April&2016&–INFN&enters&the&& HumanBrainProject...

18
April 2016 – INFN enters the Human Brain Project leading the WaveScalES consorCum corCcal slow waves and impulse responses: matching experimental measures vs. large scale simulaCons Pier Stanislao Paolucci WaveScalES coordinator the APE lab INFN Roma January 2016 Pier Stanislao Paolucci INFN enters the Human Brain Project 1

Transcript of April&2016&–INFN&enters&the&& HumanBrainProject...

April  2016  –  INFN  enters  the    Human  Brain  Project    

leading  the  WaveScalES  consorCum  corCcal  slow  waves  and  impulse  responses:  

matching    experimental  measures    

 vs.  large  scale  simulaCons    

Pier  Stanislao  Paolucci    WaveScalES  coordinator  the  APE  lab  -­‐  INFN  Roma    

 

 January  2016  -­‐  Pier  Stanislao  Paolucci   INFN  enters  the  Human  Brain  Project   1  

Brain  Research:    ScienCfic  and  TranslaConal  

Europe,  brain  disorders  and  trauma  cost:  798  billion  €  /year    Increasing,  due  to  the  progressive  populaNon  aging  Possible  therapies  from  bePer  understanding  

January  2016  -­‐  Pier  Stanislao  Paolucci   INFN  enters  the  Human  Brain  Project   2  

Understanding  the  Brain,  at  different  levels  of  abstracNon.  Since  ever,  one  of  the  greatest  intellectual  ambiNons.    A  quanNtaNve  approach  is  emerging.  

Novel  experimental  techniques  permit  a  quanNtaNve  exploraNon  of  the  Brain  Architecture    

ComputaConal  Neuroscience:    an  Emerging  QuanCtaCve  Discipline  

Novel  Brain  Experimental  Techniques,  mulN-­‐modal    High  SpaNal  and  Temporal  DefiniNon        

January  2016  -­‐  Pier  Stanislao  Paolucci   INFN  enters  the  Human  Brain  Project   3  

SimulaNons  on  Massive  Parallel  Computers,  Robots,  Neuromorphic  pla\orms        

TheoreNcal  Models:  Long-­‐Range  and  Short  Range  Connectome  (architecture  of  connecNons),  Dynamic  laws  for  Neuron  Membrane  PotenNal  and  Currents  and  SynapNc  PlasNcity  (learning),  Consciousness  Theories        

ComputaConal  Neuroscience:  a  kingdom  for  physics        

The  Human  Brain  Project  -­‐  Intro  

q  Planned  European  fund.  500  MEuro,  Oct  2013  –  2023  q  Original  ConsorNum:  112  research  insNtutes  q  Ramp  up  phase:  Oct  2013  –  March  2016  

q  Spring  2015  (also  in  response  to  criNcism  during  first-­‐years  ramp-­‐up  phase):  q  CompeNNve  call  for  new  scienNfic  proposals/partners  (evaluaNon  by  external  

reviewers)  q INFN  leads  the  WaveScalES  proposal,  4  proposals  selected  among  57  submiPed  

q  HBP  Commitment:  before  2018  define  transformaNon  into  legal  enNty  q NaNonal  Stakeholders  board  –  will  be  proporNonal  to  naNonal  investments  q NaConal  /Regional  Partnering  Projects  q ScienNfic  Board  (presently,  13  +  10  members)  

q  Periodic  (bi-­‐annual)  plan  revision,  new  compeNNve  calls,  addiNonal  partners  

q  First  HBP  operaNonal  phase,  April  2016-­‐March  2018  q WaveScalES  starts  April  2016,  1  MEuro/year,  if  good  results,  unNl  2023    q  5  senior  INFN  research  posiNons  funded  by  WaveScalES    q  Discussion  of  next  “WaveScalES  HBP  budget”  in  2018    

January  2016  -­‐  Pier  Stanislao  Paolucci   INFN  enters  the  Human  Brain  Project   4  

Slow  Waves  and  PerturbaCons  

q During  deep-­‐sleep  and  anesthesia  the  cortex  moves  in  a  low-­‐complexity  mode:    q CollecNve  oscillaNons,  ~  @  1Hz,  between  two  states:  

q Down  state:  neurons  nearly  silent  (firing  @  few  Hz)  q Up  state:  neurons  acNve  (firing  @  tens  of  Hz)  for  a  few  hundreds  ms,  then  inhibiNon  switch  the  system  to  the  down-­‐state    

q Local  oscillaNon  phase  -­‐>  slow-­‐waves  moving  on  the  corNcal  surface  (planar,  spirals,  …)  

q PerturbaNve  approach:  q Localized  spaNo-­‐temporal  impulse    q Measure  the  impulse  response    q QuanNficaNon  of  consciousness  potenNal  and  damages  in  disease/trauma,  forecast  of  emergence  from  coma    

