Appendix Tables of Beam Deflections978-94-011-6535-8/1.pdf · TABLES OF DEFLECTIONS OF STATICALLY...

15
Appendix Tables of Beam Deflections Statically Determinate Beams 404-409 Statically Indeterminate Beams 410-412

Transcript of Appendix Tables of Beam Deflections978-94-011-6535-8/1.pdf · TABLES OF DEFLECTIONS OF STATICALLY...

Appendix

Tables of Beam Deflections

Statically Determinate Beams 404-409

Statically Indeterminate Beams 410-412

TAB

LES

OF

DEF

LEC

TIO

NS

OF

STA

TIC

ALL

Y D

ETER

MIN

ATE

BEA

MS

g A

PP

EN

DIX

A

Bea

m, l

oadi

ng, a

nd

diag

ram

s of

mom

ents

A

ngle

s of

Su

ppor

t an

d sh

ear

forc

es

Elas

tic c

urve

ro

tatio

n B

endi

n!!

mom

ents

Sh

ear

forc

es

reac

tions

W=

PI3 [~-.

!£+

ptZ

1[

Sim

:~Y Su

ppor

ted 1s

N=

-P [

t-lI

fl]

Rl

=-~

I Concentra~loadin

w'=

16E

/ 1

-4[2

+

M=

-PI

21-

the

mid

-ClO

ss-s

ectio

n 16

E/

I 3

13

2

+II,!

[~-.!.r

] +

IIf

8 [f-trJ

-lif

[f-t]

J

Rt~~~1:

"23

I 2

PI3

Plz

M ...

. =-

PI

Rz=-

~ ~

Wm

ox=

48E

I w

o= 1

6EI

4 2

'-'i:N

fo

n=

.!.

for

x=O

fo

r x=

.!.

L~ _

_ .

J

2 2

Plz

w,=

-16

EI

for

x=1

Concentra~ lo

ad in

W

=:

[e;·

f [1

<:

-w

'eP

I' [~[l-~-

M=-Pll

-~:-IL

[x7]J

N=

-P [

e; -

ILl]

e'

2

R1

=-P

T

the

mid

-cro

ss-s

ectio

n 6E

J 1

I'

-;:]

+11

. [x

;er]

-3~:

]+Ib

[7]']

Rtl;;g;jR~

pc2

c'2

, Pe

e' [

e']

Pee

' R

z=-P

!:..

Y

N

1 W

,=

3E1l

wO

=6E

1 1

+/

Mm

ox=

--I-

~

I --

----

-+- L_

.J

for

x=e

for

x=O

fo

r x=

e P

e'lz

,

Pee

' [

e]

wm

ox=O

.064

1 E

/x

W,=

6EI

1

+/

e"2

"2

[ r

x 1

-[2

fo

r x=

1

for

x=-V

e-,

/"2

,

if e>

e'

. _

--

_._

--------------_

.

-.. _

-

In a

ll th

e ta

bles

, th

e te

rms

afte

r th

e si

gn II,

shou

ld b

e co

nsid

ered

onl

y fo

r cr

oss-

sect

ions

x >

c.

Con

l'd

Bea

m. l

oadi

ng. a

nd

diag

ram

s of

mom

ents

Ang

les

of

Supp

ort

and

shea

r fo

rces

El

astic

cur

ve

rota

tion

Bend

inR

mom

ents

Shea

r fo

rces

re

actio

ns

3 Tw

o sy

mm

etric

for

ces

w=~ [~

[3~--~~+

w'=

PIZ

l_e

e' _

xZ

+

{x

II x-c

N

=-P

(I -

1J.

1-I

I.,I

) M

=-P

I --

---

Rt=

Rz=

-P

in th

e sp

an

6IiJ

/

/'

/'

2EJ

12

12

I •

I

+IL[

x~er

+ +I

L[x~

cr+

_II ,x

-c']

I

R,t

t ~c

~R~

+IL[x~

eT]

+IL[x~

eT]

1L-c

....!-

---c

'---

---f

-

JY-

"'N

M

._ . .

L.._

. __

__

w

= Pic

' [3'£

'-E.]

Pce

' M

....

=-P

c

L _

_

'6E

1

I I

WO

=-W

I=W

w f:

Xp~;c

[~_~

] fo

r c:

!>x

:!>c'

-6E

I 4

I'

forx

=i 2

4 C

once

nuat

ed m

orne

nt a

t a

W=

-:;

[f-

;:-J

w

'=-

HI

[1-3

X2-J

M=

H!.

N

=!!

. R

I =

+!!

. su

ppor

t cro

ss-s

ecuo

n m~.

6E/

12

I I

I

HI'

H

I R

2=

-!!.

