    2010).

    Backgroundleakageistheaggregationoflossesfromallthefittingsonthenetwork.Suchleaks

    aretypicallytoosmalltodetectindividually.Burstleakageoccursfromholesorfracturesinthe

    networkthatcanbelocatedusingarangeofspecialistequipment.

    While major bursts and gushes on the surface may be reported to water companies by the

    public,its

    vital

    to

    keep

    on

    top

    of

    other,

    less

    obvious

    leaks.

    While

    the

    most

    visible

    leaks

    may

    be

    losingwateratahighrate,theyareusuallyreportedandrectifiedquickly.Lesserleaksmaynot

    resultinsuchspectacularlossesperhour,buttheycanrunundetectedforfarlongerandoften

    leadtohigheroveralllosses.

    Althoughthesizeofaholemayoftenbetinyinsomecasesnolargerthanapintheextent

    ofwater losses through leakage can be considerable,particularly where theygoundetected

    for long periodsof time. It is these types of losses, rather than the more easily identifiable,

    largescalelosses,thatposethebiggestproblemforwateroperators.

    At this point, it is important to emphasise that leakage can never be eliminated. The sheer

    scale of water distribution networks and the inherent difficulties in accessing pipework,

    coupledwithotherfactorssuchassupplypressures,ageofpipeworkandsoilcharacteristics,

    means zero leakage can never be achieved. Rather than striving to achieve zero leakage,

    therefore, the main concern of water operators should be to manage leakage as closely as

    possible

  • 7/27/2019 Aquasafe Lds Usermanual

    11/61

    AQUASAFELDSUserManual P a g e 11/61

    2.1 What causes leakage?

    Despitearaft

    of

    recent

    replacement

    and

    renewal

    works

    using

    modern

    plastic

    piping,

    much

    of

    the countrys water mains are still made from iron or lead, with some dating back to the

    Victorian era. Coupled with this is the high number ofjoints, fittings, interconnections and

    relativelyshortpiperunsthatcharacteriseeventhemostmodernwaterdistributionnetworks,

    presentingmultipleopportunitiesforleakstooccur.Thesefactors,togetherwithhighersupply

    pressures,meanthatsomedegreeof leakage is inevitable.Generally, leakscanbeattributed

    tofourmaincauses,namely:

    Highersupplypressuressupplypressuresthatexceedtheoriginalparametersofinstalledpipework(particularlyolderpipework)cancausepipesand/orjointstoruptureorburst

    Corrosionrustingofpipes,fittingsandjointssteadilyreducestheir integrity,eventuallyresultinginfailure.Causesofcorrosioncanarisefrombothwithinthepipe,suchasacidic

    watersfromuplandareas,andoutsideofthepipewheretheexternalpipewallisattacked

    byelements in thesoil. Inbothcases,the resultingcorrosioncanweaken thepipewall,

    reducingitsabilitytowithstandthesupplypressureandleadingtoeventualfailure.

    Erosionthisproblemoftenoccurswherea leakhasalreadyformed.Jetsofwaterfromtheleakcollectsandorstonesfromtheinstallationenvironmentwhichthenhitthepipe,

    graduallyweakeningitandincreasingthelikelihoodofasecondaryleak

    Soilcharacteristicschangesinthesoilcharacteristicsatthepointofinstallationcanhaveamaterialimpactonthepipeline.Changesintemperatureandmoisturecancausethesoil

    to expandandcontract,potentially causing thepipeline tobend. Movements in the soil

    canalsocausemovementofthepipelineand itsassociatedfittings, increasingtheriskof

    damageandfailure

    Reducingtheamountofwaterlostthroughleakagedependsonboththedistributionpressure

    andtheamountoftimetakentoaddressa leak.Where lossesstemfromrelativelysmallbut

    steady leaks from ajoint or fitting, such leaks can be especially hard to detect, particularly

    wheretheinstallationenvironmentpreventswaterfromrisingtothesurface.

  • 7/27/2019 Aquasafe Lds Usermanual

    12/61

    AQUASAFELDSUserManual P a g e 12/61

    2.2 Top-down approaches

    The

    objective

    of

    topdown

    leakage

    assessment

    approaches

    is

    to

    estimate

    the

    leakage

    in

    a

    particularsystembyevaluatingdifferentcomponentsof theoverallwaterbalance,primarily

    the water consumed for different purposes. The two main approaches used are the IWA

    approach (Lambert and Hirner 2000) and the approach used by the OFWAT in the UK.

    Althoughquitesimilar,therearesomedifferencesbetweenthetwoapproachesduetoslightly

    differentterminologyanddefinitionsused forsomewaterbalancecomponents (Puustetal,

    2010).

    Despitethesimplicityofatopdowntypeleakassessment,theleakageestimateobtainedvia

    this method is referred to as a crude estimate. Gathering such information helps to decide

    whatthenextstepinleakagestudiesshouldbeforaparticularnetworkbutitdoesnothelpto

    boundpotentialleakareas.

    2.3 Bottom-up approaches

    Bottomuptype leakageassessmentcanbeconsideredthesecondpartoftheauditprocess.

    Thisprocedureisimplementedwhenthecompanyhasconfirmedthedatausedinthetop

    downportion.It includeseveryareaofthecompanysoperation:billingrecords,distribution

    system,accountingprinciplesetc.Theauditsmainpurposeistofindouttheefficiencyofthe

    water distribution system and the measures needed to achieve these. Bottomup audits

    requirethemostaccurateanduptodatedatapossible.

    2.4 Leak detection using SCADA dataThe supervisory control and data acquisition (SCADA) system is an ideal platform for

    performingtheadvancedanalysisthatpromptlyidentifiesleakagepresence.

    Leakdetectionsystemsbasedonthedatacollectedfromfieldinstrumentstypicallyapplyone

    oftheseleakdetectiontechniques:

  • 7/27/2019 Aquasafe Lds Usermanual

    13/61

    AQUASAFELDSUserManual P a g e 13/61

    Balancing of pipeline input versus output. This leak detection technique relies on thesimplefactthatfluidmassflowintothepipelineequalstheflowoutinaleakfreepipeline.

    Adifferencebetweentheinputandtheoutputsuggeststhepresenceofaleak.

    Hydraulicanalysis.Measuredvaluesofflowsandpressuresarecomparedwithsimulatedvalues of the same variables, calculated by verified hydraulic models. Significant

    discrepanciesmightsignalthepresenceofleaks.

    Monitoringofsignalsgeneratedbyaleak.Aburstwillcauseasuddenpressuredropwhichwill create a pressure wave travelling at sonic velocity both upstream and downstream

    from

    the

    leak.

    The

    location

    of

    the

    leak

    can

    be

    calculated

    using

    the

    time

    difference

    in

    detectionbythenearestsensorsoneithersideoftheleaklocation.

    Hydraulic parameters trending analysis. Flow (especially minimum night flow) and/orpressuretrendscanindicatealeak.Typicallyanincreaseintheflowandadecreaseinthe

    pressure,comparedtoaverageconditions,suggestnewleakshaveappeared.

