Applications of Gel Permeation Chromatoggpyraphy (GPC ......Applications of Gel Permeation...

of 24/24
Applications of Gel Permeation Chromatography (GPC) to Asphalt Binder Binder Characterization William H. Daly Ionela Glover, Ioan Negulescu Chris Abadie, Rafael Cueto
  • date post

    25-Jan-2021
  • Category

    Documents

  • view

    0
  • download

    0

Embed Size (px)

Transcript of Applications of Gel Permeation Chromatoggpyraphy (GPC ......Applications of Gel Permeation...

  • Applications of Gel Permeation Chromatography g p y(GPC) to Asphalt Binder Binder Characterization

    William H. DalyIonela Glover, Ioan NegulescuChris Abadie, Rafael Cueto

  • YOUR WORLD DESTINATION…TARGETED!TARGETED!

    RAPRAP

    11/4/2010 2

  • The CoThe Co authorsauthorsThe CoThe Co--authorsauthors

    Ioan Negulescu Ionela GloverIonela Glover

    11/4/2010 3Chris Abadie Rafael Cueto

  • ObjectivesObjectives

    Develop Experimental Procedures for utilizing GelDevelop Experimental Procedures for utilizing Gel Permeation Chromatography (GPC)

    Evaluate binder changes during processing sequence i GPC

    Observe impact of RAP addition during processing

    using GPC

    Follow aging process by coring pavements at annual intervals

    11/4/2010 4

  • Down the Road, Asphalt Cement Preparation

    Polymer-radial-linear

    511/4/2010

  • Sequence of Binder Samples for this Studythis Study

    1.BinderRefinery

    6.Binder Extracted from Road Cores

    after 6 months7.After 12 months

    Refinery after 6 months

    2.Binder Hot Mix Asphalt

    Plant (tank)

    5.Binder Extracted from Fresh Road

    Cores

    8.After 24 months(no samples yet)

    Plant (tank)

    3 B E

    Cores

    3.Binder Extracted from HMA Plant :

    Mixture Binder+Agg.+RAP

    (DRUM)

    4.Binder Extracted from HMA (after

    transport)

    RAP

    11/4/2010 6

  • A B EA B E

    CORE 6”6”

    Asphalt Binder ExtractionAsphalt Binder Extraction

    SOHXLET EXTRACTION ROTAVAPOR

    7vacuum

    OVERNIGHTSEDIMENTATION

  • GPC Sample Preparation

    2‐3% concentrationin THF

    3‐5 mLsyringe

    PTFE 45μm

    % insoluble by weight

    8

    PTFE 45μmfilter

    1.5 mL vialPTFE 45μm

    THF washed filter11/4/2010

  • Agilent 1100 GPC SystemAgilent 1100 GPC System

    911/4/2010

  • Typical PMAC GPC Chromatogram

    ative scale)

    RI signal (Re

    laD

    20 25 30 35 40

    Timeor Volume (minormL) PMAC

    10

    Time or Volume (min or mL)Elution rate: 1ml/min

    11/4/2010

  • Regions of a PMAC GPC chromatogram, showing the relationship between elution volume and molecular weights relationship between elution volume and molecular weights

    values, based on calibration curve.

    1111/4/2010

  • GPC chromatogram of binders Before and after 1 year in the Before and after 1 year in the

