Applications of Laplace Transforms Instructor: Chia-Ming Tsai Electronics Engineering National Chiao...

36
Applications of Laplac e Transforms Instructor: Chia-Ming Tsai Electronics Engineering National Chiao Tung Universit y Hsinchu, Taiwan, R.O.C.

Transcript of Applications of Laplace Transforms Instructor: Chia-Ming Tsai Electronics Engineering National Chiao...

Applications of Laplace Transforms

Instructor: Chia-Ming TsaiElectronics Engineering

National Chiao Tung UniversityHsinchu, Taiwan, R.O.C.

Contents• Introduction

• Circuit Element Models

• Circuit Analysis

• Transfer Functions

• State Variables

• Network Stability

• Summary

Introduction• To learn how easy it is to work with circuits i

n the s domain

• To learn the concept of modeling circuits in the s domain

• To learn the concept of transfer function in the s domain

• To learn how to apply the state variable method for analyzing linear systems with multiple inputs and multiple outputs

• To learn how the Laplace transform can be used in stability analysis

Circuit Element Models

• Steps in applying the Laplace transform:

– Transform the circuit from the time domain to the s domain (a new step to be discussed later)

– Solve the circuit using circuit analysis technique (nodal/mesh analysis, source transformation, etc.)

– Take the inverse Laplace transform of the solution and thus obtain the solution in the time domain

s-Domain Models for R and L

)()(

)()(

)()(

resistor, aFor

sRIsV

tRiLtvL

tRitv

s

isV

sLsI

LissLIissILsV

dt

tdiLtv

)0()(

1)(or

)0()()0()()(

)()(

inductor,an For

Time domain s domain s domain

s-Domain Model for C

s

vsI

sCsV

CvssCVvssVCsI

dt

tdvCti

)0()(

1)(or

)0()()0()()(

)()(

capacitor, aFor

Time domain s domain s domain

Summary

s

isV

sLsI

LissLIsV

)0()(

1)(

)0()()(

s

vsI

sCsV

CvssCVsI

)0()(

1)(

)0()()(

For inductor: For capacitor:

Summary

Element Z(s)

Resistor R

Inductor sL

Capacitor 1/sC

*Assuming zero initial conditions

• Impedance in the s domain– Z(s)=V(s)/I(s)

• Admittance in the s domain– Y(s)=1/Z(s)=V(s)/I(s)

Example 1

0 2sin2

3)(

)2()4(

2

2

3

188

3)(

188

3

4

22

22

232

ttetv

s

sssIsV

sssI

to

o

03

53

033

11

: analysismesh Applying (2)

31)F

3

1(

)H 1(

1

)(

:domain thetion toTransforma (1)

21

21

Is

sIs

Is

Iss

ssCZ

ssLZs

tu

s

Example 2

V 5)0( ov

Example 2 (Cont’d)

)()1510(

15)()2(

10)()1(

method, residue theApplying

2

2

1

||

tuee(t)v

sVsB

sVsA

tto

so

so

21)2)(1(

3525

10105.02

10

)1(10

: nodeat analysis nodal Applying

s

B

s

A

ss

sV

s

VVVs

a

o

ooo

Example 3

0)0( Iio

L

R

R

Ve

R

VIti

LRs

RVI

s

RV

sLRs

V

sLR

LIsI

s

VLIsLRsI

t

, )(

)()(

0))((

0/00

000

00

00

Circuit Analysis

• Operators (derivatives and integrals) into simple multipliers of s and 1/s

• Use algebra to solve the circuit equations

• All of the circuit theorems and relationships developed for dc circuits are perfectly valid in the s domain

Example 1

)(3035)(

2

30

1

35

)2)(1(

540

0)1.0(1

)0()0(

5

0

310

21

1

111

tueetv

ssss

sV

s

svV

s

i

s

VVV

tt

s

V 5)0(

A 1)0(

10

v

is

Vs

Example 2

)(3035

)()101030()51030(

)()()()(

)(105)(

2

10

1

5

)2)(1(

5

)(1010)(

2

10

1

10

)2)(1(

10

)(3030)(

2

30

1

30

)2)(1(

30

:ionsuperposit usingby 1 example Solved

2

2

321

23

3

22

2

21

1

tuee

tuee

tvtvtvtv

tueetv

ssss

sV

tueetv

ssssV

tueetv

ssssV

tt

tt

tt

tt

tt

Example 3Assume that no initial energy is stored.(a)Find Vo(s) using Thevenin’s theorem.(b)Find vo(0+) and vo() by apply the initial- and final-value theorems.(c) Determine vo(t).