    Methods supporting techniques 1, 2, and 3 above are used primarily to detect and locate

    burstsinwatertransmissionschemeswheremeteringaccuracyisusuallyhigh,operationsare

    quitesteady,andthepresenceofnonmeteredcustomersisnegligible.However,thenegative

    pressurewavetechniquepresentssomeinconveniences:itonlydetectstheinitiationofaleak

    andnotitspresenceafterithasestablished. Further,falsealarmscanbetriggeredbypressure

    transientsgeneratedbynoiseproducinginstallationssuchaspumps.

    Methodsassociatedwithtechnique4abovearetypicallyappliedtodeterminethepresenceof

    leaks within distribution networks, preferably at a districtmeteredarea (DMA) level,

    integratingdatafromtheDMAinletmeterwiththeSCADAsystem.

    In a typical water supply system, real losses might exist in the distribution networks and in

    transmissionschemes.Therefore,itmightbenecessarytodeploymorethanoneoftheabove

    mentionedleakdetectiontechniquesinordertoachievecomprehensiveleakdetection.

  • 7/27/2019 Aquasafe Lds Usermanual

    14/61

    AQUASAFELDSUserManual P a g e 14/61

    2.4.1 Monitoring pressure transients

    One

    of

    the

    commonly

    used

    the

    techniques

    for

    pipe

    burst

    detection

    is

    based

    on

    monitoring

    pressuretransientsinthedistributionsystem,whichoccurafterasuddenfailure(rupture)ofa

    pipe.Bymeasuringpressureatdifferent locationsataveryhighsamplingrate(e.g.2000Hz)

    the propagation of the pressure transient in the network can be measured, and the burst

    locationcanbeapproximated.Thetechniqueisonlyapplicableforactualbursts.Pipefailure

    which develops gradually will not induce a pressure transient and will therefore not be

    detectedbythistechnique.

    2.4.2 Monitoring flow or pressure and flow in a LDZ

    Whenflowandpressuremeasurementsarepresenttheycanbeusedforonlinemonitoring.

    StephenMounceresearcheddetectiontechniquesandtestedthosetechniquesinarealwater

    supplysysteminNorthYorkshire,UK.Inapracticalapplicationinasixmonthtestperiodthe

    system was able to detect 7 of 18 reported bursts (11 events missed), where the system

    generatedatotalof46alerts(39werenotrelatedtoactualbursts).

    2.4.3 Real time modelling support

    Integrationofnearrealtimehydraulicdatawithhydrauliccomputersimulationmodelsallows

    utilityengineerstooperateandcontroltheir largescale,urbanwaterdistributionsystems in

    real time. In conventional practice, hydraulic models are calibrated off line (USEPA, 2005),

    typically using a oneweek sample of flow rate and pressure measurements within the

    network.

    Thereafter, uncertain system parameters (e.g., water demands and pipe roughness) are

    adjusted until an acceptable match is achieved between the model outputs and physical

    observations.Themainlimitationofallofflinecalibrationproceduresisthattheyapproximate

    theunknownparametersusingashorttermsampleofhydraulicdata.Thecalibrationresults

    mayrepresentthesystemhydraulicsduringtheshortperiodofthesamplingprocedure,but

    theycannot beexpected to accurately represent thesystemconditions for the full range of

    operational conditions that can occur. In principle, much more realistic predictions can be

  • 7/27/2019 Aquasafe Lds Usermanual

    15/61

    AQUASAFELDSUserManual P a g e 15/61

    achieved by updating the hydraulic state estimation using continuous online hydraulic

    measurementsprovidedbyasensornetworkinstalledwithinthedistributionsystem.

    Severalstudieshaveproposedmethodsforassimilatingonlinemeasurements intohydraulic

    state estimation models. Davidson and Bouchart (2006) proposed proportional and target

    demand methods. These are two techniques for adjusting estimated demands in hydraulic

    modelsofwaterdistributionnetworkstoproducesolutionsthatareconsistentwithavailable

    SCADAdata.Shangetal (2006)presentedapredictorcorrectormethod, implemented inan

    extendedKalmanfiltertoestimatewaterdemandswithindistributionsystems inrealtime.A

    time

    series

    autoregressive

    moving

    average

    model

    was

    used

    to

    predict

    water

    demands

    based

    on the estimated demands at previous steps; the forecasts were corrected using measured

    nodal water heads or pipe flow rates. Although these studies were not tested against real

    world cases of complicated urban water systems monitored with online sensors, they

    providedamodelingframeworkandthemathematicaltoolstoenablelargerapplicationstobe

    usedformorecomplexsystems.

    2.5 Limitations of the leakage detection proceduresTheefficiencyofleakagedetection/locationdependsonthequalityandquantityoffielddata

    collected (pressure, flow rates, GIS information such as diameter, pipe roughness, etc) and

    mostly on the head losses (and consequently on the flow velocity) throughout the pipe

    networksystem.

    The reliability on the leakage detection and location procedure depends highly on the flow

    changesduringa day time.That means that for oversizedsystems, thedetectionof leakage

    pointswouldbemoredifficultandthereliabilityofferedbythealgorithmwouldbelower.The

    searchingmethodsuccessisdirectlyrelatedtothetotalheadlossthataleakageiscausing

    alongawatermain.Therefore,aleakagewillonlybedetectedwithahighdegreeofreliability

    ifthewaterthat isbeing lost issignificantand ifpressure loggers installed inthesystemare

    capableofregisteringthechangesinpressure.

    Theprobability to locateminor leakages tends tobevery lowwithautomaticmethods. In

    thesecasesitishighlyrecommendabletocomplementtheautomaticleakagesearchmethod

  • 7/27/2019 Aquasafe Lds Usermanual

    16/61

    AQUASAFELDSUserManual P a g e 16/61

    by means of acoustic methods, even though the success of these lattermethods is very

    dependentonthepipematerial.

    As the leakage search method is not based on a deterministic method but on a heuristic

    method (evolutionary algorithm), it does not make any assumption about the objective

    functionwhichonlyconsistsofminimizingthedifferenceoftheobservedandcalculatednodal

    hydraulicheadsandpipeflows.

    Under high flow velocity conditions (higher head losses), the water loss detection using the

    model might be affected by errors introduced into the model parameters such as pipe

    roughness for instance. That is why it is important tobuild a verygood calibrated hydraulic

    model.

    It isnoteasytoprovidefiguresonthepercentageofsuccessortheefficiencyofthe leakage

    detection/locationmethod,noteventheauthorsofthealgorithmareofferingconcretefigures

    aboutitsinceitisnotanexacttechnique.

    Howevertheconsultantexperienceshowsthat ifdataqualityandquantityaregoodenough,

    theerrors

    obtained

    in

    comparison

    with

    acoustic

    methods

    are

    much

    lower

    (measured

    as

    distance to the real leakage), provided the water leakage is originating a head loss several

    timesgreaterthantheerrorofthepressuremeters.

  • 7/27/2019 Aquasafe Lds Usermanual

    17/61

    AQUASAFELDSUserManual P a g e 17/61

    3 LEAKAGE DETECTION APPROACHES

    IMPLEMENTED IN AQUASAFE

    The methodology being used in AQUASAFE to support leakage detection includes 3 basic

    procedures:massbalanceanalysis,flowandpressuredataanalysisandmodelsimulations.

