Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf ·...

60
Applications of Kolmogorov complexity to classical and quantum computational complexity Habilitation à diriger des recherches Sophie Laplante LRI, Université Paris-Sud XI December 9, 2005

Transcript of Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf ·...

Page 1: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Applications of Kolmogorov complexity to classical and quantum

computational complexity

Habilitation à diriger des recherches Sophie Laplante

LRI, Université Paris-Sud XIDecember 9, 2005

Page 2: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Summary

• Context and overview of contributions

• Part I Foundations

• Time bounded Kolmogorov complexity

• Quantum Kolmogorov complexity

• Part II Applications

• Quantum query complexity lower bounds

• Formula size lower bounds

• Research projects

2

Page 3: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Computational complexity

3

Page 4: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Computational complexity

• Shannon (1949)

• defines circuits as a model of computation

• proposes circuit size as a measure of complexity

• poses the problem of finding an explicit function for which exponential size circuits are required.

3

Page 5: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Computational complexity

• Shannon (1949)

• defines circuits as a model of computation

• proposes circuit size as a measure of complexity

• poses the problem of finding an explicit function for which exponential size circuits are required.

! Current best lower bounds are 5n [LR01, IM02] (circuits) and n3 [Hås98] (formulae)

3

Page 6: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Computational complexity

• Shannon (1949)

• defines circuits as a model of computation

• proposes circuit size as a measure of complexity

• poses the problem of finding an explicit function for which exponential size circuits are required.

! Current best lower bounds are 5n [LR01, IM02] (circuits) and n3 [Hås98] (formulae)

• Asymptotic time complexity [HS65], P vs NP question [Edm65].

3

Page 7: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Computational complexity

• Shannon (1949)

• defines circuits as a model of computation

• proposes circuit size as a measure of complexity

• poses the problem of finding an explicit function for which exponential size circuits are required.

! Current best lower bounds are 5n [LR01, IM02] (circuits) and n3 [Hås98] (formulae)

• Asymptotic time complexity [HS65], P vs NP question [Edm65].

! Despite much effort, still no separation in sight

3

Page 8: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Lower bound techniques

• Significant separations have been achieved by diagonalization

“So many problems, so few machines...!”

• Many known techniques seem to be fundamentally information theoretic

“So much information, so little time...!”

4

Page 9: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

‣ K(“0101010101010101 ........”)≈ log(n)

‣ K(“ ........”)≈ n

K(x) is the length of the shortest program that prints x.

5

Kolmogorov complexity

n

K(x|y) is the length of the shortest program that prints x when given string y as auxiliary input.

Introduced by Solomonoff, Kolmogorov, and Chaitin (algorithmic information), in the 60s

Page 10: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Incompressibility

Fundamental tool for proving lower bounds:

• For any finite set A, ∃x ∈ A, K(x) ≥ log(#A)

(there are not enough short programs to describe all x in A)

Corresponding upper bound:

• For any finite set A, ∀x ∈ A, K(x) ≤ log(#A)

(suffices to give an index into the set A)

6

Page 11: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

7

Classical decision tree model

x1 =?

x1 = 1x1 = 0

x2 =?

x2 = 1x2 = 0

x3 =?

x3 = 1x3 = 0

x3 =?

x3 = 1x3 = 0

x5 =?

x5 = 1

x5 = 0

x5 =?

x5 = 1

x5 = 0

ACC ACCREJ REJ

To compute a boolean function f : {0,1}n → {0,1},

Model : decision tree

Cost : Number of queries to input

Query complexity of f :

DT(f) is depth of shallowest decision tree for f

Page 12: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

8

Simple decision tree lower bound

Proposition [L] If f(x)≠f(y), then there exists i, xi≠yi :

K(i|x)≤ log(depth(T))

K(i|y)≤ log(depth(T))

DT(f) ≥ mini {max{2K(i|x), 2K(i|y)}}

x1 =?

x1 = 1x1 = 0

x2 =?

x2 = 1x2 = 0

x3 =?

