Applied Homogeneous Catalysis With Organo-Metallic Compounds - 2nd Edition

1492

Click here to load reader

Transcript of Applied Homogeneous Catalysis With Organo-Metallic Compounds - 2nd Edition

Applied Homogeneous Catalysis with Organometallic CompoundsVolume 1: ApplicationsEdited by B. Cornils and W. A. Herrmann

Further Titles of InterestB. Cornils, W. A. Herrmann, R . Schlogl, C.-H. Wong (Eds.) Catalysis from A to Z A Concise Encyclopedia 2000, ISBN 3-527-29855-XA. Liese, K. Seelbach, C. Wandrey

Industrial Biotransformations 2000, ISBN 3-527-30094-5R . A. Sheldon, H. van Bekkum (Eds.) Fine Chemicals Through Heterogeneous Catalysis 2001, ISBN 3-527-29951-3 D. E. D e Vos, I. F. J. Vankelecom, P. A. Jacobs (Eds.) Chiral Catalysts Immobilization and Recycling 2001, ISBN 3-527-29952-1 K. Drauz, H. Waldmann (Eds.) Enzyme Catalysis in Organic Synthesis A Comprehensive Handbook in Three Volumes Second, Completely Revised and Enlarged Edition 2002, ISBN 3-527-29949-1

Applied Homogeneous Catalysis with Organometallic CompoundsA Comprehensive Handbook in Three VolumesVolume 1: ApplicationsEdited by Boy Cornils and Wolfgang A. Herrmann Second, Completely Revised and Enlarged Edition

6 wI LEY-VCH 8 3

Prof. Dr. Boy Cornils Kirschgartenstrarje 6 D-65719 Hofheim Germany

Prof. Dr. Dr. h.c. mult. Wolfgang A . Herrmann Anorganisch-chemisches Institut der Technischen Universitat Miinchen LichtenbergstraRe 4 D-85747 Garching Germ any

This book was carefully produced. Nevertheless, editors, authors and publisher do not warrant the information contained therein to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Cover picture: Homogeneous catalysis in aqueous phase: the yellow catalyst solution separates spontaneously from the colorless phase consisting of butyraldehydes. The underlying molecular model symbolizes the water-soluble ligand of the organometallic complex. The picture was taken at the plant site of Celanese (formerly Ruhrchemie), Oberhausen/Germany (see Chapter 1 and Section 2.1.1).

Library of Congress Card No.: applied for A catalogue record for this book is available from the British Library Die Deutsche Bibliothek - CIP-Cataloguing-in-Publication-Data A catalogue record for this book is available from Die Deutsche Bibliothek ISBN 3-527-30434-70 Wiley-VCH Verlag GmbH, D-69469 Weinheim, 2002

Printed on acid-free paper All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form - by photoprinting, microfilm, or any other means - nor transmitted o r translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law. Composition: Hagedorn Kommunikation, Viernheim Printing: betz-druck GmbH, Darmstadt Binding: Buchbinderei Schaumann GmbH, Darmstadt Printed in the Federal Republic of Germany

This book is dedicated to the memory of the German chemist

OTTOROELEN(1897-1 993)whose pioneering discovery of hydroformylation (DE 849.548, 1938) widened up the horizons of homogeneous catalysis, and through whose work the industrial impact of organometallic chemistry became visible to the scientific community and to the memory of the British chemist

SIR GEOFFREY WILKINSON(192 1-1996)

whose pioneering discovery of catalytic hydrogenation under mild conditions using the catalyst RhC1[P(C6H5),],, nowadays named the ( Wilkinson catalyst, has opened the eyes of the scientific community to the manifold potential of homogeneous organometallic catalysis

Foreword to the First Edition

It is indeed an honour to be asked to write a foreword to this oustanding text on homogeneous catalysis in which complexes with transition metal-to-carbon bonds play the key role in the catalytic cycles even if only as short-lived intermediates. I was first made aware of organometallic compounds through reading Modern Aspects of Inorganic Chemistry (1935) by two academics, H. J. EmelCus and J. S. Anderson at Imperial College, London, where I was a student. However, names such as Zeises compound, Reihlens butadiene iron tricarbonyl and Heins polyphenylchromium compounds, none of whose structures were known, remained latent in my memory through over seven years as a nuclear chemist. Although I was appointed an Assistant Professor at Harvard University because I was a nuclear chemist, I took the advice of my predecessor at Imperial College, Prof. H. V. A. Briscoe, that I had better return to inorganic chemistry - otherwise no job in England! So the first semester at Harvard in September 1951, I started making transition metal olefin complexes. As I was teaching inorganic chemistry, I had also to digest the main textbook available, N. V. Sidgwicks The Chemical Elements and Their Compounds. Starting at the beginning I soon reached p. 78, Vol I, and wondered what KC5H5 there described would do with metal halides or what cyclopentadiene itself would do to metal carbonyls. I was also intrigued by Lucas and Winsteins work on silver olefin complexes and particularly by a diagram showing a side-ways bonding of >C=C< to Ag - long before the similar proposal by M. J. S. Dewar. So when I saw in the issue of Nature that Kealy and Pauson (also, Miller, Tebboth and Tremaine) had given the wrong structure for (C5HJ2Fe [l], I was certain it was The Iron Sandwich [2a,3]. On that evening of 18 January 1952, I was lucky to be about 2.5 hours ahead of Bob Woodward who saw the Nature note just before his Friday night seminar where he expounded on the structure. Only in the following September did we read that we had competition from Munchen in Ernst Otto Fischer! [2b, 31. Although the renaissance of inorganic chemistry from ca. 1946 started with complex chemistry, both solid and aqueous, and with fluorine chemistry, the discovery of ferrocene and the development of n-bonding concepts signalled a new era in chemistry particularly of transition metals in both academic and industrial laboratories. Who, of the handful of active workers in 1952, would have predicted the present status with a vast range of new organometallic compounds of essentially all the elements in the Periodic Table, the metal complex initiated stoichiometric organic syntheses and above all the use of metal complexes in homogeneous catalysis on a vast scale in industry? Merely looking at the volumes

VIII

Foreword to the First Edition

of Comprehensive Organometallic Chemistry I (1982) and 1 (1995) [4] and 1 perusing the organometallic and catalytic literature shows the extent of the rapid development of the symbiotic relation between organometallic and catalytic chemistry. Although I would never claim to be primarily an organometallic or catalytic chemist, I had heard quite early on in the 1950s of hydroformylation and of homogeneous hydrogenation (although not of C=C bonds). However, it was the synthesis of (C5H&ReH on the bench in the old Polyteknisk Laereanstalt in Copenhagen used by the great S. M. Jgrgensen that led me into the chemistry of other hydrido complexes and interactions of hydrogen with complexes, notably of rhodium. From this arose the question What happens if we add an olefin to the system?. Somewhat to my surprise this led to hydrogenation of the C=C bond and in due course RhCl(PPh&. The latter is now one of the most widely used and quoted hydrogenation catalysts:* it was shortly followed by use of RhH(CO)(PPh,), for low-pressure hydroformylation that gave predominantly anti-Markownikoff addition and straight-chain aldehydes. Subsequent developments have proceeded an increasingly rapid pace and Professors Cornils and Herrmann and their co-authors are to be congratulated on producing this most comprehensive work on the fundamentals and applied aspects of organometallic catalysts. The vast area is one of the most intellectually challenging and industrially important fields of contemporary science. Yet it is a discipline that is far from being mature, ideal for chemical entrepreneurs, and still rapidly developing and widening in scope. Industrially it has led to milder reaction conditions, higher activities and selectivity, not least being the development of catalytic asymmetric syntheses. The Editors have succeeded in producing a fascinating account of all aspects of the subject. Since I doubt if the rate of development will decrease, they may well have to contemplate a second edition in the not too distant future. As one with a certain amount of text book writing experience I can only wish them and their colleagues well and a big success.

Sir Geoffrey Wilkinson F.R.S. Imperial College of Science, Technology and Medicine, London

* Nowadays

known as the Wilkinson catalyst, see Sections 2.1.1 and 2.2 (note added by the editors).

Foreword to the First Edition

IX

References[ l ] (a) S. A. Miller, J. A. Tebboth, J. F. Tremaine, J. Chem. SOC. 1952, 632 (received July 11, 1951); (b) T. J. Kealy, P. L. Pauson, Nature 1951, 168, 1039 (received August 7, 1951). [2] (a) G. Wilkinson, M. Rosenblum, M. C. Whiting, R. B. Woodward, J. Am. Chem. SOC. 1952, 74, 2125 (received March 24, 1952); (b) E. 0. Fischer, W. Pfab, Z. Naturj4orsch. 1952, 7B, 377 (received June 20, 1952). [3] G. Wilkinson, J. Organomet. Chem. 1975, 100, 273. [4] E. W. Abel, G. Wilkinson, F. G. A. Stone (Eds.), Comprehensive Organometallic Chemistry I, 1982; 1 , 1995, Pergamon Press, Oxford. 1

Preface to the Second Edition

Convinced that homogeneous catalysis is the success story of organometallic chemistry, we initiated the first edition of our two-volume handbook six years ago. From the supportive response we received from the scientific community and from many readers, both university students and professionals, we recognized the demand for a second edition. The growth and potential of organometallic chemistry has developed faster than anybody had anticipated. As a matter of fact, another Nobel Prize was just awarded to our colleagues William Knowles, Barry Sharpless, and Ryoji Noyori (December 10, 2001) to honour their pioneering research in stereoselective organometallic catalysis (cf. their respective Sections 2.9 and 3.3.2). The past six years have brought about several breakthroughs in the field. For example, aqueous-phase catalysts have become of prime interest in chemical industry, and the catalytic potential of non-aqueous ionic liquids (NAILS) was discovered (Section 3.1.1). High-throughput approaches to homogeneous catalysis have included organometallic catalysts based on novel micro-techniques in routine applications (Section 3.1.3). We have seen new tailored catalysts that promise great success in the next generation of organometallics. Thus, N-heterocyclic carbenes (Section 3.1.10) have been highlighted several times since our first edition went into print. This particular development demonstrates that old, ubiquitous ligands such as phosphanes may have competition from alternative compounds of simple structure. Since 1996, micellar catalysis (Section 3.1.11) has made progress in the same time as supercritical fluids (Section 3.1.13) have come to the fore. Suffice it to say that biocatalysis and enzyme-analogous processes enjoy an exponential growth that has significance both to basic science and to industry (Section 3.2.1). As a result, the majority of contributions to the present edition have had to be either updated or completely replaced by new articles. This applies to the sections mentioned above, but also to the rapidly growing area of enantioselective synthesis (Sections 3.3.1 and 3.2.6), the catalytic hydrogenation of sulfur- and nitrogencontaining compounds in raw oils (Section 3.2.13), the Pauson-Khand reaction (Section 3.3.7), and a number of industrially relevant topics covered under Applied Homogeneous Catalysis in Part 2. New aspects of organometallic catalysis have emerged from the chemistry of renewable resources (Section 3.3.9) and the chemistry around the multi-talented catalyst methyltrioxorhenium (Section 3.3.13). The second edition has retained the character of both a scientific textbook (for orientation) and a handbook (for detailed information). However, the many new contributions have literally created a new book. Areas with their own specific importance are being outsourced into specific monographs, in order not to over-

XI1

Preface to the Second Edition

load a well-balanced concept that was praised repeatedly in book reviews. The first example is our Aqueous-Phase Organometallic Catalysis [ 13, which takes care of water-soluble coordination compounds and catalysts. In addition, an encyclopedia covering the full scope of catalysis was published just recently [2], with the second edition to appear in the year of 2002, too. We extend our thanks once again to the team of Wiley-VCH at Weinheim, especially Dr. G. Walter and Mrs. C. Grossl, and also Mrs. D. Boatman, for their cooperation in the editorial and production process. The Munich research group is acknowledged for scientific and technical assistance in the updating of recent literature reports as well as for the arrangement of the new Subject Index. Last but not least, we are greatly indebted to a great number of authors, whose reputations in the scientific community guarantee the significance of their contributions to this book. Given the progress in organometallic chemistry and the impetus from industrial fine-chemical synthesis technology, we are prepared to issue the third edition in about five years time. We hope, however, that the present book will serve well and frequently until then. Hofheiflaunus and Munchen January 2002 Boy Cornils Wolfgang A. Henmann

References[I] B. Cornils, W. A. Herrmann (Eds.), Aqueous-Phase Organometallic Catalysis, Wiley-VCH, Weinheim 1998. [2] B. Cornils, W. A. Herrmann, R. Schlogl, C.-H. Wong (Eds.), Catalysisfrom A to Z, Wiley-VCH, Weinheim 2000; 2nd edition in 2002.