=10u(t)

Example 3: (a)

)4(

12550

325

5

5

5

32)32(50

50

)32(

50

2 ,

32

1002

and

02

0

5

0)2(10

:analysis nodal Applying

use , find To

50105

11

1

11

ssssV

ZV

sss

s

I

VZ

sss

VI

sV

s

VI

s

VIV

s

IVZZ

ssVV

ThTh

o

sc

ocTh

x

x

x

scocThTh

Thoc

Example 3: (b), (c)

4

125

4

125lim)(lim)(

gives theoremvalue-final The

04

125lim)(lim)0(

gives theoremvalue-initial The

)4(

125)(

:(b)Solution

00

sssVv

sssVv

sssV

so

so

so

so

o

)()1(25.31)(

25314

125)()4(

25314

125)(

method, residue theApplying

4)4(

125)(

:(c)Solution

4

4

0

tuetv

.sVsB

.ssVA

s

B

s

A

sssV

to

so

so

o

|

|

Transfer Functions• The transfer function H(s) is the ratio of the out

put response Y(s) to the input excitation X(s), assuming all initial conditions are zero.

)( of transformLaplace the:)(

network theof response impulseunit the: )(

impliesIt

)()(or )()( Thus

1)( , )()( If

thsH

th

thtysHsY

sXttx

)()()( , )(

)()( sHsXsY

sX

sYsH

Transfer Functions (Cont’d)• Two ways to find H(s)

– Assume an input and find the output

– Assume an output and find the input (the ladder method: Ohm’s law + KCL)

• Four kinds of transfer functions

)(

)(Admittance)( ,

)(

)(Impedance)(

)(

)(gainCurrent )( ,

)(

)(gain Voltage)(

sV

sIsH

sI

sVsH

sI

sIsH

sV

sVsH

i

o

i

o

Example 1

)( 4sin40)(10)(

4)1(

44010

4)1(

)1(10

)(

)()(

4)1(

)1(10)( ,

1

1)(

:Solution

response. impulse its andfunction transfer theFind

).()( when )( 4cos10)( If

2222

2

22

tutetth

ss

s

sX

sYsH

s

ssY

ssX

tuetxtutety

t

tt

Example 2

)212()4(

)4(

division,current By

:Solution

02 ss

IsI

1122

)4(4

)(

)()(

216

)4(22

20

0

020

ss

ss

sI

sVsH

ss

IsIV

FindH(s)=V0(s)/I0(s).

Example 2 (The Ladder Method)

1122

)4(41)(

)4(4

1122

gives KCL Applying

)4(4

14

4

4

14

4

11

2

12

212 law, sOhm'By

V, 1Let

200

0

2

210

11

21

02

0

ss

ss

II

VsH

ss

ssIII

ss

s

s

VI

s

s

ssIV

VI

V

Example 3Find(a) H(s) = Vo/Vi,(b) the impulse response,(c) the response when vi(t) = u(t) V,(d) the response when vi(t) = 8cos2t V.

Example 3: (a), (b)

i

i

iab

abo

Vs

s

Vss

ss

Vs

sV

Vs

V

32

1

)2()1(1

)2()1(

)1(||11

)1(||11

1

division, By voltage

:Solution

)(5.0)(

23

1

2

1

32

1)(

3232

1

1

1

23 tueth

ssV

VsH

s

VV

s

s

sV

t

i

o

iio

Example 3: (c), (d)

V )(13

1)(

3

1 ,

3

1

23

23

2

1

)()()(

1)()()(

(c):Sol

23 tuetv

BA

s

B

s

A

ss

sVsHsVs

sVtutv

to

io

ii

V )(2sin3

42cos

25

24)(

4

2

3

4

423

1

25

24)(

25

64 ,

25

24 ,

25

24

423

423

4

)()()(4

8)(2cos8)(

(d): Sol

23

22

22

2

tuttetv

ss

s

ssV

CBA

s

CBs

s

A

ss

s

sVsHsVs

ssVttv

to

o

io

ii

State Variables• The state variables are those variables which,

if known, allow all other system parameters to be determined by using only algebraic equations.

