Appendix L: Structural Engineering

178
Appendix L: Structural Engineering Arcadia Feasibility Study Arcadia Section 205: Flood Risk Management Project October, 2019

Transcript of Appendix L: Structural Engineering

Page 1: Appendix L: Structural Engineering

Appendix L: Structural Engineering Arcadia Feasibility Study

Arcadia Section 205: Flood Risk Management Project

October, 2019

Page 2: Appendix L: Structural Engineering

Appendix L: Structural Engineering

USACE | Arcadia Feasibility Study 2

TABLE OF CONTENTS

1 Introduction ...................................................................................................................................... 3 1.1 Structural Locations ............................................................................................................ 3

2 Technical Guidelines and Reference Standards ............................................................................. 3 2.1 General ............................................................................................................................... 3 2.2 Closure Structures and Retaining and Flood Walls ............................................................ 4

3 Design Criteria ................................................................................................................................. 5 3.1 Performance Objectives ...................................................................................................... 5 3.2 Global Stability Criteria ....................................................................................................... 5 3.3 Design Considerations ........................................................................................................ 5 3.4 Materials .............................................................................................................................. 6 3.5 Material Dead Load Unit Weights ....................................................................................... 9

4 Loads.............................................................................................................................................. 10

5 Structural Design ............................................................................................................................ 12 5.1 T-Wall Floodwall ................................................................................................................ 12 5.2 Roadway and Railroad Closures ...................................................................................... 15 5.3 Additional Design Details .................................................................................................. 18

6 Structural Calculations ................................................................................................................... 20 LIST OF FIGURES Figure 5.1: Side view of a typical floodwall structure. ................................................................................. 12 Figure 5.2: Front view of a typical closure gate structure. .......................................................................... 15 LIST OF TABLES Table 1.1.1: Location of Structural Features ................................................................................................. 3 Table 3.1: Load Categories to Satisfy Performance Requirements .............................................................. 5 Table 3.2: Global Stability Criteria ................................................................................................................ 5 Table 3.3: Water Flood Elevations ................................................................................................................ 6 Table 3.4: Structure Elevations ..................................................................................................................... 6 Table 3.5: Applicable Concrete Design Load Factors................................................................................... 7 Table 3.6: Strength Reduction Factors (ACI 318-19) .................................................................................... 7 Table 3.7: Minimum Concrete Clear Cover ................................................................................................... 8 Table 3.8: Structural Soil Parameters ........................................................................................................... 8 Table 3.9: Standard Dead Load Unit Weights .............................................................................................. 9 Table 5.1: Wall Elevations ........................................................................................................................... 12 Table 5.2: Flood Wall Design Load Cases .................................................................................................. 13 Table 5.3: Structural Stability of Floodwall 1 (10 ft. tall) .............................................................................. 14 Table 5.4: Structural Stability of Floodwall 2 (11.5 ft. tall) ........................................................................... 14 Table 5.5: Design Summary of Floodwall 1 (10 ft. tall) ............................................................................... 14 Table 5.6: Design Summary of Floodwall 2 (11.5 ft. tall) ............................................................................ 15 Table 5.7: Closure Structure Elevations ..................................................................................................... 15 Table 5.8: Closure Structure Dimensions ................................................................................................... 16 Table 5.9: Closure Structures Design Load Cases ..................................................................................... 17 Table 5.10: Railroad Closure – Closure section stability analysis results .................................................. 17 Table 5.11: Railroad Closure – Closure Section Design Capacity Values ................................................. 18

Page 3: Appendix L: Structural Engineering

Appendix L: Structural Engineering

USACE | Arcadia Feasibility Study 3

1 Introduction This appendix report provides the structural engineering in support of the flood risk management plan recommended for the feasibility study of Arcadia, WI. This report was based on developing a structural engineering design that meets feasibility requirements, enables refinement of the project’s structural features, and establishes a baseline cost estimate. The feasibility project consists of four reaches. The structural features for this project are part of the recommendations under the section known as Reach 2. In this section, the main structural features consist of two flood wall sections and three closure structures (Table 1.1.1). The structural components of the design and analysis consist of a reinforced concrete cantilever (T-type) floodwall; two (2) roadway closures; and a railroad closure. Aspects specific to each project feature, such as specific design analysis; loading values; and resulting factors of safety, are described in Section 5. 1.1 Structural Locations

The station location of each structure relative to the Levee Alignment R2 (reference sheet CS103/CS202), which represents the centerline of the levee crest, is presented in Table 1.1.1.

Table 1.1.1: Location of Structural Features

Structure Location From (STA)

To (STA)

Top Elevation

Bottom Elevation

East Railroad Bridge Closure R2 8+73.44 R2 9+65.44 736.70 723.70

River Street Closure R2 35+18.76 R2 36+02.43 734.90 723.59

Floodwall 1 R2 36+02.43 R2 37+85.30 734.90 725.0 R2 46+00.00 R2 52+07.32 734.90 725.0

Main Street Closure R2 37+85.30 R2 39+31.30 734.90 724.25 Floodwall 2 R2 39+31.30 R2 46+00.00 734.90(a) 725.0(a)

(a) Floodwall 2 has variable top and bottom elevations, it is sloping along the direction of the river flow. 2 Technical Guidelines and Reference Standards These features were designed according to the applicable USACE engineering regulations (ERs), engineering manuals (EMs), engineering technical letters (TLs), engineering circulars (ECs), and industry codes.

2.1 General

1. 2015 International Building Code, International Code Council; June 2014.

2. ACI 318-19, Building Code Requirements for Structural Concrete, ACI Committee 318; 2014.

3. AISC 325-17, Steel Construction Manual, Fifteenth Edition, American Institute of Steel Construction; May 2017.

Page 4: Appendix L: Structural Engineering

Appendix L: Structural Engineering

USACE | Arcadia Feasibility Study 4

4. ASCE 7-16, Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers; 2016.

5. UFC 3-320-06A, 1 March 2005, Concrete Floor Slabs on Grade Subjected to Heavy Loads.

6. EM 385-1-1 Safety and Health Requirements, 2014.

7. Aluminum Design Manual, 2015 Edition.

8. 2017 AASHTO Bridge Design Specifications manual.

9. 2007 AREMA Manual for Railway Engineering

10. AASHTO 2018 A Policy on Geometric Design of Highway and Streets

2.2 Closure Structures and Retaining and Flood Walls

1. ECB 2017-2 Revision and Clarification of EM 1110-2-2100 and EM 1110-2-2502.

2. EM 1110-2-1612, Ice Engineering, U.S. Army Corps of Engineers, Washington DC; October 2002.

3. EM 1110-2-2100, Stability Analysis of Concrete Structures, U.S. Army Corps of Engineers, Washington DC; 1 December 2005.

4. EM 1110-2-2102, Waterstops and Other Preformed Joint Materials for Civil Works Structures, U.S. Army Corps of Engineers, Washington DC; September 1995.

5. EM 1110-2-2104, Strength Design for Reinforced-Concrete Hydraulic Structures, U.S. Army Corps of Engineers, Washington DC; August 2003.

6. EM 1110-2-2502, Retaining and Flood Walls, U.S. Army Corps of Engineers, Washington DC; 29 September 1989.

7. EM 1110-2-2504, Design of Sheet Pile Walls, U.S. Army Corps of Engineers, Washington DC; March 1994.

8. ETL 1110-2-584, Design of Hydraulic Steel Structures, U.S. Army Corps of Engineers, Washington DC; 30 June 2014.

9. EM 1110-2-2705 - Structural Design of Closure Structures for Local Flood Protection Projects

10. EM 1110-2-3400 - Painting: New Construction and Maintenance AASHTO - Standard Specifications for Highway Bridges AASHTO - Standard Specifications for Movable Highway Bridges

Page 5: Appendix L: Structural Engineering

Appendix L: Structural Engineering

USACE | Arcadia Feasibility Study 5

3 Design Criteria 3.1 Performance Objectives

Performance objectives for the hydraulic structures on the project are listed in Table 3.1. These performance objectives were adopted from Table 1 of ECB 2017-2 (Attachment A, p.3), for critical sections, following the guidance in EM 1110-2-2502 (Table 4-2, p. 4-6) and EM 1110-2-2607 (Chapter 10). This table supersedes Table 3-1 of EM 1110-2-2100.

Table 3.1: Load Categories to Satisfy Performance Requirements

Water Elevation Flood Side

Load Condition Categories

Return Period

Annual Exceedance Probability

(AEP)

Calculated Annual Exceedance Probability

Railroad Bridge

River Street

Main Street

Usual ≤10-Year Event

1 - 0.1 (≥10%)

10% AEP (10-Year Event) 732.2 728.9’ 728.5’

Unusual (critical)

10- to 750-Year Event

0.1 - 0.00133 (10% - 0.13%)

Design Flood Elevation (100-year + 3’) 736.2’ 734.4’ 733.5’

Extreme (critical)

>750 years or Top of

Structure

Less than 0.00133

(≤0.133%)

Top of Wall w. Superiority 736.7’ 734.9’ 734.9’

3.2 Global Stability Criteria

Global stability criteria for sliding, overturning, bearing, and flotation are evaluated in accordance with EM 1110-2-2502 (Table 4-2) and EM 1110-2-2100 (Chapter 3), as applicable. The minimum factors of safety for the stability of critical structures with ordinary site information, as defined in EM 1110-2-2100, are listed in Table 3.2. The failure mechanisms (sliding, overturning, bearing, and flotation) are described in Chapter 3 of EM 1110-2-2100.

Table 3.2: Global Stability Criteria

Condition Usual (U) Unusual (N) Extreme (X) Reference Sliding 2 1.5 1.1 EM 1110-2-2100 (Table 3-2)

Overturning 100% Base in Compression 75% Base in Compression Resultant within Base EM 1110-2-2100 (Table 3-5)

Bearing 3.5 3.0 2.0 ECB 2017-2 (Table 2)

Flotation 1.3 1.2 1.1 EM 1110-2-2100 (Table 3-4)

3.3 Design Considerations

3.3.1 Water Surface Elevations

HEC-RAS 5.0.5 hydraulics models were used to calculate the water surface elevations for the 10 percent AEP, the design flood elevation, and the minimum design grade surface elevations in support of the structural analysis. The minimum design grade elevation corresponds with the top of the levee/wall. Water surface elevations used to determine hydrostatic loading on the structural features were provided by the Hydrology engineer and are listed in Table 3.3: Water Flood Elevations.

Page 6: Appendix L: Structural Engineering

Appendix L: Structural Engineering

USACE | Arcadia Feasibility Study 6

Table 3.3: Water Flood Elevations

Usual Unusual (N) Extreme Construction

Structure 10% AEP Design Flood Elevation (100 yr + 3’)

Top of Wall w.

Superiority Overtopping

Railroad Bridge 732.20 736.20 736.70 728.00

River Street 728.90 734.40 734.90 726.00

Main Street 728.50 733.50 734.90 726.00

3.3.2 Structural Superiority

Structural superiority for flood risk management generally involves adding height to project features. This is done in order to control the location of overtopping if a flood event were to exceed the capacity of the system; thus, reducing the potential for scour on the landside of the structures. This results in the structures being taller than adjacent levee features.

3.3.3 Elevations of the Structures

Elevations for the bottom of the key, the bottom of the structure, the minimum ground surface for frost design consideration, the top of levee or floodwall adjacent to structures, and the top of structures with structural superiority are in Table 3.4.

Table 3.4: Structure Elevations

Structure Minimum Ground

Surface EL (ft.)

Bottom of Structure EL

(ft.) Bottom of Key

EL (ft.)

Top of Levee/Wall at Structure EL

(ft.)

Top of Structure EL

(ft.)

Railroad Closure 731.50 726.00 N/A 736.70 737.00 River Street

Closure 731.09 723.50 723.50 734.90 735.00

Main Street Closure 731.81 724.25 723.50 734.90 735.00

Floodwall 1 730.50 725.00 723.50 734.90(a) 730.90(b)

735.00(a)

732.00(b)

Floodwall 2 726.50 721.00 719.25 735.00(c) 732.00(d) 732.50

(a) Section of Floodwall 1 from R2 36+02.43 to R2 37+85.30. (b) Section of Floodwall 1 from R2 46+00.00 to R2 52+07.32. (c) Section of Floodwall 2 from R2 39+31.30 to 46+00.00. (d) Section of Floodwall 2 from R2 39+31.30 to 46+00.00.

3.4 Materials

3.4.1 Concrete Design Load Factors

Reinforced concrete is designed per EM 1110-2-2104 (Chapter 3). Structures are designed to account for usual and unusual events that are likely to occur during the service life of the structure, and are evaluated for possible extreme loading events that are unlikely to occur during the service life of the structure. The single load factors used for each event are listed in Table 3.5. For each event, the load cases listed below are intended to provide adequate reliability against exceeding strength limit states. The load factors are applied in the determination of the required nominal

Page 7: Appendix L: Structural Engineering

Appendix L: Structural Engineering

USACE | Arcadia Feasibility Study 7

strength for all combinations of axial, moment, and shear. Shear reinforcement is designed for the excess shear, the difference between the factored ultimate shear force and the shear strength provided by the concrete will be per Chapter 3 (Table 3-1) of EM 1110-2-2104.

Table 3.5: Applicable Concrete Design Load Factors

Load Category Variable Usual (U) Unusual (N) Extreme (X)

𝛾𝑈 𝛾𝑁 𝛾𝑋 Dead D 2.24 1.64 1.21, 0.92

Vertical Earth EV 2.24 1.64 1.351, 1.02

Lateral Earth EH 2.24 1.64 1.353, 0.93

Hydrostatic Hs 2.24 1.64 1.3

Soil Surcharge ES 2.24 1.64 1.3 (1) Applied when loads add to the predominant load effect. (2) Applied when loads subtract from the predominant load effect. (3) Load Factors for structures using at-rest pressure for design: Driving Pressure = 1.35; Resisting Pressure = 0.9. (4) For members in direct tension (net tension across the entire cross section): Usual load factor = 2.8, Unusual load factor = 2.0

3.4.2 Concrete Strength Resistance Factors

Strength reduction (resistance) factors from Chapter 21 of ACI318-19 were used in the design as shown in Table 3.6.

Table 3.6: Strength Reduction Factors (ACI 318-19)

Application Reduction Factor

Tension controlled sections 0.9

Compression controlled sections with spiral reinforcing 0.75

Other compression controlled sections 0.65

Shear and torsion 0.75

Bearing on concrete (except for post-tensioned anchorage zones and strut-and-tie models) 0.65

Post-tensioned anchorage zones 0.85

Strut-and-tie models, struts, ties, nodal zones, and bearing areas in such models 0.75 Flexure sections without axial load in pre-tensioned members where strand embedment is less than the

development length 0.85

3.4.3 Material Specifications

3.4.3.1 Reinforced Concrete

Due to the high ground water levels and the structures exposed to moisture, the water exposure class of concrete is set to F2, S0, W1, C1, in accordance with durability requirements presented in Chapter 4 (Section 4-8) of ACI 318-19, and Chapter 19 (Table 19.3.2.1) of ACI 318-19. The minimum 28-day compressive strength for reinforced concrete in all structural components will be 4,500 pounds per square inch (psi). The concrete mix design requirements will be determined in accordance with ACI 318-19 and ACI 350.