x3 = 1x3 = 0

x3 =?

x3 = 1x3 = 0

x5 =?

x5 = 1

x5 = 0

x5 =?

x5 = 1

x5 = 0

ACC ACCREJ REJ

Page 13: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

f(x)=0

8

Simple decision tree lower bound

Proposition [L] If f(x)≠f(y), then there exists i, xi≠yi :

K(i|x)≤ log(depth(T))

K(i|y)≤ log(depth(T))

DT(f) ≥ mini {max{2K(i|x), 2K(i|y)}}

x1 =?

x1 = 1x1 = 0

x2 =?

x2 = 1x2 = 0

x3 =?

x3 = 1x3 = 0

x3 =?

x3 = 1x3 = 0

x5 =?

x5 = 1

x5 = 0

x5 =?

x5 = 1

x5 = 0

ACC ACCREJ REJ

Page 14: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

f(x)=0

8

Simple decision tree lower bound

Proposition [L] If f(x)≠f(y), then there exists i, xi≠yi :

K(i|x)≤ log(depth(T))

K(i|y)≤ log(depth(T))

DT(f) ≥ mini {max{2K(i|x), 2K(i|y)}}

x1 =?

x1 = 1x1 = 0

x2 =?

x2 = 1x2 = 0

x3 =?

x3 = 1x3 = 0

x3 =?

x3 = 1x3 = 0

x5 =?

x5 = 1

x5 = 0

x5 =?

x5 = 1

x5 = 0

ACC ACCREJ REJ

f(y)=1

Page 15: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Lower bounds for bounded

depth circuits [Fortnow, L]

Extractors and

language compression

[Buhrman, Fortnow, L]

Lower bound on the language

compression problem

[Buhrman, L, Miltersen]

Adaptiveness and

coherence [Feigenbaum,

Fortnow, L, Naik]

Adaptiveness and

random-self-reducibility

[Babai, L]

Quantum Kolmogorov

complexity

[Berthiaume, van

Dam, L]

Quantum query

lower bounds

[L, Magniez]

Formula size

lower bounds

[L,Lee, Szegedy]

Simulating quantum

correlations

[Degorre, L, Roland]

Approximate testing

[L, Lassaigne, Magniez,

Peyronnet, de Rougemont]

9

Page 16: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Lower bounds for bounded

depth circuits [Fortnow, L]

Extractors and

language compression

[Buhrman, Fortnow, L]

Lower bound on the language

compression problem

[Buhrman, L, Miltersen]

Adaptiveness and

coherence [Feigenbaum,

Fortnow, L, Naik]

Adaptiveness and

random-self-reducibility

[Babai, L]

Quantum Kolmogorov

complexity

[Berthiaume, van

Dam, L]

Quantum query

lower bounds

[L, Magniez]

Formula size

lower bounds

[L,Lee, Szegedy]

Simulating quantum

correlations

[Degorre, L, Roland]

Approximate testing

[L, Lassaigne, Magniez,

Peyronnet, de Rougemont]

K

K

K

K

KK

K

K Kolmogorov complexity

K

9

Page 17: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Lower bounds for bounded

depth circuits [Fortnow, L]

Extractors and

language compression

[Buhrman, Fortnow, L]

Lower bound on the language

compression problem

[Buhrman, L, Miltersen]

Adaptiveness and

coherence [Feigenbaum,

Fortnow, L, Naik]

Adaptiveness and

random-self-reducibility

[Babai, L]

Quantum Kolmogorov

complexity

[Berthiaume, van

Dam, L]

Quantum query

lower bounds

[L, Magniez]

Formula size

lower bounds

[L,Lee, Szegedy]

Simulating quantum

correlations

[Degorre, L, Roland]

Approximate testing

[L, Lassaigne, Magniez,

Peyronnet, de Rougemont]

K

K

K

K

KK

K

LB

LB

LB

LB

LB

LB

LB

K Kolmogorov complexity

LB Lower bounds

K

9

Page 18: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Lower bounds for bounded

depth circuits [Fortnow, L]