Preface to the First Edition. . .die Chemie der Gase ist seit einigen Jahren in eine neue Epoche, in das Zeichen der Katalyse getreten. Mit Hilfe von Katalysatoren gelingen die wundersamsten Umwandlungen durch Wasserstoff, Sauerstoff, Stickstoff, Kohlenoxyd bei Temperaturen, die viele hundert Grad niedriger sind als diejenigen, bei denen man friiher diese Gase reagieren sah. Dieses Kapitel der Katalyse ist schier unbegrenzt . . .*Emil Fischer Stahl und Eisen 1912, 32, 1898

Homogeneous catalysis is the success story of organometallic chemistry, a discipline that has structured and combined inorganic and organic chemistry to an unprecedented extent. Throughout the book, reference is frequently made to the many monographs and original publications concerning segmental aspects of homogeneous catalysis with organometallic catalysts which are of paramount importance in this scientifically still growing and industrially vital domain of catalysis. A wide variety of viewpoints, including the broad spectrum of academic and industrial work, is presented. With the enormous breadth of homogeneous catalysis in terms of both basic research and industrial applications, the joint editorship of an industry researcher (BC) and a university chemist (WAH) appears to be the ideal combination of expertise. All branches of homogeneous catalysis with organometallic complexes are covered in this text, including borderline cases. Our definition of homogeneous catalysis includes catalysts which, inter alia, are molecularly dispersed in the same phase, are unequivocally characterized chemically and spectroscopically and can be synthesized and manufactured in a simple and reproducible manner, can be tailor-made for special purposes according to known principles and based upon a rational design, and permit unequivocal reaction kinetics related to each metal atom.

In borderline cases (e. g., clusters, supported catalysts, catalysts for ZieglerNatta polymerizations) we have defined reactions to be homogeneous when the catalyst passes a detectable catalyst cycle or parts thereof.

* . . , for several years the chemistry of gases has been in a new era, the era of catalysis. Catalysts help to make miraculous conversions with hydrogen, oxygen, nitrogen, or carbon monoxide possible at temperatures several hundred degrees lower than those conditions in which these gases reacted earlier. This chapter of catalysis is nearly unlimited. . .

XIV

Preface to the First Edition

The term applied indicates the application-oriented objective of this work. It was an important criterion of selection not to supply merely a collection of unweighted facts and various practical examples of homogeneous catalysis. In this context applied means a selection of homogeneous catalyzed processes, which on the one hand have already arrived at industrial success (e. g., carbonylation of alcohols, hydroformylation, Wacker-Hoechst process). On the other hand, the book also includes homogeneously catalyzed reactions of which the state-ofthe-art indicates commercialization in the near future. Moreover, for scientific reasons the inclusion of newer catalytic reactions or reaction principles is required, even when commercialization is not yet in sight. Both aspects are covered by the sections Applied Catalysis and Recent Developments. Since, for secrecy reasons, information on new processes and the state of their development is not always published, or only after long delays, the classification applied or recent developments may be misleading. For example, the potential of phase-transfer catalyzed processes may already be more important than the present literature indicates. The same statement could apply for areas such as amidocarbonylation, the synthesis of fine chemicals by means of metallocenes, the reductive/oxidative carbonylation of aromatic amines or nitro derivatives, Heck coupling using palladacycles and heterocyclic carbene complexes, catalytic McMurry coupling, or other proposed methods. Recent developments must therefore leave open the stage of development reached, perhaps signaling that at the time of publication no commercialized, licensable process is yet known to the scientific community. On the other hand, process steps which are known in principle (and thus may be verified industrially in due course) but have not yet been applied are referred to as applied processes as well. Examples are special variants of hydroformylation or carbonylation for the manufacture of special chemicals, modifications of oxacylations (in the context of the Wacker-Hoechst process), the copolymerization of ethylene with carbon monoxide (Shell), and several other processes. With the emphasis on organometallic complexes and owing to the existence of adequate reviews on other forms of homogeneous catalysis, reactions such as gasphase conversions or acidbase-catalyzed reactions have had to be omitted from our book. The term organometallic complexes covers metal coordination compounds of which the metal atoms are surrounded by neutral molecules and/or ligands. A restricted definition of the terms organometallic complexes and homogeneous catalysis is applied to classical cases (e. g., Ziegler-Natta catalysis). In cases of doubt this leads to limitations and, in specific cases. to the omission of classical polyethylene and polypropylene syntheses. Keeping our target of homogeneous catalysis in mind, we adopted a broad definition of organometallic complexes and included compounds without metalcarbon bonds (e. g., metal-phosphine and metal-nitrosyl complexes) as far as they retain the structural and reactivity features of typical organometallic compounds. Recent developments, e. g., the substitution of phosphine by carbene ligands (cf. Section 3.1.1.1). support the validity of this view. Being part of both academic and industrial chemistry, organic chemistry in general and homogeneous catalysis in particular are subject to rapid and steady

Preface to the First Edition

XV

change. The reasons for this are numerous and can be traced back to changed attitudes to the environment, structural changes in the raw material bases (chemical feedstock) and the process or reaction engineering involved, varying market requirements, and the different relationships between the chemicals produced and the material properties required. These changes, and the increasing number of researchers, have led to both a vast number of publications which can only be perused by specialists, and a quicker succession of process development and process utilization. The pressures associated with the compilation of this work and the need to achieve a satisfactory level of topicality were challenges to be met by the editors and VCH Publishers. They took the opportunity to organize a multinational team of authors, who are active in both the academic and the industrial world. We owe our thanks to this excellent team of authors for their loyal and constructive cooperation and for the punctual preparation of their manuscripts. Critical emphasis is placed on the industrial importance of homogeneous catalysis as defined above and to the discussion of possibilities and limitations of the manufacturing processes. Because of rapid developments and a vast amount of literature, an unbiased assessment is difficult and so misinterpretations may arise. We hope that this does not happen, and we have endeavoured to offer the reader a useful compilation of the manifold concepts and applications of organometallic catalysis. The conceptual and topical organization of our book is such that, hopefully, the requirements of a broad scientific audience are met. The organic chemist will find an updated synopsis on catalytic syntheses of fine and bulk chemicals; here, we have not specifically focused on stereoselective reactions - although they greatly deserve special treatment - since a number of excellent monographs has appeared recently [ 1-41. Organometallic chemists will appreciate a comprehensive treatise on the most important applications of their discipline. Scientists originating from other areas are expected to receive a quick impression of the scope of homogeneous catalysis, its basic principles and technical/commercial applications. Our colleagues in industv may either become acquainted with catalysis or keep up with recent developments by consulting this book. Finally, university students entering the field of organometallic catalysis, be it for the purpose of learning or to prepare a doctoral research topic, will find a useful, up-to-date survey herein. We have tried to avoid any highly specialized encyclopedia-like treatment of the respective topics; rather, we have attempted to meet equally well the interests of advanced university students, industrial chemists (and engineers), and our peers in academia. For this very reason, we have abandoned extensive tables of detailed data in favor of a general outline of the field, including leading and recent references. We thank the team at VCH, especially Mrs. D. Boatman, Dr. A. Eckerle and Mrs. C. Grossl, for their cooperation during preparation, for editing the manuscripts, and for helpful technical assistance. Dr. F. Dyckhoff and Dip].Chem. M. Geisberger of Technische Universitat Munchen are acknowledged for preparing all formulae, figures, and schemes throughout the book. The Subject Index was arranged by the Munich research group; we thank particularly

XVI

Preface to the First Edition

Dip1.-Chem. C. P. Reisinger and Dip1.-Chem. R. Eckl for their reliable assistance. Finally, a great number of colleagues deserve our special acknowledgement for their valuable advice and their criticism. Frankfurt-Hochst and Miinchen July 1996 Boy Cornils Wolfgang A. Henmann

References[l] R. A. Sheldon, Chirotechnology, Marcel Dekker, New York, 1993. [2] I. Ojima (Ed.), Catalytic Asymmetric Synthesis, VCH, Weinheim, 1993. [3] R. Noyori, Asymmetric Catalysis in Organic Synthesis, John Wiley, New York, 1994, [4] M. Nbgridi, Stereoselective Synthesis, VCH, Weinheim, 1995.

Contents

Volume 1: Applications 1 Introduction (B. Cornils. W A Herrmann) . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . .Historical Glossary

1

3 16 29 31 31 31 34 45 61 85

. . . . . . . . . . . . . . . . .

22.12.1.1 2.1.1.1 2.1.1.2 2.1.1.3 2.1.1.4 2.1.1.5 2.1.2 2.1.2.1 2.1.2.2 2.1.2.3 2.1.2.4 2.1.2.5 2.1.2.6

Applied Homogeneous Catalysis

. . . . . . . .

Carbon Monoxide and Synthesis Gas Chemistry . . . . . Hydroformylation (0x0 Synthesis. Roelen Reaction) (C. D . Frohning. C. W Kohlpaintner; H.-W Bohnen) . . . . Introduction . . . . . . . . . . . . . . . . . . . . Fundamental Principles . . . . . . . . . . . . . . . . Kinetics, Mechanism, and Process Parameters . . . . . . . Commercial Applications . . . . . . . . . . . . . . . Recent Developments . . . . . . . . . . . . . . . . Carbonylations . . . . . . . . . . . . . . . Synthesis of Acetic Acid and Acetic Acid Anhydride from Methanol (P: Torrence) . . . . . . . . . Synthesis of Propionic and Other Acids (A . Hiihn) . Carbonylation of Benzyl-X and Aryl-X Compounds (M. Beller) . . . . . . . . . . . . . . . . . Amidocarbonylation ( J . F: Knifton) . . . . . . . Oxidative Carbonylation (A . Kluusenel; J.-D. Jentsch) Other Carbonylations (M. Beller; A.M. Tafesh) . .

. . . . 104 . . . . 104 . . . . 136 . . . 145 . . . . 156164 182 195 195 195 195 196 198 200

. . . . . . .. . . . . . . . . . . . . . .

2.22.2.1 2.2.1.1 2.2.1.2 2.2.1.3 2.2.1.4 2.2.1.5

. . . . Homogeneous Hydrogenation . . . . The Hydrogen Molecule . . . . . . Classical Transition Metal Hydrides . . Nonclassical Dihydrogen Complexes .

Hydrogenation (H. Brunner)

Homogeneous Hydrogenation of Organic Substrates . . . . Enantioselective Hydrogenation of Prochiral Substrates . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

XVIII Contents

2.2.1.6 2.2.1.7 2.2.1.8 2.2.1.9 2.2.1 10a

Isolated Catalysts Versus in-situ Catalysts Transfer Hydrogenation . . . . . . . Hydrogen01y sis . . . . . . . . . . Mechanisms . . . . . . . . . . . . Industrial Applications . . . . . . .

. . . .

. . . . .

2.2.22.3

Commercial Enantioselective Hydrogenation Reactions of Unsaturated Compounds

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. 203 . 204 . 204. 209 . 210205

. . . . . . . . . 213 .213 . . 213 . . 230 240

2.3.1 2.3.1.1 2.3.1.2 2.3.1.3 2.3.1.4 2.3.1.5

Polymerization. Oligomerization. and Copolymerization of Olefins . . . . . . . . . . . . . . . . . . . . Chemical Background (W Kaminsky. M . Arndt-Rosenau) Chemical Engineering and Applications ( L. L . Biihm) . . Oligomerization of Ethylene to Higher Linear a-Olefins ( D. Vogt) . . . . . . . . . . . . . . . . . . . . Dimerization and Codimerization (H. Olivier-Bourbigou. L . Saussine) . . . . . . . . Evolution of the Synthesis of Group 4 Metallocene Catalyst Components Toward Industrial Production (C. Fritze. F! Miillel; L . Resconi) . . . . . . . . . .

.