January  2016  -­‐  Pier  Stanislao  Paolucci   INFN  enters  the  Human  Brain  Project   5  

References:    About    the  proposal  of  measurable  observables  about  consciousness  and  integraCon/differenCaCon  and  macro/scale  connecCvity  q  Casali  et  al.,  (2013)  “A  TheoreNcally  Based  Index  of  Consciousness  Independent  of  Sensory  Processing  and  Behavior”  Science  TranslaNonal  

Medicine  q  G.  Deco,  G.  Tononi,  et  al.,  (2015)  “Rethinking  segregaNon  and  integraNon:  contribuNons  of  whole-­‐brain  modelling”  Nature  Reviews  Neuroscience  About  Consciousness:  example  of  system  of  axiomes  /  postulates  focusing  on  a  balance  of  integraCon  and  differenCaCon  q  G.  Tononi  (2015)  “Integrated  InformaNon  Theory”  Scholarpedia  q  G.  Tononi  and  C.  Koch  (2015)  “Consciousness:  here,  there  and  everywhere”    Philos.  Trans.    q  SupporCng  mathemaCcal  framework  

q  Balduzzi,  Tononi  (2009)  “Integrated  InformaNon  in  Discrete  Dynamical  Systems:  MoNvaNon  and  TheoreNcal  Framework”  PLoS  ComputaNonal  Biology    

q  Balduzzi,  Tononi  (2009)  “Qualia:  The  Geometry  of  Integrated  InformaNon”  About  meso-­‐scale  corCcal  connecCvity  models    q  Schnepel  P,  et  al.  (2015)  “Physiology  and  impact  of  horizontal  connecNons  in  rat  neocortex”  Cerebral  Cortex  q  T.C.  Potjans  and  M.  Diesmann  (2014)  “The  Cell-­‐Type  Specific  CorNcal  Microcircuit:  RelaNng  Structure  and  AcNvity  in  a  Full-­‐Scale  Spiking  Network  

Model”,  Cerebral  Cortex  About  pioneering    large  scale  modeling  experiments  of  the  thalamo-­‐corCcal  system  q  Modha,  S.  D.,  &  al.,  (2011)  “CogniNve  CompuNng”,  CommunicaNons  of  the  ACM,    q  E.  M.  Izhikevich,  G.  M.  Edelman,  (2008)  “Large-­‐scale  model  of  mammalian  thalamocorNcal  systems”  PNAS  About  Slow  Waves  q  Destexhe,  A.,  &  Contreras,  D.  (2011).”  The  Fine  Structure  of  Slow-­‐Wave  Sleep  OscillaNons:  from  Single  Neurons  to  Large  Networks.”    Sleep  and  

Anesthesia  q  Timofeev,  I.,  &  ChauvePe,  S.  (2011).  ”ThalamocorNcal  OscillaNons:  Local  Control  of  EEG  Slow  Waves.”  Current  Topics  in  Medicinal  Chemistry,  About  DPSNN,  the  large  scale  neural  simulator  developed  by  the  APE  lab  of  INFN  in  cooperaCon  with  ISS    q  P.S.  Paolucci,  et  al.,  (2015)  “Dynamic  Many-­‐process  ApplicaNons  on  Many-­‐Nle  Embedded  Systems  and  HPC  Clusters:  the  EURETILE  programming  

environment  and  execuNon  pla\orms”,  Journal  of  Systems  Architecture  q  P.S.  Paolucci,  et  al.  (2015)  “Impact  of  exponenNal  long  range  and  Gaussian  short  range  lateral  connecNvity  on  the  distributed  simulaNon  of  neural  

networks  including  up  to  30  billion  synapses  “  arXiv:1512.05264  q  P.S.  Paolucci,  et  al..  (2013)  “Distributed  simulaNon  of  polychronous  and  plasNc  spiking  neural  networks:  strong  and  weak  scaling  of  a  

representaNve  mini-­‐applicaNon  benchmark  executed  on  a  small-­‐scale  commodity  cluster”.  arXiv:1310.8478  q   M.  Masa,  P.  Del  Giudice  (2000)  “Efficient  Event-­‐Driven  SimulaNon  of  Large  Networks  of  Spiking  Neurons  and  Dynamical  Synapses.  Neural  