.. ~

w_

=-0

_077

8"E

J w

o=

-6E

J M

mu

=H

I

for x

= 0_

5771

H

I fo

r x=

1 W

,= 3

El

5 Tw

o co

ncen

uate

d m

omen

ts w

=-:~

f [l-f]

x w'=-~ [~

[f-

M=

M' [

I-f)

+H

"f

11'-

11"

H

'-M

" N

=----

R1

=---I-

at s

uppo

rt cr

oss-

sect

iorts

I

x [M'[

2-f

]+

x X

2]

-2

-+

-+

ftL:\~

1 12

+H

"[I+

f]]

+H

" [+-

;: ]]

M=

M' f

orx=

O

M'-

H"

R2=

--I-

, ,M

,

2M

'+M

" 1

6i=_~

wo

=--w

-M

=M

"fo

rx=

1

i ,

JI'+

2H"

W

I=--w

-I

§

6 7 8

Bea

m, l

oadi

ng,

and

diag

ram

s of

mom

ents

an

d sh

ear f

orce

s

Con

cent

rate

d m

omen

t in

the

spa

n

R·t;

Qc'=

4~

C t

R.

V~

Uni

form

ly d

islri

bute

d lo

ad o

ver

entir

e sp

an

R~Q=qt R

. q

t Y

M

~~

~--=---~

Uni

form

ly d

islri

bute

d lo

ad

over

a p

onio

n of

a s

pan

R.

Ela

stic

cur

ve

w~MI

' [~[1-3~-

6E/

I I'

-1.+1 1.3

[x; r]