. . 253

2.3.2 2.3.2.1 2.3.2.2 2.3.2.3 2.3.3 2.3.3.1 2.3.3.2 2.3.3.3 2.3.3.4 2.3.3.5 2.3.3.6 2.3.4 2.3.4.1 2.3.4.2 2.3.4.3 2.3.4.4 2.3.4.5

Reactions of Other Unsaturated Compounds Reactions of Alkynes (J. Henkelmann. J.-D. Arndt. R. Kessinger) . . . . . . . 274 Stereospecific Polymerization of Butadiene or Isoprene ( R. Taube. G. Sylvester) . . . . . . . . . . . . . . . 285 A Clean Route to Methacrylates via Carbonylation of Alkynes ( E. Drent. W W Jagel; J . J . Keijspel; F: G.M. Niele) . . . . 316 Metathesis (J. C. Mol) . . . . . . . . . . . . . . . . 328 Introduction . . . . . . . . . . . . . . . . . . . . 328 Scope of the Reaction . . . . . . . . . . . . . . . . 329 Reaction Mechanism and Catalysts in General . . . . . . . 333 Homogeneous Catalyst Systems . . . . . . . . . . . . 335 Industrial Applications . . . . . . . . . . . . . . . . 339 Conclusions . . . . . . . . . . . . . . . . . . . . 341 The Alternating Copolymerization of Alkenes and Carbon Monoxide ( E. Drent. J . A . M . van Broekhoven. F! H . M . Budzelaar) . . . 344 Introduction . . . . . . . . . . . . . . . . . . . . 344 History of Polyketones . . . . . . . . . . . . . . . . 344 Copolymerization of Ethylene and CO . . . . . . . . . . 346 Scope of Olefin/CO Copolymerization . . . . . . . . . . 356 Conclusions . . . . . . . . . . . . . . . . . . . . 358

. . 265 . . . . . . . 274

Contents

XIX

2.3.5 2.3.5.1 2.3.5.2 2.3.5.3 2.3.5.4 2.3.6 2.3.6.1 2.3.6.2 2.3.6.3 2.3.6.4 2.3.6.5 2.3.72.4

Telomerization (Hydrodimerization) of Olefins ( N. Yoshimura) . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . Development of Technologies . . . . . . Process for the Manufacture of 1-Octanol . Development and Scope . . . . . . . .

. . . . . . . 362 . . . . . . . 366

. . . . . .

. . . . . . . 361361

. . . . . . . 366. . . 368 . . 368

Cyclooligomerizations and Cyclo-co-oligomerizations of 1.3.Dienes (G. Wilke. A . Eckerle) . . . . . . . Introduction . . . . . . . . . . . . . . . . . . Cyclodimerization and Cyclotrimerization of Butadiene and Substituted 1.3.Dienes . . . . . . . . . . . Cyclo-co-oligomerization of 1.3.Dienes with Olefins and Alkynes . . . . . . . . . . . . . . . . . . Mechanistic Considerations . . . . . . . . . . . Summary . . . . . . . . . . . . . . . . . . .

. . . 370

. . 374 . . . 377 . . 379 Catalyzed Polymerisation of Epoxy Resins (M. Dbring) . . . 383

Oxidations

. . . . . . . . . . . . . . . . . . . .

386 386 386 386 389 397 402

2.4.1 2.4.1.1 2.4.1.2 2.4.1.3 2.4.1.4 2.4.1.5 2.4.2 2.4.2.1 2.4.2.2 2.4.2.3 2.4.3 2.4.3.1 2.4.3.2 2.4.3.3 2.4.3.4 2.4.3.5 2.4.4 2.4.4.1 2.4.4.2 2.4.4.3 2.4.4.4 2.4.4.5

Oxidation of Olefins to Carbonyl Compounds (Wacker Process) ( R. Jira) . . . . . . . . . . . . . . . . . . . . . Historical and Economic Background . . . . . . . . . . Chemical Background . . . . . . . . . . . . . . . . Kinetics and Mechanism . . . . . . . . . . . . . . . Technical Applications (Wacker-Hoechst-Processes) . . . . Application of the Olefin Oxidation to Organic Syntheses . . Homogeneous Oxidative Acetoxylation of ( I. I . Moiseev. M . N. Vargaftik) . . . . Introduction . . . . . . . . . . . . Mechanistic Considerations . . . . . Giant Cluster Catalyzed Reaction . . . Alkenes

. . . . Synthesis of Oxiranes ( R. A . Sheldon) . . Historical Development . . . . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . 406.

. . . .

. . . .

406 407 409 412 412

Metal-Catalyzed Epoxidation with Alkyl Hydroperoxides: Kinetics and Mechanism . . . . . . . . . . . . . Commercial Oxirane Processes . . . . . . . . . . . Scope and Applications in Organic Synthesis . . . . . Recent Developments and Future Prospects . . . . . .

. . 413. . 417 . . 419 . . 421427 427 428 429 430 43 1

Aliphatic Carboxylic Acids via Aliphatic Aldehydes (F: Koch) . General . . . . . . . . . . . . . . . . . . . . . . Catalysts . . . . . . . . . . . . . . . . . . . . . Kinetics and Mechanism . . . . . . . . . . . . . . . Technical Process . . . . . . . . . . . . . . . . . . Future Trends . . . . . . . . . . . . . . . . . . .

XX

Contents

2.4.5 2.4.5.1 2.4.5.22.5

Oxidation of Arenes and Alkyl-Substituted Aromatic Compounds . . . . . . . . . . . . . . . . . . Oxidation of Arenes to Quinones (R W Fischer) . . . . Oxidation of Alkyl-Substituted Aromatic Compounds with Air (R. W Fischel; F: Rohrscheid) . . . . . . .

433 433 443 468

Reactions with Hydrogen Cyanide (Hydrocyanation) (S. Krill) . . . . . . . . . . . . . . . . . . . . .Introduction and Scope Mechanistic Aspects of Hydrocyanation

2.5.1 2.5.2 2.5.3 2.5.3.1 2.5.3.2 2.5.4 2.5.5 2.5.5.1 2.5.5.2 2.5.6

. . . . . . . . . . . . . . . . 468. . . . . . . . . 469

Hydrocyanation of Olefins . . . . . . . . Hydrocyanation of Non-Activated Monoolefins Hydrocyanation of Functionalized Olefins . . Hydrocyanation of Alkynes

. . . . . . . . . . . . . . . . . .

470 470 476

. . . . . . . . . . . . . . 479

Hydrocyanation of Dienes . . . . . . . . . . . . . . . 481 Adiponitrile Synthesis via Hydrocyanation of Butadiene . . . 48 1 Hydrocyanation of Other Dienes . . . . . . . . . . . . 484 Hydrocyanation of AldehydeslKetones . . . . . . .

485 491

26 .2.6.1 2.6.1.1 2.6.1.2 2.6.1.3 2.6.1.4 2.6.2 2.6.2.1 2.6.2.2 2.6.2.3 2.6.3

Hydrosilylation and Related Reactions of Silicon Compounds ( B. Murciniec) .

. . . . . . .

Hy drosily lation . . . . . . . . . . . . . . . . . . . 491 General Scope and Applications . . . . . . . . . . . . 491 Homogeneous Catalysts . . . . . . . . . . . . . . . 495 Immobilized Metal Complexes as Catalysts . . . . . . . . 500 Photo- and Peroxide-Initiated Catalysis by Metal Complexes . 501 Dehydrogenative Coupling Reactions . . . . . . . . . . 502 Dehydrogenative Silylation of Alkenes and Alkynes with Hydrosilanes . . . . . . . . . . . . . . . . . . 502 Silylative Coupling of Alkenes with Vinylsilanes . . . . . . 504 Dehydrocoupling of Hydrosilanes . . . . . . . . . . . . 505 Silylcarbonylation . . . . . . . . . . . . . . . . . . 506

27 .2.7.1 2.7.2 2.7.3 2.7.3.1 2.7.3.2

Reaction with Nitrogen Compounds: Hydroamination (R. Taube) . . . . . . . . . . . . . . . . . . . . .Introduction

513

. . . . . . . . . . . . . . . . . . . . 513 General Mechanistic Aspects . . . . . . . . . . . . . 513 The Different Catalyst Systems . . . . . . . . . . . . . 516Catalyst Systems Containing Alkali Metals . . . . . . . . 516 Catalyst Systems Containing Lanthanides . . . . . . . . . 518

Contents

XXI

2.7.3.3 2.7.3.4 2.7.3.5 2.7.4 2.8 2.8.1 2.8.1.1 2.8.1.2 2.8.2 2.8.2.1 2.8.2.2 2.8.2.3

Catalyst Systems Containing Iridium . . . . . . . . . . 520 Catalyst Systems Containing Iron or Ruthenium . . . . . . 522 Catalyst Systems Containing Rhodium . . . . . . . . . . 522 Perspectives

. . . . . . . . . . . . . . . . . . . .

524 525

Reactions of Hydrocarbons and Other Saturated Compounds . . . . . . . . . . . . . . . . . . . .

525 Oxidations . . . . . . . . . . . . . . . . . . . . . Homogeneous Catalysis in the Oxidation of Hydrocarbons to Acetic Acid (C. C. Hobbs, JK) . . . . . 525 Synthesis of Dimethyl TerephthalateITerephthalic Acid and Poly(ethy1ene terephthalate) (D.A. Schiruldi) . . . . . 544 Halogenations (W A . Herrmann. M . Stoeckl) . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . Substitution Reactions . . . . . . . . . . . . . . . . Addition Reactions . . . . . . . . . . . . . . . . . 552 552 552 553

2.92.9.1 2.9.2 2.9.2.1 2.9.2.2 2.9.2.3 2.9.2.4 2.9.2.5 2.9.2.6 2.9.2.7 2.9.2.8 2.9.2.9 2.9.2.10 2.9.2.11 2.9.2.12 2.9.3

Asymmetric Syntheses ( R. Noyori. S. Hashiguchi. T Yamano)Introduction

. . . . . . . . . . . Preparation of Selected Structures . . Terpenes . . . . . . . . . . . . Carboxylic Acids . . . . . . . . Pyrethroids . . . . . . . . . . . Prostaglandins . . . . . . . . . Simple Secondary Alcohols . . . .

. . . . . . .

. . . . . . . .

. . . . . . . .

Amino Alcohols and Related Compounds Amino Acids . . . . . . . . . . . . Alkaloids . . . . . . . . . . . . . Carbapenem Antibiotics . . . . . . Sulfoxides . . . . . . . . . . . . . 1,2-Diols and Related Compounds . . Miscellaneous . . . . . . . . . .

. . . . . . Conclusions . . . . . . . . . . . . .

. . . . . . . . 568. . . . . . .

. . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 557557

. 557

. 559563

557

. 565 . 565

. . . . . . 572 . . . . . . 574 . . . . . . . 576 . . . . . . 577 . . . . . . . 578 . . . . . . . 578 . . . . . . 580

2.102.10.1 2.10.2 2.10.3 2.10.4

Ferrocene as a Gasoline and Fuel Additive (W A . Herrmann) . . . . . . . . . . . . . . . . . . 586

. . . . . . . . . . Commercial Synthesis . . . . . The Gasoline and Fuel Additive . Related Antiknocking Additives .Introduction

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . . 586 . . . . . 586 . . . . . 588 . . . . . 589

XXII2.11

Contents

2.11.1 2.11.2 2.11.3 2.11.3.1 2.11.3.2 2.11.3.3 2.1 1.3.4 2.11.4 2.11.5

. . . . . . 591 Introduction . . . . . . . . . . . . . . . . . . . . 591 Advantages and Drawbacks . . . . . . . . . . . . . . 591Catalysts. Substrates. Conditions Current Status . . . . . . . Recent Catalyst Improvements . Two-Phase Catalysis . . . . . Suzuki-Related Coupling . . . Mechanism

The Suzuki Cross-Coupling ( W A Herrmann) .

. . . .

592 592 592 595 . . . . . . . . . . . . 595

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . . . . . .

. . . . . . . . . . . . . . . . . . . . 596 Commercial Application and Further Development . . . . . 597

Volume 2: Developments33.1

Recent Developments in Homogeneous Catalysis

. . . . . . . . . . . 599

Development of Methods . . . . . . . . . . . . . . . 601 3.1.1 Homogeneous Catalysts and Their Heterogenization . or Immobilization ( B. Cornils. W A Herrmann) . . 60 1 3.1.1.1 Immobilization by Aqueous Catalysts ( B. Cornils, W A Herrmann) . . . . . . . . . . 603 3.1.1.2 Immobilization by Other Liquids . . . . . . . . . . . . 634 3.1.1.2.1 Fluorous Phases (I. T. Horva'rh) . . . . . . . . . . . . 634 3.1.1.2.2 Non-Aqueous Ionic Liquids (VZ? W Biihm) . . . . . . . . 639 3.1.1.3 Immobilization (Z? Panstel; S. Wieland) . . . . . . . . . 646 3.1.1.4 Surface Organometallic Chemistry (J.-M. Basset, G. Z? Niccolai) . . . . . . . . . . . . . 664 3.1.1.5 Ligand-Stabilized Clusters and Colloids (G. Schmid) . . . . 677 3.1.1.6 New Generation of Re-Immobilized Catalysts ( H. Bahrmann) . . . . . . . . . . . . . . . . . 684 3.1.1.7 New Reactions ( J . Herwig) . . . . . . . . . . . . 694Molecular Modeling in Homogeneous Catalysis ( R. Schmid. W Hieringer; D . Gleich. is Strassner) . . . . . 700 3.1.2.1 Molecular Modeling Techniques (R. Schmid) . . . . . . . 700 3.1.2.2 Applications . . . . . . . . . . . . . . . . . . . . 712 3.1.2.2.1 Modeling of Homogeneous Olefin Polymerization Catalysts (R. Schmid) . . . . . . . . . . . . . . . . . . . . 712 3.1.2

Contents

XXIII

3.1.2.2.2 Palladium-Catalyzed C-C Coupling Reactions: The Heck Reaction (W Hieringer) . . . . . . . . . . . 721 3.1.2.2.3 Hydrofonnylation (D Gleich) . . . . . . . . . . . . . 727 . 3.1.2.2.4 C-H Activation (I: Strassner) . . . . . . . . . . . . . 737 3.1.3 3.1.3.1 3.1.3.2 3.1.3.3 3.1.3.4 3.1.3.5 3.1.4 3.1.4.1 3.1.4.2 3.1.5 3.1.5.1 3.1.5.2 3.1.5.3 3.1S.4 3.1.6 3.1.6.1 3.1.6.2 3.1.6.3 3.1.6.4 3.1.6.5 3.1.6.6 3.1.6.7 3.1.6.8 3.1.7 3.1.7.1 3.1.7.2 3.1.7.3 3.1.7.4 3.1.8 3.1.8.1 3.1.8.2 3.1.8.3 High-Throughput Approaches to Homogeneous Catalysis (Y Murphy. H . W Turnel; I: Weskamp) . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . Principal Workflow . . . . . . . . . . . . . . . . Analysis in High-Throughput Format . . . . . . . . . Data Management and Software . . . . . . . . . . . Discovery Screening Workflow for New Polyolefin Catalysts

.