    Theleakagedetectionalarmswillbeactivatedwhensomeabnormalityisdetectedinthemass

    balanceanalysis (includingnight flowsanalysis),and/or in thepatternanalysisand/or in the

    model/datapressurepatternsanalysis.

    Regardingthemassbalancesitiscommontoobservenotfullyclosedmassbalances.Thismay

    mean that consumptions nonconsidered in the mass balance are taking place or that there

    still remains some minor issues of signals calibration in the SCADA system. In any case it is

    necessarytotakethisfactinconsiderationinthemassbalance.

    Theproposed

    solution

    is

    to

    apply

    adata

    pattern

    analysis

    to

    the

    mass

    balance

    and

    to

    trigger

    an

    alarm when the mass balance residual deviates from the expected patterns. However, this

    methodwillonlyindicateifthereisapossibleleakageinthespecifiedLDZ.Inthecaseswhere

    thesignals(e.g.pressureandflow)arenotproperlyfilteredbytheSCADAsystemAQUASAFE

    providesasetofautomaticprocedurestocleanthesedatasets:

    Mappinggapperiods:theabsenceofvalueswithinaperiodlargerthanapredefinedtime

    length(ex.30min)itisassumedtobeagap;

    Filtervaluesbelowaminimumandamaximumvalues;

    Filtervaluesthathaveatimevariationlargerthanathreshold.Themaingoalofthisisto

    filterspikes;

    Filter consecutive values that have exactly the same value. It is common to observe

    periodswhereconsecutivevalueswithexactlythesamevaluearerecorded;

    Filternoisyperiods.Inthiscaseatimewindowisspecified,forexampleaday.Inthiscase

    for each day is compute the standard deviation and the average. If the ratio standard

  • 7/27/2019 Aquasafe Lds Usermanual

    18/61

    AQUASAFELDSUserManual P a g e 18/61

    deviation:ifaverageisaboveaspecifythresholdtheperiodisconsiderednoisyandthe

    valuesoftheentireperiodarefilterout.

    3.1 Patterns estimation

    For the patterns estimation the user only needs to specify the type of pattern to compute:

    daily pattern or weekly patterns or weekend / week day pattern. The methodology used

    computesforeachhourofthepatterncyclechosenthemedian(orpercentile50)oftheentire

    signaldataafterbeingfilter.

    ThecomputedpatternscanbeuploadedtoAQUASAFEtoconfigurealarmsthataretriggered

    when a specific signal (flow, pressure or mass balance) is outside of specified limits in

    persistentway.The limitsaredefinedbytheuser.Thefigurebelowshowsacasewherethe

    flow(blueline)iscomparewiththefollowlimits:

    Upperlimit(orangeline)= pattern+20% Pattern(blackdotline) Lowerlimit(redline)=pattern20%

    This kind of approach implies that, at least, the noise introduced by the leak be more

    relevant that the uncertainty associated to the sensor itself. It is necessary to take in

    consideration that no matter the analysis is made its accuracy depends of the quantity and

    qualityofthedataavailable.Forinstancewithshortlengthrecordsitisnotpossibletoidentify

    seasonalpatterns

    and

    we

    may

    be

    using

    awrong

    pattern

    in

    aspecific

    month

    case

    we

    dont

  • 7/27/2019 Aquasafe Lds Usermanual

    19/61

    AQUASAFELDSUserManual P a g e 19/61

    haveenough informationtoknowthattheconsumptions inthatspecificmontharedifferent

    fromthepreviousone.

    3.2 Mass balance

    AmassbalancetoolisrunningforeachLeakageDetectionZone(LDZ).ForeachLDZtheinflows

    andtheoutflowstimeseriesaremapped.Themassbalanceiscomputedonlyfortheinstants

    where are valid values available in all inflow and outflows time series. For instants that are

    insideatimeseriesgapthemassbalance innotcomputeandthis is instant isconsideredto

    belongto

    the

    mass

    balance

    time

    series

    gaps.

    InthefigurebelowitispresentedthemassbalancecomputedalongoneweekforoneLDZ.In

    the figure theblack line represents theLDZoutflow, thebluedots represent theLDZ inflow

    andthereddotsthemassbalance.

    The above described approaches, when used together, have the capability to map the

    probability of a leak on an area controlled by a pressure meter but they are not able to

    preciselypinpointtheleaklocation.

    Thecombineduseofthemodelresultsmayhelptogetamorepreciselocationoftheleak.In

    this procedure the calibrated model is keep running in short periods intervals (lets say 30

    minutes)andthemodelresultsarecontinuouslybeingcomparedwiththemeasureddata.In

    case ofa relevantmodificationof the usual level ofagreementbetween themodeland the

  • 7/27/2019 Aquasafe Lds Usermanual

    20/61

    AQUASAFELDSUserManual P a g e 20/61

    datapressurevaluesanalarmistriggeredpointingwhichsensoriscloserofthelocationofthe

    identifiedanomaly.Thisimpliesafullyandtrustycalibratedmodel.

    Inthecaseoftheexistenceofsomeadvanced leakagedetectionalgorithm,suchas theone

    included in the Bentley Darwin Calibrator, it may be possible (depending of the network

    characteristics, theaccuracyof theavailabledataand the leakagedimension) togeta close

    location. This tool consists of an automatic calibration and leak detection system for water

    distribution networks. It allows the speeding up of the lengthy calibration process and

    detection through automatic simulation of millions of solutions, as well as identifying those

    that

    adjust

    to

    their

    field

    data.

    Leakdetectionfunctionalityallowstheminimisationoftheeffortassociatedwithfieldworkto

    identifypointswithmoreprobability,allowingworkteamstoconcentrateonlimitedareason

    thefield.

    Oneofthestrongaspectsofthistechnologyistoallowtheuser,inaneasyandefficientway,

    toidentifythenetworksectorswiththegreatestleakprobability.Theprocessisbasedonthe

    dynamic module, real information (pressure and flow) in some points of the network and a

    genetic optimisation algorithm which automatically develops the leak search process. This

    technology is already quite consolidated, having been applied in several complex real cases

    with success, confirming their robustness in face of several types of situations

    (http://www.bentley.com/enUS/Promo/New+Oil/)

    3.3 Night flows analysis

    Flow

    and

    pressure

    values

    in

    water

    distribution

    networks

    tend

    to

    be

    highly

    variable.

    This

    variability is mainly due to water consumption variability in time. Additionally there is also

    somehighfrequencyvariabilityassociatedwiththelevelofaccuracyofthesensoritself.Inthe

    night period the signals time variability tends to be lower and becomes easier to detect

    persistentanomalieslikeleaks.AQUASAFEforeverysignaltimeseriesisabletocomputethe

    averagevalueforthenightperiod.

