Applied Mechanics 02

download Applied Mechanics 02

of 12

Transcript of Applied Mechanics 02

  • 8/9/2019 Applied Mechanics 02

    1/31

    STATICS OF PARTICLES

     Applied Mechanics

  • 8/9/2019 Applied Mechanics 02

    2/31

    Introduction2 - 2

    • The objective for the current chapter is to investigate the effects of forces

    on particles:

    - replacing multiple forces acting on a particle with a singleequivalent or resultant  force

    - relations between forces acting on a particle that is in a

    state of equilibrium!

    • The focus on particles does not impl" a restriction to miniscule bodies!#ather the stud" is restricted to anal"ses in which the si$e and shape ofthe bodies is not significant so that all forces ma" be assumed to beapplied at a single point!

  • 8/9/2019 Applied Mechanics 02

    3/31

    #esultant of Two %orces2 - &

    • force: action of one bod" on another'characteri$ed b" its point of applicationmagnitude line of action and sense!

    • ()perimental evidence shows that thecombined effect of two forces ma" berepresented b" a single resultant  force!

    • The resultant is equivalent to the diagonal of

    a parallelogram which contains the two forcesin adjacent legs!

    • %orce is a vector quantit"!

  • 8/9/2019 Applied Mechanics 02

    4/31

     *ectors2 - +

    • Vector: parameters possessing magnitude and direction which add according to the parallelogram law! ()amples:

    displacements velocities accelerations!

    •  *ector classifications:

    -  Fixed  or bound  vectors have well defined points ofapplication that cannot be changed without affectingan anal"sis!

    -  Free vectors ma" be freel" moved in space withoutchanging their effect on an anal"sis!

    -  Sliding vectors ma" be applied an"where along their

    line of action without affecting an anal"sis!

    •  Equal  vectors have the same magnitude and direction!

    •  Negative vector of a given vector has the same magnitude

    and the opposite direction!

    •  Scalar: parameters possessing magnitude but notdirection! ()amples: mass volume temperature

  • 8/9/2019 Applied Mechanics 02

    5/31

     Addition of *ectors2 - ,• Trape$oid rule for vector addition

    • Triangle rule for vector addition

    .

    .

    Q P  R

     B PQQ P  R

    +=

    −+= cos2222

    • /aw of cosines

    • /aw of sines

     A

     R

     B

    Q

     A   sinsinsin==

    •  *ector addition is commutative

     P QQ P    +=+

    •  *ector subtraction

  • 8/9/2019 Applied Mechanics 02

    6/31

     Addition of *ectors2 - 0•  Addition of three or more vectors through

    repeated application of the triangle rule

    • The pol"gon rule for the addition of three or

    more vectors!

    •  *ector addition is associative

    ( ) ( )S Q P S Q P S Q P    ++=++=++

    • Multiplication of a vector b" a scalar

  • 8/9/2019 Applied Mechanics 02

    7/31

    #esultant of 1everal .oncurrent %orces2 - • Concurrent forces: set of forces which all

    pass through the same point!

     A set of concurrent forces applied to aparticle ma" be replaced b" a single resultantforce which is the vector sum of the appliedforces!

    • Vector force components: two or more force vectors which together have the same effectas a single force vector!

  • 8/9/2019 Applied Mechanics 02

    8/31

    1ample 3roblem2 - 4

    The two forces act on a bolt at A!5etermine their resultant!

    16/7TI68:

    • 9raphical solution - construct aparallelogram with sides in the samedirection as P and Q and lengths inproportion! 9raphicall" evaluate theresultant which is equivalent in direction

    and proportional in magnitude to the thediagonal!

    • Trigonometric solution - use the trianglerule for vector addition in conjunction

     with the law of cosines and law of sines tofind the resultant!