740 740 . 741 . 745 . 746 . 747

Chemical Reaction Engineering Aspects of Homogeneously Catalyzed Processes ( M. Baerns, f! Claus) . 748 Kinetics in Homogeneous Catalysis . . . . . . . . . . . 750 Aspects of Catalyst Recycling . . . . . . . . . . . . . 759 Introduction to Selected Multicomponent and Multifunctional . Catalysts (D Hesse) . . . . . . . . . . . . . . . . . 762 Introduction . . . . . . . . . . . . . . . . . . . . 762 Advantages in the Use of Multicomponent or Multifunctional Catalysts . . . . . . . . . . . . . . . . . . . . . 764 Problems in the Use of Multifunctional or Multicomponent Catalysts . . . . . . . . . . . . . . . . . . . . . 772 Conclusions . . . . . . . . . . . . . . . . . . . . 773 Catalytic Carbon-Carbon Coupling by Palladium Heck Reactions (W A. Herrmann) . . . . . Introduction . . . . . . . . . . . . . . . History . . . . . . . . . . . . . . . . . Definition . . . . . . . . . . . . . . . . Catalysts and Reaction Conditions . . . . . Scope and Limitations . . . . . . . . . . Mechanism . . . . . . . . . . . . . . . Catalyst Deactivation . . . . . . . . . . Industrial Applications and Perspectives . . . Complexes:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Catalytic Cyclopropanation (A I? Noels. A. Demonceau) . . Introduction . . . . . . . . . . . . . . . . . . . . Transition Metal Catalyzed Cyclopropanations . . . . . . Recent Developments and Applications . . . . . . . . Conclusion: In Search of New Catalysts . . . . . . . .The Fischer-Tropsch Synthesis - Molecular Models Homogeneous Catalysis? (W A. Herrmann) . . . Introduction . . . . . . . . . . . . . . . . Historical and Economic Background . . . . . Technological Features . . . . . . . . . . . for

. . . . . . . . .

. 775775 775 776 777 778 782 784 786 793

. .

. . . 793. 794 . 798 . 805

. . . . . 808

. . . . 808 . . . . . 809 . . . . . 811

XXIV

Contents

3.1.8.4 3.1.8.5 3.1.9 3.1.9.1 3.1.9.2 3.1.9.3 3.1.9.4 3.1.9.5 3.1.10

Mechanistic Considerations Assessment and Perspectives

. . . . . . . . . . . . . . . Arene Coupling Reactions (W A. Herrmann) . Introduction . . . . . . . . . . . . . . . Aryl-Aryl Coupling . . . . . . . . . . . Grignard Cross-Coupling . . . . . . . . . Phenol Coupling . . . . . . . . . . . . Perspectives . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 811 . 819 . 822. 823 . 824 . 826827 822

Tailoring of Catalysts : N-Heterocyclic Carbenes as an Example of Catalyst Design (W A. Herrmann. K. Denk. C. W K. Gstiittmayr) . . 3.1.10.1 Introduction . . . . . . . . . . . . . . . . . 3.1.10.2 Ligand Design for N-Heterocyclic Carbenes (NHC) 3.1.10.3 Catalytic Applications . . . . . . . . . . . .

. . .

. . . . 829829 829 . . . . 832

. . . .

3.1.11 3.1.11.1 3.1.11.2 3.1.11.3 3.11.1.4 3.1.12 3.1.12.1 3.1.12.2 3.1.12.3

Micellar Catalysis (G. Oehme) . . . . . . . . . . . . . 835 Introduction . . . . . . . . . . . . . . . . . . . . 835 Examples of Micellar-Promoted Reactions . . . . . . . . 837 Reactions in Reverse Micelles . . . . . . . . . . . . . 839 Limits and New Developments . . . . . . . . . . . . . 840

Sulfur in Homogeneous Catalysis (P: Kalck, l? Serp) Introduction . . . . . . . . . . . . . . . . . Sulfur in Carbonylation Reactions . . . . . . . Sulfur in Hydrogenation, Isomerization, and Related Reactions . . . . . . . . . . . . . . . . . . 3.1.12.4 Sulfur in Carbon-Carbon Coupling Reactions . . . 3.1.12.5 Miscellaneous Reactions . . . . . . . . . . . 3.1.12.6 Conclusions . . . . . . . . . . . . . . . . .

. . . . 842 . . . 842 . . . . 843

. . .

845 . . . . 846 . . . . 847 . . . 848

3.1.13 3.1.13.1 3.1.13.2 3.1.13.3 3.1.13.4

Homogeneous Catalysis Using Supercritical Fluids (W Leitner) . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . Single-Phase Catalysis Using SCFs as Solvents . Multiphase Catalysis Using SCFs as Solvents . . Conclusions and Outlook . . . . . . . . . .

. . . . 852 . . . . 852 . . . . . 854

. . . . . 862. . . . . 867

3.2 3.2.13.2.1.1 3.2.1.2 3.2.1.3 3.2.1.4 3.2.1.5

Special Catalysts and Processes . . . . . . . . . . . .

872

Biocatalysis and Enzyme-Analogous Processes (C. Schultz. H . Grogel; C. Dinkel. K. Drauz. H . Waldmann) . 872 Introduction . . . . . . . . . . . . . . . . . . . . 872 Examples of Enzymatic Conversions . . . . . . . . . . 873 Enzyme-Analogous Catalysts . . . . . . . . . . . . . 886 Commercial Applications . . . . . . . . . . . . . . . 887 Outlook . . . . . . . . . . . . . . . . . . . . . . 906

Contents

XXV

3.2.2 3.2.2.1 3.2.2.2 3.2.2.3 3.2.2.4 3.2.2.5 3.2.2.6 3.2.2.7 3.2.2.8 3.2.2.9 3.2.3 3.2.3.1 3.2.3.2 3.2.3.3 3.2.3.4 3.2.4 3.2.4.1 3.2.4.2 3.2.4.3 3.2.4.4 3.2.5 3.2.5.1 3.2.5.2 3.2.5.3 3.2.5.4 3.2.5.5 3.2.5.6 3.2.5.7 3.2.6 3.2.6.1 3.2.6.2 3.2.6.3 3.2.6.4 3.2.6.5 3.2.6.6

Template or Host/Guest Relations (F: Vogtle. R. Hoss. M . Handel) . . . . . . . Introduction . . . . . . . . . . . . . . . . Metal Cations as Templates . . . . . . . . . Neutral Molecules as (Supramolecular) Templates Covalent Molecules as Templates . . . . . . . Kinetic and Thermodynamic Template Effects . . Positive and Negative Templates . . . . . . . Self-organization . . . . . . . . . . . . . Further Developments and Applications . . . . Conclusions and Outlook . . . . . . . . . .

. . . . . 911 . . . . 912

. . . . . . . . . .. . . . .

. . . . . 913

914 922 . . . . 926 . . . . 928 . . . . 928 . . . . 935 . . . . 937

Membrane Reactors in Homogeneous Catalysis (U. Kragl, C. Dreisbach) . . . . . . . . . . . . . . . 941 Introduction . . . . . . . . . . . . . . . . . . . . 941 Classification and Examples of Membrane Reactors . . . . 942 Membrane Reactors for Homogeneously Soluble Catalysts . . 947 Summary and Outlook . . . . . . . . . . . . . . . . 950 Phase-Transfer Catalysis and Related Systems (E: Goldberg, H . Alper) . . . . . . . . . . . . . . . 953 Introduction . . . . . . . . . . . . . . . . . . . . 9.53 Homogeneous Transition-Metal Catalyzed Reactions Under Phase-Transfer Conditions . . . . . . . . . . . . 9.54 Transition-Metal Containing Phase-Transfer Agents and Their Use in Synthesis . . . . . . . . . . . . . . . . 968 Conclusions . . . . . . . . . . . . . . . . . . . . 969 Rare Earth Metals in Homogeneous Catalysis (R. Anwander) . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . Catalytic Potential . . . . . . . . . . . . Precatalysts . . . . . . . . . . . . . . . Carbon-Carbon Bond-Forming Reactions . . Carbon-Heteroelement Bond-Forming Reactions Catalyst Structure . . . . . . . . . . . . Perspectives . . . . . . . . . . . . . . .

. . . . . . 997

. . . . .

. . . . .

. . . . 974 . . . 974 . . . . 976 . . . 977 . . . . 978

. . . . . . 1005 . . . . . 1007. . . 1014 . . 1014 . . . 1015 . . . 1020 . . . 1024 . . . 1025 . . 1027

Recent Progress in Special Phosphorus-Containing Auxiliaries for Homogeneous Enantioselective Catalysis (F: Agbossou-Niedercorn) . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . Monophosphines . . . . . . . . . . . . . . . Bi(di,bis)phosphines . . . . . . . . . . . . . . Heterofunctionalized Multidentate P-Containing Chiral Auxiliaries . . . . . . . . . . . . . . . Immobilization and Recycling . . . . . . . . . . Conclusions . . . . . . . . . . . . . . . . . .

XXVI Contents

Volume 3: Developments (continued)3.2.7 3.2.7.1 3.2.7.2 3.2.7.3 3.2.7.4 3.2.7.5 3.2.8 3.2.8.1 3.2.8.2 3.2.8.3 3.2.8.4 3.2.9 3.2.9.1 3.2.9.2 3.2.9.3 3.2.10 3.2.10.1 3.2.10.2 3.2.10.3 3.2.10.4 3.2.10.5 3.2.10.6 3.2.11 3.2.11.1 3.2.11.2 3.2.11.3 3.2.11.4 3.2.11.5 3.2.11.6 3.2.12 3.2.12.1 3.2.12.2 3.2.12.3 3.2.12.4 Homologation ( H. Bahrmann) . Historical Background . . . . Chemical Basics and Applications Mechanism of Reaction . . . Technical Applications . . . . Future Prospects . . . . . .

. . . . . . . . Electron-Transfer-Chain (ETC) Catalyzed Reactions . Atom-Transfer-Chain (ATC) Catalysis . . . . . . . Conclusions . . . . . . . . . . . . . . . . . .

. . . . . . Homogeneous Electrocatalysis ( D. Astruc) . Introduction . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . . . . . . . . . . . . . . . .

. . . . . . .

1034 1034 1035 1040 1042 1044

1046 1046 . 1047 . 1055 1057

Homogeneous Photocatalysis (A. Heumann, M . Chanon) . . 1060 1060 Definitions . . . . . . . . . . . . . . . . . . . . . Synthesis and Activation - What hv Metal Catalysis Can Do Better? . . . . . . . . . . . . . . . . . . . 1065 Conclusion: What Photochemical Techniques Can Provide in Mechanistic Studies of Transition Metal Catalysis . . . . 1074 Olefins from Aldehydes (W A . Herrmann) . . Introduction . . . . . . . . . . . . . . . The Catalytic Approach . . . . . . . . . Catalysts . . . . . . . . . . . . . . . . Scope of Reaction. Reagents, and Side Reactions Mechanism . . . . . . . . . . . . . . . Perspectives . . . . . . . . . . . . . . .

. . . . . . . . .

. . . .