we=

~~~'

[c/]

QI'

[x

x' X4

] w

= 2

4EI

1-2

,,+

7

5 Q

I' W

"",.=

384

m

1 fo

r x=

"2

QI'c'

[x

[ c

w~

24E

l 7

1+27

-

_£.-

2~]+

1I (X

-C)4]

12

12

c

Pc"

Ang

les

of

rota

tion

W'=

III

[1

-3~-

6£1

I'

-31,-+

11.6[7

]] ,

III

[ c,,]

W

.= 6

E/

1-3

/2

, II

I [

c']

w,=

6E

l 1

-3

"

, II

I [cc

' ]

we=

3E

l 3

/2-1

,-~ 1

-6,+

,[

x'

w-

24E

l I

x']

+4

- I'

, 'Q

12

wo=

-w,=

24E

l

w'=

QIc

' [1

+2~-

24E

l I

c2 .x

2 +

-.-6

I'

I II (X

-C)']

+

,4

Ie

"

, Q

lc'

x W

o= 2

4EI

[ c_

d x

1+21

I'

J

,

, Q

lc' rl

+~1

w,=

-24

1':1

l I

J

Ben

dine

mom

ents

M=

-M[f

-lL1 ]

M=

-Q

I [~_

.£.]

2 1

I'

QI

M ..

.. =

-g=

-O.l

25

QI

for

x= i 2

M=

-Q

I 2

M""

,.=

-Q

c'

[ c]'

8 1

+- 1

Shea

r fo

rces

N=-!!

. 1

N=-%

[1-~

]

N=-Q

[£-1

1 ~]

21

'

, c

Con

t'd

Sup

pon

reac

tions

Rl=

-!:!

. 1

R2=

!:!.

1

Rl=

R2

=-Q

2

R1=

-Q

c'

21

R2=-Q

[1-ft

]

Con

t'd

Bea

m,

load

ing,

and

di

agra

ms

of m

omen

ts

Ang

les

of

Supp

ort

and

shea

r fo

rces

E

last

ic c

urve

ro

tatio

n B

endi

ng m

omen

ts

Shea

r fo

rces

re

actio

ns

9 L

inea

rly

dist

ribu

ted

QI'

[X

x'

w'=~x

M=

-~I

[f-[fn

N=

-Q [

1-3

£]

Rl=

-Q

load

ove

r en

tire

span

w

=

180E

I 7

/-1

01

'+

180E

I 3

12

3

x5

] [

x2 x']

+

3-

x 7

-30

-+1

5-

'.~~

15

12

I'

QI3

_

' 7

QI2

M

"". =

-0.1

283Q

I w

mu

=0.

0130

4 E

I-w

o=T

sO E

I=

_ 5

QI3

_

QI2

fo

r x=

0.57

71

2 -

384 E

I -0

.038

9E

I R

2=-3

"Q

-....

<.,NJ

fo

r x

=0.

5191

'

2 Q

12

_

w,=

-45

EI-

_ Q

I2

--0

.04

44

4 E

I

10

Lin

earl

y di

stri

bute

d lo

ad

QI'

[c' [

c

QI2

[e

' [

M=

-Q

I [c

-~-

N=

-f [f-

Rl=

-Q

£

over

a p

ortio

n of

a s

pan

w=

18

0EI

T

7+

6/-

w'=

180

EI

T

7+

3 12

3

I

e2

x2]

x c

c2

x2]

_II (

x-d

]

II 3

(x-d

]

-3

--1

0-

-+

+

6--3

--3

0-

+

'.~'.

12

12

I I

12

12

c [e

'2

' e,

z

Q

x +

II 3

(x-e

)l]

+ IL

I5 (X

;~4]

c

c'

' 13

e,z

I e

~

, Q

le'

[ I

e']

--

Wo

= 1

80E

I x

R2

=-Q

1

-3

"/

.-.~.

N>-

-..I

[ e

e2]

x 7

+6

--3

-I

12

, Q

le'

w,=

-18

0EI

x

~ [

e e2

] x

8+9T

+3

[2

Con

L'd

§ B

eam

, lo

adin

g, a

nd

diag

ram

s of

mom

ents

A

ngle

s of

Su

ppor

t an

d sh

ear

forc

es

Ela

stic

cur

ve

rota

tion

Ben

ding

mom

ents

Sh

ear

forc

es

reac

tions

2.

C

antil

ever

Bea

ms

11

Con

cent

rate

d lo

ad

PI'

[Xl [3

X]

] w

'= ~:

[f [1-

11]]

at t

he e

nd

w=

3E

I 12

"2-

2i

M=

P(/

-x)

N=

-P

R=

-P

R

P P

I' w~

=O

Mm

v. =

PI

M=

PI

rl,'m

L.!.

w_

= 3

EI

for

x =1

P/

2 fo

r x

=0

rr--M

t---t

w,=

2E

I

~

_._

.-

12

Con

cent

rate

d m

omen

t M

x2

, M

x at

the

end

w

=

2EI

W =

Ei

M=

Mm

.. =

M

N=

O

R=

O

~

Mil

w~=O

M

=M

w

_=

2EI

'y

t ~

for

x=1

MI

w,=

EI

,M

c._

._.:

J

13

Uni

form

ly d

istr

ibut

ed

QI'

Xl [

X

w'=

QI2

E

x

M=

~I [I

-ff N

=-Q

[I-f]

load

ove

r th

e en

tire

span

w

= 2

4EI

12 6

-47

6EI

I R

=-Q

~Q

X2]

[

x x2

] Q

I +

-x

3-3

-+

-M

mu

.=T

12

I

12

1IL

1Il!l!!

Q.!

QI'

M

= Q

I Y

M

t

w~=O

fo

r x

=0

~

wm

.. =

8E

I 2

for

x=l

' Q

I2

...

--

-_

... -

w,=

S;E

I --_

._

--

Con

l'd

Bea

m,

load

ing,

and

di

agra

ms

of m

omen

lS

Ang

les

of

Supp

ort

and

shea

r fo

rces

E

last

ic c

urve

ro

tatio

n B

endi

11Jt

mom

enlS

Sh

ear

forc

es

reac

tions

14

Uni

form

ly d

istr

ibut

ed l

oad

QI'

[[

e lx'

w'=

QI'

[[I+~l

=:-Q

I [

C

x N=_Q[I_ILx~c]