Page 8: Appendix L: Structural Engineering

Appendix L: Structural Engineering

USACE | Arcadia Feasibility Study 8

3.4.3.2 Concrete Reinforcement

All reinforcing steel will be per ASTM A615, Grade 60, undeformed and uncoated. The minimum concrete clear cover is listed in the following table.

Table 3.7: Minimum Concrete Clear Cover

Concrete Location Applicable Features Minimum Clear Cover (inches) Reference

Formed or screeded surfaces subject to cavitation or abrasion

erosion

Top of foundation slab, inside of exterior walls, both sides of interior walls (pump

station/dams) 6 EM 1110-2-2104,

Sect. 2-6

Unformed concrete placed against earth Bottom of the floodwall foundation 4 EM 1110-2-2104,

Sect. 2-6 Equal to or greater than 24 inches

(2 ft.) in thickness Surface of exterior walls 4 EM 1110-2-2104, Sect. 2-6

Greater than 12 inches (1 ft.) and less than 24 inches (2 ft.) in

thickness Top and bottom of top slab 3 EM 1110-2-2104,

Sect. 2-6

3.4.3.3 Structural Steel

All structural steel within the structural components will be per the specifications of the American Institute of Steel Construction (AISC) Manual of Steel Construction, 15th Ed. Listed below are the specifications for commonly used structural products:

Wide-flange sections: ASTM A992 or A572 Grade 50 ASTM A992 – Wide Flange Shapes. ASTM A500, Grade B – Hollow Structural Shapes. ASTM A36 – Other Standard Shapes. ASTM A36 – Plates, bars and sheets. ASTM A325 – Structural Bolts

3.4.3.4 Stainless Steel

Type 316/316L – Submerged or corrosive applications. Type 304/304L – All other areas.

3.4.3.5 Soil

The material properties of the soil and the associated design recommendations are obtained from the Geotechnical engineer and are defined in Table 3.8. Design calculations will be based on the Levee Fill parameters.

Table 3.8: Structural Soil Parameters

Parameter Soil Type

Moist Unit Weight, 𝜸𝒎𝒐𝒊𝒔𝒕

(pcf)

Saturated Unit Weight, 𝜸𝒔𝒂𝒕 (pcf)

Friction Angle, Φ (deg)

Cohesion, c (psf)

Fine Grained Alluvial Sands (aquifer)

118 120 30 0

Fine Grained Blanket (Lean Clay)

116 117 34 0

Levee Fill 123 125 32 0

Page 9: Appendix L: Structural Engineering

Appendix L: Structural Engineering

USACE | Arcadia Feasibility Study 9

3.5 Material Dead Load Unit Weights

Table 3.9: Standard Dead Load Unit Weights

Material Unit Weight (pcf) Concrete 150

Non-reinforced structural grout 130

Steel 490

Water 62.4

Moist Soil 123

Saturated Soil 125

Buoyant Soil 62.6

Page 10: Appendix L: Structural Engineering

Appendix L: Structural Engineering

USACE | Arcadia Feasibility Study 10

4 Loads Live Loads. Live loading for this project will be analyzed, in accordance EM 1110-2-2104, during Plans and Specifications.

Traffic Loads. For the roadway closure structures, the design vehicle will be a WB-67 semitrailer (AASHTO 2018). In accordance with Wisconsin’s vehicle weight limits, the maximum gross weight is 80 kips; the individual axles are limited to 20 kips; and the tandem axles are limited to 34 kips.

Train Loads. For the railroad closure structure, the design train will be a Cooper E80. Ballast is assumed to be 120 pcf and the treated timber ties will be 60 plf.

Dead Loads. Self-weight and dead loads include the total weight of the concrete structure and its appurtenant features (grating and railings, etc). Incidental Loads. Incidental loads from silt, debris pile up and atmospheric ice loading is considered minimal and was neglected. Hydrostatic Loads. Hydrostatic loading is linear and increases with the fluid depth. Hydrostatic pressure is applied perpendicular to all surfaces regardless of orientation. For the structures in this system, hydrostatic pressures will occur laterally on vertical walls or vertically on base slabs. The design fluid depth is a function of the structure’s location relative to the free water surfaces (on each side of the line of protection) and the load case event being considered. Hydrostatic loads will consist of hydrostatic water pressure causing a head differential across the structure. Hydrostatic lateral and vertical pressures will be applied to all structures based on the assumed water level for each load case at a magnitude of 62.4 psf per foot depth. Construction/Maintenance Surcharge load. A surcharge load is applied to account for vehicle loading on the backfill behind abutments. The usual load case uses 100 psf to account for service vehicles (pick-ups) and unusual load case uses 250 psf to account for the WB-65 semitrailer. Earth Loads. The assumed soil parameters used for stability and capacity can be found in Table 3.8. The structures will be surrounded by soils exhibiting both cohesive and cohesionless properties. Lateral and vertical soil loads will be computed and applied in accordance with EM 1110-2-2502 for shallow or pile founded concrete structures. Because minimal movement or rotation is anticipated, at-rest pressures will be applied to the structures per EM 1110-2-2100. In the sliding analysis of the floodwall footing, in accordance with EM 1110-2-2502 and further USACE guidance, resisting passive pressures can be ignored due to the potential for scouring. A compaction induced load will be applied during Plans and Specifications, in accordance with Appendix J of EM 1110-2-2502, which uses both active and passive pressures.

Page 11: Appendix L: Structural Engineering

Appendix L: Structural Engineering

USACE | Arcadia Feasibility Study 11

Wind Loads. Where applicable, wind loads are computed in accordance with ASCE 7-16.

Velocity, v: 115 mph Importance factor, I: 1.0 Exposure category: D

Snow Loads. Where applicable, snow loads are determined and distributed in accordance with ASCE 7-16. Snow loads are per square foot of horizontal projection. The ground Surface Roughness Category is D. The Risk Category of the structures is III.

Ground snow load, pg. 53 : 50 psf Importance factor, I: 1.1 Snow exposure factor, Ce: 0.9

Earthquake Loads. According to Section D.7 of Appendix D, Arcadia is located in a seismic zone 0 on the Uniform Building Code Seismic Zone Map, noted within the Engineering Regulation 1110-2-1806 (Earthquake Design and Evaluation for Civil Works Projects, 2016). No recent earthquakes or fault activity have been documented in the study area. Seismic design analysis is not required and is consistent with local and regional building code. Ice, Debris, and Impact Loads. Impact loads include floating debris and ice. Given the size of this structure debris and ice will tend to bridge across approaches and these loads were neglected except for the swing gate design. Any debris or ice loading into to retained fill of approach walls will not govern.

Uplift Pressure. Uplift was determined using line of creep in the software CTWALL-R. Frost Protection. The foundations of all the structures will be founded below the design frost depth. The minimum frost depth for foundations is 5.5 feet below the ground surface to the bottom of the footing for non-heated structures in accordance with EM 1110-1-1905 (Sect. 2-3.b, p. 2-2). Loading Conditions and Assumptions. All structures are to manage various river elevations, depending on the time of year and flow conditions. During high water events on Turton Creek and the Trempealeau River, the swing gates will work with the floodwalls and the levee system to contain the water flows from entering the city. In coordination with Hydraulics, and depending on the water flow conditions, four general load cases were assumed and listed below:

1. Normal High River Stage (10% AEP) 2. Unusual High River Stage (Design Flood Elevation: 100 yr. + 3’) 3. Extreme High River Stage (Top of Wall with Superiority) 4. Construction Condition (Construction + Surcharge)

Page 12: Appendix L: Structural Engineering

Appendix L: Structural Engineering

USACE | Arcadia Feasibility Study 12

5 Structural Design The Reach 2 will be designed, constructed, and operated in accordance with current USACE standards and in accordance with the methods and references cited in USACE engineering manuals, technical letters, regulations, and other documents. The following documents the major features associated with Reach 2:

Flood wall structure (2 total) Closure structure (3 total)

5.1 T-Wall Floodwall

Floodwalls are reinforced concrete structures that serve as barriers to provide flood protection. Two floodwall monoliths are located along Reach 2: a 10 foot floodwall (T-Wall 1) and an 11.5 foot floodwall (T-Wall 2). The locations of both floodwalls are presented in Table 1.1.1. See Figure 5.1 and Table 5.1: Wall Elevations for a typical view and dimensions of each floodwall.

Figure 5.1: Side view of a typical floodwall structure.

5.1.1 T-Wall Dimensions

Table 5.1: Wall Elevations

Structure T-Wall 1 (10 ft. tall) T-Wall 2 (11.5 ft. tall) Top Elevation (ft.) 735.01 732.51

Bottom of Footing Elevation (ft.) 725.0 721.0

Ground Line (ft.) 730.5 726.5

Page 13: Appendix L: Structural Engineering

Appendix L: Structural Engineering

USACE | Arcadia Feasibility Study 13

Stem Thickness, E (ft.) 1 1.25

Stem Height (ft.) 9 10.25

Footing Thickness, C (ft.) 1 1.25

Footing Length, D (ft.) 11 12

Key Depth, F (ft.) 1.5 1.75

Exposed Ground, A (ft.) 4.5 6 (1) The elevation of the floodwalls varies as it slopes down from STA 39+31.30 to STA 52+07.32, following the flow of the river. For more information, see sheet CS202 in the Attachments to this Appendix.

5.1.2 Structural Design Criteria

The T-wall monoliths are designed in accordance with USACE guidance for the design of hydraulic structures. Structural stability of the floodwalls and closure structures are in accordance with EM 1110-2-2502. In accordance with EM 2100, structures are to be designated as Critical or Normal. Given that the Arcadia FRMP is a high hazard project whose failure would result in loss of life, it is designated as Critical.

5.1.3 Design Loads and Load Cases

General load cases for the feasibility study’s floodwall design are shown in Table 5.2 and are discussed below. The maximum flood elevation considered applicable for the floodwall structures is the top of floodwall elevation. Each structure has structural superiority, resulting in a structure that is higher than the adjacent levee. Therefore, flood loading will not reach the top of the wall without significant overtopping of the levee so this loading is considered applicable. Table 5.2: Flood Wall Design Load Cases

Load Case Type 1) Construction + Surcharge Unusual 2) 10% AEP Usual 3) Design Flood Elevation (100 yr. + 3’) Unusual 4) Design Flood Elevation (100 yr. + 3’) + Superiority Extreme

5.1.3.1 Load Case 1: Construction + Surcharge (Unusual)

The T-Wall monoliths are complete with fill and a compaction loading of 250 plf is applied.

5.1.3.2 Load Case 2: 10% AEP (Usual)

The T-Wall monoliths are complete with fill in place. Flood loading to the 10 percent AEP elevation is applied. This load case will not control the design. 5.1.3.3 Load Case 3: Flood Design Elevation (100 yr. + 3’) (Unusual)

The T-Wall monoliths are complete with fill in place and an ice/debris loading of 0.5 kip/ft is applied at the water surface elevation. Flood loading to the design flood elevation plus 3 feet is applied to the structure. This load case controls the design.

Page 14: Appendix L: Structural Engineering

Appendix L: Structural Engineering

USACE | Arcadia Feasibility Study 14

5.1.3.4 Load Case 4: Flood Design Elevation (100 yr. + 3’) + Superiority (Extreme)

The T-Wall monoliths are complete with fill in place. Flood loading to the top of the wall elevation is applied.

5.1.4 Global Stability Analysis and Results Summary

The floodwalls were analyzed as two different monoliths: a 10 foot tall monolith and a 11.5 foot tall monolith. The resulting stability factors of safety are presented in Table 5.3 and Table 5.4 respectively, and satisfy all stability criteria required in EM 1110-2-2100. The land side water elevation was assumed to be at the lowest ground elevation at Reach 2. The uplift pressure under each monolith type was determined by line of creep, in accordance with the Geotechnical engineer and the level of design required for this feasibility study.

Table 5.3: Structural Stability of Floodwall 1 (10 ft. tall)

Load Case Type Sliding FOS

% of Base in Compression

Flotation FOS

Heel Bearing Pressure (psf)

Toe Bearing Pressure (psf)

1) Construction + Surcharge Unusual 97.18 100 5.84 306.7 1314.6

2) 10% AEP Usual 229.63 100 4.01 254.8 957.1 3) Design Flood Elevation (100 yr. +3’)

Unusual 8.42 78.55 4.82 0.0 1630.1

4) Design Flood Elevation (100 yr. +3’) + Superiority

Extreme 10.71 92.58 4.99 0.0 1395.4

Table 5.4: Structural Stability of Floodwall 2 (11.5 ft. tall)

Load Case Type Sliding FOS

% of Base in Compression

Flotation FOS

Heel Bearing Pressure (psf)

Toe Bearing Pressure (psf)

1) Construction + Surcharge Unusual 17.83 100 6.22 243.8 1470.1

2) 10% AEP Usual 50.83 100 4.83 38.8 1308.0 3) Design Flood Elevation (100 yr. + 3’)

Usual 6.06 76.28 5.18 0.0 1796.1

4) Design Flood Elevation (100 yr. + 3’) + Superiority

Extreme 5.26 82.58 5.57 0.0 1687.3

5.1.5 Structural Design, Analysis and Results Summary

The design strength for the design elements of the T-Wall floodwall monoliths will are presented in Table 5.5 and Table 5.6.

Table 5.5: Design Summary of Floodwall 1 (10 ft. tall)

Design Element

Calculated Maximum Design Capacity Utilization (%) Vu (kip) Mu (kip-ft) Vn (kip) Mn (kip-ft) Shear Moment

Stem 4.48 17.18 9.75 22.0 45.95 78.09 Footing Heel 5.80 29.99 30.24 70.60 19.18 42.48 Footing Toe 1.60 2.10 30.24 70.60 5.29 2.97 Footing Key 5.41 4.05 9.75 22.00 55.49 18.41

Page 15: Appendix L: Structural Engineering

Appendix L: Structural Engineering

USACE | Arcadia Feasibility Study 15

Table 5.6: Design Summary of Floodwall 2 (11.5 ft. tall)

Design Element

Calculated Maximum Design Capacity Utilization (%) Vu (kip) Mu (kip) Vn (kip) Mn (kip) Shear Moment

Stem 5.25 21.31 13.16 30.10 39.89 70.80 Footing Heel 8.01 42.06 37.07 86.90 21.61 48.40 Footing Toe 3.17 4.29 37.07 86.90 8.55 4.94 Footing Key 6.39 5.57 13.16 38.80 48.56 14.36

5.2 Roadway and Railroad Closures

The railroad and roadway closures are a combination of reinforced concrete floodwalls (founded on grade) and steel swing gates that will serve as flood protection barriers (Figure 5.2). The steel swing gates will be permanently placement at the openings in the floodwalls and levees (located in Main Street, River Street and the railroad), in the open position. During a flood event, the gates will be swung into the closed position, with a rod placed at the junction to lock it in place. Each monolith is designed to support the swing gates. The top elevation of the closure structures are set higher than the adjacent levee for structural superiority (refer to Section 3.3.2). Transition sections on either end of the closure structure will connect the closure section to the levee or floodwall. The gate closure section of the closure structure includes a post that will be installed during a flooding event. See Sheet S-101 in the Attachments for swing gate closure and sill dimensions.

Figure 5.2: Front view of a typical closure gate structure.