. . . . 1078 . . . 1078 . . . . 1079 . . . 1080 . . . . 1081 . . . 1082 . . . 1085

Water-Gas Shift Reaction (W A . Herrmann. M . Muehlhofer) . 1086 1086 Introduction . . . . . . . . . . . . . . . . . . . . Definition . . . . . . . . . . . . . . . . . . . . . 1087 Mechanism . . . . . . . . . . . . . . . . . . . . 1087 Applications . . . . . . . . . . . . . . . . . . . . 1089 The Arc0 Ethylurethane Process . . . . . . . . . . . . 1090 Catalytic Implications and Perspectives . . . . . . . . . 1091 Catalytic McMurry Coupling: Olefins from Keto Compounds (W A . Herrmann. H . Schneider) . . . . . . . . . . . . 1093 Introduction . . . . . . . . . . . . . . . . . . . . 1093 Stoichiometric Titanium Compounds, Other Reagents, and Mechanistic Aspects . . . . . . . . . . . . . . . 1094 Catalytic Deoxygenation . . . . . . . . . . . . . . . 1096 Perspectives . . . . . . . . . . . . . . . . . . . . 1097

Contents XXVII

3.2.13 3.2.13.1 3.2.13.2 3.2.13.3 3.2.13.4 3.2.13.5 3.2.13.6 3.2.13.7 3.2.14 3.2.14.1 3.2.14.2 3.2.14.3 3.2.14.4 3.2.14.5 3.2.14.6 3.2.14.73.3

Catalytic Hydrogenation of Heterocyclic Sulfur and Nitrogen Compounds in Raw Oils (C. Bianchini. A . Meli. F: Vizzn) . Introduction . . . . . . . . . . . . . . . . . . . Hydrogenation of Sulfur Heterocycles . . . . . . . . . Hydrogenolysis of Sulfur Heterocycles . . . . . . . . . Hydrodesulfurization in Different Phase Variation Systems . Hydrogenation of Nitrogen Heterocycles . . . . . . . . Hydrogenolysis of Nitrogen Heterocycles . . . . . . . . Perspectives . . . ; . . . . . . . . . . . . . . . Double-Bond Isomerization of Olefins ( W A. Herrmann. M . Prinz) . . . . Introduction . . . . . . . . . . Catalysts. Scope. and Definition . . Mechanistic Considerations . . . . Applications . . . . . . . . . . Asymmetric Isomerization . . . . Recent Developments . . . . . . Perspectives . . . . . . . . . .Special Products

. 1099 . 1099 . 1100

.. . . .

1106 1109 1109 1116 1116

. . . . . . . . . . 1125 . . . . . . . . . . 1126

. . . . . . . . . . 1120 . . . . . . . . . . 1121 . . . . . . . . . . 1124

. . . . . . . . . . 1119 . . . . . . . . . . 1119

. . . . . . . . . . 1128

. . . . . . . . . . . . . . . . . . 1131

3.3.1 3.3. 1. 1 3.3.1.2 3.3.1.3 3.3.1.4 3.3.2 3.3.2.1 3.3.2.2 3.3.2.3 3.3.2.4 3.3.2.5 3.3.3 3.3.3.1 3.3.3.2 3.3.3.3 3.3.3.4 3.3.3.5 3.3.3.6

Enantioselective Synthesis (H.-U. Blaser; B. Pugin. F: Spindler) . . . . . . . . . . 1131 Introduction and Background . . . . . . . . . . . . . 1131 Critical Factors for the Technical Application of Homogeneous Enantioselective Catalysts . . . . . . . . 1132 State-of-the-Art and Evaluation of Catalytic Transformations . 1134 Conclusions and Prospects . . . . . . . . . . . . . . 1146 Diols via Catalytic Dihydroxylation ( M. Beller; K . B. Sharpless) . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . History and General Features of Osmium-Catalyzed Dihydroxylation Reactions . . . . . . . . . . . . . . Mechanism of Osmium-Catalyzed Dihydroxylations . . . . Scope and Limitation of Asymmetric Dihydroxylation . . . Selected Applications of Osmium-Catalyzed Dihydroxylations Hydrovinylation ( P W. Jolly. G. Wilke) . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . The Catalyst . . . . . . . . . . . . . . . . . . . . The Product . . . . . . . . . . . . . . . . . . . . The Mechanism . . . . . . . . . . . . . . . . . . . Outlook . . . . . . . . . . . . . . . . . . . . . . Postscript . . . . . . . . . . . . . . . . . . . . . 1149 1149 1150 1152 1153 1159 1164 1164 1165 1169 1178 1184 1185

XXVIII Contents 3.3.4 3.3.4.1 3.3-4.2 3.3.4.3 3.3.4.4 3.3.4.5 3.3.5 3.3.5.1 3.3-5.2 3.3.5.3 3.3.5.4 3.3.6 3.3.6.1 3.3.6.2 3.3.6.3 3.3.6.4 3.3.6.5 3.3.7 3.3.7.1 3.3.7.2 3.3.7.3 3.3.7.4 3.3.7.5 3.3.7.6 3.3.7.7 3.3.7.8 3.3.8 3.3.8.1 3.3.8.2 3.3.8.3 3.3.8.4 3.3.9 3.3.9.1 3.3.9.2 3.3.9.3 3.3.9.4 Carbon Dioxide as a C1 Building Block ( E. Dinjus. R. Fornika. S. Pittel; I: Zevaco) . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . Catalytic C-C Bond-Forming Reactions . . . . . . . . Transition Metal Catalyzed Formation of Formic Acid and its Derivatives from C 0 2 and H2 . . . . . . . . . Catalyzed Formation of Organic Carbonates . . . . . . Summary and Outlook . . . . . . . . . . . . . . . Reductive Carbonylation of Nitro Compounds ( M. Dugal. D . Koch, G. Nabefeld. C. Six) . Introductory Remarks . . . . . . . . . Synthesis of Isocyanates . . . . . . . . Thermodynamics, Kinetics, and Mechanism . Outlook . . . . . . . . . . . . . . . .

. 1189

. . .

1189 11911205 1208

. 1196

. . . . . . . 1214 . . . . . . . 1214. . . . . . . 12141218 1223

1226 New Approaches in C-H 1226 Introduction . . . . . . . . . . . . . . . . . . . . Radical Pathways . . . . . . . . . . . . . . . . . . 1227 Oxidative Addition Pathways . . . . . . . . . . . . . 1229 Electrophilic Pathways . . . . . . . . . . . . . . . . 1231 Conclusions . . . . . . . . . . . . . . . . . . . . 1238 Pauson-Khand Reaction (W A . Herrmann) . . . . . . . . 1241 Introduction . . . . . . . . . . . . . . . . . . . . 1241 The Catalytic Option . . . . . . . . . . . . . . . . . 1242 Related Reactions . . . . . . . . . . . . . . . . . . 1244 Stereoselective PKRs and Hetero-Reactions . . . . . . . . 1245 Degenerate (Intermittent) and Domino PK Reactions . . . . 1246 Substitution Effects, Selectivity, and Mechanism . . . . . . 1247 Commercial Perspectives . . . . . . . . . . . . . . . 1249 Outlook . . . . . . . . . . . . . . . . . . . . . . 1250 Cyclooligomerization of Alkynes (H. Bonnemann, W Brijoux) . . . Introduction . . . . . . . . . . . Survey of the Catalysts . . . . . . Five- and Six-Membered Heterocycles Six- and Eight-Membered Carbocycles

. . . . . . . . . . . . . Activation of Alkanes (A. Sen) . .

. . . . . . . . . . 1252

. . . . . . . . . 1252 . . . . . . . . . . 1253

. . . . . Chemicals from Renewable Resources ( J. Z? Zoller) Introduction and General Developments . . . . Oleo Chemistry . . . . . . . . . . . . . The Chemistry of Carbohydrates . . . . . . .

. . . . . . . . . . 1254

. . . . .

1261

. . . . . 1268

. . . . 1268

The Chemistry of Starch

. . . . . . . . . . . . . . . 1271

. . . . . 1268 . . . . . 1271

3.3.10 Special Reactions in Homogeneous Aqueous Systems . . . . 1274 3.3.10.1 Synthesis of Polymers (B. M . Novak) . . . . . . . . . . 1274 3.3.10.2 Homogeneous Catalysis in Living Cells ( L. Vigh. E Job) . . 1283

Contents

XXIX

3.3.11 3.3.11.1 3.3.11.2 3.3.11.3 3.3.11.4 3.3.11.5 3.3.11.6 3.3.12 3.3.12.1 3.3.12.2 3.3.12.3 3.3.12.4 3.3.12.5 3.3.12.6

Cyclic Hydrocarbons from Diazoalkanes (W A. Herrmann. Horst Schneider) . . Introduction . . . . . . . . . . . . Scope and Definition . . . . . . . Mechanistic Considerations . . . . . Catalytic Cyclization . . . . . . . . Enantioselective Cyclization . . . . . Perspectives . . . . . . . . . . . .

. . . . . . . . . 1290

. . . . . . . . 1290 . . . . . . . . . 1290 . . . . . . . . . 1291

. . . . . . . . . 1292 . . . . . . . .1295

. . . . . . . . . 1295

Acrolein and Acrylonitrile from Propene ( W A . Herrmann) Introduction . . . . . . . . . . . . . . . . . . . . Scope and Technological Features . . . . . . . . . . Catalyst Principles and Mechanism . . . . . . . . . . Organometallic Models . . . . . . . . . . . . . . . The Amm(on)dehydrogenation . . . . . . . . . . . Perspectives . . . . . . . . . . . . . . . . . . . .

.. . ..

1297 1297 1297 1298 1300 1301 1303

3.3.13 Chemistry of Methyltrioxorhenium (MTO) . . . . . . . . 1304 3.3.13.1 Fine Chemicals via Methyltrioxorhenium as Catalyst ( R E. Kiihn, M . Groarke) . . . . . . . . . . . . . . . 1304 3.3.13.2 Pilot-Plant Synthesis of MTO ( W A . Herrmann) . . . . . . 1319 3.3.14 3.3.14.1 3.3.14.2 3.3.14.3 3.3.14.4 3.3.14.5 3.3.14.6 3.3.14.7 3.3.14.8 Acetoxylations and Other Palladium-Promoted or Palladium-Catalyzed Reactions ( R. Jira) . . . . Historical and Economic Background . . . . . Chemical Background . . . . . . . . . . . Kinetics and Mechanism . . . . . . . . . . Commercial Processes . . . . . . . . . . . Transvinylation . . . . . . . . . . . . . . Acetoxylation in Organic Synthesis . . . . . . Other Palladium-Promoted or Palladium-Catalyzed Reactions . . . . . . . . . . . . . . . . . Conclusions . . . . . . . . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .. . . . . . . .

. . . . .

1323 1323 1323 1325 1329 1331 1332 1333 1336 1341

441 .4.1.1 4.1.2 4.1.3 4.1.4 4.1.5

Epilogue

. . . . . . . . . . . . . . . . . . . .

Homogeneous Catalysis . Quo vadis? (W A . Herrmann. B. Cornils) . . . . . . . . . . . . . 1343 Immobilization of Homogeneous Catalysts Colloidal Organometallic Catalysts Stereoselective Catalysis

. . . . . . . . 1345 . . . . . . . . . . . 1347

Multicomponent and Multifunctional Catalysis

. . . . . . 1347 . . . . . . . . . . . . . . . 1348

Metals from Stoichiometric Reactivity to Catalytic Efficiency . 1351

XXX

Contents

4.1.6 4.1.7 4.1.8 4.1.9 4.1.10 4.1.11 4.1.12 4.1.13 4.1.14 4.1.15 4.1.16

Keys to Catalyst Mechanistic Knowledge and Theory . Design . . . . . . . . . . . . . . . . . . . . . .

1352

Catalyst PerformanceAVew Techniques to Generate and Activate Catalysts . . . . . . . . . . . . . . . . . . 1353 Organometallic Electrocatalysis and Biomimetic Catalysis New Chemical Feedstocks for Homogeneous Catalysis and Renewable Resources . . . . . . . . . . .

. .

1354

. . . . 1356

Catalysis under Supercritical Conditions and Supported by Ionic Liquids . . . . . . . . . . . . . . . . . . 1362 New Reactions, Improved Catalysts . . . . . . . . . . . 1365

. . . . . . . . Rare Earth Catalysts . . . . . . . . . . . . . . . . Organometallic Catalysts for Polymers . . . . . . . . . Catalyst Reactivation. Process. and Reactor Technology . . Final Closure . . . . . . . . . . . . . . . . . . . .A New Generation of Catalyst Ligands

. 1368 . 1369 . 1371 . 13751375 1383

Index

. . . . . . . . . . . . . . . . . . . . . . . . .