    Forexample inthecaseofthemassbalanceofaLDZthefinalresulttendtohaveapattern

    type

    evolution

    like

    the

    one

    present

    in

    the

    figure

    below

    (red

    dots)

    due

    to

    sensors

    errors

    or

  • 7/27/2019 Aquasafe Lds Usermanual

    21/61

    AQUASAFELDSUserManual P a g e 21/61

    uncontrolled inflow/outflows. In this case the AQUASAFE user has two ways of configure a

    mass balance alarm: one way (mentioned above) is to configure the alarm considering the

    deviations in relation a defined pattern; an alternative way is to configure an alarm for the

    averagevalueofthemassbalanceforthenightperiod.Thismassbalanceparametertendsto

    haveaconstantvalue in timeandamoresimplealarmcanbeconfigured (see figurebelow

    blackdots).Inthiscasethealarmthresholdcanbeconsideredconstant.

    3.4 Model results analysis

    AQUASAFEcancomplementthesensorsanalysiswithmodelresults(WaterGems)forcedwith

    realtimedataruninoperationalway.Themainboundaryconditionofthewaterdistribution

    modelistheLDZsoutflows.Inthecaseofaleakthemodelforcedwithrealtimedatagivean

    approximateimageofthewaterdistributionnetworkwithno leaks.Awayofdetectingthe

    areaoftheleakintheLDZiscomparingthemodelpressureresultswiththesensorspressure

    data.ThisisquiteeffectiveinLDZswherethepressuregradientisstrong.

    To help AQUASAFE operator to identify more easily the areas where model results diverge

    more from the measure data the pressure differences are normalized. For each LDZ the

    differencebetweenthemeasuredandmodelresultsiscomputedinallpressuresensors.This

  • 7/27/2019 Aquasafe Lds Usermanual

    22/61

    AQUASAFELDSUserManual P a g e 22/61

    parameter isnormalizedusingtheminimumandmaximumdifferencesoccurring intheLDZ.

    The final parameter is a percentage where 100% corresponds to higher pressure difference

    occurringinaninstantand0%theminimum.

    The figure below exemplifies the method for a virtual case where WaterGems was used to

    simulate a leak in point Emit 03 and compare these results with a situation without a leak.

    Bothmodelssolutionwherecomparedandtheparameterdescribedabovewascomputein7

    points(FNB1toFNB7LDZoutflowpoints).Thefiguresshowsthebiggerpressuredifferences

    are located inthemonitoringpointsdownstreamofthe leakasexpected fromthehydraulic

    point

    of

    view.

    3.5 Critical segment analysis and operation modelling

    Besides

    the

    evaluation

    of

    the

    occurrence

    of

    a

    leak

    in

    the

    network,

    AQUASAFE

    leakage

    detection system may include complementary analysis tools that may help to maintain a

    continuous awareness of the more critical areas. Some hydraulic models such as Bentley

    WaterGemsincludeanalysistoolsthatallowtheidentificationofcrucialelementsinthewater

    distributioninfrastructureandtheevaluationoftheassociatedfailurerisk.Theseanalysistools

    include the consideration of the network pressure distribution (higher pressure areas have

    moreprobabilityoffailure),theageandmaterialofthepipesandthehistoryofleaksineach

    area.

  • 7/27/2019 Aquasafe Lds Usermanual

    23/61

    AQUASAFELDSUserManual P a g e 23/61

    This information may also be used to adopt improved operational controls based on rules,

    variable velocity (VSP) pumping and the dependent pressure consumption (PDD), that

    minimiseenergyconsumptionandimprovesystemperformance.

    3.6 Overall AQUASAFE LDS analysis

    The main objective of LDS project is to set up a system capable to maintain a continuous

    monitoringoverthenetwork inordertodetectinpropertimetheoccurrenceofaleakagein

    thenetwork.TheLDSincludesthreemaincomponents:

    Areal

    time

    data

    acquisition

    system

    supported

    by

    the

    SCADA;

    AnetworkhydraulicmodelbasedonBentleyWaterGEMS;

    AninformationtechnologyplatformbasedonAQUASAFE.

    AllthedatacollectedbytheSCADAsensorsandmodelresultsconvergeinAQUASAFEplatform

    which is maintaining a continuous data analysis in order to detect any anomaly that may

    indicate the probability of a leakage occurrence. The accuracy in what respects the leakage

    volumeandlocationdependoftheavailabilityandqualityofthedatabut,nomattertheinitial

    level of success, it is proved that this type of systems are continuously improving as the

    knowledgeaboutthenetworkitselfalsoimproves.

    The general AQUASAFE Screen overview shows the status of all Leakage Detection

    Zonesidentifyingifthereistheprobabilityofleak.BasicallyforeachLDZacolorbased

    onthemassbalancealarmlevelindicatesthepresentstatus:

    greynodataavailablefromSCADAatthetime

    0/blue

    no

    leak

    detected

    1/orangeapossibleleakmaybeoccurring

    2/redleakdetected

  • 7/27/2019 Aquasafe Lds Usermanual

    24/61

    AQUASAFELDSUserManual P a g e 24/61

    AmapzoomintoLDZ4:

    Incaseoftheidentificationofaleakduetoanabnormalmassbalanceitispossibleto

    askforthemostprobable locationofthe leak. Inthefollowingexamplea leakalarm

  • 7/27/2019 Aquasafe Lds Usermanual

    25/61

    AQUASAFELDSUserManual P a g e 25/61

    caused by opening a discharge valve was simulated. As the mass balance alarm was

    triggered,

    the

    LDZ

    polygon

    became

    red

    and

    the

    alarm

    value

    (2)

    was

    registered

    on

    the

    righttable.Incaseofnodataavailableonrealtime,theLDZpolygonbecomegrey,and

    novalueisdisplayedontherighttable,asshowninthefollowingfigues.

  • 7/27/2019 Aquasafe Lds Usermanual

    26/61

    AQUASAFELDSUserManual P a g e 26/61

    ForeachLDZadetailedworkspaceshowingthetransmissionmainsmapwithSCADA

    signals

    geo

    located,

    the

    SCADA

    filtered

    signals

    chart

    and

    the

    mass

    balance

    alarms

    table

    andchartisalsoavailable.Incaseofamassbalancealarm,theLeakLocatortoolcan

    beusedtolocatetheleak,asexemplifiedonthefollowingfigures.

  • 7/27/2019 Aquasafe Lds Usermanual

    27/61

    AQUASAFELDSUserManual P a g e 27/61

    3.7 Leak Location accuracy

    A

    leak

    test

    performed

    in

    Muscat

    network

    by

    means

    of

    opening

    a

    discharge

    valve

    identifiedonthenextmapwasperformedinordertoassessthepotentialaccuracyof

    theleakagedetectionmethodsimplementedinAQUASAFE.

    InthistesttheSCADAsignalsthatwerebeingcollectedonrealtimewerefilteredby

    AQUASAFE.Assoonastheanomalyinthemassbalancewasdetectedamassbalance

    alarm was triggered showing the water loss volume, as shown on the next chart

    images

    Immediatelytheleaklocatortoolwasactivatedandtheleaklocationwasidentifiedas

    exemplifiedin

    the

    following

    figure.