ComputaNon”  

January  2016  -­‐  Pier  Stanislao  Paolucci   INFN  enters  the  Human  Brain  Project   6  

WaveScalES  in  HBP  -­‐  Summary  

q Experimental  WaveScalES  partners  (will)  measure  brain    Slow  Waves  during  deep-­‐sleep  and  anaesthesia,  and  during  the  transiNon  to  consciousness,  including:  q non  invasive    techniques  on  human:  high-­‐def.  electro-­‐encephalographic  response  to  trans-­‐cranial  magneNc  sNmulaNons  

q electro-­‐physiological  response  to  in-­‐vitro/in-­‐vivo  opto-­‐pharmacologic  sNmulaNon  of  murine  models        

q INFN  in  WaveScalES  –  mainly  in  collab.  with  ISS  Roma  q large  scale  parallel/distributed  simulaNon  of  Slow  Waves  and  perturbaNon  responses  

January  2016  -­‐  Pier  Stanislao  Paolucci   INFN  enters  the  Human  Brain  Project   7  

WaveScalES  measures:  from  the  human  

bedside  downto  the  murine  slice.    

  TMS/EEG   to   assess   the   changes   in   corNcal  connecNvity   and   complexity   in   physiological   and  pathological  condiNons;  

  IntracorNcal   single-­‐pulse   electrical   sNmulaNons  (SPES)  and  stereo-­‐EEG  recordings  in  combinaNon  with  scalp   hd-­‐EEG   to   link   slow-­‐wave   dynamics   to   overall  network  connecNvity  and  complexity.    

  Electrical   /   opNcal   sNmulaNons   /   recordings   in  brain   (slices)   to   study   the   effects   of   (opto)-­‐pharmacological   manipulaNons   on   bistability,  connecNvity  and  complexity.    

January  2016  -­‐  Pier  Stanislao  Paolucci   INFN  enters  the  Human  Brain  Project   8  

WaveScalES:  Research  Tasks  Understand  mulNscale  brain  exploiNng    Slow-­‐Wave  AcNvity  (SWA)  as  a  RosePa  stone.  Five  Tasks:  1.  Slow-­‐wave  acNvity  changes  

during  sleep/anesthesia  (leader:  ISS  Roma:  Masa,  Del  Giudice)  

2.  Slow-­‐wave  and  complexity:  from  the  micro-­‐scale  to  the  bedside  (leader:  UniMi:  Massimini)  

3.  Slow-­‐wave  acNvity  in  murine  transgenic  models  of  neurological  disease  

4.  ModulaNon  of  slow-­‐wave  acNvity  with  opto-­‐pharmacology  

5.  Slow  wave  simulaNon  pla\orms  (leader:  INFN)  

INFN  (with  ISS):  Large-­‐scale  spiking  simulaNons  (hundreds  of  billions  synapses)  distributed  over  (tens  of)  thousands  of  MPI  processes,  including  columnar,  areal  and  inter-­‐areal  connecNvity  models.    ComputaNonal  objecNves:  match,  explain  and  predict  experimental  observaNons.  Improve  simulators  /  HPC  interconnects  

January  2016  -­‐  Pier  Stanislao  Paolucci   INFN  enters  the  Human  Brain  Project   9  

Pier  Stanislao  Paolucci  –    parallel  compuCng  CV  

q  Since  1984,  member  of  APE  massive  parallel  comp.  lab,  INFN  Roma  led  by  Nicola  Cabibbo,  Giorgio  Parisi    

q  Inventor/developer  of  parallelizaNon  algorithms,  parallel  hardware  architectures,  system  sovware  tools,  applied  to:  q QCD,  mulNdim.  FFT,  meteorology  (cubed-­‐sphere),  syntheNc  aperture  

radar,  oil  exploraNon,  acousNc  arrays,  digital  signal  processing,  mulN-­‐processor  systems-­‐on-­‐chip,  …,  large  scale  neural  networks  

 q  2010-­‐2015  Coordinator,  European  FP7  Project  EURETILE,  5M€  q  2006-­‐2009  Coordinator,  European  FP6  Project  SHAPES,  9M€  q  2000-­‐2010  Chief  Technical  Officer,  Atmel  Roma  design  center  (NASDAQ:  