5.2.1 Closure Structure Dimensions

The roadway closure structures for Main Street and River Street connect to floodwall T-Wall 1 on the upstream and downstream side of the Trempealeau River, respectively. As both roadway closures are subjected to the same conditions as the floodwall T-Wall 1, they are designed similarly. Dimensions for the closure structures are presented in Table 5.7 and Table 5.8, as well as sheet S-101 in the Attachments to Appendix L.

Table 5.7: Closure Structure Elevations

Structure River Street Closure (10 ft. tall)

Main Street Closure (10 ft. tall)

Railroad Closure (11 ft. tall)

Top Elevation (ft.) 735.0 735.0 737.0

Bottom of Footing Elevation (ft.) 725.0 725.0 726.0

Ground Line (ft.) 730.5 730.5 731.5

Page 16: Appendix L: Structural Engineering

Appendix L: Structural Engineering

USACE | Arcadia Feasibility Study 16

Stem Thickness, E (ft.) 1.0 1.0 1.25

Stem Height (ft.) 9.0 9.0 9.0

Footing Thickness, C (ft.) 1.0 1.0 2.0

Footing Length, D (ft.) 11.0 11.0 11.0

Key Depth, F (ft.) 1.5 1.5 1.75

Exposed Ground, A (ft.) 4.5 4.5 5.5

Table 5.8: Closure Structure Dimensions

Structure River Street Closure (10 ft. tall)

Main Street Closure (10 ft. tall)

Railroad Closure (11 ft. tall)

Closure Opening, L (ft.) 38 68 42

Total Closure Length (ft.) 94 124 98

Height, H (ft.) 4 3.25 5.5

Pier Height, P (ft.) 6 6 6

Base Width, W (ft.) 11 11 12

5.2.2 Structural Design Criteria

The flood closure gate structure are designed in accordance with the Corps of Engineer's Standards and Engineering Manuals, the Wisconsin Department of Transportation (Wisconsin DOT) Standard Specifications for Road and Bridge Construction (2002), the American Association of State Highway and Transportation Officials, Inc. (AASHTO), American Institute of Steel Construction (AISC), American Concrete Institute (ACI), American Railway Engineering and Maintenance-of-Way Association (AREMA), and American Water Works Association (AWWA).

The stress and loading criteria used will be as described in Chapter 4 of EM 1110-2-2705. The gate operating equipment, seal assemblies and embedded metals will be as described in Chapter 5 of EM 1110-2- 2705. The steel, other than the stainless steel, will be painted in accordance with EM 1110-2-3400 and the Wisconsin DOT, Standard Specification for Road and Bridge Construction. Fits and surface finishes of movable parts shall be in accordance with AASHTO - Standard Specifications for Movable Highway Bridges. Criteria for the field leakage test shall be in accordance with American Water Works Association Standards.

5.2.3 Design Loads and Load Cases

General load cases for design of the closures in the feasibility study are shown in Table 5.9. The maximum flood elevation considered applicable for the closure structures is the Top of Closure with Superiority elevation (see Table 3.3). The closure structures have structural superiority, resulting in a structures that are higher than the adjacent levee. Therefore, flood loading will not reach the top of the closures without significant overtopping of the levee; thus, this specific loading was not considered applicable.

Page 17: Appendix L: Structural Engineering

Appendix L: Structural Engineering

USACE | Arcadia Feasibility Study 17

Table 5.9: Closure Structures Design Load Cases

Load Case Type Construction + Surcharge Unusual 10% AEP Usual Design Flood Elevation (100 yr. + 3’) Unusual Design Flood Elevation (100 yr. + 3’) + Superiority Extreme

5.2.3.1 Load Case 1: Construction + Surcharge (Unusual)

The closure structure is complete with fill and a compaction loading of 250 plf is applied. 5.2.3.2 Load Case 2: 10% AEP (Usual)

The closure structure is complete with fill in place. Flood loading to the 10 percent AEP elevation is applied. 5.2.3.3 Load Case 3: Flood Design Elevation (100 yr. + 3’) (Unusual)

The closure structure is complete with fill in place and a wind loading of 50 plf is distributed from the water surface elevation to the top of the gate. Flood loading to the design flood elevation plus 3 feet is applied to the closure structure. This load case controls the design. 5.2.3.4 Load Case 4: Flood Design Elevation (100 yr. + 3’) + Superiority (Extreme)

The closure structure is complete with fill in place. Flood loading to the top of the design flood elevation plus 3 feet and superiority is applied to the closure structure. 5.2.4 Global Stability Analysis and Results Summary

The railroad closure structure was analyzed for global stability as the critical case among the closure structures. Each closure structure was analyzed as two sections: the opening section and tie-in wall section. The resulting stability factors of safety are presented in Table 5.10 for the railroad closure and tie-in wall sections, respectively. The land side water elevation was assumed to be at the bottom of footing. Therefore, the uplift pressure tapers from the full flood hydrostatic head (on the heel side) to no hydrostatic head (on the toe side).

Table 5.10: Railroad Closure – Closure section stability analysis results

Load Case Type Sliding FOS

% of Base in Compression

Flotation FOS

Heel Bearing Pressure (psf)

Toe Bearing Pressure (psf)

1) Construction + Surcharge Unusual 30.43 100 5.04 311.5 1340.2

2) 10% AEP Usual 407.92 100 3.51 309.7 918.4 3) Design Flood Elevation (100 yr. +3’)

Unusual 6.93 80.99 4.20 0.0 1614.8

4) Design Flood Elevation (100 yr. +3’) + Superiority

Extreme 8.09 93.32 4.30 0.0 1412.3

Page 18: Appendix L: Structural Engineering

Appendix L: Structural Engineering

USACE | Arcadia Feasibility Study 18

5.2.5 Structural Design, Analysis and Results Summary

The design strength for the design elements of the railroad closure structure monoliths is presented in Table 5.11.

Table 5.11: Railroad Closure – Closure Section Design Capacity Values

Design Element

Calculated Maximum Design Capacity Utilization (%) Vu (kip) Mu (kip) Vn (kip) Mn (kip) Shear Moment

Stem 4.31 16.30 13.16 30.10 32.75 54.15 Footing Heel 5.29 30.33 47.32 111.20 11.18 27.28 Footing Toe 2.70 3.66 47.32 111.20 5.71 3.29 Footing Key 5.88 5.12 13.16 30.10 44.68 17.01

5.3 Additional Design Details

5.3.1 Sheet Pile and Levee Connection

To provide resiliency at the connection point between the floodwall and levee, the floodwall is extended horizontally 5 feet into the levee (in the levee profile direction) and a sheet pile is extended an additional 15 feet (beyond the floodwall). The sheet pile is extended vertically to within 1’-6” of the levee crown elevation. See Sheet S-101 in the Attachments for a plan view of the sheet pile connection. 5.3.1.1 Contraction, Expansion, Construction Joints and Waterstops

Due to the length of the closure structure and the floodwall, expansion joints have been added between the wall monoliths and on the outside of the gate support piers, to accommodate thermal expansion and contraction. The monolith length will be set at approximately 60 feet. The footings and the closure sill walls do not have control joints because they are subgrade elements. Waterstops will be included in all expansion and control joints. 5.3.2 Road and Railroad Closure Decisions

Decisions made during the design of the railroad and road closure are discussed below. 5.3.2.1 Opening Width

The opening width was defined to allow the service road and the existing rails to pass through the openings. 5.3.2.2 Swing Gate: Steel Design

The steel design will be in accordance with ETL 1110-2-584 using LRFD. The swing gate will have a similar design to the swing gate presented in sheet SG-14 in the Attachments. 5.3.2.3 Closure Structure: Load Cases and Load Combinations

The design load cases and the load factors will follow ETL 1110-2-2105, Section F.4.2. The following cases will be analyzed:

Page 19: Appendix L: Structural Engineering

Appendix L: Structural Engineering

USACE | Arcadia Feasibility Study 19

Case 1: Strength I, Gate closed (includes dead and hydrostatic to the top of gate): 1.2D

+ 1.4H Case 2: Strength I, Gate closed, Gate subject on the upper level wind pressure of up to

50 psf: 1.2D + 1.3W2 Case 3: Strength II, Gate operating, Hinged gate subjected to Dead and Wind (lower

level 15 psf), operating load is treated as a reaction: 1.2D + 1.3W1 Note that for the wind pressures, ETL 1110-2-2105 allows for use of 50 psf and 15 psf (not operating and operating) as maximum pressures in lieu of calculating the pressures according to ASCE 7. The ASCE 7 wind design information (defined previously and used for the concrete wall design) is covered by these maximums. ETL 1110-2-584 will require a minimum member thickness of 3/8” which will control the member selections. This will result in stiff girders with a large amount of reserve capacity and deflections well under l/360. 5.3.2.4 Closure Structure: Hinge Design

The hinges will be made up of short length plates that are stiffened and thus will not fail in buckling. Without buckling, yield will be the failure mechanism, and the unfactored von Mises stress will be compared to a critical von Mises stress of 0.5Fy. 5.3.2.5 Closure Structure: Fracture Critical Analysis

An analysis will be performed during Plans & Specs, to determine the closure structure’s Fracture Critical Members (FCMs). All welds will be welded per AWS 1.5, utilizing a Fracture Control Plan. Non-Destructive Examination (NDE) by a Certified Weld Inspector (CWI) will be specified in accordance with ER 1110-2- 8157 and AWS 1.5. Documentation of the final accepted CWI report will be provided to the Sponsor. Welds on the hinges will also receive NDE due to lack of redundancy. While the flood load is transferred through bearing into the pilasters, the failure of the hinges would lead to a non-functioning structure and failure during operation is a safety concern. 5.3.2.6 Foundation Design

Foundation final design will be in accordance with the available soil borings and recommendations by the COE. The foundation design will be performed during Plans and Specifications based on Load Combinations derived from EM 1110-2-2104, Table E-2 for Inland Floodwalls. All applicable load cases will be considered in the design of the footings. 5.3.3 Miscellaneous Metals (grating, guard rail and handrail)

Designs for guard rail and handrail, if needed, will be developed during Plans & Specifications and will be based on standardize Wisconsin DOT designs.

Page 20: Appendix L: Structural Engineering

Appendix L: Structural Engineering

USACE | Arcadia Feasibility Study 20

5.3.4 Miscellaneous Drainage Features

RCP Pipes, if needed, will be developed during Plans & Specifications and will be designed according to EM 1110 2 2902 and ACPA Concrete Pipe Handbook guidelines.

5.3.5 Corrosion Control

To help resist corrosion, the metals will be hot dip galvanized after fabrication or painted per city requirement. 6 Structural Calculations The following information is included in Attachment 1 to this appendix:

Floodwall Structure Stability and Design (CTWALL-R output) Typical Closure Structure Stability and Design (CTWALL-R output) Typical Concrete Design of T-Wall sections Drawings

Page 21: Appendix L: Structural Engineering

Appendix L: Structural Engineering

USACE | Arcadia Feasibility Study 21

Attachments

Page 22: Appendix L: Structural Engineering
Page 23: Appendix L: Structural Engineering
Page 24: Appendix L: Structural Engineering
Page 25: Appendix L: Structural Engineering

Floodwall1_10_Usual.out.txt

 ****************** Echoprint of Input Data ******************

 Date: 2019/ 9/30 Time: 17.00.50 

 Arcadia Floodwall, Height 10 ft, No Sheetpile Usual Case, Cracked, Water 10% AEP Check Design

 Company name:   USACE Project name:   Arcadia Feasibility Study Project location:   Arcadia, Wisconsin Wall location:   Floodwall, Height 10 ft. Computed by: CNO

 Structural geometry data:   Elevation of top of stem (ELTS) =   735.00 ft   Height of stem (HTS) =     9.00 ft   Thickness top of stem (TTS) =     1.00 ft   Thickness bottom of stem (TBS) =     1.00 ft   Dist. of batter at bot. of stem (TBSR)=     0.00 ft   Depth of heel (THEEL) =     2.50 ft   Distance of batter for heel (BTRH)    =     0.00 ft   Depth of toe (TTOE) =     1.00 ft   Width of toe (TWIDTH) =     2.50 ft   Distance of batter for toe (BTRT)     =     0.00 ft   Width of base (BWIDTH) =    11.00 ft   Depth of key (HK) =     1.50 ft   Width of bottom of key (TK) =     1.25 ft   Dist. of batter at bot. of key (BTRK) =     0.00 ft

 Structure coordinates:

    x (ft)    y (ft)   ==================

0.00    723.500.00    726.007.50    726.007.50    735.008.50    735.008.50    726.00

Page 1

Page 26: Appendix L: Structural Engineering

Floodwall1_10_Usual.out.txt      11.00    726.00      11.00    725.00       1.25    725.00       1.25    723.50

 NOTE: X=0 is located at the left‐hand side       of the structure.  The Y values correspond       to the actual elevation used.

 Structural property data:   Unit weight of concrete =    0.150 kcf

 Driving side soil property data:

                       Moist   Saturated          Elev.    Phi        c      Unit wt.  unit wt.  Delta   soil   (deg)     (ksf)     (kcf)     (kcf)    (deg)   (ft) =======================================================    32.00    0.000     0.123     0.125     0.00  730.50

 Driving side soil geometry:

   Soil      Batter    Distance   point    (in:1ft)     (ft)   =============================    1         0.00      0.00    2         0.00      0.00    3         0.00    500.00

 Driving side soil profile:

   Soil        x          y       point      (ft)       (ft)   =============================    1      ‐992.50    730.50    2         7.50    730.50

 Resisting side soil property data:

                       Moist   Saturated  Elev.    Phi        c      Unit wt.  unit wt.  soil    Batter   (deg)     (ksf)     (kcf)     (kcf)    (ft)   (in:1ft) ========================================================    32.00    0.000     0.123     0.125   730.50    0.00

 Resisting side soil profile:

   Soil        x          y    

Page 2

Page 27: Appendix L: Structural Engineering

Floodwall1_10_Usual.out.txt   point      (ft)       (ft)   =============================    1         8.50    730.50    2       508.50    730.50

 Foundation property data:   phi for soil‐structure interface =    32.00 (deg)   c for soil‐structure interface   =    0.000 (ksf)   phi for soil‐soil interface      =    32.00 (deg)   c for soil‐soil interface        =    0.000 (ksf)

 Water data:   Driving side elevation   =   731.50 ft   Resisting side elevation =   726.00 ft   Unit weight of water     =   0.0624 kcf   Seepage pressures computed by Line of Creep method.

 Minimum required factors of safety:   Sliding FS   =    2.00   Overturning  =  100.00% base in compression

 Crack options:   o  Crack *is* down to bottom of heel   o  Computed cracks *will* be filled with water

 All computed failure angles are based on 45+‐(phi developed)/2 Note:  Any wedge angles that are 'set' are not affected by this option.

 Strength mobilization factor =   0.6667

 Resisting side pressures *are not* used in the overturning analysis.

 Forces on the resisting side *are used* in the sliding analysis.

 *Do* iterate in overturning analysis.