R=

-Q

w=

--6

1+

---

M=

T 1

+/-

2/+

ov

er a

por

tion

of a

spa

n 24

E1

1 I'

1 I

I

-4

£'

/I (X

-C)4

] _

£.+

/1 (x

-d]

II (X

-C)2

]

~

13 +

e c'1

3 12

e

3c'1

2 +

C

c'

l

'I'll,

x

QI'

[ e

en 1

w~=O

M

= Q

(c+

l)

C

Cl

-

W,=

24E

1 2+

6 T+

1'

2 ,

t fo

r x=

1 r-

----

.".N

~

Q/c

' [

c 1

• Q

I' [

e e'l

M

=

Q(c

+l)

w

'=4

El

1+

3/

w,=

-1

+-+

-6E

l 1

I'

max

2

for

x=c

' Q

lc

We=

2E

I fo

r x=

O

IS

Lin

earl

y di

stri

bute

d lo

ad

QI'

x' [

x w

=---

10-1

0-+

60

EI

I'

1 ,

QI'

x [

x w

=

12E1

T 4

-6T

+

M=

tQI[

I-fr

N

=-Q

[1-f1

' R

=-Q

m~~

x2

x3]

x2 x3

] +

5r

- r

+4r

- r

QI'

w~=O

Q

I M

= Q

I y

t M

max

= """

3 fo

rx=

O

~

w

=--

-15

EI

2 fo

r x=

1 w;=~ fo

rx=

1 12

£1

Con

cent

tate

d m

omen

lS

W=~

[3[=:1

'-w

'= ~;

[+-[T

n PI

[

x]

N=

-P

16 M

=T

1

-2/

R=

-P

at th

e en

ds·

I2E

I I

-2[fr

J 1;

£-,;4

' wo=

O f

or x

=O

; w~=w;=O

M=

PI

for

x=O

M.=-

~= P

I 2

2 PI

' PI

2 M

=-P

I fo

rx=

1

~

W,=

12E

1 fo

r x=

1 W

max

= 8

EI

---

-1

2 M

I

for

x="2

i

~-

--

• T

he r

otat

ion

angl

e at

the

rig

ht e

nd i

s ze

ro

~

o

2

Bea

m, l

oadi

ng, a

nd

diag

mm

s of

mom

ents

an

d sh

ear

forc

es

Con

cenb

aled

forc

e in

the

span

~~

Two

sym

met

tic

conc

enba

led

forc

es

~

:t ~"'I

c'

c \

TA

BL

ES

OF

DE

FL

Ecn

ON

S O

F SO

ME

ST

AT

ICA

lLY

IN

DE

TE

RM

INA

TE

BE

AM

S (B

EA

MS

CL

AM

PED

AT

BO

TH

EN

DS)

Ela

stic

cur

ve

w=

PB

£:£

'[3'

£-6

12

12

1

_ 3c

+c'

.!]+

1 1

+11/:

[x~c r

PB

C'

c<3

w'=

T/'

3r

for

x=c

PB

x' [ .. ,

xl

"--

-;r 3

---

+ 6

/ /'

/

II PB

[.!:

:E.]'

+

• 6

1 +

+II

.PB

[x-c

']'

• 6

1

PB

c'

2c'

-c

w'=

7"j3

-I-

for

x=c

Ben

diru

! m

omen

ts

cn [.£­

M=

PT

/

3c+

c' .!]

+

-~I-I

+ILp<

x-c)

Shea

r for

ces

N=

-P c

',

3c+

c' +

11,1

' I'

1

M=

ph

' -x]

+ I N

=-p+

ltp+lt

.p

+ILp<

x-c)+

+ 1I •

• p<

x-c'

)

S~moments

II, =

cc'

, P

/'

c2c'

H

z=-T

P

II, =

cc'

P

1 cc'

Hz=

-TP

Supp

ort

reac

tions

cn

RI =

-r(3

c+

c')

P

c2

R2=

-/'3

(c+

3c')

P

R1

=-P

R2=

-P

Not

es:

I) T

he o

rigin

is

at t

he l

eft

end.

2)

In

the

expr

essi

ons

for

the

elas

tic c

urve

s th

e RO

l8tio

n B

= ~ is

use

d.

3) T

he s

uppo

n m

omen

ts a

re p

ositi

ve i

f

they

are

dir

ecle

d co

unte

rclo

ckw

ise.

4)

Ten

us a

fter

the

sign

I L refe

r onl

y to

cro

ss-s

ectio

ns x

> c.

~ ..

3

Bea

m,

load

ing,

and

di

agra

ms

of m

omen

ts

and

shea

r fo

rces

Uni

form

ly d

istr

ibut

ed l

oad

over

the

ent

ire

cros

s-se

ctio

n

II S

~Q

ml~t.

4 I

Uni

form

ly d

istr

ibut

ed l

oad

over

a p

orti

on o

f th

e sp

an

on t

he l

ift

5

m@~

c-+-

--c

, t

Sam

e, w

ith t

he l

oad

on

the

righ

t

~~2

Ela

stic

cur

ve

w=

QB

~ [1

-2~+~]

24

I'

I

I'

__

I_Q

B

wm

u -

384 1

for x=

2

W=.p!.

..{~ [

'='X-

2[2-

24

I'

/

c1

el

] x

c' [

-2

-+

-c-+

-6

-I'

I'

I

I

c cZ

]] -8

-+

3-

-1

IZ

_II (X

-C)4

} c

13

w=

qB {~

[~ [2£

-24

I

I 14

c'

c ]

-4

-+

4--2

+1

-I'

I

c1

c]

C4

] -6

-+

8--3

-+

I'

I'

14

+IL (X

-c)'}

13

Bendi~ m

omen

ts

M=

QI [1

-6~+

12

1

+6

£]

IZ

M' --

QI

"2-

24

ql'

{x'

c M

=1

2 6

J2

-6i

x

[ cZ

c3] x

x

2-2

-+

--+

IZ

13

1

CZ

[

C

+-

6-8

-+

IZ

1

+3£]}-

11 !L

(x-c

)'

I'

c 2

_I' [

[c.

c'

M=

.I..

. 6

--2

-+

12

14

13

+2

+-1

]++

[1-

c'

C'

C4

]]

-6

-+

8--3

-+

I'

I'

14

