Approximate Correspondences in High Dimensions

36
MIT CSAIL Vision interfaces Approximate Correspondences in High Dimensions Kristen Grauman* Trevor Darrell MIT CSAIL (*) UT Austin…

description

Approximate Correspondences in High Dimensions. Kristen Grauman* Trevor Darrell MIT CSAIL (*) UT Austin…. Intra-class appearance. Key challenges: robustness. Illumination. Object pose. Clutter. Occlusions. Viewpoint. Key challenges: efficiency. - PowerPoint PPT Presentation

Transcript of Approximate Correspondences in High Dimensions

Page 1: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

Approximate Correspondences in High Dimensions

Kristen Grauman*

Trevor Darrell

MIT CSAIL

(*) UT Austin…

Page 2: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

Key challenges: robustness

Illumination Object pose Clutter

ViewpointIntra-class appearance

Occlusions

Page 3: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

Key challenges: efficiency

• Thousands to millions of pixels in an image

• 3,000-30,000 human recognizable object categories

• Billions of images indexed by Google Image Search

• 18 billion+ prints produced from digital camera images in 2004

• 295.5 million camera phones sold in 2005

Page 4: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

Local representations

Superpixels [Ren et al.]

Shape context [Belongie et al.]

Maximally Stable Extremal Regions [Matas et al.]

Geometric Blur [Berg et al.]

SIFT [Lowe]

Salient regions [Kadir et al.]

Harris-Affine [Schmid et al.]

Spin images [Johnson and Hebert]

Describe component regions or patches separately

Page 5: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

How to handle sets of features?

• Each instance is unordered set of vectors• Varying number of vectors per instance

Page 6: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

Partial matching

Compare sets by computing a partial matching between their features.

Page 7: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

Pyramid match overview

optimal partial matching

Page 8: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

Computing the partial matching

• Optimal matching

• Greedy matching

• Pyramid match

for sets with features of dimension

Page 9: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

Pyramid match overview

• Place multi-dimensional, multi-resolution grid over point sets

• Consider points matched at finest resolution where they fall into same grid cell

• Approximate optimal similarity with worst case similarity within pyramid cell

No explicit search for matches!

Pyramid match measures similarity of a partial matching between two sets:

Page 10: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

Pyramid match

Number of newly matched pairs at level i

Measure of difficulty of a match at level i

Approximate partial match

similarity

[Grauman and Darrell, ICCV 2005]

Page 11: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

Pyramid extraction

,

Histogram pyramid: level i has bins of size

Page 12: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

Counting matches

Histogram intersection

Page 13: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

Example pyramid match

Page 14: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

Example pyramid match

Page 15: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

Example pyramid match

Page 16: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

Example pyramid matchpyramid match

optimal match

Page 17: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

x

Randomly generated uniformly distributed point sets with m= 5 to 100, d=2

Approximating the optimal partial matching

Page 18: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

PM preserves rank…

Page 19: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

and is robust to clutter…

Page 20: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

Learning with the pyramid match

• Kernel-based methods – Embed data into a Euclidean space via a

similarity function (kernel), then seek linear relationships among embedded data

– Efficient and good generalization– Include classification, regression,

clustering, dimensionality reduction,…

• Pyramid match forms a Mercer kernel

Page 21: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

ComplexityKernel

Pyramid match

Match [Wallraven et al.]

Tim

e (s

)

Acc

ura

cyCategory recognition results

ETH-80 data set

Mean number of features Mean number of features

Page 22: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

0.002 s / match

5 s / match

Category recognition results

Pyramid match kernel over spatial

features with quantized

appearance

2004

Time of publication

6/05 12/05 3/06 6/06

Page 23: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

But rectangular histogram may scale poorly with input dimension…

Build data-dependent histogram structure…

New Vocabulary-guided PM [NIPS 06]:

• Hierarchical k-means over training set

• Irregular cells; record diameter of each bin

• VG pyramid structure stored O(kL); stored once

• Individual Histograms still stored sparsely

Vocabulary-guided pyramid match

Page 24: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

Vocabulary-guided pyramid match

Uniform bins • Tune pyramid partitions to the feature distribution

• Accurate for d > 100

• Requires initial corpus of features to determine pyramid structure

• Small cost increase over uniform bins: kL distances against bin centers to insert points

Vocabulary-guided bins

Page 25: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

Vocabulary-guided pyramid match

nij(X) : hist. X level i cell j

wij : weight for hist. X level i cell j(1) ~= diameter of cell

(2) ~= dij(X) + dij(Y) (dij(H)=max dist of H’s pts in cell i,j to center)

ch(n) : child h of node n

c2(n11)Mercer kernel

Upper bound

wij * (# matches in cell j level i - # matches in children)

W * # new matches @ level i

Page 26: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

Results: Evaluation criteria

• Quality of match scores How similar are the rankings produced by the approximate measure to those produced by the optimal measure?

• Quality of correspondences How similar is the approximate correspondence field to the optimal one?

• Object recognition accuracy Used as a match kernel over feature sets, what is the recognition output?

Page 27: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

Match score quality

Uniform bin pyramid match

Vocabulary-guided pyramid match

ETH-80 images, sets of SIFT features

d=8 d=128

d=128d=8

Dense SIFT (d=128) k=10, L=5 for VG PM; PCA for low-dim feats

Page 28: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

ETH-80 images, sets of SIFT features

Match score quality

Page 29: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

Bin structure and match countsData-dependent bins allow more gradual distance ranges

d=8 d=13

d=68

d=3

d=113 d=128

Page 30: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

Approximate correspondences

Use pyramid intersections to compute smaller explicit matchings.

Page 31: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

Approximate correspondences

Use pyramid intersections to compute smaller explicit matchings.

Page 32: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

Correspondence examples

Page 33: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

ETH-80 images, sets of SIFT descriptorsApproximate correspondences

Page 34: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

ETH-80 images, sets of SIFT descriptorsApproximate correspondences

Page 35: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

Impact on recognition accuracy

• VG-PMK as kernel for SVM• Caltech-4 data set• SIFT descriptors extracted

at Harris and MSER interest points

Page 36: Approximate Correspondences in High Dimensions

MIT CSAILVision interfaces

Sets of features elsewhere

diseases as sets of gene expressions

documents as bags of words

methods as sets of

instructions