 ***** Summary of Results *****

 Arcadia Floodwall, Height 10 ft, No Sheetpile               

 Project name: Arcadia Feasibility Study                                   

 ***************    *** Satisfied *** * Overturning *    Required base in comp. = 100.00 % ***************    Actual base in comp.   = 100.00 %

Page 3

Page 28: Appendix L: Structural Engineering

Floodwall1_10_Usual.out.txt                    Overturning ratio      =   2.44

 Xr (measured from toe) =   4.44 ft Resultant ratio        = 0.4034 Stem ratio             = 0.2273 Base pressure at heel =    0.2548 ksf Base pressure at toe  =    0.9571 ksf

 ***********    *** Satisfied *** * Sliding *    Min. Required =   2.00 ***********    Actual FS     = 229.63

 ***********     * Bearing *     ***********    

 Net ultimate bearing pressure =    16.8054 (ksf) Factor of safety =     22.236

 ********************** Output Results **********************

 Date: 2019/ 9/30                               Time: 17.00.50 

 Arcadia Floodwall, Height 10 ft, No Sheetpile                Usual Case, Cracked, Water 10% AEP                           Check Design                                                

 Company name:   USACE                                                        Project name:   Arcadia Feasibility Study                                    Project location:   Arcadia, Wisconsin                                           Wall location:   Floodwall, Height 10 ft.                                     Computed by: CNO

 *************************** **  Overturning Results  ** ***************************

 Solution converged in  1 iterations.

 SMF used to calculate K's =   0.6667 Alpha for the SMF          =   0.0000

Page 4

Page 29: Appendix L: Structural Engineering

Floodwall1_10_Usual.out.txt Calculated earth pressure coefficients:   Driving side at rest K    =   0.0000   Driving side at rest Kc   =   0.0000   Resisting side at rest K  =   0.0000   Resisting side at rest Kc =   0.0000   No passive pressures used for resisting side.

 Depth of cracking =     7.00 ft Crack extends to bottom of base of structure.

 ** Driving side pressures **

   Water pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        731.50     0.0000        723.50     0.4992

 ** Resisting side pressures **

   Water pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        726.00     0.0000        725.00     0.0908        725.00     0.4677        723.50     0.4992

   Balancing earth pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        725.00     0.8175        723.50     0.8175

 ** Uplift pressures **

   Water pressures:      x‐coord.   Pressure        (ft)       (ksf)     ======================          0.00     0.4992          1.25     0.4677          1.25     0.3363         11.00     0.0908

Page 5

Page 30: Appendix L: Structural Engineering

Floodwall1_10_Usual.out.txt ** Forces and moments **

 ========================================================================               Part          |    Force (kips)    | Mom. Arm  |  Moment |                             |  Vert.   |   Horiz.|    (ft)   |  (ft‐k) | ======================================================================== Structure:                    Structure weight...........    3.281                 ‐4.89    ‐16.04 Structure, driving side:      Moist soil.................    0.000                  0.00      0.00   Saturated soil.............    4.219                 ‐7.25    ‐30.59   Water above structure......    0.000                  0.00      0.00   Water above soil...........    0.468                 ‐7.25     ‐3.39   External vertical loads....    0.000                  0.00      0.00   Ext. horz. pressure loads..               0.000       0.00      0.00   Ext. horz. line loads......               0.000       0.00      0.00 Structure, resisting side:    Moist soil.................    1.384                 ‐1.25     ‐1.73   Saturated soil.............    0.000                  0.00      0.00   Water above structure......    0.000                  0.00      0.00   Water above soil...........    0.000                  0.00      0.00 Driving side:            Effective earth loads......               0.000       0.00      0.00   Shear (due to delta).......    0.000                  0.00      0.00   Horiz. surcharge effects...               0.000       0.00      0.00   Water loads................               1.997       1.17      2.33 Resisting side:               Effective earth loads......               0.000       0.00      0.00   Balancing earth load.......              ‐1.226      ‐0.77      0.94   Water loads................              ‐0.771      ‐0.69      0.53 Foundation:                   Vertical force on base.....   ‐6.665                 ‐4.44     29.58   Uplift.....................   ‐2.686                 ‐6.84     18.37 ======================================================================== ** Statics Check **   SUMS =     0.000      0.000                 0.00

 Angle of base        =     7.77 degrees Normal force on base =    6.770 kips Shear force on base  =    0.314 kips Max. available shear force =    4.724 kips

 Base pressure at heel =   0.2548 ksf Base pressure at toe  =   0.9571 ksf

 Xr (measured from toe) =     4.44 ft Resultant ratio        =   0.4034 Stem ratio             =   0.2273 Base in compression    =   100.00 %

Page 6

Page 31: Appendix L: Structural Engineering

Floodwall1_10_Usual.out.txt Overturning ratio      =     2.44

 Volume of concrete =     0.81 cubic yds/ft of wall

 NOTE:  The engineer shall verify that the computed bearing pressures below the wall do not exceed the allowable foundation bearing pressure, or, perform a bearing capacity analysis using the program CBEAR. Also, the engineer shall verify that the base pressures do not result in excessive differential settlement of the wall foundation.

 *********************** **  Sliding Results  ** ***********************

 Factor of safety > 100.  Last iteration printed.

            Horizontal   Vertical   Wedge      Loads       Loads   Number    (kips)       (kips)   ==================================      1       0.000       0.000      2       1.997       0.468      3       0.000       0.000

   Water pressures on wedges:

              Top      Bottom     Wedge    press.   press.   x‐coord.    press.     number   (ksf)    (ksf)     (ft)       (ksf)   ================================================       1    0.0000    0.0000       2                         0.0000     0.4992       2                        11.0000     0.0908       3    0.0000    0.0908

 Points of sliding plane:   Point 1 (left),  x =     0.00 ft,   y =   723.50 ft   Point 2 (right), x =    11.00 ft,   y =   725.00 ft

 Depth of cracking =     7.00 ft Crack extends to bottom of base of structure.

           Failure   Total    Weight    Submerged   Uplift

Page 7

Page 32: Appendix L: Structural Engineering

Floodwall1_10_Usual.out.txt   Wedge    angle    length  of wedge    length     force   number   (deg)     (ft)    (kips)      (ft)      (kips)   ========================================================      1     0.000     0.000      0.000    0.000     0.000      2     7.765    11.102      9.681   11.102     3.275      3    44.922     7.789      1.866    1.416     0.064

   Wedge     Net force   number     (kips)   ===================      1        0.000      2       ‐0.594      3        1.871   ===================      SUM =    1.278

 +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ | Factor of safety =  229.627 | +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

 *********************** **  Bearing Results  ** ***********************

             Base width =     11.102 (ft)                     Xr =      4.438 (ft)   Effective base width =      8.957 (ft)    (measured along slope)             Base slope =     7.7652 (deg)

                    phi =     32.000 (deg)                      c =      0.000 (ksf)        Effective gamma =     0.0626 (kcf)

            Normal load =      6.770 (kips)       Load inclination =      2.659 (deg)      Load eccentricity =      1.072 (ft)

              Surcharge =     0.6161 (ksf)              Embedment =      5.500 (ft)           Ground slope =     0.0000 (deg)

           Bearing Capacity Factors =============================================

Page 8

Page 33: Appendix L: Structural Engineering

Floodwall1_10_Usual.out.txt                     C        Q         G ============================================= Bearing         35.4903   23.1768   22.0225 Embedment        1.2215    1.1108    1.1108 Inclination      0.9418    0.9418    0.8407 Base Tilt        0.8305    0.8378    0.8378 Ground Slope     1.0000    1.0000    1.0000

 Net ultimate bearing pressure =    16.8054 (ksf)

 +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ | Factor of safety =     22.236 | +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

Page 9

Page 34: Appendix L: Structural Engineering

Floodwall1_10_Unusual_Construction.out.txt

 ****************** Echoprint of Input Data ******************

 Date: 2019/ 9/30                               Time: 16.58.49 

 Arcadia Floodwall, Height 10 ft, No Sheetpile                Unusual Case Construction, Cracked                           Check Design                                                

 Company name:   USACE                                                         Project name:   Arcadia Feasibility Study                                     Project location:   Arcadia, Wisconsin                                            Wall location:   Floodwall, Height 10 ft.                                      Computed by: CNO

 Structural geometry data:   Elevation of top of stem (ELTS)       =   735.00 ft   Height of stem (HTS)                  =     9.00 ft   Thickness top of stem (TTS)           =     1.00 ft   Thickness bottom of stem (TBS)        =     1.00 ft   Dist. of batter at bot. of stem (TBSR)=     0.00 ft   Depth of heel (THEEL)                 =     2.50 ft   Distance of batter for heel (BTRH)    =     0.00 ft   Depth of toe (TTOE)                   =     1.00 ft   Width of toe (TWIDTH)                 =     2.50 ft   Distance of batter for toe (BTRT)     =     0.00 ft   Width of base (BWIDTH)                =    11.00 ft   Depth of key (HK)                     =     1.50 ft   Width of bottom of key (TK)           =     1.25 ft   Dist. of batter at bot. of key (BTRK) =     0.00 ft

 Structure coordinates:

    x (ft)    y (ft)   ==================       0.00    723.50       0.00    726.00       7.50    726.00       7.50    735.00       8.50    735.00       8.50    726.00

Page 1

Page 35: Appendix L: Structural Engineering

Floodwall1_10_Unusual_Construction.out.txt      11.00    726.00      11.00    725.00       1.25    725.00       1.25    723.50

 NOTE: X=0 is located at the left‐hand side       of the structure.  The Y values correspond       to the actual elevation used.

 Structural property data:   Unit weight of concrete =    0.150 kcf

 Driving side soil property data:

                       Moist   Saturated          Elev.    Phi        c      Unit wt.  unit wt.  Delta   soil   (deg)     (ksf)     (kcf)     (kcf)    (deg)   (ft) =======================================================    32.00    0.000     0.123     0.125     0.00  730.50

 Driving side soil geometry:

   Soil      Batter    Distance   point    (in:1ft)     (ft)   =============================    1         0.00      0.00    2         0.00      0.00    3         0.00    500.00

 Driving side soil profile:

   Soil        x          y       point      (ft)       (ft)   =============================    1      ‐992.50    730.50    2         7.50    730.50

 Resisting side soil property data:

                       Moist   Saturated  Elev.    Phi        c      Unit wt.  unit wt.  soil    Batter   (deg)     (ksf)     (kcf)     (kcf)    (ft)   (in:1ft) ========================================================    32.00    0.000     0.123     0.125   730.50    0.00

 Resisting side soil profile:

   Soil        x          y    

Page 2

Page 36: Appendix L: Structural Engineering

Floodwall1_10_Unusual_Construction.out.txt   point      (ft)       (ft)   =============================    1         8.50    730.50    2       508.50    730.50

 Foundation property data:   phi for soil‐structure interface =    32.00 (deg)   c for soil‐structure interface   =    0.000 (ksf)   phi for soil‐soil interface      =    32.00 (deg)   c for soil‐soil interface        =    0.000 (ksf)

 Water data:   Driving side elevation   =   734.50 ft   Resisting side elevation =   726.00 ft   Unit weight of water     =   0.0624 kcf   Seepage pressures computed by Line of Creep method.

 Uniform load data:   Magnitude of load =     0.2500 k/ft

 Minimum required factors of safety:   Sliding FS   =    1.50   Overturning  =   75.00% base in compression

 Crack options:   o  Crack *is* down to bottom of heel   o  Computed cracks *will* be filled with water

 All computed failure angles are based on 45+‐(phi developed)/2 Note:  Any wedge angles that are 'set' are not affected by this option.

 Strength mobilization factor =   0.6667

 Resisting side pressures *are not* used in the overturning analysis.

 Forces on the resisting side *are used* in the sliding analysis.

 *Do* iterate in overturning analysis.

 ***** Summary of Results *****

 Arcadia Floodwall, Height 10 ft, No Sheetpile               

 Project name: Arcadia Feasibility Study                                   

Page 3

Page 37: Appendix L: Structural Engineering

Floodwall1_10_Unusual_Construction.out.txt ***************    *** Satisfied *** * Overturning *    Required base in comp. =  75.00 % ***************    Actual base in comp.   = 100.00 %                    Overturning ratio      =   2.18

 Xr (measured from toe) =   4.36 ft Resultant ratio        = 0.3964 Stem ratio             = 0.2273 Base pressure at heel =    0.3067 ksf Base pressure at toe  =    1.3146 ksf

 ***********    *** Satisfied *** * Sliding *    Min. Required =   1.50 ***********    Actual FS     =  97.18

 ***********     * Bearing *     ***********    

 Net ultimate bearing pressure =    13.1119 (ksf) Factor of safety =     12.538

 ********************** Output Results **********************

 Date: 2019/ 9/30                               Time: 16.58.49 

 Arcadia Floodwall, Height 10 ft, No Sheetpile                Unusual Case Construction, Cracked                           Check Design                                                

 Company name:   USACE                                                        Project name:   Arcadia Feasibility Study                                    Project location:   Arcadia, Wisconsin                                           Wall location:   Floodwall, Height 10 ft.                                     Computed by: CNO

 *************************** **  Overturning Results  ** ***************************

 Solution converged in  1 iterations.

Page 4

Page 38: Appendix L: Structural Engineering

Floodwall1_10_Unusual_Construction.out.txt

 SMF used to calculate K's =   0.6667 Alpha for the SMF          =   0.0000 Calculated earth pressure coefficients:   Driving side at rest K    =   0.0000   Driving side at rest Kc   =   0.0000   Resisting side at rest K  =   0.0000   Resisting side at rest Kc =   0.0000   No passive pressures used for resisting side.

 Depth of cracking =     7.00 ft Crack extends to bottom of base of structure.

 ** Driving side pressures **

   Water pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        734.50     0.0000        723.50     0.6864

   Surcharge pressures:        Elev.   Press.        (ft)    (ksf)     ===================

 ** Resisting side pressures **

   Water pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        726.00     0.0000        725.00     0.1062        725.00     0.6377        723.50     0.6864

   Balancing earth pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        725.00     1.8193        723.50     1.8193

 ** Uplift pressures **

   Water pressures:

Page 5

Page 39: Appendix L: Structural Engineering

Floodwall1_10_Unusual_Construction.out.txt      x‐coord.   Pressure        (ft)       (ksf)     ======================          0.00     0.6864          1.25     0.6377          1.25     0.4858         11.00     0.1062

 ** Forces and moments **

 ========================================================================               Part          |    Force (kips)    | Mom. Arm  |  Moment |                             |  Vert.   |   Horiz.|    (ft)   |  (ft‐k) | ======================================================================== Structure:                    Structure weight...........    3.281                 ‐4.89    ‐16.04 Structure, driving side:      Moist soil.................    0.000                  0.00      0.00   Saturated soil.............    4.219                 ‐7.25    ‐30.59   Water above structure......    0.000                  0.00      0.00   Water above soil...........    1.872                 ‐7.25    ‐13.57   External vertical loads....    1.875                 ‐7.25    ‐13.59   Ext. horz. pressure loads..               0.000       0.00      0.00   Ext. horz. line loads......               0.000       0.00      0.00 Structure, resisting side:    Moist soil.................    1.384                 ‐1.25     ‐1.73   Saturated soil.............    0.000                  0.00      0.00   Water above structure......    0.000                  0.00      0.00   Water above soil...........    0.000                  0.00      0.00 Driving side:            Effective earth loads......               0.000       0.00      0.00   Shear (due to delta).......    0.000                  0.00      0.00   Horiz. surcharge effects...               0.000       0.00      0.00   Water loads................               3.775       2.16      8.16 Resisting side:               Effective earth loads......               0.000       0.00      0.00   Balancing earth load.......              ‐2.729      ‐0.75      2.06   Water loads................              ‐1.046      ‐0.72      0.75 Foundation:                   Vertical force on base.....   ‐8.917                 ‐4.36     38.88   Uplift.....................   ‐3.714                 ‐6.91     25.67 ======================================================================== ** Statics Check **   SUMS =     0.000      0.000                 0.00

 Angle of base        =     7.77 degrees Normal force on base =    9.204 kips Shear force on base  =    1.499 kips Max. available shear force =    6.245 kips

Page 6

Page 40: Appendix L: Structural Engineering

Floodwall1_10_Unusual_Construction.out.txt

 Base pressure at heel =   0.3067 ksf Base pressure at toe  =   1.3146 ksf

 Xr (measured from toe) =     4.36 ft Resultant ratio        =   0.3964 Stem ratio             =   0.2273 Base in compression    =   100.00 % Overturning ratio      =     2.18

 Volume of concrete =     0.81 cubic yds/ft of wall

 NOTE:  The engineer shall verify that the computed bearing pressures below the wall do not exceed the allowable foundation bearing pressure, or, perform a bearing capacity analysis using the program CBEAR. Also, the engineer shall verify that the base pressures do not result in excessive differential settlement of the wall foundation.