+'ILf

(X-C

)2

She

ar f

orce

s

N=1-

[-1

+2

f]

ql [x

c [

c'

N=

T 2 T

- T 2-

1'+

+ ~:

]]-1 Lq

(x-c

)

ql

[c4

c3

N=

T 14

-213

+

+2

+ -I]

+ I L

q(x

-c)

Sup

port

mom

ents

Mt=

Qi.

12

M;z =

-Q

I 12

qc'

[

c c']

1

It=

-6

-8-+

3-

12

I I'

M;z =

-qc

Z [4-

3.£].£

12

1 1

ql'

[

c1

cl

1It

=-

1-6

-+

8--

12

I'

I'

c4]

-3

- 14

ai'

[

C'

C4

] II =

_-'

-'-

1-4

-+

3-

• ..,

12

I'

14

Con

t'd

Sup

port

re

acti

ons

Rt=

-Q

2

Rz=

-Q

2 qc

[ c'

R,=

--2

-2

-+

2

I'

c3]

+- 13

Rz=

-!i.

£ [2-

.£]~

2 1

IZ

Rt =_

s!. [

1-2

'£ +

2

[

+2

£.-

c4]

[3

14

ql

[ c'

R,=

--1

-2

-+

2

I'

c4]

+- [4

olio ... N

6 7 8

Bea

m, l

oadi

ng, a

nd

diag

ram

s of

mom

ents

an

d sh

ear

forc

es

Lin

early

dis

trib

uted

loa

d ov

er th

e en

tire

span

~)

, t

~

Lin

early

dis

tribu

ted

load

ov

er a

por

tion

of th

e sp

an

~

:c ~m2

Con

cent

rate

d m

omen

t w

ithin

the

spa

n

19~

Ela

stic

cur

ve

QB

x2

[x'

x 1

w=

60

/2

/2-3

/"+

2

we

=_

I_Q

B

2'

384

for

x= i 2 1

wm

.. ::

382

QB

for

x =

0.525

1

w=

QB {£

.~ [2

+.5:

.-60

1

/2

1

c2 x

[ c2

-3

-+

-2

-+

12

1

12

, 11

11 "-d

) +

7-3

+

cJ3?

2

w= ~B [f

~: [%

+-

-~-ffl+

+1L[x~

cr~]

Ben

dinK

mom

ents

M=

QI

[IO.£.-

30

13

-9f+

2] Q

I M

m ..

=-

23.3

for

x =

0.548

1

Qc'

[

c M

=3

0

2+7

-

c2 [c

2 -3

-+

3 2

-+

12

12

+f-

3]T

]+

II Q

(x-C

)3

+

c 3c

,z

c' [

M

=M

If

(2c-c

')-

-6f]

+

+ILM

~--

--

Con

t'd

Supp

ort

Shea

r fo

rces

SU

DDOr

t mom

ents

re

actio

ns

Q

[ x2

] N

=-

10

--3

10

12

M

I=Q

I 15

RI=

-O.3

Q

~=_QI

10

R2

=-0

.7Q

Qc'

[c

2 C

]

N=

1O

i /2

"+

7-

3 +

Q

c,

z M

I=

30 7

(21

+3

c)

Q

C'2

RI=-

IO 7

x

+1 L

Q (x_~)2

Qe'

[e

en 1

X

[3

+2

f]

~=--

10

-+3

-C

30

/

/2

R2

=-.

Q..

[10

-10

c,z

cc,z

]

-312

-27

N=-6~M

II, =

c'(2c

-c'

) M

6c

c'

RI=

-T

M

13

I 12

~= c

(2c'

-c)

M

13

R

-6c

c' M

2

-1

3

--_

... -

---------~---

Index

Absolutely stiff plates, 305 Adiabatic modulus of elasticity, 159 Adiabatic process, 156 Airy, G. B., 69 Airy (stress) function, 69 Albrey, T., 150 All-round compression (see Hydrostatic pres-

sure) Apparent modulus, 153, 154 Argyris, J. H., 12 Aron, H., II Axisymmetric deformation, 91

Backward differences, 355 Bars, 56, 170

See also Beams Beams, 169

See also Bending of beams Beltrami, E., 47 Beltrami-Michell's equations, 47, 161 Beltrami's strength theory, 63 Bending of beams, 169

application of Castigliano's theorem, 219 application of Rayleigh-Ritz and Bubnov-

Galerkin methods, 226-234 application of theorem of least work, 223 beams on elastic foundation, 190, 191 bending moment and shearing force, 173 boundary conditions, 179 combined action of lateral and axial loads,

198 differential equations of bending, 179 effect of shear (beams on elastic founda-

tion), 194 elastoplastic bending, 130 large deflections (elastica), 264 nonlinear bending, 201 reference tables of deflections of beams,

186, 403 shearing stress and shear deformation, 187

supports, 170-172 thermal bending, 209

Bending of frames, 243 complex frames, 248 simplest frames, 243

Bending of plates, 256 circular plates

axisymmetric bending of absolutely rigid plates, 317

large deflections under uniform load, 312 von Kiinmin's equations, 308

classification of plates from the viewpoint of their analysis, 305

Kirchhoff - Love hypotheses, 257 - 258 rectangular plates

application of Rayleigh - Ritz and Bub-nov-Galerkin method, 285