Extractors and

language compression

[Buhrman, Fortnow, L]

Lower bound on the language

compression problem

[Buhrman, L, Miltersen]

Adaptiveness and

coherence [Feigenbaum,

Fortnow, L, Naik]

Adaptiveness and

random-self-reducibility

[Babai, L]

Quantum Kolmogorov

complexity

[Berthiaume, van

Dam, L]

Quantum query

lower bounds

[L, Magniez]

Formula size

lower bounds

[L,Lee, Szegedy]

Simulating quantum

correlations

[Degorre, L, Roland]

Approximate testing

[L, Lassaigne, Magniez,

Peyronnet, de Rougemont]

Q

Q

Q

Q

K

K

K

K

KK

K

LB

LB

LB

LB

LB

LB

LB

K Kolmogorov complexity

LB Lower bounds

Q Quantum computing

K

9

Page 19: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Part I

FoundationsTime bounded Kolmogorov complexity

Quantum Kolmogorov complexity

Page 20: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Lower bounds for bounded

depth circuits [Fortnow, L]

Extractors and

language compression

[Buhrman, Fortnow, L]

Lower bound on the language

compression problem

[Buhrman, L, Miltersen]

Adaptiveness and

coherence [Feigenbaum,

Fortnow, L, Naik]

Adaptiveness and

random-self-reducibility

[Babai, L]

Quantum Kolmogorov

complexity

[Berthiaume, van

Dam, L]

Quantum query

lower bounds

[L, Magniez]

Formula size

lower bounds

[L,Lee, Szegedy]

Simulating quantum

correlations

[Degorre, L, Roland]

Approximate testing

[L, Lassaigne, Magniez,

Peyronnet, de Rougemont]

1995

1997

1999

2000

2002

2004

2005

1998

2003

2001

1996

Foundations: Time bounded complexity

11

Page 21: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Time-bounded Kolmogorov complexity

12

Cp(x) is the length of the shortest program that prints x in time p(|x|).

CDp(x) is the length of the shortest program that runs in time p(|z|) and accepts z if and only if z = x.

Page 22: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Time-bounded Kolmogorov complexity

• In unbounded time, CD∞ = C∞.

• For any finite set A, and x∈A CD∞(x)≤ log(#A)

• The language compression problem [S83]:

For any A, x∈A CDp(x)≤ ?? for polynomial p ?

12

Cp(x) is the length of the shortest program that prints x in time p(|x|).

CDp(x) is the length of the shortest program that runs in time p(|z|) and accepts z if and only if z = x.

Page 23: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Language compression problem

• For most r, CDp(x|r)≤ log(#A) [S83]

• CDp(x)≤ 2 log(#A) [BFL02]

• For all but ε fraction of x∈A,

CDp(x|r)≤ log(#A)+ polylog(|x|/ε) [BFL02]

• Exists A, x∈A, CDp(x)≥ 2 log(#A) [BLM00]

13

Extractors

Chinese remainder theorem

Cover-free families

Page 24: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Cover-free families of sets

• Definition F is k-cover free if

for any F0,...Fk in F, F0 ⊈∪i Fi

• Theorem [DR82] Let F be a

family of N sets over a

universe of M elements. If F

is k-cover free and N > k3, then

14

M !N2 log(N)

2 log(k) + O(1)

F0 is covered by the other sets

F is 3-cover free

Page 25: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Lower bound on language compression

Theorem [BLM00] ∃A, x∈A, CDp,A(x)≥ 2 log(#A)

15

Programs

Page 26: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Lower bound on language compression

Theorem [BLM00] ∃A, x∈A, CDp,A(x)≥ 2 log(#A)

15

Programs

Fx ={p: p accepts x}

Page 27: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Lower bound on language compression

Theorem [BLM00] ∃A, x∈A, CDp,A(x)≥ 2 log(#A)

15

Programs

Fx ={p: p accepts x}

F= {Fx | x∈ A} is k-cover free

Page 28: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Lower bound on language compression