  • 8/9/2019 Applied Mechanics 02

    9/31

    1ample 3roblem2 -

    • 9raphical solution - A parallelogram with sidesequal to P and Q is drawn to scale! Themagnitude and direction of the resultant or ofthe diagonal to the parallelogram are measured

    °==   35 N98   α R 

    • 9raphical solution - A triangle is drawn with P and Q head-to-tail and to scale! The magnitudeand direction of the resultant or of the thirdside of the triangle are measured

    °==   35 N98   α R 

  • 8/9/2019 Applied Mechanics 02

    10/31

    1ample 3roblem2 -;<

    • Trigonometric solution - Appl" the triangle rule!

    %rom the /aw of .osines

    ( ) ( ) ( ) ( )   °−+=−+=

    155cos N60 N402 N60 N40

    cos222

    222 B PQQ P  R

     A

     A

     R

    Q B A

     R

     B

    Q

     A

    +°=°=

    °=

    =

    =

    20

    04.15 N73.97

     N60155sin

    sinsin

    sinsin

    α 

     N73.97= R

    %rom the /aw of 1ines

    °= 04.35α 

  • 8/9/2019 Applied Mechanics 02

    11/31

    1ample 3roblem2 -;;

    a= the tension in each of the ropesfor α > +,o

     b= the value of α for which thetension in rope 2 is a minimum!

     A barge is pulled b" two tugboats!If the resultant of the forcese)erted b" the tugboats is ,

  • 8/9/2019 Applied Mechanics 02

    12/31

    1ample 3roblem2 -;2

    • 9raphical solution - 3arallelogram #ule with @nown resultant direction andmagnitude @nown directions for sides!

    lbf 2600lbf 3700 21   ==   T T 

    • Trigonometric solution - Triangle #ule with /aw of 1ines

    °=

    °=

    °   105sinlbf 5000

    30sin45sin

    21   T T 

    lbf 2590lbf 3660 21   ==   T T 

  • 8/9/2019 Applied Mechanics 02

    13/31

    1ample 3roblem2 -;&• The angle for minimum tension in rope 2 is

    determined b" appl"ing the Triangle #uleand observing the effect of variations in α!

    • The minimum tension in rope 2 occurs whenT1 and T2 are perpendicular!

    ( )   °=   30sinlbf 50002T    lbf 25002 =T 

    ( )   °=   30coslbf 50001T    lbf 43301 =T 

    °−°=   3090α    °= 60α 

  • 8/9/2019 Applied Mechanics 02

    14/31

    #ectangular .omponents of a %orce: 7nit *ectors2 -;+

    •  *ector components ma" be e)pressed as products ofthe unit vectors with the scalar magnitudes of the

     vector components!

     F  x  and F y are referred to as the scalar components of j F i F  F   y x   +=

     F 

    • Ma" resolve a force vector into perpendicularcomponents so that the resulting parallelogram is arectangle! are referred to as rectangularvector components and

     y x   F  F  F    +=

     y x   F  F   and

    • 5efine perpendicular unit vectors  which areparallel to the x  and y a)es!  ji  and

  • 8/9/2019 Applied Mechanics 02

    15/31

     Addition of %orces b" 1umming .omponents2 -;,

    S Q P  R   ++=

    •  ?ish to find the resultant of & or moreconcurrent forces

    ( )   ( ) jS Q P iS Q P  jS iS  jQiQ j P i P  j Ri R

     y y y x x x

     y x y x y x y x

    +++++=

    +++++=+

    • #esolve each force into rectangular components

    ∑=++=

     x x x x x

     F S Q P  R

    • The scalar components of the resultant are equalto the sum of the corresponding scalarcomponents of the given forces!

    ∑= ++=  y y y y y

     F S Q P  R

     x

     y y x

     R

     R R R R   122 tan−=+=   θ 

    • To find the resultant magnitude and direction

  • 8/9/2019 Applied Mechanics 02

    16/31

    1ample 3roblem2 -;0

    %our forces act on bolt A as shown!5etermine the resultant of the forceon the bolt!

    16/7TI68:

    • #esolve each force into rectangularcomponents!

    • .alculate the magnitude and directionof the resultant!

    • 5etermine the components of theresultant b" adding the corresponding

    force components!