application of superposition method, 283 boundary conditions, 265 cylindrical bending, 264 differential equation of bending, 262 large deflections, 292 large deflections under uniform load, 298 M. Levy solution, 272 "membrane" stresses, 292 Navier's solution, 268 plate clamped along two opposite edges,

276 plate under distributed edge moments,

279 pure bending, 57 spherical bending, 265 von Kiinmin's equations, 298

thin and thick plates, 256 Bernoulli, J., II Bessel, F. W., 349 Bessel equation, 349 Bessel function, 349 Betti, F., 225 Biharmonic equation, 70

413

414 INDEX

Biharmonic operator, 262, 308, 311 Bimaterial assemblies, 81 Bland, D. R., 150 Body forces, 22, 25, 91 Boltzmann, L., 12 Boundary conditions

in bending of beams, 179 in bending of plates, 265 in elasticity theory, 23, 162, 164 geometric (kinematic), 214, 268 mixed,268 static, 23, 268 in torsion, 100, 101 in two-dimensional problems, 70

Bowing (see Bending) Bredt, R., 109 Bredt's theorem in torsion, 109, 164 Bryan, G. H., 340, 346 Bubnov, I. G., 279 Bubnov-Galerkin method, 227, 233, 285,

287, 298, 313, 351 Buckling of beams (bars), 324

bars on elastic foundation, 327 curved bars, 335 effect of initial curvature, 329 Euler's formulas, 324 large deflections (elastica), 331

Buckling of plates, 340 circular plates, 348 rectangular plates

plate compressed in two opposite direc­tions, 346

plate simply supported along opposite edges, 344

plate uniformly compressed in one direc­tion, 340

Bulk modulus, 43, 126, 161

Canonical equations, 229 Canonical form of stress surface, 29 Cantilever, 52, 71, 172, 173, 188, 231 Castigliano, A., 219 Castigliano's theorem, 219-221 Cauchy, A. L., 11, 29, 35 Cauchy's formulas, 35, 45, 50, 53, 66 Central differences, 355 Circular cylinder, 92 Circular plate

bending, 308-317 buckling, 348 See also Bending of plates and Buckling of

plates Circular ring, 86, 89, 92, 317 Circular shaft, 53, 163 Circulation of a vector, 109 Circulation of the shearing stress, 109

Claugh, R. W., 234 Cleavage plane, 121 Coating, 97 Coaxial cylinders, 94 Coefficient of compliance, 79, 80, 81 Coefficient of thermal expansion, 48, 94, 145 Collocation method, 358 Compatibility conditions, 35, 36, 67 Complementarity theorem, 26 Components of strain, 33, 37 Components of stress, 19, 20, 21 Compression, 20, 55 Concentrated forces and moments, 170 Conditions of compatibility (see Compatibility

conditions) Constants, elastic (see Hooke's law) Coordinate functions, 214 Coulomb, C. A., 11, 62 Courant, R., 12 Creep, 144, 146, 147, 154 Curved bar, 334 Cylinder

symmetrical deformation, 94 thermal stresses, 94 thick, under pressure, 93

Darrow, K. K., 3 Deflection of beams (see Bending of beams) Deflection of foundations, 254 Deformation method, 235, 367 Dilatation, 38, 126, 161 Direction cosines, 22, 23, 26 Displacement method, 235, 367 Displacements, 33 Drucker, D. C., 12 Duhamel, J. M. C., 44, 47, 48, 161, 162 Duhamel-Neumann's equations, 47, 48, 162 Duhamel-Neumann's hypothesis, 44, 161

Elastic limit, 42 Elasticity theory

direct and inverse problems in, 45, 161 elementary problems in, 49, 163 hypotheses in, 15, 16 semi-inverse method in, 46, 161

Ellipsoid, stress, 29, 30, 55 Elliptic bar, 104, 105, 165 Energy

functional, 227, 286 law of conservation of, 215 strain, 60, 228, 235, 239

Enthalpy, 156 Entropy, 155 Equilibrium conditions, 22, 25, 26, 67, 160,

176 Euler, L., 11

Euler's force, 326 Euler formulas, 191

Filon, L. N. G., 74 Filon's solution, 74, 164 Finite differences, 353 Finite-element method, 6, 7, 360, 372 First-order method, 355 Aexible plates of small deflection, 306 Aexural rigidity of plates, 59, 256 Force method, 254 Forward differences, 354 Fourier, 1. B., 73, 269, 341 Fourier series, 73, 269, 341 Four-point bending, 174 Fracture, 115 Fracture mechanics, 121 Fracture modes, 117, 118 Fracture tests, 121 Fracture toughness, 121 Frames, 243