    Discharge

  • 7/27/2019 Aquasafe Lds Usermanual

    28/61

    AQUASAFELDSUserManual P a g e 28/61

    In thiscase the leakwas located withanaccuracyof2.2% in distanceand0.37 % in

    volumeasdepictedinthefollowingtables:

    Locationaccuracy:

    ReallocationoftheDischargevalve LeakLocationPredictedDistance

    Error(m)

    %Error(DistanceError/Distance

    betweenthe

    measuring

    points)

    Longitude

    Latitude

    Longitude

    Latitude

    58.14430706 23.58335657 58.14346629 23.58239414 137 2.2%

    (coordinatesonWGS84referencesystemEPSG4326)

    WaterLossaccuracy:

    LeakVolumePredicted(m3/h) 59.40

    Date RealWaterLoss(m3/h) %Error

    7311310:10AM 59.66 0.45%

    7311310:20AM 59.50 0.17%

    7311310:30AM 59.25 0.25%

    7311310:40AM 59.17 0.37%

    Finally the output of the AQUASAFE Leak Locator can be exported to a report as

    presentedonthefollowingfigure.

  • 7/27/2019 Aquasafe Lds Usermanual

    29/61

    AQUASAFELDSUserManual P a g e 29/61

    Date:

    Leakdetecteddetails:LeakDetectionZone:LeakSize: m3/hPipeDiameter: mmLocation: LAT

    (WGS84) LONG

    PublicAuthorityforElectricity&Water MuscatWaterSupplySystem,Oman Aquasafe LeakDetectionSystemAutomaticReport.

    LEAKDETECTIONREPORT

    LEAKLOCATIONMAP

  • 7/27/2019 Aquasafe Lds Usermanual

    30/61

    AQUASAFELDSUserManual P a g e 30/61

    4 SYSTEM IMPLEMENTATION. GETTING STARTED

    4.1 Installing the Setup

    The installation of AQUASAFE Client has no specific requirements; just go to the

    addresshttp://rusyalreservoir/AquaSafeInstaller/index.htmwheretheAquasafeClient

    is

    available.

    Click

    Install

    and

    then

    Next

    until

    the

    installation

    process

    is

    complete.

    4.2 Technical support

    AQUASAFEsupportquestionsmaybesentviaemailto:[email protected]

  • 7/27/2019 Aquasafe Lds Usermanual

    31/61

    AQUASAFELDSUserManual P a g e 31/61

    5 MAIN WINDOW

    Main window of AQUASAFE Client is composed by icons menu in the upper right

    corner and a bar where the workspaces are placed (central bar at top). The main

    available icons on the AQUASAFE platform are described in Table 1. The Server

    Configurationmenuisonlyavailabletouserswithadministratorprivileges.

    Table1:MainmenusavailableontheAQUASAFEplatform

    Design Type of Menu

    Show/Hide Workspaces List(allows to make visible or hide the list of available workspaces)

    Add Gadgets to Workspace (allows to add new functionalities to aworkspace such as map or graph views, activate alarms and reports,

    etc.)

    Server configuration (allows to manage user accounts, create distributionlists, create reports and alarms, add new data sources, etc. only available

    for accounts with administrator privileges)

    Manage Workspaces (allows to create new workspaces or modify theexisting ones)

  • 7/27/2019 Aquasafe Lds Usermanual

    32/61

    AQUASAFELDSUserManual P a g e 32/61

    6 ADMINISTRATION MENU

    TheServerConfigurationwindowenablestheusertomanage theAQUASAFEserver

    features.Thesefeaturesaregroupedinfourcategories:i)Usersmanagement,ii)Base,

    iii)Sourcesandiv)Reports.

    Thiswindowisacessedtroughtheicon intheMainWindow.

    TheUsersManager controls allow creating new accounts, attributing workspaces to

    users,managingtheworkspacesandcreatingdistributionlists.

    TheBasemanagementcontrols allowaccess to the systemconfiguration in terms of

    themonitoringstations,parametersandmodelsmanagedbytheplatform.

    TheSourcesmanagementcontrolsofprovidesaccesstothedatasourcesandtotheir

    configurationincludingthesetupofalarmsandmanagethediskspace.

    Finally the Reports management controls allow the configuration of automated

    reports.

  • 7/27/2019 Aquasafe Lds Usermanual

    33/61

    AQUASAFELDSUserManual P a g e 33/61

    6.1 Users Management Controls

    6.1.1 User Accounts

    To add a new user account or manage an existing account select the appropriate

    option in the Administration Controls window ( ) and fulfil the information

    requestedonthescreen.

    At this dialog it may be set or modified the username, the password, the role

    (administrator,

    power

    user,

    user),

    the

    contacts

    (email

    and

    phone

    number),

    the

    language (PTorEN)and theTime Zone (UTC orMuscat). There isalso theoption to

    blocktheuser.

    ToaddanewuserclickontheAddbutton.Foreditordeleteanexistinguser,pointto

    thatuserinthepanel.Onceitselecteditwillappeartwobuttons:oneforedit(pencil)

    andanotherfordelete(cross).

  • 7/27/2019 Aquasafe Lds Usermanual

    34/61

    AQUASAFELDSUserManual P a g e 34/61

    6.1.2 User Workspaces

    Inorder

    to

    distribute

    workspaces

    by

    the

    different

    users

    select

    the

    User

    Workspaces

    option . In this dialog it can be viewed the workspaces used by each user and

    remove or attribute existing workspaces to each user.Todo this select the required

    workspaceandusethepenontherightsidetoeditthepermissions.

    6.1.3 Manage Workspaces

    ToeditordeleteworkspacesselecttheoptionWorkspacesManager .Byselecting

    the required Workspace it will appear on the right side the option edit (pen) and

    delete(trash).

    6.1.4 Distribution Lists

    Thiscontrol

    allows

    the

    creation

    of

    distribution

    lists

    by

    grouping

    several

    different

    users

    to which specific information (reports, alerts, etc.) should be sent automatically. To

    create a distribution list selected the appropriate option ( ) in the Users Controls

    anddothefollowingactions(seesequenceofactionsbellow):

    provideanameandadescription,

    selecttheuserstowhichyouwantdistributetheinformation,

    provide

    other

    contacts

    (beyond

    users)

    to

    which

    you

    want

    distribute

    the

    information

  • 7/27/2019 Aquasafe Lds Usermanual

    35/61

    AQUASAFELDSUserManual P a g e 35/61

  • 7/27/2019 Aquasafe Lds Usermanual

    36/61

    AQUASAFELDSUserManual P a g e 36/61

    6.1.5 Graphs Management

    Managinggraphs

    in

    AQUASAFE

    means

    basically

    to

    make

    available

    aset

    of

    templates

    that may later be used to produce reports. This option is usually very useful if it is

    intendedtoproducesomegoodlookingreports.

    Thewaytousethisoption isverysimple.StarttocreateaReportTemplatethat it is

    intendedtobeusedandloadittotheAQUASAFEplatformusingthedialogthatwillbe

    displayedwhenselectedthecontrolCharts intheUsersControlssection.

    Loadachart

    template

    into

    AQUASAFE

    server

    6.2 Base controls

    6.2.1 System

    TheSystemcontrol ( )is intendedtoabletogather inonesingleserverapplication

    differentnetworksystems.Ifthereisjustonesystemtomanagethiscontrolisnottoo

    much

    relevant

    but

    if

    there

    is

    more

    than

    one

    independent

    systems

    to

    manage

    this

    controlassumesagreatimportance.