ATML),  4  year  tech.  tranf.  detachment,  then  part-­‐Nme  researcher  unNl  2010,  then  back  to  INFN  (full-­‐Nme  researcher)  q US  patent  6,766,439,  US  patent  7,437,540  q 2000-­‐2006  Coordinator,  Eureka  Project  DIAM,    

q  1997-­‐2000  Principal  InvesNgator,  ESPRIT  European  proj.  mAgic-­‐FPU    

January  2016  -­‐  Pier  Stanislao  Paolucci   INFN  enters  the  Human  Brain  Project   10  

WaveScalES  partners/key-­‐persons  

January  2016  -­‐  Pier  Stanislao  Paolucci   INFN  enters  the  Human  Brain  Project  

Pier Stanislao Paolucci

Piero Vicini

Maria Victoria Sanchez-Vives

Julia  Weinert

Marcello Massimini

Mario Rosanova

Pau Gorostiza

Miquel  Bosch

Maurizio Mattia

Paolo Del Giudice

1) INFN, Istituto Nazionale di Fisica Nucleare, APE Parallel Computing Lab, Roma, Italy

2) Consorci Institut d´Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain – Murine electro-physiology

3) Università degli Studi di Milano, Italy – Measures in humans

4) Fundació Institut de Bioenginyeria de Catalunya, Spain – optopharmacological perturbations

5) Istituto Superiore di Sanità, Italy – theoretical models

11   11  

Development  of  Distributed  PlasCc  Spiking  Neural  Net  Simulator  in  INFN-­‐    

q  INFN  coordinated  EURETILE(2010  -­‐  2015)  FP7  project  q  InvesNgaNon  of  future  generaNons  of  distributed/parallel  computers    q Focus  on  sovware/hardware  scalability  on  many  core  systems  q Start  of  DPSNN-­‐STDP  code  development  as  a  source  of  requirements  

and  architectural  inspiraNon  for  extreme  parallel  compuNng  q  The  brain  consumes  <  50  W  computaNons.  A  high  abstracNon  simulator  of  

its  computaNons  would  require  >>  50  MW  on  present  generaNon  HPC  q  INFN  third  party  of  ISS  Roma  in  CORTICONIC  (2013  –  2016)  FP7  project  

q  IdenNfy  computaNonal  principles  of  the  cerebral  cortex    q First  comparison  with  in-­‐vivo/in-­‐vitro  experimental  results  q DPSNN  improved  for  CORTICONIC  simulaNons  (support  of    more    

realisNc  biological  models)  imporNng  models  from  ISS  Perseo  scalar  simulator  

q  DPSNN  simulator  key  benchmark  in  EXANEST  (2016-­‐2018)  FET  Project  (INFN,  Piero  Vicini)  –  good  overlap  and  development  potenNal  for  APE  lab  

January  2016  -­‐  Pier  Stanislao  Paolucci   INFN  enters  the  Human  Brain  Project   12  

 Strong  Scaling  of  our  simulator,  measured  up  to  1024  cores,  20  Gsynapses  

January  2016  -­‐  Pier  Stanislao  Paolucci   INFN  enters  the  Human  Brain  Project   13  

P.S.  Paolucci,  et.  al  (2015)  arXiv:1512.05264  

(very  small  scale  example  of)  neural  net  simulaCon  

q  200  inhibitory  neurons  q  800  excitatory  neurons  q  Time  resoluNon:  1ms    

q  (horizontal  axis)  q  Each  dot  in  the  rastergram    

represents  an  individual  spike    q  The  evoluNon  of  the  membrane  

potenNal  of  individual  neurons  is  simulated  

q  The  evoluNon  of  individual  synapNc  strength  is  computed  (not  shown  in  the  picture)  

q  individual  synapNc  delays  are  taken  into  account    

q  Individual  connecNons  and  neural  types  can  be  programmed  January  2016  -­‐  Pier  Stanislao  Paolucci   INFN  enters  the  Human  Brain  Project   14  

Examples  of  recent  experimental  development:  White  Ma\er  Long  Range  Connectome    

January  2016  -­‐  Pier  Stanislao  Paolucci   INFN  enters  the  Human  Brain  Project   15  

Year  1909  -­‐  Brodmann  CorNcal  Areas  Defined  

Image:  John  A  Beal  CC-­‐BY  license.  2005  Louisiana  State  Univ.  