Theorem [BLM00] ∃A, x∈A, CDp,A(x)≥ 2 log(#A)

15

N inputs (#F = r1/3)M programsk~ N1/3 ~ r1/9

M !N2 log(N)

2 log(k) + O(1)

Programs

Fx ={p: p accepts x}

F= {Fx | x∈ A} is k-cover free

Page 29: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Lower bounds for bounded

depth circuits [Fortnow, L]

Extractors and

language compression

[Buhrman, Fortnow, L]

Lower bound on the language

compression problem

[Buhrman, L, Miltersen]

Adaptiveness and

coherence [Feigenbaum,

Fortnow, L, Naik]

Adaptiveness and

random-self-reducibility

[Babai, L]

Quantum Kolmogorov

complexity

[Berthiaume, van

Dam, L]

Quantum query

lower bounds

[L, Magniez]

Formula size

lower bounds

[L,Lee, Szegedy]

Simulating quantum

correlations

[Degorre, L, Roland]

Approximate testing

[L, Lassaigne, Magniez,

Peyronnet, de Rougemont]

1995

1997

1999

2000

2002

2004

2005

1998

2003

2001

1996

Foundations: Quantum Kolmogorov complexity

16

Page 30: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Quantum computation

• Computation acts on qubits

• n-bit strings are vectors forming an orthonormal basis of 2n-dimensional Hilbert space,

• Qubits are unit, complex combinations of basis states

• Quantum gates are unitary operations

• Linear, invertible, norm-preserving

17

U†U = I

{|i! = ei}1!i!2n

Page 31: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Quantum computation

• Computation acts on qubits

• n-bit strings are vectors forming an orthonormal basis of 2n-dimensional Hilbert space,

• Qubits are unit, complex combinations of basis states

• Quantum gates are unitary operations

• Linear, invertible, norm-preserving

17

U†U = I

UnitaryGate

|f(0)!|0!

|1! |f(1)!UnitaryGate

{|i! = ei}1!i!2n

Page 32: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Quantum computation

• Computation acts on qubits

• n-bit strings are vectors forming an orthonormal basis of 2n-dimensional Hilbert space,

• Qubits are unit, complex combinations of basis states

• Quantum gates are unitary operations

• Linear, invertible, norm-preserving

17

U†U = I

UnitaryGate

!|0! + "|1! !|f(0)! + "|f(1)!

{|i! = ei}1!i!2n

Page 33: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Quantum Kolmogorov complexity

• Three definitions have been proposed

• Classical description [V00]

• Quantum description [BDL00]

• Semi-density matrices [G01]

• We give a quantum description by means of universal quantum Turing machine U [BV97]

18

QC(|!!) = min{dim(|"!) : U |"! " |!!}

number of qubits

Page 34: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Properties of quantum Kolmogorov complexity

• Properties of [BDL00] definition

• Existence of incompressible quantum states

• Strong connection to quantum information theory (von Neumann entropy)

• Quantification of no-cloning of quantum states:

19

QC(|!!!k | |!!)

Page 35: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Part II

ApplicationsQuantum query complexity lower bounds

Formula size lower bounds

Page 36: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Lower bounds for bounded

depth circuits [Fortnow, L]

Extractors and

language compression

[Buhrman, Fortnow, L]

Lower bound on the language

compression problem

[Buhrman, L, Miltersen]

Adaptiveness and

coherence [Feigenbaum,

Fortnow, L, Naik]

Adaptiveness and

random-self-reducibility

[Babai, L]

Quantum Kolmogorov

complexity

[Berthiaume, van

Dam, L]

Quantum query

lower bounds

[L, Magniez]

Formula size

lower bounds

[L,Lee, Szegedy]

Simulating quantum

correlations

[Degorre, L, Roland]

Approximate testing

[L, Lassaigne, Magniez,

Peyronnet, de Rougemont]