    Thesifferentsystemscanbelinkedinatreeformatinawaythatonesystemmayhave

    othersystemsinside.

  • 7/27/2019 Aquasafe Lds Usermanual

    37/61

    AQUASAFELDSUserManual P a g e 37/61

    Toaddanewsubsystemjustclickthepluissigninfrontofanexistingone.Theremain

    featuresarecommontotheothercontrols:add(pen)ordelete(trash).

    Introducinganew

    system.

    Provide

    aname

    and

    adescription.

    6.2.2 Monitoring Stations

    TheMonitoringStationscontrol( )isintendedtoenableuserstoaddormanagethe

    points where there is data available to manage within AQUASAFE. By selecting this

    controlamapwillbedisplayedshowingthelocationofthepointswherethereisdata

    available.Thisdialogalsoenablestheuserstoaddnewmonitoringstations, importa

    list of monitoring stations from a csv file or export the existent list in the same csv

    formatorkmlformat.

  • 7/27/2019 Aquasafe Lds Usermanual

    38/61

    AQUASAFELDSUserManual P a g e 38/61

    MonitoringStationsdialog

    Casetheuser intendstoaddoreditanewMonitoringStationhe/sheshouldusethe

    appropriate option on the left top of the window to add or the pen icon that will

    appearwhenpoitingtothestationnameandfulfiltherequiredinformation.

    MonitoringStationsrequiredinformation.Thesamplingcodeisimportantonceitis

    troughthiscodethatitismadethelinktotheSCADAsystem.

  • 7/27/2019 Aquasafe Lds Usermanual

    39/61

    AQUASAFELDSUserManual P a g e 39/61

    6.2.3 Parameters

    TheParameters

    control

    ( )

    has

    asimilar

    purpose

    of

    the

    Monitoring

    Stations

    control

    in this case for the Parameters recognized by the system. Similar Add, Import and

    Exportactionsareavailable.

    Parametersdialog

    Foreachparameteritispossibletoenterasetofconversionrulesfordifferentunits.

    This option is very useful when importingdata from different providers that may be

    recorded also in different units. For example in the above shown dialog the velocity

    maybeimportedinm/sorkm/honcearuleforconvertingm/sinkm/hwasprovided.

    Whenadding

    anew

    parameter

    the

    displayed

    dialog

    presents

    this

    option

    allowing

    the

    usertodefineanynumberofconversionrules.

  • 7/27/2019 Aquasafe Lds Usermanual

    40/61

    AQUASAFELDSUserManual P a g e 40/61

    Addinganewparameter

    6.3 Sources Controls

    6.3.1 Alarms

    CreatinganAlarmbasicallymeanstodefineasetofrulesthat, ifmet,will firesome

    action(sendingawarningtotheoperatorscreenoranEmailforalistofusers,createa

    report,etc.).TheAlarmsarealwayssetuponanexistingdataseries.

    Top set up an Alarm, selected the appropriate Alarm option ( ) on the Sources

    controlsarea.

  • 7/27/2019 Aquasafe Lds Usermanual

    41/61

    AQUASAFELDSUserManual P a g e 41/61

    AlarmsDialog.Throughthisscreenitispossibletomodifytheexistingalarmsorcreate

    newones

    NewAlarmdefinition.Starttoprovideanameanddescription.

    Providethe

    limits

    to

    trigger

    the

    alarm.

    Constant

    values

    or

    variable

    time

    values

    (time

    series)maybeused.Anynumberofalarmlevelscanbedefinedbyrepeatingthe

    processofdefininganewalarmlevel.

  • 7/27/2019 Aquasafe Lds Usermanual

    42/61

    AQUASAFELDSUserManual P a g e 42/61

    ExampleofanAlarmdefinitionconsidering3differentlevels.

    Oncedefinedthevaluestowhichthealarmwillbetriggereditwillbenecessaryto

    providethenameofthetimeseriesuponwhichthealarmwillworkandtheminimum

    timelengthduringwhichtheeventmustpersisttotriggerthealarm.Theobjectivehere

    istoavoidfalsealarmsduetodataspikes

    6.4 Reports Controls

    The

    reporting

    configuration

    and

    publication

    process

    involves

    four

    phases:

    1) CreateaTemplate;2) DefinetheReportcontent;3) Selectapublishermedia;4) PublishtheReport.The first step it will be to imported an existing template using the control Report

    Template.A

    Template

    may

    be

    an

    empty

    Excel

    sheet

    for

    instance

    (it

    will

    act

    as

    amedia

  • 7/27/2019 Aquasafe Lds Usermanual

    43/61

    AQUASAFELDSUserManual P a g e 43/61

    where to write). After loaded the template it will be necessary to create the report

    itself

    using

    the

    control

    Reports.

    For

    example

    if

    the

    required

    report

    is

    an

    Excel

    file,

    this

    step involves the definition of therowand columnwhere the reportwillstart to be

    written,thedatasourcesspecificationandthegraphslocation.Thisconfigurationstep

    dependsonthetypeoftemplateimportedintothesystem.

    Instep3itwillbedefinedthekindofmediatroughwhichtheReportwillbepublished.

    ItmaybeviaEmail,ftp,etc..

    Finally,

    the

    last

    step,

    it

    will

    be

    effectively

    publish

    the

    Report.

    This

    step

    involves

    the

    definition of publishing schedule (e.g., daily, weekly, monthly, etc..) and the

    specificationoftheusersforwhichthereportshouldbesent.

    Thenwepresentthemostimportantwindowsinminutesstepinvolvedthecreationof

    yourreport,i.e.,sincethetemplatetopublication.

    6.4.1 Report Template

    ThiscontrolallowsimportingExcelandWordtemplates.ATemplatemaybeanempty

    Excel sheet for instance and it will be used later to specify where to write the data,

    wheretoputthegraphics,etc..

    To import a report template choose this option on the Administration Controls

    Window.SelectingAddTemplateoptionitwillbedisplayedaconfigurationmenuthat

    introducesthe

    sequence

    that

    is

    summarized

    below.

  • 7/27/2019 Aquasafe Lds Usermanual

    44/61

    AQUASAFELDSUserManual P a g e 44/61

    Add,EditorDeleteatemplate

    Browsethetemplatelocation

    6.4.2 Reports

    ThiscontrolisrequiredtoeffectivelycreatetheReport.Itrwillbeherewheretheuser

    willdefinethedatasourcestousetoproduceit.Thesequencestartswiththechoice

    of a report template (previously imported to the system in the previous step) and

    followsthesequenceshowedinthefiguresbellow:

  • 7/27/2019 Aquasafe Lds Usermanual

    45/61

    AQUASAFELDSUserManual P a g e 45/61

    AddanewReport

    GiveitaNameandaDescription

  • 7/27/2019 Aquasafe Lds Usermanual

    46/61

    AQUASAFELDSUserManual P a g e 46/61

    Chooseatemplatetype

    Chooseanexistingtemplate

  • 7/27/2019 Aquasafe Lds Usermanual

    47/61

    AQUASAFELDSUserManual P a g e 47/61

    ChooseTime

    Series

    based

    on

    which

    the

    report

    will

    be

    produced

    DefinetheSheetandCellwherethereportwillstarttobewritten.Usetheformat

    providedintheexample.