Contributors

Dr. Francine Agbossou-Niedercom Laboratoire de Catalyse de Lille UPRES-A CNRS 8010 Ecole Nationale SupCrieure de Lille C7 BP 108 F-59652 Villeneuve dAscq CedexFrance Tel: +33(0)3/2043-4927 Fax: +33(0)3/2043-6585 E-mail: [email protected] Prof. Dr. Howard Alper Department of Chemistry University of Ottawa 10, rue Marie Curie Ottawa, Ontario K1N 6NYCanada Tel: +1/613-564-2214 Fax : + 1/613-564-6703 PD Dr. Reiner Anwander Anorganisch-chemisches Institut der Technischen Universitat Munchen Lichtenbergstrafle 4 D-85747 Garching/Germany Tel: +49(0)89/289-13096 Fax: +49(0)89/289-13473 E-mail: reiner.anwander @ ch.tum.de Dr. Jan-Dirk Arndt BASF AG Chemicals Research and Engineering Abt. GCVC D-67056 Ludwigshafen/Germany Tel: +49(0)621/60-45345 Fax: +49(0)621/60-8607066 E-mail: [email protected] Dr. Michael Amdt-Rosenau Bayer AG Abt. KA-FuE-SE D-5 1538 Dormagen/Germany Tel: +49(0)2133/5 1-23352 Fax: +49(0)2 133/51-4034 E-mail: michael.arndt-rosenau.ma@ bayer-ag.de

Prof. Dr. Didier Astruc UniversitC de Bordeaux I Laboratoire de Chimie Organique et OrganomCtallique URA CNRS No 35 351, cours de la LibCration F-33405 Talence CCdexFrance Tel: +33/56846271 Fax: +33/56846646 Prof. Dr. Manfred Baems Institut fur Angewandte Chemie Berlin-Adlershof e. V. Rudower Chaussee 5 D- 12484 BerlidGermany Tel: +49(0)30/6392-4444 Fax: +49(0)30/6392-4454 E-mail: baems @aca.berlin.de Dr. Helmut Bahrmann RohstraBe 48 D-46499 Hamminkeln/Germany Tel: +49(0)2856-1450 Prof. Dr. Jean-Marie Basset Laboratoire COMS CPE-LYON 43, Boulevard du 11 Novembre 1918 F-69616 Villeurbanne Cedex/France Tel: +33/72413- 1792 Fax: +33/72413- 1793 E-mail: basset@comsl .cpe.fr Prof. Dr. Matthias Beller Institut fur Organische Katalyseforschung Universitat Rostock Buchbinderstrarje 5-6 D-18055 RostocWGemany Tel: +49(0)381/466-9313 Fax: +49(0)381/466-9324 E-mail: [email protected]

XXXIV

ContributorsDr. Werner Brijoux Max-Planck-Institut fur Kohlenforschung Postfach 101353 D-45466 Mulheim an der Ruhr/Germany Tel: +49(0)208/306-2360 Fax: +49(0)208/306-2983 E-mail: brijoux @ mpi-muelheim.mpg .de Dr. Johannes A. M. van Broekhoven Shell Research and Technology Centre Amsterdam Postbus 38000 NL-1030 BN Amsterdamhe Netherlands Tel: +31/20-6302667 Fax: +31/20-6304035 Prof. Dr. Henri Brunner Institut fur Anorganische Chemie der Universitat Regensburg UniversitatsstraBe 3 1 D-93053 RegensburgIGermany Tel: +49(0)941/943-4441 Fax: +49(0)941/943-4439 E-mail: henri.brunner @chemie.uni-regensburg.de Dr. Peter H. M. Budzelaar Shell Research and Technology Centre Amsterdam Postbus 38000 NL- 1030 BN A m s t e r d a d h e Netherlands Tel: +3 1/20-6302667 Fax: +3 1/20-6304035 Prof. Dr. Michel Chanon UniversitC dAix-Marseille Av. Escadrille-Normandie-Niemen F- 13397 Marseille Cedex 20France Tel: +33/91-670999 Fax: +33/91-288432 Prof. Dr. Peter Claus Institut fur Chemische Technologie TU Darmstadt PetersenstraSe 20 D-64287 Darmstadt/Germany Tel: +49(0)6151/16-5369 Fax : +49(0)6 151/16-4788 E-mail: claus @ct.chemie.tu-darmstadt.de

Dr. Claudio Bianchini Istituto per lo Studio della Stereochimica ed Energetica dei Composti di Coordinazione - CNR Via J. Nardi, 39 1-50132 Firenzehtaly Tel: +3905/524-5990 Fax: +3905/524-78366 E-mail: bianchin @ fi.cnr.it Dr. Hans-Ulrich Blaser Solvias AG Postfach CH-4002 BaseVSwitzerland Tel: +4161/686-6155 Fax : +4 161/686-6311 E-mail: [email protected] Prof. Dr. Ludwig L. Bohm Basell Polyolefine GmbH Industriepark Hochst, C 660 D-65926 FrankfudGermany Tel: +49(0)69/305-5887 Fax: +49(0)69/305-3305 E-mail: [email protected] Dr. Volker P. W. Bohm BASF AG Abt. GCB/K - M313 D-67056 LudwigshafedGermany Tel: +49(0)621/605-6721 Fax : +49(0)62 1/605-6116 E-mail: [email protected] Prof. Dr. Helmut Bonnemann Max-Planck-Institut fur Kohlenforschung Postfach 10 13 53 D-45466 Mulheim an der RuhdGermany Tel: +49(0)208/306-2374 Fax: +49(0)208/306-2983 E-mail: [email protected] Dr. Hans-Willi Bohnen Celanese GmbHmerk Ruhrchemie Abt. FOX Postfach 13 01 60 D-46 128 Oberhausen/Germany Tel : +49(0)208/693-220 1 Fax: +49(0)202/693-229 1 E-mail: HBohnen @celanese.de

Contributors Prof. Dr. Boy Comils KirschgartenstraBe 6 D-65719 HofheidGermany Tel: +49(0)6192/23502 Fax: +49(0)6192/23502 E-mail: Boy.Comils @t-online.de Prof. Dr. A. Demonceau CERM - Institut de Chimie B6 UniversitC de Liitge B-4000 Sart Tilman/Belgium Tel: +324/3663-495 Fax: +324/3663-497 E-mail : A.Demonceau @ulg.ac.be Dip1.-Chem. Karin Denk Anorganisch-chemisches Institut der Technischen Universitat Munchen LichtenbergstraBe 4 D-85747 Garching/Germany Tel: +49(0)89/289-13073 Fax: +49(0)89/289-13473 E-mail: [email protected] Prof. Dr. Eckhard Dinjus Institut fur Technische Chemie Forschungszentrum Karlsruhe GmbH Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen/Germany Tel: +49(0)7247/82-2400 Fax: +49(0)7247/82-2244 E-mail: eckhard.dinjus @itc-cpv.fzk.de Dr. Car10 Dinkel Bioorganic Chemistry of Signalling Molecules EMBL Meyerhofstrarje 1 D-69 117 Heidelberg/Germany Tel: +49(0)622 1/387-498 Fax: +49(0)622 1/387-206 E-mail: [email protected] Prof. Dr. Manfred Doring Institut fur Technische Chemie Forschungszentrum Karlsruhe GmbH Postfach 36 40 D-76021 Karlsruhe/Germany Tel: +49(0)7247/82-4385 Fax: +49(0)7247/82-2244 E-mail: [email protected]

XXXV

Prof. Dr. Karlheinz Drauz Degussa AG Abt. FC-FEA Rodenbacher Chaussee 4 D-63457 HanadGermany Tel: +49(0)618 1/59-2072 Fax : +49(0)6 18 1/5 9-3930 E-mail: [email protected] Dr. Claus Dreisbach Bayer AG Abt. CH-FCH-R&D-LSI D-5 1368 LeverkusedGermany Tel: +49(0)214/30-7 1039 Dr. Eite Drent Shell Research and Technology Centre Amsterdam Postbus 38000 NL- 1030 BN Amsterdamhe Netherlands Tel: +3 1/20-6302667 Fax: +3 1120-6304035 E-mail: Eite. [email protected] Dr. Markus Dugal Bayer AG Abt. PU-R-PI D-41538 Dormagen/Germany Tel: +49(0)2133/51-5443 Fax : +49(0)2 133/51-3244 E-mail : markus.dugal.md @ bayer-ag.de Dr. Anette Eckerle BASF AG Abt. ZOA/SE Gebaude C 100 D-67056 LudwigshafedGermany Tel: +49(0)621/60-94391 Fax: +49(0)621/60-74942 E-mail : anette.eckerle @ basf-ag .de Dr. Richard W. Fischer Sudchemie AG Waldheimer StraBe 13 D-83052 BruckmuhVGermany Tel: +01/502 634-6828 Fax: +OM02 634-7265 E-mail: [email protected]

XXXVI ContributorsDr. Roland Fornika Degussa AG Stockhausen Superabsorber Acrylic Monomers Marl Paul-Baumann-StraBe 1 D-45764 MarUGermany Tel: +49(0)2365/49-193 17 Fax: +49(0)2365/49-6980 E-mail: [email protected] Dr. Cornelia Fritze Basell Polyolefins Gebaude M214 Carl-Bosch-StraBe 38 D-67056 LudwigshafedGermany Tel: +49(0)621/6093008 Fax: +49(0)621/605 1501 E-mail: [email protected] Dr. Carl Dieter Frohning RegnitstraBe 50 D-46485 WeseVGermany Tel: +49(0)28 1/56851 Fax: +49(0)281/854-9158 E-mail : Frohning @ cityweb.de Dr. Dieter Gleich Physikalisch-chemisches Institut Universitat Zurich WinterthurstraBe 190 CH-8057 ZuricWSwitzerland E-mail : gleich @ pci.unizh.ch Dr. Yuri Goldberg Apotex Inc. Weston, Ontario M9L 1T6/Canada Dr. Michelle Groarke Synetix, PO Box 1 Belasis Avenue Billingham, Cleveland TS23 1LB Great Britain Dr. Harald Groeger Degussa AG Project House Biotechnology Rodenbacher Chaussee 4 D-63457 Hanau-Wolfgang/Germany Tel: +49(0)6181/59-6401 Fax : +49(0)6 18 1159-2961 E-mail: [email protected] DipLChem. Christian W. K. Gstottmayr Anorganisch-chemisches Institut der Technischen Universitat Munchen LichtenbergstraBe 4 D-85747 Garching/Germany Tel: +49(0)89/289-13095 Fax: +49(0)89/289-13473 E-mail: [email protected] Dr. Mirko Handel Institut fur Organische Chemie und Biochemie der Universitat Bonn Gerhard-Domagk-StraBe 1 D-53121 Bonn Tel: +49(0)228/73-5673 Fax: +49(0)228/73-5662 Dr. Shohei Hashiguchi Takeda Chemical Industries Pharmaceutical Research Division 2-17-85, Jusohonmachi, Yodogawa-ku Osaka 532-8686/Japan Tel: +81(06)6300-6719 Fax: +81(06)6300-6206 E-mail: Hashiguchi-Shohei@ takeda.co.jp Dr. Jochem Henkelmann BASF AG Chemicals Research and Engineering Abt. GCI/C - M311 D-67056 Ludwigshafen/Germany Tel: +49(0)621/60-45011 Fax: +49(0)621/60-45044 E-mail: [email protected] Prof. Dr. Wolfgang A. Henmann Anorganisch-chemisches Institut der Technischen Universitat Munchen LichtenbergstraBe 4 D-85747 Garching/Germany Tel: +49(0)89/2891-3081 Fax: +49(0)89/2891-3473 E-mail: secretariat.ac @ch.tum.de Dr. Jurgen Herwig Degussa AG B-HP-FEA 15, Bau 1324-PB 16 D-45764 MallGermany Tel: +49(0)2365/49-86395 Fax: +49(0)2365/49-5992 E-mail : juergen.herwig @ degussa.com