1995

1997

1999

2000

2002

2004

2005

1998

2003

2001

1996

Applications: Quantum lower bounds

21

Page 37: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Adversary method

22

{x : f(x)=1} {y : f(y)=0}

Ri ={(x,y)∈R:xi≠yi}

R

Page 38: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Proposition [L] For any relation R, ∀i DT(f) ≥ degmin(R)/(deg(Ri))

Recall that

∀i DT(f) ≥ 2K(i|x)

•K(x,y) ≥ log(#f-1(1)degmin(R))

•K(x,y)≤ K(x) + K(i|x) + K(y|x,i)

• #f-1(1)degmin(R) ≤#f-1(1). 2K(i|x) . deg(Ri)

• 2K(i|x) ≥ degmin(R)/(deg(Ri))

Adversary method

22

{x : f(x)=1} {y : f(y)=0}

Ri ={(x,y)∈R:xi≠yi}

R

Page 39: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Theorem [LM04]

Implies all previously known quantum adversary lower bounds

• Unweighted adversary [A02]

• Weighted adversary [A03]

• Spectral method [BSS03]

All these methods are equivalent [ŠS05]

Q!(f) !c"

2

1

!i:xi !=yi

"2"K(i|x)"K(i|y)

Quantum adversary lower bounds

23

Page 40: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Lower bounds for bounded

depth circuits [Fortnow, L]

Extractors and

language compression

[Buhrman, Fortnow, L]

Lower bound on the language

compression problem

[Buhrman, L, Miltersen]

Adaptiveness and

coherence [Feigenbaum,

Fortnow, L, Naik]

Adaptiveness and

random-self-reducibility

[Babai, L]

Quantum Kolmogorov

complexity

[Berthiaume, van

Dam, L]

Quantum query

lower bounds

[L, Magniez]

Formula size

lower bounds

[L,Lee, Szegedy]

Simulating quantum

correlations

[Degorre, L, Roland]

Approximate testing

[L, Lassaigne, Magniez,

Peyronnet, de Rougemont]

1995

1997

1999

2000

2002

2004

2005

1998

2003

2001

1996

Applications: Formula size lower bounds

24

Page 41: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

!

! !

x1 x3

!

x2

!

!

! !

x1 x2 x3

!

x2 x3

!

x1 x2

!

25

Boolean circuit and formula size

Boolean circuit Boolean formula

Best lower bound: 5n [Lachish Raz 01,

Iwama Morizumi 02]

Best lower bound: n3 [Håstad 98]

Page 42: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Communication complexity

• D(f) = amount of communication in the worst case, for the best protocol for f

• d(f) = D(Rf) [KW88]

26

x y

m2 m4 ...

m1 m3 ...m1

f(x,y)f(x,y)

Given x, y for which f(x)≠ f(y), find i s.t. xi ≠ yi

Circuit depth

Page 43: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Circuit depth lower bound

Proposition [LLS05]

27

x y

m2 m4 ...

m1 m3 ...m1

K(i|x)+K(i|y) ≤ D(Rf)=d(f)

i: xi≠yii: xi≠yi

Proof

K(i|x) ≤ |m2| + |m4| + ... K(i|y) ≤ |m1| + |m3| + ...

Page 44: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Mf =

!

"

"

"

"

#

$

%

%

%

%

&

Background on communication complexity

28

Page 45: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Mf =

!

"

"

"

"

#

$

%

%

%

%

&

Background on communication complexity

28

A’s input x

B’s input y

f(x,y)

Page 46: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Mf =

!

"

"

"

"

#

$

%

%

%

%

&

Background on communication complexity

28

A sends 0

A sends 1

Page 47: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Mf =

!

"

"

"

"

#

$

%

%

%

%

&

Background on communication complexity

28

A sends 0

A sends 1

B sends 0B sends 1

Page 48: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Mf =

!

"

"

"

"

#

$

%

%

%

%

&

Background on communication complexity

28

A sends 0

A sends 1

B sends 0B sends 1

Page 49: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Mf =

!