 *********************** **  Sliding Results  ** ***********************

 Solution converged.  Summation of forces = 0.

            Horizontal   Vertical   Wedge      Loads       Loads   Number    (kips)       (kips)   ==================================      1       0.000       0.000      2       3.775       3.747      3       0.000       0.000

   Water pressures on wedges:

              Top      Bottom     Wedge    press.   press.   x‐coord.    press.     number   (ksf)    (ksf)     (ft)       (ksf)   ================================================       1    0.0000    0.0000       2                         0.0000     0.6864       2                        11.0000     0.1062       3    0.0000    0.1062

Page 7

Page 41: Appendix L: Structural Engineering

Floodwall1_10_Unusual_Construction.out.txt Points of sliding plane:   Point 1 (left),  x =     0.00 ft,   y =   723.50 ft   Point 2 (right), x =    11.00 ft,   y =   725.00 ft

 Depth of cracking =     7.00 ft Crack extends to bottom of base of structure.

           Failure   Total    Weight    Submerged   Uplift   Wedge    angle    length  of wedge    length     force   number   (deg)     (ft)    (kips)      (ft)      (kips)   ========================================================      1     0.000     0.000      0.000    0.000     0.000      2     7.765    11.102      9.681   11.102     4.400      3    44.816     7.803      1.873    1.419     0.075

   Wedge     Net force   number     (kips)   ===================      1        0.000      2       ‐1.885      3        1.885   ===================      SUM =    0.000

 +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ | Factor of safety =   97.184 | +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

 *********************** **  Bearing Results  ** ***********************

             Base width =     11.102 (ft)                     Xr =      4.360 (ft)   Effective base width =      8.801 (ft)    (measured along slope)             Base slope =     7.7652 (deg)

                    phi =     32.000 (deg)                      c =      0.000 (ksf)        Effective gamma =     0.0626 (kcf)

            Normal load =      9.204 (kips)       Load inclination =      9.251 (deg)      Load eccentricity =      1.150 (ft)

Page 8

Page 42: Appendix L: Structural Engineering

Floodwall1_10_Unusual_Construction.out.txt

              Surcharge =     0.6161 (ksf)              Embedment =      5.500 (ft)           Ground slope =     0.0000 (deg)

           Bearing Capacity Factors =============================================                     C        Q         G ============================================= Bearing         35.4903   23.1768   22.0225 Embedment        1.2255    1.1127    1.1127 Inclination      0.8050    0.8050    0.5054 Base Tilt        0.8305    0.8378    0.8378 Ground Slope     1.0000    1.0000    1.0000

 Net ultimate bearing pressure =    13.1119 (ksf)

 +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ | Factor of safety =     12.538 | +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

Page 9

Page 43: Appendix L: Structural Engineering

Floodwall1_10_Unusual.out.txt

 ****************** Echoprint of Input Data ******************

 Date: 2019/ 9/30                               Time: 16.53.59 

 Arcadia Floodwall, Height 10 ft, No Sheetpile                Unusual Case, Cracked, Water Design Flood EL                 Check Design                                                

 Company name:   USACE                                                         Project name:   Arcadia Feasibility Study                                     Project location:   Arcadia, Wisconsin                                            Wall location:   Floodwall, Height 10 ft                                       Computed by: CNO

 Structural geometry data:   Elevation of top of stem (ELTS)       =   735.00 ft   Height of stem (HTS)                  =     9.00 ft   Thickness top of stem (TTS)           =     1.00 ft   Thickness bottom of stem (TBS)        =     1.00 ft   Dist. of batter at bot. of stem (TBSR)=     0.00 ft   Depth of heel (THEEL)                 =     2.50 ft   Distance of batter for heel (BTRH)    =     0.00 ft   Depth of toe (TTOE)                   =     1.00 ft   Width of toe (TWIDTH)                 =     2.50 ft   Distance of batter for toe (BTRT)     =     0.00 ft   Width of base (BWIDTH)                =    11.00 ft   Depth of key (HK)                     =     1.50 ft   Width of bottom of key (TK)           =     1.25 ft   Dist. of batter at bot. of key (BTRK) =     0.00 ft

 Structure coordinates:

    x (ft)    y (ft)   ==================       0.00    723.50       0.00    726.00       7.50    726.00       7.50    735.00       8.50    735.00       8.50    726.00

Page 1

Page 44: Appendix L: Structural Engineering

Floodwall1_10_Unusual.out.txt      11.00    726.00      11.00    725.00       1.25    725.00       1.25    723.50

 NOTE: X=0 is located at the left‐hand side       of the structure.  The Y values correspond       to the actual elevation used.

 Structural property data:   Unit weight of concrete =    0.150 kcf

 Driving side soil property data:

                       Moist   Saturated          Elev.    Phi        c      Unit wt.  unit wt.  Delta   soil   (deg)     (ksf)     (kcf)     (kcf)    (deg)   (ft) =======================================================    32.00    0.000     0.123     0.125     0.00  730.50

 Driving side soil geometry:

   Soil      Batter    Distance   point    (in:1ft)     (ft)   =============================    1         0.00      0.00    2         0.00      0.00    3         0.00    500.00

 Driving side soil profile:

   Soil        x          y       point      (ft)       (ft)   =============================    1      ‐992.50    730.50    2         7.50    730.50

 Resisting side soil property data:

                       Moist   Saturated  Elev.    Phi        c      Unit wt.  unit wt.  soil    Batter   (deg)     (ksf)     (kcf)     (kcf)    (ft)   (in:1ft) ========================================================    32.00    0.000     0.123     0.125   730.50    0.00

 Resisting side soil profile:

   Soil        x          y    

Page 2

Page 45: Appendix L: Structural Engineering

Floodwall1_10_Unusual.out.txt   point      (ft)       (ft)   =============================    1         8.50    730.50    2       508.50    730.50

 Foundation property data:   phi for soil‐structure interface =    32.00 (deg)   c for soil‐structure interface   =    0.000 (ksf)   phi for soil‐soil interface      =    32.00 (deg)   c for soil‐soil interface        =    0.000 (ksf)

 Water data:   Driving side elevation   =   734.50 ft   Resisting side elevation =   726.00 ft   Unit weight of water     =   0.0624 kcf   Seepage pressures computed by Line of Creep method.

 Horizontal line load data:

    Elevation   Force      (ft)      (kips) ========================    734.50      0.50

 Minimum required factors of safety:   Sliding FS   =    1.50   Overturning  =   75.00% base in compression

 Crack options:   o  Crack *is* down to bottom of heel   o  Computed cracks *will* be filled with water

 All computed failure angles are based on 45+‐(phi developed)/2 Note:  Any wedge angles that are 'set' are not affected by this option.

 Strength mobilization factor =   0.6667

 Resisting side pressures *are not* used in the overturning analysis.

 Forces on the resisting side *are used* in the sliding analysis.

 *Do* iterate in overturning analysis.

 ***** Summary of Results *****

Page 3

Page 46: Appendix L: Structural Engineering

Floodwall1_10_Unusual.out.txt Arcadia Floodwall, Height 10 ft, No Sheetpile               

 Project name: Arcadia Feasibility Study                                   

 ***************    *** Satisfied *** * Overturning *    Required base in comp. =  75.00 % ***************    Actual base in comp.   =  78.55 %                    Overturning ratio      =   1.57

 Xr (measured from toe) =   2.88 ft Resultant ratio        = 0.2618 Stem ratio             = 0.2273 Base pressure at x=   8.64 ft from toe =    0.0000 ksf Base pressure at toe                   =    1.6301 ksf

 ***********    *** Satisfied *** * Sliding *    Min. Required =   1.50 ***********    Actual FS     =   8.42

 ***********     * Bearing *     ***********    

 Net ultimate bearing pressure =     9.7274 (ksf) Factor of safety =      7.628

 ********************** Output Results **********************

 Date: 2019/ 9/30                               Time: 16.53.59 

 Arcadia Floodwall, Height 10 ft, No Sheetpile                Unusual Case, Cracked, Water Design Flood EL                 Check Design                                                

 Company name:   USACE                                                        Project name:   Arcadia Feasibility Study                                    Project location:   Arcadia, Wisconsin                                           Wall location:   Floodwall, Height 10 ft                                      Computed by: CNO

 ***************************

Page 4

Page 47: Appendix L: Structural Engineering

Floodwall1_10_Unusual.out.txt **  Overturning Results  ** ***************************

 Solution converged in  1 iterations.

 SMF used to calculate K's =   0.6667 Alpha for the SMF          =   0.0000 Calculated earth pressure coefficients:   Driving side at rest K    =   0.0000   Driving side at rest Kc   =   0.0000   Resisting side at rest K  =   0.0000   Resisting side at rest Kc =   0.0000   No passive pressures used for resisting side.

 Depth of cracking =     7.00 ft Crack extends to bottom of base of structure.

 ** Driving side pressures **

   Water pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        734.50     0.0000        723.50     0.6864

 ** Resisting side pressures **

   Water pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        726.00     0.0000        725.00     0.1062        725.00     0.6377        723.50     0.6864

   Balancing earth pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        725.00     2.1526        723.50     2.1526

 ** Uplift pressures **

   Water pressures:      x‐coord.   Pressure

Page 5

Page 48: Appendix L: Structural Engineering

Floodwall1_10_Unusual.out.txt        (ft)       (ksf)     ======================          0.00     0.6864          1.25     0.6377          1.25     0.4858         11.00     0.1062

 ** Forces and moments **

 ========================================================================               Part          |    Force (kips)    | Mom. Arm  |  Moment |                             |  Vert.   |   Horiz.|    (ft)   |  (ft‐k) | ======================================================================== Structure:                    Structure weight...........    3.281                 ‐4.89    ‐16.04 Structure, driving side:      Moist soil.................    0.000                  0.00      0.00   Saturated soil.............    4.219                 ‐7.25    ‐30.59   Water above structure......    0.000                  0.00      0.00   Water above soil...........    1.872                 ‐7.25    ‐13.57   External vertical loads....    0.000                  0.00      0.00   Ext. horz. pressure loads..               0.000       0.00      0.00   Ext. horz. line loads......               0.500       9.50      4.75 Structure, resisting side:    Moist soil.................    1.384                 ‐1.25     ‐1.73   Saturated soil.............    0.000                  0.00      0.00   Water above structure......    0.000                  0.00      0.00   Water above soil...........    0.000                  0.00      0.00 Driving side:            Effective earth loads......               0.000       0.00      0.00   Shear (due to delta).......    0.000                  0.00      0.00   Horiz. surcharge effects...               0.000       0.00      0.00   Water loads................               3.775       2.16      8.16 Resisting side:               Effective earth loads......               0.000       0.00      0.00   Balancing earth load.......              ‐3.229      ‐0.72      2.31   Water loads................              ‐1.046      ‐0.72      0.75 Foundation:                   Vertical force on base.....   ‐7.042                 ‐2.88     20.28   Uplift.....................   ‐3.714                 ‐6.91     25.67 ======================================================================== ** Statics Check **   SUMS =     0.000      0.000                 0.00

 Angle of base        =     7.77 degrees Normal force on base =    7.414 kips Shear force on base  =    2.248 kips Max. available shear force =    5.126 kips

Page 6

Page 49: Appendix L: Structural Engineering

Floodwall1_10_Unusual.out.txt Base pressure at x=   8.64 ft from toe =   0.0000 ksf Base pressure at toe                   =   1.6301 ksf

 Xr (measured from toe) =     2.88 ft Resultant ratio        =   0.2618 Stem ratio             =   0.2273 Base in compression    =    78.55 % Overturning ratio      =     1.57

 Volume of concrete =     0.81 cubic yds/ft of wall

 NOTE:  The engineer shall verify that the computed bearing pressures below the wall do not exceed the allowable foundation bearing pressure, or, perform a bearing capacity analysis using the program CBEAR. Also, the engineer shall verify that the base pressures do not result in excessive differential settlement of the wall foundation.

 *********************** **  Sliding Results  ** ***********************

 Solution converged.  Summation of forces = 0.

            Horizontal   Vertical   Wedge      Loads       Loads   Number    (kips)       (kips)   ==================================      1       0.000       0.000      2       4.275       1.872      3       0.000       0.000

   Water pressures on wedges:

              Top      Bottom     Wedge    press.   press.   x‐coord.    press.     number   (ksf)    (ksf)     (ft)       (ksf)   ================================================       1    0.0000    0.0000       2                         0.0000     0.6864       2                        11.0000     0.1062       3    0.0000    0.1062

 Points of sliding plane:

Page 7

Page 50: Appendix L: Structural Engineering

Floodwall1_10_Unusual.out.txt   Point 1 (left),  x =     0.00 ft,   y =   723.50 ft   Point 2 (right), x =    11.00 ft,   y =   725.00 ft

 Depth of cracking =     7.00 ft Crack extends to bottom of base of structure.