    6.4.3 Report Publishers

    OncecreatedtheReportthenextstepwillbetodefinethedetailsofthemediafrom

    where

    it

    may

    be

    distributed

    (if

    not

    yet

    defined).

    Presently

    the

    options

    are

    Email,

    ftp

    or

  • 7/27/2019 Aquasafe Lds Usermanual

    48/61

    AQUASAFELDSUserManual P a g e 48/61

    ina localfolder(usuallyforthecaseswherethere isnoftpormailserviceavailable).

    To

    choose

    the

    publisher

    media

    select

    the

    option

    Report

    Publishers

    on

    the

    AdministrationControlswindow.

    Create(upperoptions),Edit(pen)ordelete(trash)themediatopublishthereports

    (Folder,EmailorFtp)

    FolderOption.Inthiscasealocalfolderisselecttostorethereports.Itisnecessaryto

    defineafolderlocationandprovideanameandadescriptionforidentification

    purposes.

  • 7/27/2019 Aquasafe Lds Usermanual

    49/61

    AQUASAFELDSUserManual P a g e 49/61

    EmailOption.Inthiscaseitisnecessarytospecifythedetailsofthemailservicetouse:

    SMTPhost,port,usernameandpasswordofauserwithpermissionstousetheservice.

    Aftercreationyoumaytesttheservicebysendingatestmessagetoatestrecipient.

    FTPOption.InthiscaseitisnecessarytospecifythedetailsoftheFTPservicetouse:

    FTPhost,

    folder,

    username

    and

    password

    of

    auser

    with

    permissions

    to

    use

    the

    service.

  • 7/27/2019 Aquasafe Lds Usermanual

    50/61

    AQUASAFELDSUserManual P a g e 50/61

    6.4.4 Report Publication

    Thefinal

    stage

    of

    creating

    aReport

    is

    to

    give

    the

    order

    to

    distribute

    it

    to

    the

    selected

    users (Email)orput itavailableon theFTPorselected forder.Todo thischoose the

    publishermediaselecttheoptionReportPublicationsontheAdministrationControls

    window.StarttoAddthemediaservicetouse(oneoftheavailable inthepublishers

    previouslycreted),thendefineascheduletosendthereportthereporttopublish(one

    of those previously created in the Reports creation option) and finally select the

    distributionlist(onlyapplicableinthecaseofEmail).

    Theschedulingmaybedonebytime(publishthereportatprescribedtime intervals)

    orbyevent(publishthereporteverytimeadefinedeventoccurs).Inthecaseofatime

    basepublicationthereisthepossibilitytochooseacontinuousregularpublication(for

    exampleeverydayoreveryweekatadefinedtime)orafixedtimepublication.

    Selectthepublicationmedia(inthisexampleEmail).

  • 7/27/2019 Aquasafe Lds Usermanual

    51/61

    AQUASAFELDSUserManual P a g e 51/61

    The definition of the time intervalbetweenaregular publication isdefined trougha

    Cron

    Expression.

    This

    expression

    has

    a

    non

    friendly

    format

    and

    in

    case

    of

    doubt

    how

    to

    use it there is the option to use the site http://cronmaker.com/ to create it. An

    exampleofacronexpression isforinstance00121/2*?*.Thismeanstopublisha

    report every two days (1/2) at 12:00. If you would like for instance to publish the

    reporteverySaturdayat11:00itwouldlooklikeas0011?*SAT*.

    Youmayalsoprescribethetime lagto include inthereportboth inwhatregardsthe

    hindcastperiodandtheforecastperiod.

    Schedulethepublication

  • 7/27/2019 Aquasafe Lds Usermanual

    52/61

    AQUASAFELDSUserManual P a g e 52/61

    Selectthe

    report

    to

    publish

    Selectadistributionlist.Casethereisnotoneavailable(asitisthecase)itwillbe

    necessarytogobacktotheUserscontrolsandcreateadistributionlistusingthe

    DistributionListscontrol.

  • 7/27/2019 Aquasafe Lds Usermanual

    53/61

    AQUASAFELDSUserManual P a g e 53/61

    7 OPERATION MENU

    TheOperationMenuitisinpracticethedaytodayinterfacewiththeplatformandit

    wasthoughtobeasmuchsimpleaspossible inordertoprovideasmoothandeasy

    operation.

    Thesystem isbasedontheconceptofworkspacesthatcanbebuiltbytheuser itself

    andthensharedamongseveralusers.Bythiswayeachusermayhavehis/herpersonal

    interfacegatheringtheinformationinwhichhe/sheisinterested.

    The Operation Menu is acessed trough the icon in the Main Window and it

    includesseveralcontrolsthataregroupedintwomaingroups:DataandAlarms.Asthe

    namesugeststhefirstgroup isfocused inDataviewingandthesecond intheAlarms

    viewing.

    Thedifferenttasks(DataorAlarmviewing)maythenbegrouped inworkspacesthat

    maybevisibleorhiddeninthemainwindowtopribbon.

    Tovieworhidetheexistingworkspacesusetheicon intheMainWindow.

    7.1 Creating a new workspace

    InordertocreateanewworkspaceusetheAddGadgets optionandselectoneof

    theavailableoptions (Charts,Maps,Reports, Images,Alarms).Nomatter thekindof

    featureisintendedtobeaddedtothatworkspacetheprocessisalwayssimilar.Inthe

    followingchaptersitwillbeshownhowtoaddfeaturestoaworkspaceandthansave

    itforlateruseortosharewithotherusers.

  • 7/27/2019 Aquasafe Lds Usermanual

    54/61

    AQUASAFELDSUserManual P a g e 54/61

    Availableoperationcontrols(DataandAlarms)toaddfeaturestoaworkspace.

    7.1.1 Add a Line Chart

    WhenaLineChartisaskeditappearsonthescreenanemptychartwithatoolboxin

    thetop

    .

    Linechartfeature

  • 7/27/2019 Aquasafe Lds Usermanual

    55/61

    AQUASAFELDSUserManual P a g e 55/61

    Thenextactionwillbetodefinethedatatodisplayinthischart.Todothisusetheedit

    (pencil)

    option

    and

    the

    following

    dialog

    will

    appear:

    Selecta time series todrawand the time span (hindcastandforecast) to represent.

    When clicking select time series in thefirstdialogwindow itwillopena secondone

    listingallthedataseriesavailabletodraw.Anynumberoftimeseriesmaybeselected

    andrepresentedtogether.

    Onceselected, thecolorof thedifferent timeseries to representmaybechangedby

    clickinguponthecoloronthescreen

  • 7/27/2019 Aquasafe Lds Usermanual

    56/61

    AQUASAFELDSUserManual P a g e 56/61

    Thegraph coloror characteristicsmaybe changed atany time using the edit (pen)

    option

    TheremainingGraphfeaturesavailablearethoseaccessiblethroughthetoptoolsbar

    EditZoom/fitto

    thewindow

    Showvalues

    asaTable

    Browsefora

    charttemplate

    Case you select the Show Values as a Table option a new top options bar will be

    available and clicking on the second icon the values may be direcly

    exportedinXLSformat.