See also Bending of frames Free energy, 156 Free enthalpy, 156

Galerkin, B. G., 5 Galilei, G., 62 Generalized coordinates, 214 Generalized displacements, 214 Generalized forces, 215 Generalized Prandtl' s formula, 104 Germain, S., 11, 256, 262 Gibbs, 1. W., 156 Gibbs' potential, 156 Gilbert, D., 5 Grave, D., I Green, G., 103, 109 Green's formula, 103, 109 Griffith, A. A., 115 Griffith theory, 115 - 117, 165 Gross, B., 150

Hardening, 42 Harmonic function, 47 Harmonic operator, 47, 69, 263 Hencky, H., 12 Hermit functions (polynomials), 365 Hill, R., 12 Hollow shaft, torsion of, 110 Homogeneous deformation, 16 Hooke, R., 11 Hooke's law, 16, 32, 38-44, 45, 53, 67, 91,

161, 239 with consideration of thermoelastic strains,

43,44 Huber, M. T., 64

INDEX 415

Huber's theory, 64 Huber-von Mises-Hencky theory, 64, 65,

126, 163, 164 Hydrostatic pressure, 31, 32, 55, 125, 138 Hypothesis of plane cross sections, 175

Ideal plasticity, 132 Ilyushin, A. A., 128 Ilyushin's theorem on unloading, 130 Influence coefficients, 251 Interpolation polynomials, 354 Invariants of stress (See Stress invariants) Irwin, G. R., 117, 165 Irwin's stress intensity approach, 117 - 119,

165 Isochrometric lines, 384, 385 Isoclinic lines, 384 Isothermal process, 156 Isotropy, 16

Karman, T. von, 292, 308 Kelsey, S., 234 Kelvin, Lord (W. Thomson), 4, 12 Kirchhoff, G. R., 11, 256 Klapeiron B. P. E., 219 Klapeiron's theorem, 219 Kron, G., 12

Lagrange, 1. L., 11, 262 Lagrange theorem, 216, 217, 227 Lame, G., 30, 39, 47 Lame constants, 39, 40 Lame equations, 47, 48, 162 Lame problem, 93 Laplace, P. S., 47, 309 Laplacean operator, 47, 309 Lateral force, 173

(See also Shearing force) Least work, principle of, 222 Leibnitz, G. W., 62 Levy, M., 256 Levy theorem, 68, 85, 164-Light, polarized (see Polarized light) Linear viscoelasticity theory, 150 Lode, W., 12 Love, A., E. H., 11

Mariotte, F., 62 Martin, H. C., 234 Maxwell, 1. C., 12 Maxwell model, 149 Maxwell's theorem of reciprocity of dis-

placements, 225 Membrane forces, 292, 311 Membranes, 256, 306 Mesh method, 353

416 INDEX

Method of initial parameters, 183 Michell, A. O. M., 47 Mises, R. von, 12 Mohr, 0., 62 Mohr circles, 62, 63 Mohr strength theory, 62, 65 Moire method, 387 Moment of inertia, 176, 210 Multiply connected region, 37, 103, 112,

113, 164 Muskhelishvili, N., 91

Nadai, A., 12, 31, 65 Nadai hypothesis, 65 Navier, H., 11,257 Navier's solution, 268-272 Neutral axis (surface), 176 Newton's interpolation formula, 354 Nonlinearity, 16

Orawan, E., 117 Orthogonal functions, 76

Photoelasticity, 69, 380 Plane strain, 66, 164 Plane stress, 66, 164 Plastic deformation, 16, 125 Plastic flow, 124, 125, 138, 165 Plasticity, 123 Plastics, 143 Plates (see Bending of plates and Buckling of

plates) Point-slope formula, 355 Poisson, S. D., II Poisson's equation, 100 Poisson's ratio, 40, 43, 161 Polar coordinates, 82, 164 Polariscope, 380, 381 Polarized light, 381 Polarizer, 380 Polymers, 143 Polynomials, 70, 164 Prager, W., 12 Prandtl, L., 101 Prandtl-Reuss equations, 141 Prandtl's formula, 101, 104 Prandtl's membrane analogy, 375 Prandtl's stress function, 100, 164 Prerupture deformation of plastics, 149 Pressure, 92 Principal axes, 26 Principal directions, 26, 37 Principal plane, 27 Principal strain, 37 Principal stress, 27, 30

Principle of least work, 222 of Saint-Venant, 46 of superposition, 16 of virtual displacements, 215, 216

Prismatic bar, 49, 164 Proportional limit, 41 Pure bending, 49, 57