Ȼ(2009)  Mark  Dow    

Year  2015  –  White  maPer  mapping,    DTI  -­‐  fiber  tractography  

Experimental  techniques…    an  ample  room  for  INFN  contribuCons  

A  few  examples  of  novel  (last  ten  years)  techniques  that  are  transforming  brain  research  in  a  quanNtaNve  discipline:      

q  Connectome  by  DTI-­‐Fiber  tractography:  measure  of  the  (probability  of)  long-­‐range  connecNons  among  brain  areas  (white  maPer…)  

q  opto-­‐geneNc/opto-­‐pharmacology:  real-­‐Nme  visualizaNon  of  neuro-­‐synapNc  acNvity  and  short-­‐range  connecNon  (probability)  

q  High  definiNon  Electro  Encephalography  and  MulN-­‐unit  Electrode  Arrays:  hundreds  of  electro-­‐physiological  acquisiNon/sNmulaNon  channels  

q  FuncNonal  MagneNc  Resonance  Imaging  (areas  vs.  tasks  correlaNon)  q Measure  of  synapNc  STDP  (Spiking  Time  Dependent  PlasNcity):  understanding  

Nme-­‐dependent  causal/anN-­‐causal  learning  and  temporal  arrow  q  ComputaNonally  efficient  models  of  neural  acNvity/spiking  (20  arithmeNc  

operaNons  /  (neuron  *  simulated  ms);  Parallel/distributed  compuNng  q  QuanNtaNve  Complexity/Consciousness  Indexes/Theories    

q  …ample  room  for  improvement,  e.g.  number  of  acquisiNon  channels,  spaNal  /temporal  resoluNon,  (and  capacity  to  manage  large  teams  of  researchers  

q Possible  INFN  contribuNon  on  experimental  methods  January  2016  -­‐  Pier  Stanislao  Paolucci   INFN  enters  the  Human  Brain  Project   16  

INFN  APE  lab  

Team  (10  people):  q  (staff,  Roma  1):    

q Piero  Vicini,  Pier  Stanislao  Paolucci,  Alessandro  Lonardo  q  (art.  36,  Roma  2):    

q Roberto  Ammendola  q  (Temporary  posiNons,  mainly  funded  by  European  Projects,  Roma  1)  

q Andrea  Biagioni,  OPorino  Frezza,  Francesca  Lo  Cicero,  Michele  MarNnelli,  Elena  Pastorelli,  Francesco  Simula  

q Long  term  brain  research  would  benefit  from  a  long  term  perspecCve  for  research  personnel.  Investment  in  know-­‐how  (personnel)  should  be  secured  

q  Created  in  1984  by  Nicola  Cabibbo  &  Giorgio  Parisi  q  Since  then  research  &  development  of  parallelizaNon  algorithms,  system  

sovware  and  hardware  architectures  for  numerical  simulaNons  /digital  signal  processing  /  HPC  

q  Several  technological  /  industrial  spin-­‐off  

January  2016  -­‐  Pier  Stanislao  Paolucci   INFN  enters  the  Human  Brain  Project   17  

Conclusions  

q  Brain:  emergence  of  a  quanNtaNve  discipline,  scienNfic  and  translaNonal  impact    q  Novel  experimental  methodologies,  MulN-­‐scale  Theories,  ComputaNonal  

Neuroscience  q  WaveScalES  in  Human  Brain  Project  

q  Combines  experiments,  theory  and  simulaNons  q  Several  opportuniCes  for  INFN  to  be  explored…also  about  the  experimental  

measures/treatment  techniques  q  Long  term  brain  research  in  INFN  will  benefit  from  a  long  term  perspecCve.  

Investment  in  know-­‐how  (INFN  research  personnel)  should  be  secured.  Adequate  computaConal  resources  needed.  Investment  (from  overhead,  in  kind  and  support  of  naConal  projects)  will  be  key  to  play  a  key  role  in  the  HBP  naConal  stakeholders  board.    

q  Opportunity  for  Regional/NaConal  HBP  Partnering  Projects  q  Strong  collaboraNon  with  ISS  (Del  Giudice,  Masa),  Brain  SimulaNon  a  key  

benchmark  also  in  EXANEST  FET  Project  (INFN,  Vicini)  future  interconnects/storage,  strategic  overlap  exists  

q  DidacNc/employment  opportunity:  complex  system  numerical/theoreNcal  physics    

January  2016  -­‐  Pier  Stanislao  Paolucci   INFN  enters  the  Human  Brain  Project   18