Contributors XXXVIIProf. Dr. Diethard Hesse Institut fur Technische Chemie der Universitat Hannover CallinstraBe 3 D-30 167 Hannover/Germany Tel: +49(0)5 11/762-2269 Fax: +49(0)5 11/762-3004 E-mail: [email protected] Prof. Dr. Andreas Heumann UniversitC dAix-Marseille Av. Escadrille-Normandie-Niemen F-13397 Marseille Cedex 20Prance Tel: +33/91288278 Fax: +33/91027776 Dr. Wolfgang Hieringer Theoretical ChemistryPEW Vrije Universiteit Amsterdam De Boelelaan 1083 NL- 1081 HV A m s t e r d a d h e Netherlands Tel: +31(0)20/4447616 Fax: +31(0)20/4447629 E-mail : hieringr @chem.vu.nl Dr. Charles C. Hobbs, Jr. Celanese AG Corpus Christi Technical Center P. 0. Box 9077 Corpus Christi, TX 78469LJSA Tel: +1/512-2424000 Fax: +1/512-2424087 Dr. Arthur Hohn BASF AG Abt. ZAGIK Gebaude M 313 D-67056 LudwigshafedGermany Tel: +49(0)621/60-54315 Fax : +49(0)62 1/60-5 6 116 Prof. Dr. Istvin T. Horvith Eotvos University Department of Organic Chemistry Pizminy PCter sCtiny 1/A H-1117 Budapest/Hungary Tel: +361/209-0590 Fax: +361/209-0607 E-mail : ithorvath @ compuserve.com Dr. Ralf Hoss Siegfried AG Untere BriihlstraBe 4 CH-4800 ZofingedSwitzerland Tel : +41/62-746-1282 Fax : +4 1/62-746-1101 Dr. Willem W. Jager Shell Research and Technology Centre Amsterdam Postbus 38000 NL- 1030 BN A m s t e r d a f l h e Netherlands Tel: +3 1/20-6302667 Fax: +3 1/20-6304035 Dr. Jorg-Dietrich Jentsch Bayer AG Uerdingen Abt. OC-P UER 1 Gebaude R 34 RheinuferstraBe 6-9 D-47829 Krefeld/Germany Tel: +49(0)215 1/88-7885 Fax: +49(0)215 1/88-4853 Dr. Reinhard Jira Formerly: Wacker-Chemie GmbH Private address: KabastastraBe 9 D-8 1243 MunchenlGermany Tel + Fax: +49(0)89/831467 Prof. Dr. Peter W. Jolly Max-Planck-Institut fur Kohlenforschung Postfach 101353 D-45466 Mulheim an der RuhdGermany Tel: +49(0)208/306-1 Fax: +49(0)208/306-2980 Prof. Dr. Ferenc Jo6 Institute of Physical Chemistry Kossuth Lajos University H-4010 DebrecedHungary Tel: +36/52- 16-666 Fax: +36/52- 10-936

XXXVIII ContributorsProf. Dr. Philippe Kalck Laboratoire de Catalyse Chimie Fine et Polymkres Ecole Nationale SupCrieure des IngCnieurs en Arts Chimiques et Technologiques 118, route de Narbonne F-3 1077 Toulouse Cedex 4France Tel: +335/6288-5690 Fax: +335/6288-5600 E-mail: [email protected] Prof. Dr. Walter Kaminsky Institut fur Technische und Makromolekulare Chemie Universitat Hamburg BundesstraBe 45 D-20146 Hamburg/Germany Tel: +49(0)40/42838-3 162 Fax: +49(0)40/42838-6008 E-mail : kaminsky @ chemie.uni-hamburg.de Dr. Jan J. Keijsper Shell Research and Technology Centre Amsterdam Postbus 38000 NL-1030 BN A m s t e r d a d h e Netherlands Tel: +31/20-6302667 Fax: +31/20-6304035 Dr. Roland Kessinger BASF AG Chemicals Research and Engineering Abt. GCUC D-67056 LudwigshafedGerrnany Tel: +49(0)621/60-79863 Fax: +49(0)62 1/60-8607213 E-mail: [email protected] Dr. Alexander Klausener Bayer AG Uerdingen Abt. OC-P UER 1, Geb. R 34 RheinuferstraBe 6-9 D-47829 KrefeldlGermany Tel: +49(0)2151/88-7885 Fax : +49(0)2 15 1/8 8-4853 Prof. Dr. John F. Knifton Huntsman Corp. P. 0. Box 15 730 Austin, TX 78761NSA Tel: +1/512-459-6543 Fax: +1/5 12-483-0925 Dr. Daniel Koch Bayer AG Abt. PU-R-PI D-41538 DormagerdGermany Tel: +49(0)2133/5 1-8104 Fax: +49(0)2133/5 1-3244 E-mail: [email protected] Dr. Howard Frederick (Fred) Koch Celanese Chemicals 1901 Clarkwood Rd. Corpus Christi, TX 78410AJSA Tel: +1/3612424016 Fax: +1/361242 4087 E-mail: [email protected] Dr. Christian W. Kohlpaintner Celanese Chemicals Americas 1601 West LBJ Freeway Dallas, TX 75234-6034LJSA Tel: +1/9724434416 Fax: +1/972 443 3070 E-mail: [email protected] Prof. Dr. Udo Kragl Universitat Rostock FB Chemie - Technische Chemie Albert-Einstein-StraBe 3A D- 18059 RostocMGermany Fax: +49(0)381/498-6450 E-mail: [email protected] Dr. Steffen Krill Degussa AG Abt. FA-PT Postfach 13 45 D-6340 3 HanadGermany Tel: +49(0)618 1/59-4378 Fax: +49(0)6181/59-4631 E-mail: [email protected]

ContributorsPD Dr. F.E. Kiihn Anorganisch-chemisches Institut der Technischen Universitat Miinchen LichtenbergstraBe 4 D-85747 Garching/Germany Tel: +49(0)89/289- 13174 Fax: +49(0)89/289- 13473 E-mail: fritz.kuehn @ ch.tum.de Prof. Dr. Walter Leitner Max-Planck-Institut fur Kohlenforschung Postfach 10 13 53 D-45466 MiilheidGemany Tel: +49(0)208/306-2500 Fax: +49(0)208/306-2993 E-mail: [email protected] Prof. Dr. Bogdan Marciniec Department of Organometallic Chemistry Faculty of Chemistry Adam Mickiewicz University Grunwaldzka 6 PL-60-780 PoznanPoland Tel: +48/61-65-96-51 Fax: +48/61-65-95-68 E-mail: [email protected] Dr. Andrea Meli Istituto per lo Studio della Stereochimica ed Energetica dei Composti di Coordinazione - CNR Via J. Nardi, 39 1-50132 Firenzehtaly Tel: +3905/524-5990 Fax: +3905/524-78366 E-mail : meli @ fi.cnr.it Prof. Dr. Ilya I. Moiseev N. S. Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences Leninski Prospect 3 1 117907 Moscow GSP-1Russia Tel: +095/952-1203 Fax: +095/954-1279 E-mail: [email protected]

XXXIX

Dr. Ir. Johannes C. Mol Institute of Molecular Chemistry Faculty of Science University of Amsterdam Nieuwe Achtergracht 166 NL- 1018 WV A m s t e r d a d h e Netherlands Tel: +31/20-525690 Fax: +31/20-525656 E-mail: [email protected] Dipl.-Chem. Michael Muehlhofer Anorganisch-chemisches Institut der Technische Universitat Miinchen LichtenbergstraBe 4 D-85747 Garching/Germany Tel: +49(0)89/2891-3080 Fax : +49(0)89/289 1-3473 Dr. Patrik Miiller Basell Polyolefins Usine de Lamotte BP1 F-60350 Trosly-BreuiWrance Tel: +33344/853-853 Fax: +33344/853-801 E-mail: [email protected] Dr. Vince Murphy Symyx Technologies 3 100 Central Expressway Santa Clara, CA 9505 1/USA Tel: +1/408 746 2000 Dr. Guido Naberfeld Bayer AG Abt. PU-R-PP D-4 1538 Dormagen/Gemany Tel: +49(0)2133/5 1-3718 Fax: +49(0)2133/5 1-3244 E-mail: [email protected] Dr. Gerald P. Niccolai Laboratoire COMS CPE - LYON 43, Boulevard du 11 Novembre 1918 F-69616 Villeurbanne Cedexprance Tel: +33/7243-1798 Fax: +33/7243-1795

XL

ContributorsDr. Peter Panster Degussa AG Rodenbacher Chaussee 4 D-63457 HanadGermany Tel: +49(0)618 1/59-3763 Fax: +49(0)618 1/59-3834 E-mail: [email protected] Dr. Stephan Pitter Institut fur Technische Chemie Forschungszentrum Karlsruhe GmbH Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen/Germany Tel: +49(0)7247/82-2308 Fax: +49(0)7247/82-2244 E-mail: [email protected] Dr. Benoit Pugin Solvias AG PO Box CH-4002 BaseVSwitzerland Tel : +4 161/686-6335 Fax: +416 1/686-6311 Dr. Luigi Resconi Basell Polyolefins P.le P.to Donegani, 12 1-44110 Ferrardtaly Tel: +39(0)532/468-368 Fax: +39(0)532/467-780 E-mail: [email protected] Dr. Freimund Rohrscheid Amselweg 24 D-65779 KelkheindGermany Tel: +49(0)6195/63260 Dr. Lucien Saussine Institut Francais du PCtrole 1 et 4, Avenue de Bois PrCau F-92852 Rueil-Malmaison CedexErance Tel: +331/4752-6596 Fax: +331/4752-6055 E-mail : luciensaussine @ ifp.fr

Dr. Frank G. M. Niele Shell Research and Technology Centre Amsterdam Postbus 38000 NL-1030 BN A m s t e r d a d h e Netherlands Tel: +3 1/20-6302667 Fax: +31/20-6304035 Prof. Dr. A. F. Noels CERM - Institut de Chimie B6 UniversitC de Likge B-4000 Sart Tilmaaelgium Tel: +324/3663-463 Fax: +324/3663-497 E-mail: AENoels @ulg.ac.be Prof. Dr. Bruce M. Novak Department of Polymer Science and Engineering University of Massachusetts P. 0. Box 34530 Amherst, MA 01003-4530RJSA Tel: +1/4 13-545-2160 Fax: + 1/413-545-0764 Prof. Dr. Ryoji Noyori Department of Chemistry Graduate School of Science Nagoya University Chikusa, Nagoya 464-8602/Japan Tel: +81/52-789-2956 Fax: +81/52-783-4177 E-mail: [email protected] Prof. Dr. Gunther Oehme Institut fur Organische Katalyseforschung Universitat Rostock BuchbinderstraBe 5-6 D- 18055 RostocWGermany Tel: +49(0)38 1/466-9330 Fax: +49(0)38 1/466-9324 E-mail: [email protected] Dr. HClkne Olivier-Bourbigou Institut Francais du PCtrole 1 et 4 Avenue de Bois PrCau F-92852 Rueil-Malmaison Cedex/France Tel: +331/4752-6779 Fax: +331/4752-6055 E-mail : helene.olivier-bourbigou @ ifp. fr

Contributors Dr. David A. Schiraldi Hoechst Celanese Corporation P. 0. Box 32414 Charlotte, NC 28232-6085mSA Tel: +11704-554-3348 Fax: +1/704-554-3293 E-mail: [email protected] Prof. Dr. Gunter Schmid Institut fur Anorganische Chemie Universitat-GH Essen UniversitatsstraBe 5-7 D-45 141 Essen/Germany Tel: +49(0)201/183-2401 Fax: +49(0)201/183-2402 Dr. Rochus Schmid Anorganisch-chemisches Institut der Technischen Universitat Munchen LichtenbergstraBe 4 D-85747 Garching/Germany Tel: +49(0)89/2891-3174 Fax: +49(0)89/289 1-3473 E-mail : rochus. schmid @ ch.tum.de Dr. Horst Schneider Borealis GmbH DanubiastraRe 21-25 A-2320 SchwechatJAustria Tel: +43 1/70111-4591 Fax: +431/70111-4141 E-mail: [email protected] Dr. Carsten Schultz Bioorganic Chemistry of Signalling Molecules EMBL MeyerhofstraBe 1 D-69 117 Heidelberg/Germany Tel : +49(0)622 1/387-210 Fax: +49(0)6221/387-206 E-mail: carsten.schultz @embl-heidelberg.de Prof. Dr. Ayusman Sen Department of Chemistry The Pennsylvania State University 152 Davey Laboratory University Park, PA 16802-630011JSA Tel: +1/814-863-2460 Fax: +1/814-863-8403 E-mail: [email protected] Dr. Philippe Serp Laboratoire de Catalyse Chimie Fine et Polymkres Ecole Nationale Suptrieure des Ingtnieurs en Arts Chimiques et Technologiques 118, route de Narbonne F-31077 Toulouse Cedex 4France Tel: +335/6288-5681 Fax: +335/6288-5600 E-mail: [email protected] Prof. Dr. K. Barry Sharpless Department of Chemistry The Scripps Research Institute 10666 North Torrey Pines Road La Jolla, CA 92037KJSA Tel: +1/6 19-554-7005 Fax: + 1/619-554-6406

XLI

Prof. Dr. Roger A. Sheldon Laboratory for Organic Chemistry and Catalysis Delft University of Technology Julianalaan 136 NL-2628 BL Delft/The Netherlands Tel: +31/15-782675 Fax : +3 1/15-781415 E-mail: [email protected] Dr. Christian Six Bayer AG Abt. PU-P-TDI-DOR-TDD D-4 1538 DormagedGermany Tel: +49(0)2 133/51-8607 Fax: +49(0)2133/5 1-4912 E-mail: [email protected] Dr. Felix Spindler Solvias AG Postfach CH-4002 BaseVSwitzerland Tel : +4 161/686-6308 Fax : +4161/686-6311