           Failure   Total    Weight    Submerged   Uplift   Wedge    angle    length  of wedge    length     force   number   (deg)     (ft)    (kips)      (ft)      (kips)   ========================================================      1     0.000     0.000      0.000    0.000     0.000      2     7.765    11.102      9.681   11.102     4.400      3    42.877     8.083      2.005    1.470     0.078

   Wedge     Net force   number     (kips)   ===================      1        0.000      2       ‐2.150      3        2.151   ===================      SUM =    0.000

 +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ | Factor of safety =    8.415 | +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

 *********************** **  Bearing Results  ** ***********************

             Base width =     11.102 (ft)                     Xr =      2.880 (ft)   Effective base width =      5.813 (ft)    (measured along slope)             Base slope =     7.7652 (deg)

                    phi =     32.000 (deg)                      c =      0.000 (ksf)        Effective gamma =     0.0626 (kcf)

            Normal load =      7.414 (kips)       Load inclination =     16.867 (deg)      Load eccentricity =      2.644 (ft)

Page 8

Page 51: Appendix L: Structural Engineering

Floodwall1_10_Unusual.out.txt              Surcharge =     0.6161 (ksf)              Embedment =      5.500 (ft)           Ground slope =     0.0000 (deg)

           Bearing Capacity Factors =============================================                     C        Q         G ============================================= Bearing         35.4903   23.1768   22.0225 Embedment        1.3414    1.1707    1.1707 Inclination      0.6603    0.6603    0.2236 Base Tilt        0.8305    0.8378    0.8378 Ground Slope     1.0000    1.0000    1.0000

 Net ultimate bearing pressure =     9.7274 (ksf)

 +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ | Factor of safety =      7.628 | +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

Page 9

Page 52: Appendix L: Structural Engineering

Floodwall1_10_Extreme.out.txt

 ****************** Echoprint of Input Data ******************

 Date: 2019/ 9/30                               Time: 16.56.38 

 Arcadia Floodwall, Height 10 ft, No Sheetpile                Extreme Case, Cracked, Water Top of Wall w Superiority       Check Design                                                

 Company name:   USACE                                                         Project name:   Arcadia Feasibility Study                                     Project location:   Arcadia, Wisconsin                                            Wall location:   Floodwall, Height 10 ft.                                      Computed by: CNO

 Structural geometry data:   Elevation of top of stem (ELTS)       =   735.00 ft   Height of stem (HTS)                  =     9.00 ft   Thickness top of stem (TTS)           =     1.00 ft   Thickness bottom of stem (TBS)        =     1.00 ft   Dist. of batter at bot. of stem (TBSR)=     0.00 ft   Depth of heel (THEEL)                 =     2.50 ft   Distance of batter for heel (BTRH)    =     0.00 ft   Depth of toe (TTOE)                   =     1.00 ft   Width of toe (TWIDTH)                 =     2.50 ft   Distance of batter for toe (BTRT)     =     0.00 ft   Width of base (BWIDTH)                =    11.00 ft   Depth of key (HK)                     =     1.50 ft   Width of bottom of key (TK)           =     1.25 ft   Dist. of batter at bot. of key (BTRK) =     0.00 ft

 Structure coordinates:

    x (ft)    y (ft)   ==================       0.00    723.50       0.00    726.00       7.50    726.00       7.50    735.00       8.50    735.00       8.50    726.00

Page 1

Page 53: Appendix L: Structural Engineering

Floodwall1_10_Extreme.out.txt      11.00    726.00      11.00    725.00       1.25    725.00       1.25    723.50

 NOTE: X=0 is located at the left‐hand side       of the structure.  The Y values correspond       to the actual elevation used.

 Structural property data:   Unit weight of concrete =    0.150 kcf

 Driving side soil property data:

                       Moist   Saturated          Elev.    Phi        c      Unit wt.  unit wt.  Delta   soil   (deg)     (ksf)     (kcf)     (kcf)    (deg)   (ft) =======================================================    32.00    0.000     0.123     0.125     0.00  730.50

 Driving side soil geometry:

   Soil      Batter    Distance   point    (in:1ft)     (ft)   =============================    1         0.00      0.00    2         0.00      0.00    3         0.00    500.00

 Driving side soil profile:

   Soil        x          y       point      (ft)       (ft)   =============================    1      ‐992.50    730.50    2         7.50    730.50

 Resisting side soil property data:

                       Moist   Saturated  Elev.    Phi        c      Unit wt.  unit wt.  soil    Batter   (deg)     (ksf)     (kcf)     (kcf)    (ft)   (in:1ft) ========================================================    32.00    0.000     0.123     0.125   730.50    0.00

 Resisting side soil profile:

   Soil        x          y    

Page 2

Page 54: Appendix L: Structural Engineering

Floodwall1_10_Extreme.out.txt   point      (ft)       (ft)   =============================    1         8.50    730.50    2       508.50    730.50

 Foundation property data:   phi for soil‐structure interface =    32.00 (deg)   c for soil‐structure interface   =    0.000 (ksf)   phi for soil‐soil interface      =    32.00 (deg)   c for soil‐soil interface        =    0.000 (ksf)

 Water data:   Driving side elevation   =   735.00 ft   Resisting side elevation =   726.00 ft   Unit weight of water     =   0.0624 kcf   Seepage pressures computed by Line of Creep method.

 Minimum required factors of safety:   Sliding FS   =    1.10   Overturning  =    0.00% base in compression

 Crack options:   o  Crack *is* down to bottom of heel   o  Computed cracks *will* be filled with water

 All computed failure angles are based on 45+‐(phi developed)/2 Note:  Any wedge angles that are 'set' are not affected by this option.

 Strength mobilization factor =   0.6667

 Resisting side pressures *are not* used in the overturning analysis.

 Forces on the resisting side *are used* in the sliding analysis.

 *Do* iterate in overturning analysis.

 ***** Summary of Results *****

 Arcadia Floodwall, Height 10 ft, No Sheetpile               

 Project name: Arcadia Feasibility Study                                   

 ***************    *** Satisfied *** * Overturning *    Required base in comp. =   0.00 % ***************    Actual base in comp.   =  92.58 %

Page 3

Page 55: Appendix L: Structural Engineering

Floodwall1_10_Extreme.out.txt                    Overturning ratio      =   1.71

 Xr (measured from toe) =   3.39 ft Resultant ratio        = 0.3086 Stem ratio             = 0.2273 Base pressure at x=  10.18 ft from toe =    0.0000 ksf Base pressure at toe                   =    1.3954 ksf

 ***********    *** Satisfied *** * Sliding *    Min. Required =   1.10 ***********    Actual FS     =  10.71

 ***********     * Bearing *     ***********    

 Net ultimate bearing pressure =    10.2387 (ksf) Factor of safety =      9.417

 ********************** Output Results **********************

 Date: 2019/ 9/30                               Time: 16.56.38 

 Arcadia Floodwall, Height 10 ft, No Sheetpile                Extreme Case, Cracked, Water Top of Wall w Superiority       Check Design                                                

 Company name:   USACE                                                        Project name:   Arcadia Feasibility Study                                    Project location:   Arcadia, Wisconsin                                           Wall location:   Floodwall, Height 10 ft.                                     Computed by: CNO

 *************************** **  Overturning Results  ** ***************************

 Solution converged in  1 iterations.

 SMF used to calculate K's =   0.6667 Alpha for the SMF          =   0.0000

Page 4

Page 56: Appendix L: Structural Engineering

Floodwall1_10_Extreme.out.txt Calculated earth pressure coefficients:   Driving side at rest K    =   0.0000   Driving side at rest Kc   =   0.0000   Resisting side at rest K  =   0.0000   Resisting side at rest Kc =   0.0000   No passive pressures used for resisting side.

 Depth of cracking =     7.00 ft Crack extends to bottom of base of structure.

 ** Driving side pressures **

   Water pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        735.00     0.0000        723.50     0.7176

 ** Resisting side pressures **

   Water pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        726.00     0.0000        725.00     0.1088        725.00     0.6661        723.50     0.7176

   Balancing earth pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        725.00     2.0227        723.50     2.0227

 ** Uplift pressures **

   Water pressures:      x‐coord.   Pressure        (ft)       (ksf)     ======================          0.00     0.7176          1.25     0.6661          1.25     0.5107         11.00     0.1088

Page 5

Page 57: Appendix L: Structural Engineering

Floodwall1_10_Extreme.out.txt ** Forces and moments **

 ========================================================================               Part          |    Force (kips)    | Mom. Arm  |  Moment |                             |  Vert.   |   Horiz.|    (ft)   |  (ft‐k) | ======================================================================== Structure:                    Structure weight...........    3.281                 ‐4.89    ‐16.04 Structure, driving side:      Moist soil.................    0.000                  0.00      0.00   Saturated soil.............    4.219                 ‐7.25    ‐30.59   Water above structure......    0.000                  0.00      0.00   Water above soil...........    2.106                 ‐7.25    ‐15.27   External vertical loads....    0.000                  0.00      0.00   Ext. horz. pressure loads..               0.000       0.00      0.00   Ext. horz. line loads......               0.000       0.00      0.00 Structure, resisting side:    Moist soil.................    1.384                 ‐1.25     ‐1.73   Saturated soil.............    0.000                  0.00      0.00   Water above structure......    0.000                  0.00      0.00   Water above soil...........    0.000                  0.00      0.00 Driving side:            Effective earth loads......               0.000       0.00      0.00   Shear (due to delta).......    0.000                  0.00      0.00   Horiz. surcharge effects...               0.000       0.00      0.00   Water loads................               4.126       2.33      9.60 Resisting side:               Effective earth loads......               0.000       0.00      0.00   Balancing earth load.......              ‐3.034      ‐0.74      2.25   Water loads................              ‐1.092      ‐0.71      0.77 Foundation:                   Vertical force on base.....   ‐7.105                 ‐3.39     24.12   Uplift.....................   ‐3.885                 ‐6.92     26.88 ======================================================================== ** Statics Check **   SUMS =     0.000      0.000                 0.00

 Angle of base        =     7.77 degrees Normal force on base =    7.450 kips Shear force on base  =    2.046 kips Max. available shear force =    5.149 kips

 Base pressure at x=  10.18 ft from toe =   0.0000 ksf Base pressure at toe                   =   1.3954 ksf

 Xr (measured from toe) =     3.39 ft Resultant ratio        =   0.3086 Stem ratio             =   0.2273 Base in compression    =    92.58 %

Page 6

Page 58: Appendix L: Structural Engineering

Floodwall1_10_Extreme.out.txt Overturning ratio      =     1.71

 Volume of concrete =     0.81 cubic yds/ft of wall

 NOTE:  The engineer shall verify that the computed bearing pressures below the wall do not exceed the allowable foundation bearing pressure, or, perform a bearing capacity analysis using the program CBEAR. Also, the engineer shall verify that the base pressures do not result in excessive differential settlement of the wall foundation.

 *********************** **  Sliding Results  ** ***********************

 Solution converged.  Summation of forces = 0.

            Horizontal   Vertical   Wedge      Loads       Loads   Number    (kips)       (kips)   ==================================      1       0.000       0.000      2       4.126       2.106      3       0.000       0.000

   Water pressures on wedges:

              Top      Bottom     Wedge    press.   press.   x‐coord.    press.     number   (ksf)    (ksf)     (ft)       (ksf)   ================================================       1    0.0000    0.0000       2                         0.0000     0.7176       2                        11.0000     0.1088       3    0.0000    0.1088

 Points of sliding plane:   Point 1 (left),  x =     0.00 ft,   y =   723.50 ft   Point 2 (right), x =    11.00 ft,   y =   725.00 ft

 Depth of cracking =     7.00 ft Crack extends to bottom of base of structure.

           Failure   Total    Weight    Submerged   Uplift

Page 7

Page 59: Appendix L: Structural Engineering

Floodwall1_10_Extreme.out.txt   Wedge    angle    length  of wedge    length     force   number   (deg)     (ft)    (kips)      (ft)      (kips)   ========================================================      1     0.000     0.000      0.000    0.000     0.000      2     7.765    11.102      9.681   11.102     4.587      3    43.330     8.015      1.973    1.457     0.079

   Wedge     Net force   number     (kips)   ===================      1        0.000      2       ‐2.085      3        2.085   ===================      SUM =    0.000

 +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ | Factor of safety =   10.706 | +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

 *********************** **  Bearing Results  ** ***********************

             Base width =     11.102 (ft)                     Xr =      3.394 (ft)   Effective base width =      6.852 (ft)    (measured along slope)             Base slope =     7.7652 (deg)

                    phi =     32.000 (deg)                      c =      0.000 (ksf)        Effective gamma =     0.0626 (kcf)

            Normal load =      7.450 (kips)       Load inclination =     15.359 (deg)      Load eccentricity =      2.125 (ft)

              Surcharge =     0.6161 (ksf)              Embedment =      5.500 (ft)           Ground slope =     0.0000 (deg)

           Bearing Capacity Factors =============================================

Page 8

Page 60: Appendix L: Structural Engineering

Floodwall1_10_Extreme.out.txt                     C        Q         G ============================================= Bearing         35.4903   23.1768   22.0225 Embedment        1.2896    1.1448    1.1448 Inclination      0.6878    0.6878    0.2704 Base Tilt        0.8305    0.8378    0.8378 Ground Slope     1.0000    1.0000    1.0000

 Net ultimate bearing pressure =    10.2387 (ksf)

 +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ | Factor of safety =      9.417 | +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

Page 9

Page 61: Appendix L: Structural Engineering

Floodwall2_11ft6in_Usual.out.txt

 ****************** Echoprint of Input Data ******************

 Date: 2019/ 9/30                               Time: 15.43.37 

 Arcadia Floodwall, Height 11 1/2 ft, No Sheetpile            Usual Case, Cracked, Water 10% AEP                           Check Design                                                

 Company name:   USACE                                                         Project name:   Arcadia Feasibility Study                                     Project location:   Arcadia, Wisconsin                                            Wall location:   Floodwall, Height 11 1/2 ft                                   Computed by: CNO

 Structural geometry data:   Elevation of top of stem (ELTS)       =   732.50 ft   Height of stem (HTS)                  =    10.25 ft   Thickness top of stem (TTS)           =     1.25 ft   Thickness bottom of stem (TBS)        =     1.25 ft   Dist. of batter at bot. of stem (TBSR)=     0.00 ft   Depth of heel (THEEL)                 =     3.00 ft   Distance of batter for heel (BTRH)    =     0.00 ft   Depth of toe (TTOE)                   =     1.25 ft   Width of toe (TWIDTH)                 =     2.50 ft   Distance of batter for toe (BTRT)     =     0.00 ft   Width of base (BWIDTH)                =    12.00 ft   Depth of key (HK)                     =     1.75 ft   Width of bottom of key (TK)           =     1.25 ft   Dist. of batter at bot. of key (BTRK) =     0.00 ft

 Structure coordinates:

    x (ft)    y (ft)   ==================       0.00    719.25       0.00    722.25       8.25    722.25       8.25    732.50       9.50    732.50       9.50    722.25

Page 1

Page 62: Appendix L: Structural Engineering

Floodwall2_11ft6in_Usual.out.txt      12.00    722.25      12.00    721.00       1.25    721.00       1.25    719.25

 NOTE: X=0 is located at the left‐hand side       of the structure.  The Y values correspond       to the actual elevation used.

 Structural property data:   Unit weight of concrete =    0.150 kcf

 Driving side soil property data:

                       Moist   Saturated          Elev.    Phi        c      Unit wt.  unit wt.  Delta   soil   (deg)     (ksf)     (kcf)     (kcf)    (deg)   (ft) =======================================================    32.00    0.000     0.123     0.125     0.00  726.50

 Driving side soil geometry:

   Soil      Batter    Distance   point    (in:1ft)     (ft)   =============================    1         0.00      0.00    2         0.00      0.00    3         0.00    500.00

 Driving side soil profile:

   Soil        x          y       point      (ft)       (ft)   =============================    1      ‐991.75    726.50    2         8.25    726.50

 Resisting side soil property data:

                       Moist   Saturated  Elev.    Phi        c      Unit wt.  unit wt.  soil    Batter   (deg)     (ksf)     (kcf)     (kcf)    (ft)   (in:1ft) ========================================================    32.00    0.000     0.123     0.125   726.50    0.00

 Resisting side soil profile:

   Soil        x          y    

Page 2

Page 63: Appendix L: Structural Engineering

Floodwall2_11ft6in_Usual.out.txt   point      (ft)       (ft)   =============================    1         9.50    726.50    2       509.50    726.50

 Foundation property data:   phi for soil‐structure interface =    32.00 (deg)   c for soil‐structure interface   =    0.000 (ksf)   phi for soil‐soil interface      =    32.00 (deg)   c for soil‐soil interface        =    0.000 (ksf)

 Water data:   Driving side elevation   =   730.50 ft   Resisting side elevation =   722.25 ft   Unit weight of water     =   0.0624 kcf   Seepage pressures computed by Line of Creep method.