    7.1.2 Add a Map

    This control enables the user to add maps to its workspaces. Maps are added by

    selectingtheoptionData/Maps intheUserControlspanel(selectAddGadgets

    optioninthemainwindow).

  • 7/27/2019 Aquasafe Lds Usermanual

    57/61

    AQUASAFELDSUserManual P a g e 57/61

    Inanewwindow (similar to theonebellow)amenu isavailable.Thismenuenables

    theadditionofanewmapforrepresentation.Toconfigurethenewmap,theoption

    ConfigureMapmustbechosen.

    ByclickingtheConfigureMapbutton,anewmenu,similartotheonebellow,appears.

    Theavailablefieldinthismenuare:

    Hindcast: enables the user to go back in time until the date/time when hewants

    to

    see

    the

    data;

  • 7/27/2019 Aquasafe Lds Usermanual

    58/61

    AQUASAFELDSUserManual P a g e 58/61

    Forecast:enablestheusertogo forward intimeuntilthedate/timewhenhewants

    to

    see

    the

    data;

    RealTime:TimewindowwillbeconstantlymovingusingHincastandForecastdatestodefineatimewindowrelativetothepresenttime;

    SelectLayers: enables the user to access the layers that can be visualized asmaps;

    Select monitoring stations: Enables the user to access the location ofmonitoringstationsandrepresentthemoveramap;

    SelectAlarms:EnablestheusertoaccesstheavailableAlarms;

    Pan,ZoomandZoomFitoptions,intheMapsgadget,enablethemanipulationbythe

    userofthemaps.Iftheuserwantstosaveaspecificviewsetting,hemustselectSave

    andchooseaname(ViewName),selectSharedViewifhewantstoshareitwithother

    usersandleaveashortdescriptioninViewDescription.

    IfmorethanoneMapsgadget isneeded intheWorkspace,thepreviousllydescribed

    stepsmustberepeated.DifferentMapswindowsmayhavedifferentconfigurations.

  • 7/27/2019 Aquasafe Lds Usermanual

    59/61

    AQUASAFELDSUserManual P a g e 59/61

    7.1.3 Ask for a Log Viewer

    Inorder

    to

    view

    the

    logs

    of

    all

    the

    executions

    (model

    runs,

    data

    downloading,

    etc.),

    go

    to theAddGadgets menu and select the Execution logs option. A window will

    appearwithalltheavailabledatasources.SelectthedesireddatasourceandclickOK.

    You can also assign a name and activate the Showonly failedexecutions option,

    showingonlythoseexecutionsthatfailed.ClickOK,andanewwindowwillappearon

    therighthandpanelshowing3typesoferrors(Preparation,ExecutionandStorage),

    while the lefthand panel will show the respective data sources.Preparation errors

    include all types of downloading of files needed for the models to run within the

    system. Execution errors refer to numerical errors associated with the models

    themselves,whileStorageerrorsrefertostorageoftheresultsinthedatabase.

    Ifyouwishtoexporttheerrorslist,clicktheiconthatappearsontheupperlefthand

    cornerandthenassignanameandclickSave.Theerrors listcanonlybeexported in

    Excel(.xls)format.

  • 7/27/2019 Aquasafe Lds Usermanual

    60/61

    AQUASAFELDSUserManual P a g e 60/61

    8 REFERENCES

    AlmandozJ.;Cabrera,E.;Arregui,F.;CabreraJr.,E.&CobachoR.,2005,LeakageAssessment

    Through Water Distribution Network Simulation, ASCE J. of Water Resour. Plan. Manage.

    131(6).

    AWWA,2003,BasicScienceConceptsandAplications,PrinciplesandPracticesofWaterSupply

    Operations,3rd

    ed,

    Denver,

    CO

    AWWA,2003,ApplyingWorldwideBMPsinWaterLossControl,J.ofAWWA,Jun.,6579.

    Davidson,J.W.&Bouchart,F.J.C.,2006.AdjustingNodalDemandsinSCADAConstrainedReal

    TimeWaterDistributionNetworkModels.Jour.HydraulicEngrg.,132:1:102.

    Lambert,A.andHirner,W.,2000.Lossesfromwatersupplysystems:Standardterminologyand

    recommendedperformancemeasures.Availablefrom:www.iwahq.org

    Lambert A, 2002. International report on water loss management and techniques. Water

    ScienceandTechnology:WaterSupply,Vol2No4pp120.

    Lambert,A.&McKenzie,R.D.,2002,PracticalExperience inUsingtheInfrastructureLeakage

    Index,Proc.ofIWAConferenceinLeakageManagement,Lemesos,Cyprus,Nov.,2002.

    Lambert A, 2003.Assessing non revenue water and its components: apractical approach.

    Water21magazine

    (www.iwapublishing.com/

    Lambert, A. & Fantozzi, M., 2005, Recent advances in calculating economic intervention

    frequencyfor active leakage control, and implicationsfor calculation of economic leakage

    levels,WaterSupply,Vol5No6pp263271,IWAPublishing.

    MounceS.R.,MounceR.B.&BoxallJ.B.,2006,Noveltydetectionfortimeseriesdataanalysis

    inwaterdistributionsystemsusingsupportvectormachines, JournalofHydroinformaticsVol

    13No4pp672686,IWAPublishing2011doi:10.2166/hydro.2010.144

  • 7/27/2019 Aquasafe Lds Usermanual

    61/61

    International Water Association (IWA), 2000, Losses from Water Supply System: Standard

    Terminology and Recommended Performance Measure. IWA Task Force on Water Loss,

    London.

    Puust, R. , Kapelan, Z. , Savic, D. A. and Koppel, T., 2010,A review ofmethodsfor leakage

    managementinpipenetworks,UrbanWaterJournal,7:1,2545.

    Shang,F.;Uber,J.;vanBloemenWaanders,B.;Boccelli,D.;&Janke,R.,2006,RealTimeWater

    DemandEstimation inWaterDistributionSystem.Proc.WDSA06(WaterDistributionSystems

    AnalysisSymposium),Cincinnati.

    Thornton,J.,2002,Waterlosscontrolmanual.NewYork,McGrawHill.

    USEPA,2005,WaterDistributionSystemAnalysis:FieldStudies,ModelingandManagement.A

    ReferenceGuideforUtilities.WaterSupplyandWaterResourcesDiv.,Cincinnati.

    Walski,T.M.,Bezts,W.,Posluszny,E.T.,Weir,M.andWhitman,B.E.,2006,ModelingLeakage

    ReductionthroughPressureControl,JAWWA,98:4,p.147155.

    Wu, Z. & Sage, P., 2006,Water Loss Detection via GeneticAlgorithm Optimizationbased

    ModelCalibration, ASCE 8th Annual International Symposium on Water Distribution System

    Ananlysis,Cincinnati,Ohio,August2730.