    field

    0.20

    0.22

    0.24

    0.20

    0.25

    US 190 new0.14

    0.16

    0.18

    0.21

    0.24

    0.27Supplier C Supplier B

    0 10

    0.12

    0.14

    0.16

    0.18

    0.10

    0.15

    ts

    US

    190

    1 yr

    s U

    S 1

    90 n

    ew

    US 190 new

    0.06

    0.08

    0.10

    0.12

    0.12

    0.15

    0.18

    s LA

    18

    new

    LA 1

    8 af

    ter 1

    yr

    LA 18 after 1 yr

    0.02

    0.04

    0.06

    0.08

    0.10

    0.00

    0.05 DR

    I uni

    DR

    I uni

    t s

    -0.02

    0.00

    0.02

    0.04

    0 00

    0.03

    0.06

    0.09

    DR

    I uni

    ts

    DR

    I uni

    ts L

    LA 18 new

    25 30 35 40

    0.00

    25 30 35 40

    US 190 after 1 year

    Ve, mL20 25 30 35 40 45

    -0.04 0.00

    Ve, mL

    12

  • Distribution of components in original asphalt binders

    VHMw HMw MMw Sum Asphaltenes Maltenes

    PG 1000 300K 300 45K 45 19K 1000 19K 19 3K 3 0 2KPG 1000-300K 300-45K 45-19K 1000-19K 19-3K 3-0.2K

    A 64-22 0.0% 0.0% 0.0% 0.0% 15% 85%

    A 70-22M 0.2% 0.6% 0.5% 1.3% 15% 84%

    A 76-22M 0 6% 3 0% 0 7% 4 3% 14% 82%A 76-22M 0.6% 3.0% 0.7% 4.3% 14% 82%

    B 64-22 0.0% 0.0% 0.0% 0.0% 19% 81%

    B 70-22M 0.1% 1.2% 0.6% 1.9% 17% 81%

    B 76-22M 0.3% 1.0% 0.8% 2.1% 16% 82%

    C 64-22 0.0% 0.0% 0.0% 0.0% 16% 84%

    C 70-22M 0.0% 0.5% 0.8% 1.3% 17% 82%

    C 76-22 M 0.1% 1.3% 1.2% 2.7% 17% 81%

    11/4/2010 13

  • Distribution of components VHMw HMw MMw Sum Asphaltenes Maltenes

    1000-300K 300-45K 45-19K 1000-19K 19-3.5K 3.5-0.2K

    Supplier A2

    Refinery 0.0% 0.4% 1.9% 2.3% 22% 76%

    Tank 0.2% 1.2% 1.0% 2.4% 18% 79%

    RAP for US 71 0.0% 0.7% 2.2% 3.0% 27% 70%

    us 71 0.0% 0.4% 1.9% 2.3% 22% 76%

    US 71/after1 yr 0.0% 1.3% 1.8% 3.1% 25% 72%

    US 71/after 2 yr 0.1% 1.5% 1.7% 3.4% 19% 77%

    Supplier B2

    Refinery 0.1% 1.0% 1.8% 2.8% 24% 73%

    Tank 0.3% 1.1% 1.2% 2.6% 18% 79%

    RAP 0.0% 0.5% 2.3% 2.8% 27% 70%

    LA 1 after drum 0.1% 1.0% 1.9% 2.9% 24% 73%

    LA 1 after truck 0.1% 1.0% 1.9% 2.9% 24% 73%

    LA1 0.1% 1.0% 1.8% 2.8% 24% 73%

    LA 1/after1 yr 0.1% 1.3% 2.5% 3.9% 21% 75%

    LA 1/ after2 yr 0.0% 1.0% 2.0% 3.0% 25% 72%

    Supplier C1

    Refinery 0.1% 2.0% 1.5% 3.6% 21% 75%

    Tank 0.1% 2.1% 0.8% 3.1% 18% 79%

    11/4/2010 14

    NO RAP

    US 190 0.1% 2.0% 1.5% 3.6% 21% 75%

    US 190/after 1yr 0.3% 1.6% 1.6% 3.5% 13% 84%

    Us 190/after 2 yr 0.1% 1.6% 1.8% 3.5% 19% 78%

  • Typical Binder THF InsolublesTypical Binder THF InsolublesPG Grade or RAP sample Typical % insoluble THF on 0.45 mμ

    filter

    64-22, original 4%-5%

    76-22 original 6-7%

    76 22 core new route 10 11%76-22, core new route 10-11%

    RAP 7-10%

    Source Atypical

    B1 refinery 18%

    LA 18 new 23%

    11/4/2010 15

  • 79%

    Supplier A

    Refinery

    76%79%

    70%

    76%

    72%

    77%

    Tank

    RAP for US 71

    us 71

    US 71/after1 yr

    22%

    18%

    27%

    22%25%

    19%

    US 71/after 2 yr

    2.3% 2.4% 3.0% 2.3% 3.1% 3.4%

    16

    1000‐19K 19‐3.5K 3.5‐0.2K

    Sum Asphaltenes Maltenes

  • 79%

    Supplier B

    Refinery

    73%

    79%

    70%73% 73% 73%

    75%72%

    Tank 

    RAP 

    LA 1 after drum

    LA 1 after truck

    LA1 

    24%

    18%

    27%24% 24% 24%

    21%

    25%LA 1/after1 yr

    LA 1/ after2 yr

    2.8%2.6%2.8%2.9%2.9%2.8%3.9%3.0%

    17

    1000‐19K 19‐3.5K 3.5‐0.2K

    Sum Asphaltenes Maltenes

  • Supplier C

    75%79%

    75%

    84%

    78%

    Refinery

    Tank75% 75%

    NO  RAP

    US 190

    US 190/after 1yr

    21%18%

    21%19%

    Us 190/after 2 yr

    3.6% 3.1% 3.6% 3.5%

    13%

    3.5%

    11/4/2010 18

    1000‐19K 19‐3.5K 3.5‐0.2K

    Sum Asphaltenes Maltenes

  • Recommendations •Library of RAP Samples•History of Selected RAP Sources

    RecommendationsFuture Work

    • Impact ofImpact of different blending processes

    •Does SHRP characterization  apply to RAP mixes

    •Aging  properties of Binders containing RAP  at various  glevels

    11/4/2010 19

  • Not readyNot ready

    0 25

    LA 116 15% and 20% RAP 

    0.2

    0.25

    0.15

    15%RAP

    0.05

    0.120%RAP

    0

    22 27 32 37 42 47

    11/4/2010 20

  • RTFO vs Core RoadRTFO vs. Core Road

    VHMw HMw MMw Sum Asphaltenes Maltenes

    1000-300K 300-45K 45-19K 1000-19K 19-3.5K 3.5-0.2K

    Refinary A/ RTFO 0 2% 1 3% 0 9% 2 4% 20% 78%Refinary A/ RTFO 0.2% 1.3% 0.9% 2.4% 20% 78%

    LA 26 core road 0.2% 1.5% 1.4% 3.1% 25% 72%

    Refinery B/ RTFO 0.3% 1.2% 1.3% 2.9% 19% 79%

    LA18 core road 0.0% 1.2% 2.3% 3.5% 26% 70%

    Refinery D/ RTFO 0.5% 0.8% 0.7% 2.0% 16% 82%

    LA 15 core road 0.2% 1.2% 0.9% 2.3% 20% 77%

    21

  • Old RAP  vsnewer PMAC Aging newer PMAC 

    RAP   Additives, nature and content

    simulation related to GPC 

    analysis

    Concerns

    RAP Sto a e Percentage RAP  upper 

    limits

    RAP Storage time and conditions

    11/4/2010 22

  • Conclusions

    Field samples containing RAP

    Conclusions

    Field samples containing RAP show slower oxidation than that predicted by RTFO laboratory aging suggesting that addition of g g gg g20 wt% RAP is beneficial to oxidative stabilization. 

    Addition of RAP during the mixing process increases themixing process increases the asphaltene content with a corresponding decrease in the maltenes content.  

    Experimental data limited by number of RAP samples available. Please send us

    lmore samples.

    23

  • Thank You , any Questions ??

    11/4/2010 24