 Minimum required factors of safety:   Sliding FS   =    2.00   Overturning  =  100.00% base in compression

 Crack options:   o  Crack *is* down to bottom of heel   o  Computed cracks *will* be filled with water

 All computed failure angles are based on 45+‐(phi developed)/2 Note:  Any wedge angles that are 'set' are not affected by this option.

 Strength mobilization factor =   0.6667

 Resisting side pressures *are not* used in the overturning analysis.

 Forces on the resisting side *are used* in the sliding analysis.

 *Do* iterate in overturning analysis.

 ***** Summary of Results *****

 Arcadia Floodwall, Height 11 1/2 ft, No Sheetpile           

 Project name: Arcadia Feasibility Study                                   

 ***************    *** Satisfied *** * Overturning *    Required base in comp. = 100.00 % ***************    Actual base in comp.   = 100.00 %

Page 3

Page 64: Appendix L: Structural Engineering

Floodwall2_11ft6in_Usual.out.txt                    Overturning ratio      =   1.89

 Xr (measured from toe) =   4.12 ft Resultant ratio        = 0.3429 Stem ratio             = 0.2083 Base pressure at heel =    0.0388 ksf Base pressure at toe  =    1.3080 ksf

 ***********    *** Satisfied *** * Sliding *    Min. Required =   2.00 ***********    Actual FS     =  50.83

 ***********     * Bearing *     ***********    

 Net ultimate bearing pressure =    12.2402 (ksf) Factor of safety =     12.145

 ********************** Output Results **********************

 Date: 2019/ 9/30                               Time: 15.43.37 

 Arcadia Floodwall, Height 11 1/2 ft, No Sheetpile            Usual Case, Cracked, Water 10% AEP                           Check Design                                                

 Company name:   USACE                                                        Project name:   Arcadia Feasibility Study                                    Project location:   Arcadia, Wisconsin                                           Wall location:   Floodwall, Height 11 1/2 ft                                  Computed by: CNO

 *************************** **  Overturning Results  ** ***************************

 Solution converged in  1 iterations.

 SMF used to calculate K's =   0.6667 Alpha for the SMF          =   0.0000

Page 4

Page 65: Appendix L: Structural Engineering

Floodwall2_11ft6in_Usual.out.txt Calculated earth pressure coefficients:   Driving side at rest K    =   0.0000   Driving side at rest Kc   =   0.0000   Resisting side at rest K  =   0.0000   Resisting side at rest Kc =   0.0000   No passive pressures used for resisting side.

 Depth of cracking =     7.25 ft Crack extends to bottom of base of structure.

 ** Driving side pressures **

   Water pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        730.50     0.0000        719.25     0.7020

 ** Resisting side pressures **

   Water pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        722.25     0.0000        721.00     0.1261        721.00     0.6596        719.25     0.7020

   Balancing earth pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        721.00     1.5306        719.25     1.5306

 ** Uplift pressures **

   Water pressures:      x‐coord.   Pressure        (ft)       (ksf)     ======================          0.00     0.7020          1.25     0.6596          1.25     0.4910         12.00     0.1261

Page 5

Page 66: Appendix L: Structural Engineering

Floodwall2_11ft6in_Usual.out.txt ** Forces and moments **

 ========================================================================               Part          |    Force (kips)    | Mom. Arm  |  Moment |                             |  Vert.   |   Horiz.|    (ft)   |  (ft‐k) | ======================================================================== Structure:                    Structure weight...........    4.500                 ‐5.16    ‐23.24 Structure, driving side:      Moist soil.................    0.000                  0.00      0.00   Saturated soil.............    4.383                 ‐7.88    ‐34.51   Water above structure......    0.000                  0.00      0.00   Water above soil...........    2.059                 ‐7.87    ‐16.22   External vertical loads....    0.000                  0.00      0.00   Ext. horz. pressure loads..               0.000       0.00      0.00   Ext. horz. line loads......               0.000       0.00      0.00 Structure, resisting side:    Moist soil.................    1.307                 ‐1.25     ‐1.63   Saturated soil.............    0.000                  0.00      0.00   Water above structure......    0.000                  0.00      0.00   Water above soil...........    0.000                  0.00      0.00 Driving side:            Effective earth loads......               0.000       0.00      0.00   Shear (due to delta).......    0.000                  0.00      0.00   Horiz. surcharge effects...               0.000       0.00      0.00   Water loads................               3.949       2.01      7.92 Resisting side:               Effective earth loads......               0.000       0.00      0.00   Balancing earth load.......              ‐2.679      ‐0.89      2.39   Water loads................              ‐1.270      ‐0.80      1.01 Foundation:                   Vertical force on base.....   ‐8.081                 ‐4.12     33.26   Uplift.....................   ‐4.168                 ‐7.44     31.03 ======================================================================== ** Statics Check **   SUMS =     0.000      0.000                 0.00

 Angle of base        =     8.30 degrees Normal force on base =    8.383 kips Shear force on base  =    1.484 kips Max. available shear force =    5.881 kips

 Base pressure at heel =   0.0388 ksf Base pressure at toe  =   1.3080 ksf

 Xr (measured from toe) =     4.12 ft Resultant ratio        =   0.3429 Stem ratio             =   0.2083 Base in compression    =   100.00 %

Page 6

Page 67: Appendix L: Structural Engineering

Floodwall2_11ft6in_Usual.out.txt Overturning ratio      =     1.89

 Volume of concrete =     1.11 cubic yds/ft of wall

 NOTE:  The engineer shall verify that the computed bearing pressures below the wall do not exceed the allowable foundation bearing pressure, or, perform a bearing capacity analysis using the program CBEAR. Also, the engineer shall verify that the base pressures do not result in excessive differential settlement of the wall foundation.

 *********************** **  Sliding Results  ** ***********************

 Solution converged.  Summation of forces = 0.

            Horizontal   Vertical   Wedge      Loads       Loads   Number    (kips)       (kips)   ==================================      1       0.000       0.000      2       3.949       2.059      3       0.000       0.000

   Water pressures on wedges:

              Top      Bottom     Wedge    press.   press.   x‐coord.    press.     number   (ksf)    (ksf)     (ft)       (ksf)   ================================================       1    0.0000    0.0000       2                         0.0000     0.7020       2                        12.0000     0.1261       3    0.0000    0.1261

 Points of sliding plane:   Point 1 (left),  x =     0.00 ft,   y =   719.25 ft   Point 2 (right), x =    12.00 ft,   y =   721.00 ft

 Depth of cracking =     7.25 ft Crack extends to bottom of base of structure.

           Failure   Total    Weight    Submerged   Uplift

Page 7

Page 68: Appendix L: Structural Engineering

Floodwall2_11ft6in_Usual.out.txt   Wedge    angle    length  of wedge    length     force   number   (deg)     (ft)    (kips)      (ft)      (kips)   ========================================================      1     0.000     0.000      0.000    0.000     0.000      2     8.297    12.127     11.229   12.127     5.021      3    44.648     7.826      1.885    1.779     0.112

   Wedge     Net force   number     (kips)   ===================      1        0.000      2       ‐1.906      3        1.906   ===================      SUM =    0.000

 +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ | Factor of safety =   50.832 | +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

 *********************** **  Bearing Results  ** ***********************

             Base width =     12.127 (ft)                     Xr =      4.115 (ft)   Effective base width =      8.318 (ft)    (measured along slope)             Base slope =     8.2971 (deg)

                    phi =     32.000 (deg)                      c =      0.000 (ksf)        Effective gamma =     0.0626 (kcf)

            Normal load =      8.383 (kips)       Load inclination =     10.041 (deg)      Load eccentricity =      1.905 (ft)

              Surcharge =     0.6010 (ksf)              Embedment =      5.500 (ft)           Ground slope =     0.0000 (deg)

           Bearing Capacity Factors =============================================

Page 8

Page 69: Appendix L: Structural Engineering

Floodwall2_11ft6in_Usual.out.txt                     C        Q         G ============================================= Bearing         35.4903   23.1768   22.0225 Embedment        1.2386    1.1193    1.1193 Inclination      0.7893    0.7893    0.4709 Base Tilt        0.8194    0.8272    0.8272 Ground Slope     1.0000    1.0000    1.0000

 Net ultimate bearing pressure =    12.2402 (ksf)

 +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ | Factor of safety =     12.145 | +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

Page 9

Page 70: Appendix L: Structural Engineering

Floodwall2_11ft6in_Unusual_Construction.out.txt

 ****************** Echoprint of Input Data ******************

 Date: 2019/ 9/30                               Time: 15.47.15 

 Arcadia Floodwall, Height 11 1/2 ft, No Sheetpile            Unusual Case Construction, Cracked                           Check Design                                                

 Company name:   USACE                                                         Project name:   Arcadia Feasibility Study                                     Project location:   Arcadia, Wisconsin                                            Wall location:   Floodwall, Height 11 1/2 ft                                   Computed by: CNO

 Structural geometry data:   Elevation of top of stem (ELTS)       =   732.50 ft   Height of stem (HTS)                  =    10.25 ft   Thickness top of stem (TTS)           =     1.25 ft   Thickness bottom of stem (TBS)        =     1.25 ft   Dist. of batter at bot. of stem (TBSR)=     0.00 ft   Depth of heel (THEEL)                 =     3.00 ft   Distance of batter for heel (BTRH)    =     0.00 ft   Depth of toe (TTOE)                   =     1.25 ft   Width of toe (TWIDTH)                 =     2.50 ft   Distance of batter for toe (BTRT)     =     0.00 ft   Width of base (BWIDTH)                =    12.00 ft   Depth of key (HK)                     =     1.75 ft   Width of bottom of key (TK)           =     1.25 ft   Dist. of batter at bot. of key (BTRK) =     0.00 ft

 Structure coordinates:

    x (ft)    y (ft)   ==================       0.00    719.25       0.00    722.25       8.25    722.25       8.25    732.50       9.50    732.50       9.50    722.25

Page 1

Page 71: Appendix L: Structural Engineering

Floodwall2_11ft6in_Unusual_Construction.out.txt      12.00    722.25      12.00    721.00       1.25    721.00       1.25    719.25

 NOTE: X=0 is located at the left‐hand side       of the structure.  The Y values correspond       to the actual elevation used.

 Structural property data:   Unit weight of concrete =    0.150 kcf

 Driving side soil property data:

                       Moist   Saturated          Elev.    Phi        c      Unit wt.  unit wt.  Delta   soil   (deg)     (ksf)     (kcf)     (kcf)    (deg)   (ft) =======================================================    32.00    0.000     0.123     0.125     0.00  726.50

 Driving side soil geometry:

   Soil      Batter    Distance   point    (in:1ft)     (ft)   =============================    1         0.00      0.00    2         0.00      0.00    3         0.00    500.00

 Driving side soil profile:

   Soil        x          y       point      (ft)       (ft)   =============================    1      ‐991.75    726.50    2         8.25    726.50

 Resisting side soil property data:

                       Moist   Saturated  Elev.    Phi        c      Unit wt.  unit wt.  soil    Batter   (deg)     (ksf)     (kcf)     (kcf)    (ft)   (in:1ft) ========================================================    32.00    0.000     0.123     0.125   726.50    0.00

 Resisting side soil profile:

   Soil        x          y    

Page 2

Page 72: Appendix L: Structural Engineering

Floodwall2_11ft6in_Unusual_Construction.out.txt   point      (ft)       (ft)   =============================    1         9.50    726.50    2       509.50    726.50

 Foundation property data:   phi for soil‐structure interface =    32.00 (deg)   c for soil‐structure interface   =    0.000 (ksf)   phi for soil‐soil interface      =    32.00 (deg)   c for soil‐soil interface        =    0.000 (ksf)

 Water data:   Driving side elevation   =   731.50 ft   Resisting side elevation =   722.25 ft   Unit weight of water     =   0.0624 kcf   Seepage pressures computed by Line of Creep method.

 Uniform load data:   Magnitude of load =     0.2500 k/ft

 Minimum required factors of safety:   Sliding FS   =    1.50   Overturning  =   75.00% base in compression

 Crack options:   o  Crack *is* down to bottom of heel   o  Computed cracks *will* be filled with water

 All computed failure angles are based on 45+‐(phi developed)/2 Note:  Any wedge angles that are 'set' are not affected by this option.

 Strength mobilization factor =   0.6667

 Resisting side pressures *are not* used in the overturning analysis.

 Forces on the resisting side *are used* in the sliding analysis.

 *Do* iterate in overturning analysis.

 ***** Summary of Results *****

 Arcadia Floodwall, Height 11 1/2 ft, No Sheetpile           

 Project name: Arcadia Feasibility Study                                   

Page 3

Page 73: Appendix L: Structural Engineering

Floodwall2_11ft6in_Unusual_Construction.out.txt ***************    *** Satisfied *** * Overturning *    Required base in comp. =  75.00 % ***************    Actual base in comp.   = 100.00 %                    Overturning ratio      =   2.09

 Xr (measured from toe) =   4.57 ft Resultant ratio        = 0.3807 Stem ratio             = 0.2083 Base pressure at heel =    0.2438 ksf Base pressure at toe  =    1.4701 ksf

 ***********    *** Satisfied *** * Sliding *    Min. Required =   1.50 ***********    Actual FS     =  17.83

 ***********     * Bearing *     ***********    

 Net ultimate bearing pressure =    12.6451 (ksf) Factor of safety =     10.962

 ********************** Output Results **********************

 Date: 2019/ 9/30                               Time: 15.47.15 

 Arcadia Floodwall, Height 11 1/2 ft, No Sheetpile            Unusual Case Construction, Cracked                           Check Design                                                

 Company name:   USACE                                                        Project name:   Arcadia Feasibility Study                                    Project location:   Arcadia, Wisconsin                                           Wall location:   Floodwall, Height 11 1/2 ft                                  Computed by: CNO

 *************************** **  Overturning Results  ** ***************************

 Solution converged in  1 iterations.

Page 4

Page 74: Appendix L: Structural Engineering

Floodwall2_11ft6in_Unusual_Construction.out.txt

 SMF used to calculate K's =   0.6667 Alpha for the SMF          =   0.0000 Calculated earth pressure coefficients:   Driving side at rest K    =   0.0000   Driving side at rest Kc   =   0.0000   Resisting side at rest K  =   0.0000   Resisting side at rest Kc =   0.0000   No passive pressures used for resisting side.

 Depth of cracking =     7.25 ft Crack extends to bottom of base of structure.