• In an electric circuit, the state variables are the inductor current and the capacitor voltage since they collectively describe the energy state of the system.

State Variable Method

s variablestate

ngrepresenti

vectorstate the

)(

)(

)(

)(x

where

BzAxx

as arranged becan equation state The

2

1

n

tx

tx

tx

t

n

DzCxy

BzAxx

)(

)(

)(

)(

)(

)(

x 2

1

2

1

tx

tx

tx

dttdx

dttdx

dttdx

nn

)(

)(

)(

)(z 2

1

tz

tz

tz

t

m

)(

)(

)(

)(y 2

1

ty

ty

ty

t

p

State Variable Method (Cont’d)

DZ(s))BZ(A)IC(

DZ(s))CX()Y(

matrixidentity the:I

)BZ(A)I()X(

)BZ()A)X(I(

)BZ()AX()X(

, transformLaplace theapplying and

conditions initial zero Assuming

DzCxy

BzAxx

1

1

ss

ss

sss

sss

ssss

BAsICsH

sH

sH

D

D

C

B

A

DBAsICsZ

sYsH

1

1

)( )(

.)( ofr denominato

theof degree than theless is )(

ofnumerator theof degree theSo

. 0 cases,most In

matrix feedforwad

matrix output

matrix couplinginput

matrix system

where

)()(

)()(

How to Apply State Variable Method• Steps to apply the state variable method to circ

uit analysis:

– Select the inductor current i and capacitor voltage v as the state variables (define vector x, z)

– Apply KCL and KVL to obtain a set of first-order differential equations (find matrix A, B)

– Obtain the output equation and put the final result in state-space representaion (find matrix C)

– H(s)=C(sI-A)-1B

Network Stability• A circuit is stable if its impulse response h(t) is

bounded as t approaches ; it is unstable if h(t) grows without bound as t approaches .

• Two requirements for stability

– Degree of N(s) < Degree of D(s)

– All the poles must lie in the left half of the s plane

1n if )(lim

)(

)(

)(

)()( If 01

11

th

sD

sRksksksk

sD

sNsH

t

nn

nn

0 ifonly 0)( i

ttjtp iiii eee

Network Stability (Cont’d)• A circuit is stable when all the poles of its tr

ansfer function H(s) lie in the left half of the s plane.

• Circuits composed of passive elements (R, L, and C) and independent sources either are stable or have poles with zero real parts.

• Active circuits or passive circuits with controlled sources can supply energy, and can be unstable.

Example 1

LC

L

R

p

LCLRss

L

sCsLR

sC

V

VsH

s

o

12 where

1

1

1

1)(

0

20

22,1

2

(unstable) 0

:0For

(stable) 0

:0 , ,For

R

CLR

Example 2

sC

kRCsR

sCk

sCsCR

I

I

sCR

sCk

sCsCR

V

kIsC

II

sCR

sC

II

sCRV

i

i

2

111

ist determinan The

11

11

0

01

01

gives analysismesh Applying

2

2

2

1

11

2

21

RkCR

Rkp

CR

Rkp

2

02

operation, stableFor

2

asgiven is pole single the

, 0Let

2

2

Find k for a stable circuit.

Summary• The methodology of circuit analysis using Lapl

ace transform– Convert each element to its s-domain model– Obtain the s-domin solution– Apply the inverse Laplace transform to obtain the

t-domain solution

Summary• The transfer function H(s) of a network is the Lap

lace transform of the impulse response h(t)

• A circuit is stable when all the poles of its transfer function H(s) lie in the left half of the s plane.

)()()( , )(

)()( sHsXsY

sX

sYsH