"

"

"

"

#

$

%

%

%

%

&

Background on communication complexity

• DRect(f) = smallest number of disjoint monochromatic rectangles needed to cover Mf

• L(f) ≥ DRect(Rf) [KW88]

28

A sends 0

A sends 1

B sends 0B sends 1

A’s input x

B’s input y

f(x,y)

Given x, y for which f(x)≠ f(y), find i s.t. xi ≠ yi

Page 50: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

!A! = maxu,v

u!Av

|u||v|

Formula size lower bound, spectral formulation

29

Mf =

!

"

"

"

"

#

$

%

%

%

%

&

Theorem [LLS05] Formula size lower bound

L(f) ! maxA

"A"2

maxi "Ai"2

Page 51: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

A

!A! = maxu,v

u!Av

|u||v|

Formula size lower bound, spectral formulation

29

Mf =

!

"

"

"

"

#

$

%

%

%

%

&

Theorem [LLS05] Formula size lower bound

L(f) ! maxA

"A"2

maxi "Ai"2

Page 52: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

A

!A! = maxu,v

u!Av

|u||v|

Formula size lower bound, spectral formulation

29

Mf =

!

"

"

"

"

#

$

%

%

%

%

&0

Ai

xi≠yi

Theorem [LLS05] Formula size lower bound

L(f) ! maxA

"A"2

maxi "Ai"2

Page 53: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Formula size lower bound

30

Mf =

!

"

"

"

"

#

$

%

%

%

%

&

A’s input x

B’s input y

f(x,y)A’s input x

B’s input y

f(x,y)

Theorem [LLS05]

L(f) ! maxA

"A"2

maxi "Ai"2

Page 54: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

• If R is an optimal partition R1,...,RN, then if µ is subadditive

• If S is a covering with R⋏S (refinement) then if µ is monotone,

• Key lemma [LLS05] is subadditive and monotone

Formula size lower bound

30

Mf =

!

"

"

"

"

#

$

%

%

%

%

&

A’s input x

B’s input y

f(x,y)A’s input x

B’s input y

f(x,y)

L(f) ! DRect(Rf ) = #R !µ(X " Y )

maxi µ(Ri)

L(f) !µ(X " Y )

maxS!S µ(S)

Theorem [LLS05]

L(f) ! maxA

"A"2

maxi "Ai"2

!M!2

Page 55: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

• If R is an optimal partition R1,...,RN, then if µ is subadditive

• If S is a covering with R⋏S (refinement) then if µ is monotone,

• Key lemma [LLS05] is subadditive and monotone

Formula size lower bound

30

L(f) ! DRect(Rf ) = #R !µ(X " Y )

maxi µ(Ri)

Mf =

!

"

"

"

"

#

$

%

%

%

%

&

L(f) !µ(X " Y )

maxS!S µ(S)

Theorem [LLS05]

L(f) ! maxA

"A"2

maxi "Ai"2

!M!2

Page 56: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

• Closely related to the quantum spectral method

• Generalizes many previous methods

• Khrapchenko’s combinatorial method [K71]

• Koutsoupias’ spectral method [K93]

• A key lemma of Håstad used to prove the current best formula size lower bound (random restrictions) [H98]

Relation to other methods

31

L(f) ! maxA

"A"2

maxi "Ai"2

Q!(f) ! maxA

"A"

maxi "Ai"

Page 57: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Research project

Page 58: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Current projects

• Continue to unify and extend classical and quantum lower bound techniques

• Combinatorial models

• Communication complexity, circuits, formula size, decision trees

• Techniques

• Fourier analysis

• Information theory methods

33

Page 59: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Further projects

• Medium-term

• Apply quantum Kolmogorov complexity to quantum lower bounds, e.g. quantum information theoretic methods

• Long-term

• Use Kolmogorov complexity to study derandomization

34

Page 60: Applications of Kolmogorov complexity to classical and ...laplante/Papers/hdr-slides.pdf · Kolmogorov complexity to classical and quantum computational complexity Habilitation à

Thank you