XLII

Contributors

Dr. Marco Stoeckl Anorganisch-chemisches Institut der Technischen Universitat Miinchen LichtenbergstraDe 4 D-85747 Garching/Germany Tel: +49(0)89/741-60966 Dr. Thomas Strassner Anorganisch-chemisches Institut der Technischen Universitat Miinchen Lichtenbergstral3e 4 D-85747 Garching/Germany Tel: +49(0)89/289-13 174 Fax: +49(0)89/289-13473 E-mail : thomas. strassner (3ch.tum.de Dr. Gerd Sylvester An der Steinriitsch 5A D-5 1375 Leverkusen/Germany Tel : +49(0)214/54419 Dr. Rudolf Taube Fuchsienweg 17 D-06118 Halle/Saale/Germany Tel + Fax: +49(0)345/523-0858 Dr. Paul1 Torrence Celanese Ltd. PO Box 9077 Corpus Christi, TX 78469-9077LJSA Tel: +1/3612424000 Fax: +1/3612424161 E-mail: gptonence @ celanese.com Dr. Howard W. Turner Symyx Technologies 3 100 Central Expressway Santa Clara, CA 95051RJSA Tel: +1/408 746 2000 Dr. Michael N. Vargaftik N. S. Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences Leninski Prospect 3 1 117907 Moscow GSP-1Russia Tel: 095/952-1203 Fax: 095/954-1279

Prof. Dr. LBszlo Vigh Institute of Biochemistry Biological Research Centre Hungarian Academy of Sciences P. 0. Box 521 H-6701 Szeged, Temesvhri k t 62/Hungary r. Tel: +36/62-432-232 Fax: +36/62-433-506 E-mail: VIGH @ nuc1eus.SZBK.U-SZEGED.hu Francesco Vizza Istituto per lo Studio della Stereochimica ed Energia dei Composti di Coordinazione - CNR Via J. Nardi, 39 1-50132 Firenze/Italy Tel: +3905/524-5990 Fax: +3905/524-78366 E-mail: [email protected] Prof. Dr. Fritz Vogtle Institut fur Organische Chemie und Biochemie der Universitat Bonn Gerhard-Domagk-StraBe 1 D-53 121 BondGermany Tel: +49(0)228/733495/6 Fax: +49(0)228/735662 E-mail: voegtle@uni-bomde Prof. Dr. Dieter Vogt Schuit Institute of Catalysis Eindhoven University of Technology PO Box 513 NL-5600 MB Eindhovemhe Netherlands Tel: +3 1(0)40/247-2483 Fax: +3 1(0)40/245-5054 E-mail: [email protected] Prof. Dr. Herbert Waldmann Max-Planck-Institut fur Molekulare Physiologie Abt. Chemische Biologie Otto-Hahn-Stral3e 11 D-44227 Dortmund/Germany Tel: +49(0)231/133-2401 Fax: +49(0)231/133-2499 E-mail: herbert.waldmann @ mpi-dortmund .mpg.de

Contributors Dr. T. Weskamp Thiirmchenswall 35 D-50668 Koln/Germany Tel : +49(0)22 1/122-261 E-mail : tweskamp @ yahoo.de Dr. Stefan Wieland Degussa AG Postfach 13 45 D-6340 3 HanadGermany Tel: +49(0)6181/59-4154 Fax: +49(0)618 1/59-4691 Prof. Dr. Giinther Wilke Max-Planck-Institut fur Kohlenforschung Postfach 10 13 53 D-45466 Miilheim an der RuhdGermany Tel : +49(0)208/3061 Dr. Tom Yamano Takeda Chemical Industries Pharmaceutical Research Division 2- 17-85, Jusohonmachi, Yodogawa-ku Osaka 532-8686/Japan Tel: +81(06)6300-6719 Fax: +81(06)6300-6206 E-mail: [email protected] Dr. Noriaki Yoshimura Chemical Research Laboratory Kuraray Co., Ltd. 2045-1 Sakazu, Kurashiki 710 OkayamdJapan Tel: +81/86-423-2271 Fax: +81/86-422-4851

XLIII

Dr. Thomas Zevaco Institut fur Technische Chemie Forschungszentrum Karlsruhe GmbH Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen/Germany Tel: +49(0)7247/82-4126 Fax: +49(0)7247/82-2244 E-mail: [email protected] Dr. Jochen P. Zoller Vitacert GmbH WestendstraBe 199 D-80686 MiinchenlGermany Tel: +49(0)89/579 1-1909 Fax: +49(0)89/5791-19 15 E-mail: [email protected]

Applied Homogeneous Catalysis with Organometallic Edited by Boy Cornils & Wolfgang A. Herrmann Wiley-VCH Verlag GmbH, 2002

1Introduction

Applied Homogeneous Catalysis with Organometallic Edited by Boy Cornils & Wolfgang A. Herrmann Wiley-VCH Verlag GmbH, 2002

IntroductionBoy Cornils, WolfgangA. Herrmann

Le nombre des corps capables de produire des catalyses est trbs grand, et ne cesse de saugmenter par suite de progrits de la chimie.* [4d] Paul Sabatier (Toulouse, 1913)

Before 1938, when the landmark 0x0 synthesis was discovered by Otto Roelen (hydroformylation, Roelen reaction), homogeneous catalysis had received only occasional mention [l-31. Sabatier and Mittasch [4a, 51 also made only passing reference to homogeneous catalysis. It was probably Sabatier (the discoverer of nickel-catalyzed hydrogenation) who gave a first rough classification of catalytic reactions: homogeneous systems, where all the compounds present, or at least one of them, are miscible with the catalysts (e. g., ferments, Friedel-Crafts catalysts); and heterogeneous systems, that are based upon a solid catalyst which is in contact with a reactive liquid or gaseous phase. The effect takes place either on the surface of the catalyst if it is compact . . . or in its entire mass if it is porous . . . [4c]. Mittasch in his notable Kurze Geschichte der Katalyse in Praxis und Theorie (Short History of Catalysis in Practice and Theory) mentioned homogeneous catalysis only incidentally [5a]. At that time, the term catalysis in its general usage was inseparably linked to large-volume industrial chemical syntheses (ammonia synthesis, coal hydrogenation, fat hardening, Fischer-Tropsch synthesis, mineral oil processing). Catalysis was thus synonymous with heterogeneously catalyzed reactions. Except for exotic applications (Grignard reagents, the Mond process, Frankland organozinc reactions) organometallic compounds were not accorded any technical or commercial importance. Figure 1 demonstrates this clearly: after an initial period of synthetic organometallic chemistry the discoveries of Roelen, Reppe, Ziegler, and others sparked off a second, industrially oriented period of organometallic chemistry. Only since the 1950s has homogeneous catalysis been an established field of organometallic chemistry and it has now become a central feature within the chemical sciences scenario. It is hence not surprising that Otto Roelens initial investigations into homogeneous coordination catalysts in 0x0 synthesis proved a source of much frustration (reviewed in [3]). It was only the work of Adkins and Krsek [6], Storch et al. [7], Berty and Mark6 [8] and Natta 191 that confirmed 0x0 catalysts to be homogeneous in nature. The intense activity associated with hydroformylation and 0x0

* The number of bodies that effect catalytic interactions is very large, and is still increasingincessantly with the progressive development of chemistry [4b,d].

4

I Introduction

ORGANOMETALLIC CHEMISTRYR. Noyori (1994): supercritical fluid (COP)in homogeneous catalysis W. A. Herrmann (1994): N-heterocyclic carbenes as ligands in catalysis J.-M. Basset (>1991): surface organometallic chemistry W. KaminskylH. H. Brintzinger (1985): ansa metallocenes for isotactic C3H,-polymerization R. Hoffmann (> 1973): theory, isolobal analogy E. 0 . Fischer (1973): metal-carbyne complexes R. F. Heck, T. Mizoroki (1971172): c - ) Pd-catal. "Heck coupling" G. Wilkinson (1965): Rh-phosphine complexes as catalysts E. 0. Fischer (1964): metal-carbene complexes F. A. Cotton (1962): metal-metal multiple bondsT. H. Cofield (1957): alkyi migration M P. L. Pauson I S. A. Miller (1951):

ORGANOMETALLIC CATALYSISCommissioning of first plants with metallocenes as catalysts for PP production (1995) BP(1992): introduction of indium in acetic acid Nitto (1985): first enzymatic manufacture of acrylamide from C2H41C0 TENNESSEE EASTMAN (1983): Coal + acetic anhydride Enantioselective catalysis (> 1980, e.g., H. Nozaki, R. Noyori, B. Sharpless) E. G. Kuntz, 8. Cornils (1980): two-phase catalysis (hydroformylation), RUHRCHEMIE

+ CO

c ) -

Fe(C5H5)2, recognition of %-complexes first

W. Hieber (1931138): HCo(C0)4, H2Fe(C0)4 hydrido metalcarbonyls

c ) -

(1968): carbonylation of CH30H T. Alderson I DuPONT (1961): RhCI3catalyzed butadienelethylene coupling G. Wilke (1959): Ni-catalyzed trimerization of butadiene J. Smidt, W. Hafner, R. Jira I WACKER (1 958): Pd-catalyzed ethylene oxidation STANDARD OIL OF INDIANA (1957): olefin metathesis G. Natta (1955): isotactic polymerization of propene K. Ziegler (1953): catalytic low-pressure polymerization of ethylene

T. Midgeley, T. A. Boyd (1922): Pb(C2H5)4, *-* industrial antiknocking agent P. Barbier, V. Grignard (1899): RMgX L. Mond (1890): Ni(CO)4, first binary metal carbonyl

E. Frankland (1849): Z ~ I ( C H ~ ) ~ , first metal alkyl

, *c ) -

:

0. Roelen I RUHRCHEMIE (1938): hydroformylation

*:

W. C. Zeise (1827): K[(C2H4)PtC13], first metal olefin complex

Cadet de Gassicourt (1760): "liqueur fumante de I'arsenique", first organometallic compound (without recognition of structure)

Figure 1. Synoptic presentation of the development of organometallic chemistry and homogeneous catalysis.

I Introduction

5

catalysts, with carbonylations as described by Reppe [ 101, and with Zieglers borderline case, the low-pressure polyethylene synthesis, highlighted the recognition of this new special type of catalysis (more historical information is given in [ 11-1 31 and in the historical glossary). Table 1, showing the strengths and weaknesses of both methods, makes it easy to differentiate homogeneous from the older, successful, heterogeneous catalysis [ 14-1 61.Table 1. Homogeneous versus heterogeneous catalysis.Homogeneous catalysis Activity (relative to metal content) Selectivity Reaction conditions Service life of catalysts Sensitivity toward catalyst poisons Diffusion problems Catalyst recycling Variability of steric and electronic properties of catalysts Mechanistic understanding High High Mild Variable Low None Expensive Possible Plausible under random conditions Heterogeneous catalysis Variable Variable Harsh Long High May be important Not necessary Not possible More or less impossible

The information given in Table 1 is discussed in numerous publications: a few typical ones are recommended for further details [17-231. Despite the fact that heterogeneous catalysis has advantages in application (not without good reason do the most important mineral oil processing methods involve heterogeneous catalysis), the great challenge presented by homogeneous catalysis is the far better mechanistic understanding of its micro processes (catalytic cycles), with the possibility of influencing steric and electronic properties of these molecularly defined catalysts. It is thus possible to tailor optimized homogeneous catalysts to the particular problem involved, by adapting their chemical and structural basis: this is doubtless a clear advantage over heterogeneous catalysis, which is said to be an alchemists black art [24] even though this statement is vehemently disputed [25]. The two philosophies are typically exemplified by hydrofonnylation (eq. (1)) [26] on the one hand and the Fischer-Tropsch reaction (eq. (2)) [7] on the other. They both represent catalytic carbon monoxide chemistry: in the first case the molecular structure of the homogeneous catalyst (Structures 1 and 2) is precisely known to be trigonal-bipyramidal, ds-Rh.

6

I Introduction

1

2

By way of contrast, Fischer-Tropsch chemistry requires heterogeneous catalysts of structures close to 3 and 4, of which the surface structures are not precisely known, and for which therefore there is no clear molecular mechanism known [27]:

3

4

Organometallic surface science [28] seems to promise a bridge function between the classical antipodes: by using well-defined molecular starting compounds such as metal alkyls, and making them react in a defined way with surface species (e. g., = SiOH groups), molecularly dispersed but imm