  • 8/9/2019 Applied Mechanics 02

    17/31

    1ample 3roblem2 -;

    16/7TI68:

    • #esolve each force into rectangular components!

    9.256.96100

    0.1100110

    2.754.2780

    0.759.129150

    4

    3

    2

    1

    −+ −

    +−++−−

     F 

     F 

     F 

     F 

    comp ycomp xmag  force

    22 3.141.199   += R   N6.199= R

    • .alculate the magnitude and direction!

     N1.199

     N3.14tan   =α    °=   1.4α 

    • 5etermine the components of the resultant b"adding the corresponding force components!

    1.199+= x R   3.14+= y R

  • 8/9/2019 Applied Mechanics 02

    18/31

    (quilibrium of a 3article2 -;4

    •  ?hen the resultant of all forces acting on a particle is $ero the particle isin equilibrium!

    • 3article acted upon b"two forces:

    - equal magnitude

    - same line of action

    - opposite sense

    • 3article acted upon b" three or more forces:- graphical solution "ields a closed pol"gon

    - algebraic solution

    00

    0

    ==

    ==

    ∑∑

     y x  F  F 

     F  R

    •  Newton’s First aw: If the resultant force on a particle is $ero the particle willremain at rest or will continue at constant speed in a straight line!

  • 8/9/2019 Applied Mechanics 02

    19/31

    %ree-od" 5iagrams2 -;

     Space !iagram: A s@etch showingthe ph"sical conditions of the

    problem!

     Free"#ody !iagram: A s@etch showingonl" the forces on the selected particle!

  • 8/9/2019 Applied Mechanics 02

    20/31

    1ample 3roblem2 -2<

    In a ship-unloading operation a

    &,

  • 8/9/2019 Applied Mechanics 02

    21/31

    1ample 3roblem2 -2;16/7TI68:

    • .onstruct a free-bod" diagram for theparticle at A!

    •  Appl" the conditions for equilibrium!

    • 1olve for the un@nown force magnitudes!

    °=

    °=

    °   58sinlb3500

    2sin120sin

     AC  AB   T T 

    lb3570= ABT 

    lb144= AC T 

  • 8/9/2019 Applied Mechanics 02

    22/31

    1ample 3roblem2 -22

    It is desired to determine the drag forceat a given speed on a protot"pe sailboathull! A model is placed in a test channeland three cables are used to align its bow on the channel centerline! %or a

    given speed the tension is +< lb in cable A# and 0< lb in cable AE !

    5etermine the drag force e)erted on thehull and the tension in cable AC !

    16/7TI68:

    • .hoosing the hull as the free bod"draw a free-bod" diagram!

    • ()press the condition for equilibriumfor the hull b" writing that the sum of

    all forces must be $ero!

    • #esolve the vector equilibriumequation into two componentequations! 1olve for the two un@nowncable tensions!

  • 8/9/2019 Applied Mechanics 02

    23/31

    1ample 3roblem2 -2&16/7TI68:

    • .hoosing the hull as the free bod" draw afree-bod" diagram!

    °=

    ==

    25.60

    75.1ft4

    ft7tan

    α 

    α 

    °=

    ==

    56.20

    375.0ft4

    ft1.5tan

    β 

    β 

    • ()press the condition for equilibriumfor the hull b" writing that the sum ofall forces must be $ero!

    0=+++=   D AE  AC  AB   F T T T  R

  • 8/9/2019 Applied Mechanics 02

    24/31

    1ample 3roblem2 -2+• #esolve the vector equilibrium equation into

    two component equations! 1olve for the twoun@nown cable tensions!