Rayleigh, Lord (J. W. Strutt), 226 Rayleigh - Betti theorem, 225 Rayleigh-Ritz method, 226, 229, 286 Recurrence formulas, 356 Reciprocal property of displacements, 224 Reciprocal theorem for forces, 217 Reciprocal theorem for works, 225 Rectangular plate (see Bending of plates and

Buckling of plates) Redundant unknowns, 172 Relaxation function, 151 Relaxation of stress, 144, 146 Relaxation time, 150, 152 Research models, I Residual deformations, 15 Retardation function, 151 Retardation time, 151 Ribiere solution, 73, 164 Rigid-body displacements, 35 Ring (see Circular ring) Ritz, W., 226 Ros, M., 12 Rotation, 33 Ruge, A., 375 Runge-Kutta method, 356 Rupture, 148

Saint-Venant, B. de, II, 36, 306 Saint-Venant-Uvy-von Mises equations,

141 Saint-Venant's conditions of compatibility,

36,67 Saint-Venant's hypothesis, 98 Saint-Venant's principle, 46, 161 Saint-Venant's semi-inverse method, 46 Saint-Venant's torsion function, 98, 164 Schleicher, F., 12 Second-order methods, 356 Section modulus, 72, 73, 106, 130 Semi-infinite beam on elastic foundation, 193 Shear modulus, 41, 43, 126, 161 Simmons, E. E., 375 Simple loading, 142 Simply connected region, 37, 103, 161 Small elastoplastic strains, 125 Solution procedures, 45 Specific heat, 157

Spherical tensor, 31, 160 Spring constant, 191 Statically indeterminate problems (systems),

26, 160, 172 Stiffness matrix, 240, 363, 368 Strain

at point, 33 compatibility of, 35, 36, 67, 161 components of, 33, 37 effective, 127 invariants, 37, 161 nominal, 124 normal and shearing, 33 plane, 27 principal axes of, 37, 160 principal planes of, 37, 160 rotation, 33 surface, 37 tensor, 37, 161 thermoelastic, 43 "true," 124

Strain energy, 60, 61, 163 Strain-hardening coefficient, 124 Strain gauges, 375 Strain rosette, 379 Strength

coefficient, 124 theories (hypotheses), 60-65, 163 ultimate, 42

Stress at point, 19 components of, 19, 86, 160 concentration, 164 deviatoric, 31, 32, 160 effective, 126 invariants of, 26, 29, 32, 126, 160 mean, 18 nominal, 123 normal and shearing, 20, 21 octahedral, 31, 126, 160 plane, 27 principal, 26, 31, 160 radial, 82-85 relaxation, 144, 146 shearing, 20, 26, 30, 82-85, 112, 160,

178, 179 signs of, 20 surface, 29 tensor, 20, 21, 28, 31, 39, 160 "true," 123

Stress ellipsoid, 30, 160 Stress functions, 69, 100, 164 Stress-strain relation, 42, 124, 156, 158, 161

See also Hooke's law Stress surface, 29 Structural analysis, 8-10

INDEX 417

Superposition, principle of, 16, 162, 279, 283 Synge, J. L., 12

Temperature, stress due to nonuniform dis-tribution of, 209

Tension, 20, 56 Thermal expansion, 48, 94, 145 Thermal stress, 94, 209 Thermodynamic potential, 155 Thermodynamics of viscoelastic deformation,

155 Thermoplastic materials, 143 Thermosetting materials, 143 Three-point bending, 174 Time effects in plastics, 144-148 Timoshenko, S. P., 279 Topp, J. L., 234 Torque, 55 Torsion

boundary conditions in, 54 circular shaft in, 53 displacements in, 53, 54 elliptic shaft in, 104 multiconnected sections, 112 of prismatic bars, 53 of rectangular shaft, 107 section modulus in, 106 stress function for, 98 of thin-walled sections, 100, 108, 110

Torsional rigidity, 55, 112, 165 Trapezoidal formula, 356 Tubes

subjected to internal and external pressure, 93

torsion of (see Torsion) Turner, M. J., 234 Twist angle, 55, 109, 112, 114

Ultimate axial force, 130 Ultimate bending moments, 130

Variational methods, 213 Virtual displacements, 215, 216 Viscoelasticity, 143 Viscoelastic deformation, 155 Voight, W., 12 Voight-Kelvin model, 149

Wheatstone bridge, 377 Winkler, E., 190 Winkler's hypothesis, 190

Yield stress, 42, 164 Young, T., II Young's modulus, 40, 41, 145, 161