    ( ) ( )

    ( ) ( )

    ( )

    ( )

    ( )   jT 

    i F T 

     R

    i F  F 

    iT 

     jT iT  jT iT T 

     ji

     jiT 

     AC 

     D AC 

     D D

     AC  AC 

     AC  AC  AC 

     AB

    609363.084.19

    3512.073.34

    0

    lb06

    9363.03512.056.20cos56.20sin

    lb84.19lb73.34

    26.60coslb4026.60sinlb40

    −++

    ++−=

    =

    =

    −=

    +=°+°=

    +−=

    °+°−=

  • 8/9/2019 Applied Mechanics 02

    25/31

    1ample 3roblem2 -2,

    ( )

    ( )   jT 

    i F T 

     R

     AC 

     D AC 

    609363.084.19

    3512.073.34

    0

    −++++−=

    =

    This equation is satisfied onl" if each componentof the resultant is equal to $ero

    ( )

    ( )   609363.084.19003512.073.3400

    −+==++−==

    ∑∑

     AC  y

     D AC  x

    T  F 

     F T  F 

    lb66.19

    lb9.42

    += += D AC 

     F 

  • 8/9/2019 Applied Mechanics 02

    26/31

    #ectangular .omponents in 1pace2 -20

    • The vector iscontained in theplane $#AC !

     F  • #esolve intohori$ontal and verticalcomponents!

     yh   F  F    θ sin=

     F 

     y y   F  F    θ cos=

    • #esolve intorectangular components

    h F 

    φ θ 

    φ 

    φ θ 

    φ 

    sinsin

    sin

    cossin

    cos

     y

    h y

     y

    h x

     F 

     F  F 

     F 

     F  F 

    =

    =

    ==

  • 8/9/2019 Applied Mechanics 02

    27/31

    #ectangular .omponents in 1pace2 -2

    •  ?ith the angles between and the a)es F 

    ( )

    k  ji F 

    k  ji F 

    k  F  j F i F  F 

     F  F  F  F  F  F 

     z  y x

     z  y x

     z  y x

     z  z  y y x x

    θ θ θ λ λ 

    θ θ θ 

    θ θ θ 

    coscoscos

    coscoscos

    coscoscos

    ++==

    ++=

    ++=

    ===

    • is a unit vector along the line of action of and are the directioncosines for

     F 

     F 

    λ 

     z  y x   θ θ θ    cosand,cos,cos

  • 8/9/2019 Applied Mechanics 02

    28/31

    #ectangular .omponents in 1pace2 -24

    5irection of the force is defined b"the location of two points

    ( ) ( )222111 ,,and,,   z  y x N  z  y x M 

    ( )

     Fd  F 

     Fd  F 

     Fd  F 

    k d  jd id d 

     F  F 

     z  z d  y yd  x xd 

    k d  jd id 

     N  M d 

     z  z 

     y y

     x x

     z  y x

     z  y x

     z  y x

    ===

    ++=

    =

    −=−=−=

    ++=

    =

    1

     and joiningvector

    121212

    λ 

    λ 

  • 8/9/2019 Applied Mechanics 02

    29/31

    1ample 3roblem2 -2

    The tension in the gu" wire is 2,

  • 8/9/2019 Applied Mechanics 02

    30/31

    1ample 3roblem2 -&<

    16/7TI68:

    • 5etermine the unit vector pointing from A towards #!

    ( ) ( ) ( )

    ( ) ( ) ( )

    m3.94

    m30m80m40

    m30m80m40

    222

    =

    ++−=

    ++−=

     AB

    k  ji AB

    • 5etermine the components of the force!

    ( ) ( )( ) ( ) ( )k  ji

    k  ji

     F  F 

     N795 N2120 N1060

    318.0848.0424.0 N2500

    ++−=

    ++−=

    =   λ 

    k  ji

    k  ji

    318.0848.0424.0

    3.94

    30

    3.94

    80

    3.94

    40

    ++−=

       

      + 

      

      + 

      

       −=λ 

  • 8/9/2019 Applied Mechanics 02

    31/31

    1ample 3roblem2 -&;

    • 8oting that the components of the unit vector arethe direction cosines for the vector calculate thecorresponding angles!

    k  ji

    k  ji  z  y x

    318.0848.0424.0

    coscoscos

    ++−=

    ++=   θ θ θ λ 

    5.71

    0.32

    1.115

    =

    =

    =

     z 

     y

     x

    θ 

    θ 

    θ