 ** Driving side pressures **

   Water pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        731.50     0.0000        719.25     0.7644

   Surcharge pressures:        Elev.   Press.        (ft)    (ksf)     ===================

 ** Resisting side pressures **

   Water pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        722.25     0.0000        721.00     0.1319        721.00     0.7168        719.25     0.7644

   Balancing earth pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        721.00     1.8877        719.25     1.8877

 ** Uplift pressures **

   Water pressures:

Page 5

Page 75: Appendix L: Structural Engineering

Floodwall2_11ft6in_Unusual_Construction.out.txt      x‐coord.   Pressure        (ft)       (ksf)     ======================          0.00     0.7644          1.25     0.7168          1.25     0.5410         12.00     0.1319

 ** Forces and moments **

 ========================================================================               Part          |    Force (kips)    | Mom. Arm  |  Moment |                             |  Vert.   |   Horiz.|    (ft)   |  (ft‐k) | ======================================================================== Structure:                    Structure weight...........    4.500                 ‐5.16    ‐23.24 Structure, driving side:      Moist soil.................    0.000                  0.00      0.00   Saturated soil.............    4.383                 ‐7.88    ‐34.51   Water above structure......    0.000                  0.00      0.00   Water above soil...........    2.574                 ‐7.87    ‐20.27   External vertical loads....    2.062                 ‐7.88    ‐16.24   Ext. horz. pressure loads..               0.000       0.00      0.00   Ext. horz. line loads......               0.000       0.00      0.00 Structure, resisting side:    Moist soil.................    1.307                 ‐1.25     ‐1.63   Saturated soil.............    0.000                  0.00      0.00   Water above structure......    0.000                  0.00      0.00   Water above soil...........    0.000                  0.00      0.00 Driving side:            Effective earth loads......               0.000       0.00      0.00   Shear (due to delta).......    0.000                  0.00      0.00   Horiz. surcharge effects...               0.000       0.00      0.00   Water loads................               4.682       2.33     10.91 Resisting side:               Effective earth loads......               0.000       0.00      0.00   Balancing earth load.......              ‐3.303      ‐0.89      2.96   Water loads................              ‐1.379      ‐0.82      1.13 Foundation:                   Vertical force on base.....  ‐10.283                 ‐4.57     46.98   Uplift.....................   ‐4.543                 ‐7.47     33.92 ======================================================================== ** Statics Check **   SUMS =     0.000      0.000                 0.00

 Angle of base        =     8.30 degrees Normal force on base =   10.652 kips Shear force on base  =    1.785 kips Max. available shear force =    7.299 kips

Page 6

Page 76: Appendix L: Structural Engineering

Floodwall2_11ft6in_Unusual_Construction.out.txt

 Base pressure at heel =   0.2438 ksf Base pressure at toe  =   1.4701 ksf

 Xr (measured from toe) =     4.57 ft Resultant ratio        =   0.3807 Stem ratio             =   0.2083 Base in compression    =   100.00 % Overturning ratio      =     2.09

 Volume of concrete =     1.11 cubic yds/ft of wall

 NOTE:  The engineer shall verify that the computed bearing pressures below the wall do not exceed the allowable foundation bearing pressure, or, perform a bearing capacity analysis using the program CBEAR. Also, the engineer shall verify that the base pressures do not result in excessive differential settlement of the wall foundation.

 *********************** **  Sliding Results  ** ***********************

 Solution converged.  Summation of forces = 0.

            Horizontal   Vertical   Wedge      Loads       Loads   Number    (kips)       (kips)   ==================================      1       0.000       0.000      2       4.682       4.637      3       0.000       0.000

   Water pressures on wedges:

              Top      Bottom     Wedge    press.   press.   x‐coord.    press.     number   (ksf)    (ksf)     (ft)       (ksf)   ================================================       1    0.0000    0.0000       2                         0.0000     0.7644       2                        12.0000     0.1319       3    0.0000    0.1319

Page 7

Page 77: Appendix L: Structural Engineering

Floodwall2_11ft6in_Unusual_Construction.out.txt Points of sliding plane:   Point 1 (left),  x =     0.00 ft,   y =   719.25 ft   Point 2 (right), x =    12.00 ft,   y =   721.00 ft

 Depth of cracking =     7.25 ft Crack extends to bottom of base of structure.

           Failure   Total    Weight    Submerged   Uplift   Wedge    angle    length  of wedge    length     force   number   (deg)     (ft)    (kips)      (ft)      (kips)   ========================================================      1     0.000     0.000      0.000    0.000     0.000      2     8.297    12.127     11.229   12.127     5.435      3    43.996     7.918      1.928    1.800     0.119

   Wedge     Net force   number     (kips)   ===================      1        0.000      2       ‐1.991      3        1.991   ===================      SUM =    0.000

 +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ | Factor of safety =   17.830 | +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

 *********************** **  Bearing Results  ** ***********************

             Base width =     12.127 (ft)                     Xr =      4.569 (ft)   Effective base width =      9.234 (ft)    (measured along slope)             Base slope =     8.2971 (deg)

                    phi =     32.000 (deg)                      c =      0.000 (ksf)        Effective gamma =     0.0626 (kcf)

            Normal load =     10.652 (kips)       Load inclination =      9.512 (deg)      Load eccentricity =      1.446 (ft)

Page 8

Page 78: Appendix L: Structural Engineering

Floodwall2_11ft6in_Unusual_Construction.out.txt

              Surcharge =     0.6010 (ksf)              Embedment =      5.500 (ft)           Ground slope =     0.0000 (deg)

           Bearing Capacity Factors =============================================                     C        Q         G ============================================= Bearing         35.4903   23.1768   22.0225 Embedment        1.2149    1.1074    1.1074 Inclination      0.7998    0.7998    0.4939 Base Tilt        0.8194    0.8272    0.8272 Ground Slope     1.0000    1.0000    1.0000

 Net ultimate bearing pressure =    12.6451 (ksf)

 +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ | Factor of safety =     10.962 | +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

Page 9

Page 79: Appendix L: Structural Engineering

Floodwall2_11ft6in_Unusual.out.txt

 ****************** Echoprint of Input Data ******************

 Date: 2019/ 9/30                               Time: 15.41.56 

 Arcadia Floodwall, Height 11 1/2 ft, No Sheetpile            Unusual Case, Cracked, Water Design Flood EL                 Check Design                                                

 Company name:   USACE                                                         Project name:   Arcadia Feasibility Study                                     Project location:   Arcadia, Wisconsin                                            Wall location:   Floodwall, Height 11 1/2 ft                                   Computed by: CNO

 Structural geometry data:   Elevation of top of stem (ELTS)       =   732.50 ft   Height of stem (HTS)                  =    10.25 ft   Thickness top of stem (TTS)           =     1.25 ft   Thickness bottom of stem (TBS)        =     1.25 ft   Dist. of batter at bot. of stem (TBSR)=     0.00 ft   Depth of heel (THEEL)                 =     3.00 ft   Distance of batter for heel (BTRH)    =     0.00 ft   Depth of toe (TTOE)                   =     1.25 ft   Width of toe (TWIDTH)                 =     2.50 ft   Distance of batter for toe (BTRT)     =     0.00 ft   Width of base (BWIDTH)                =    12.00 ft   Depth of key (HK)                     =     1.75 ft   Width of bottom of key (TK)           =     1.25 ft   Dist. of batter at bot. of key (BTRK) =     0.00 ft

 Structure coordinates:

    x (ft)    y (ft)   ==================       0.00    719.25       0.00    722.25       8.25    722.25       8.25    732.50       9.50    732.50       9.50    722.25

Page 1

Page 80: Appendix L: Structural Engineering

Floodwall2_11ft6in_Unusual.out.txt      12.00    722.25      12.00    721.00       1.25    721.00       1.25    719.25

 NOTE: X=0 is located at the left‐hand side       of the structure.  The Y values correspond       to the actual elevation used.

 Structural property data:   Unit weight of concrete =    0.150 kcf

 Driving side soil property data:

                       Moist   Saturated          Elev.    Phi        c      Unit wt.  unit wt.  Delta   soil   (deg)     (ksf)     (kcf)     (kcf)    (deg)   (ft) =======================================================    32.00    0.000     0.123     0.125     0.00  726.50

 Driving side soil geometry:

   Soil      Batter    Distance   point    (in:1ft)     (ft)   =============================    1         0.00      0.00    2         0.00      0.00    3         0.00    500.00

 Driving side soil profile:

   Soil        x          y       point      (ft)       (ft)   =============================    1      ‐991.75    726.50    2         8.25    726.50

 Resisting side soil property data:

                       Moist   Saturated  Elev.    Phi        c      Unit wt.  unit wt.  soil    Batter   (deg)     (ksf)     (kcf)     (kcf)    (ft)   (in:1ft) ========================================================    32.00    0.000     0.123     0.125   726.50    0.00

 Resisting side soil profile:

   Soil        x          y    

Page 2

Page 81: Appendix L: Structural Engineering

Floodwall2_11ft6in_Unusual.out.txt   point      (ft)       (ft)   =============================    1         9.50    726.50    2       509.50    726.50

 Foundation property data:   phi for soil‐structure interface =    32.00 (deg)   c for soil‐structure interface   =    0.000 (ksf)   phi for soil‐soil interface      =    32.00 (deg)   c for soil‐soil interface        =    0.000 (ksf)

 Water data:   Driving side elevation   =   731.50 ft   Resisting side elevation =   722.25 ft   Unit weight of water     =   0.0624 kcf   Seepage pressures computed by Line of Creep method.

 Horizontal line load data:

    Elevation   Force      (ft)      (kips) ========================    731.50      0.50

 Minimum required factors of safety:   Sliding FS   =    1.50   Overturning  =   75.00% base in compression

 Crack options:   o  Crack *is* down to bottom of heel   o  Computed cracks *will* be filled with water

 All computed failure angles are based on 45+‐(phi developed)/2 Note:  Any wedge angles that are 'set' are not affected by this option.

 Strength mobilization factor =   0.6667

 Resisting side pressures *are not* used in the overturning analysis.

 Forces on the resisting side *are used* in the sliding analysis.

 *Do* iterate in overturning analysis.

 ***** Summary of Results *****

Page 3

Page 82: Appendix L: Structural Engineering

Floodwall2_11ft6in_Unusual.out.txt Arcadia Floodwall, Height 11 1/2 ft, No Sheetpile           

 Project name: Arcadia Feasibility Study                                   

 ***************    *** Satisfied *** * Overturning *    Required base in comp. =  75.00 % ***************    Actual base in comp.   =  76.28 %                    Overturning ratio      =   1.56

 Xr (measured from toe) =   3.05 ft Resultant ratio        = 0.2543 Stem ratio             = 0.2083 Base pressure at x=   9.15 ft from toe =    0.0000 ksf Base pressure at toe                   =    1.7961 ksf

 ***********    *** Satisfied *** * Sliding *    Min. Required =   1.50 ***********    Actual FS     =   6.06

 ***********     * Bearing *     ***********    

 Net ultimate bearing pressure =     9.4830 (ksf) Factor of safety =      6.735

 ********************** Output Results **********************

 Date: 2019/ 9/30                               Time: 15.41.56 

 Arcadia Floodwall, Height 11 1/2 ft, No Sheetpile            Unusual Case, Cracked, Water Design Flood EL                 Check Design                                                

 Company name:   USACE                                                        Project name:   Arcadia Feasibility Study                                    Project location:   Arcadia, Wisconsin                                           Wall location:   Floodwall, Height 11 1/2 ft                                  Computed by: CNO

 ***************************

Page 4

Page 83: Appendix L: Structural Engineering

Floodwall2_11ft6in_Unusual.out.txt **  Overturning Results  ** ***************************

 Solution converged in  1 iterations.

 SMF used to calculate K's =   0.6667 Alpha for the SMF          =   0.0000 Calculated earth pressure coefficients:   Driving side at rest K    =   0.0000   Driving side at rest Kc   =   0.0000   Resisting side at rest K  =   0.0000   Resisting side at rest Kc =   0.0000   No passive pressures used for resisting side.

 Depth of cracking =     7.25 ft Crack extends to bottom of base of structure.

 ** Driving side pressures **

   Water pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        731.50     0.0000        719.25     0.7644

 ** Resisting side pressures **

   Water pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        722.25     0.0000        721.00     0.1319        721.00     0.7168        719.25     0.7644

   Balancing earth pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        721.00     2.1734        719.25     2.1734

 ** Uplift pressures **

   Water pressures:      x‐coord.   Pressure

Page 5

Page 84: Appendix L: Structural Engineering

Floodwall2_11ft6in_Unusual.out.txt        (ft)       (ksf)     ======================          0.00     0.7644          1.25     0.7168          1.25     0.5410         12.00     0.1319

 ** Forces and moments **

 ========================================================================               Part          |    Force (kips)    | Mom. Arm  |  Moment |                             |  Vert.   |   Horiz.|    (ft)   |  (ft‐k) | ======================================================================== Structure:                    Structure weight...........    4.500                 ‐5.16    ‐23.24 Structure, driving side:      Moist soil.................    0.000                  0.00      0.00   Saturated soil.............    4.383                 ‐7.88    ‐34.51   Water above structure......    0.000                  0.00      0.00   Water above soil...........    2.574                 ‐7.87    ‐20.27   External vertical loads....    0.000                  0.00      0.00   Ext. horz. pressure loads..               0.000       0.00      0.00   Ext. horz. line loads......               0.500      10.50      5.25 Structure, resisting side:    Moist soil.................    1.307                 ‐1.25     ‐1.63   Saturated soil.............    0.000                  0.00      0.00   Water above structure......    0.000                  0.00      0.00   Water above soil...........    0.000                  0.00      0.00 Driving side:            Effective earth loads......               0.000       0.00      0.00   Shear (due to delta).......    0.000                  0.00      0.00   Horiz. surcharge effects...               0.000       0.00      0.00   Water loads................               4.682       2.33     10.91 Resisting side:               Effective earth loads......               0.000       0.00      0.00   Balancing earth load.......              ‐3.803      ‐0.88      3.36   Water loads................              ‐1.379      ‐0.82      1.13 Foundation:                   Vertical force on base.....   ‐8.221                 ‐3.05     25.08   Uplift.....................   ‐4.543                 ‐7.47     33.92 ======================================================================== ** Statics Check **   SUMS =     0.000      0.000                 0.00

 Angle of base        =     8.30 degrees Normal force on base =    8.684 kips Shear force on base  =    2.577 kips Max. available shear force =    6.069 kips

Page 6

Page 85: Appendix L: Structural Engineering

Floodwall2_11ft6in_Unusual.out.txt Base pressure at x=   9.15 ft from toe =   0.0000 ksf Base pressure at toe                   =   1.7961 ksf

 Xr (measured from toe) =     3.05 ft Resultant ratio        =   0.2543 Stem ratio             =   0.2083 Base in compression    =    76.28 % Overturning ratio      =     1.56

 Volume of concrete =     1.11 cubic yds/ft of wall

 NOTE:  The engineer shall verify that the computed bearing pressures below the wall do not exceed the allowable foundation bearing pressure, or, perform a bearing capacity analysis using the program CBEAR. Also, the engineer shall verify that the base pressures do not result in excessive differential settlement of the wall foundation.

 *********************** **  Sliding Results  ** ***********************

 Solution converged.  Summation of forces = 0.

            Horizontal   Vertical   Wedge      Loads       Loads   Number    (kips)       (kips)   ==================================      1       0.000       0.000      2       5.182       2.574      3       0.000       0.000

   Water pressures on wedges:

              Top      Bottom     Wedge    press.   press.   x‐coord.    press.     number   (ksf)    (ksf)     (ft)       (ksf)   ================================================       1    0.0000    0.0000       2                         0.0000     0.7644       2                        12.0000     0.1319       3    0.0000    0.1319

 Points of sliding plane:

Page 7

Page 86: Appendix L: Structural Engineering

Floodwall2_11ft6in_Unusual.out.txt   Point 1 (left),  x =     0.00 ft,   y =   719.25 ft   Point 2 (right), x =    12.00 ft,   y =   721.00 ft

 Depth of cracking =     7.25 ft Crack extends to bottom of base of structure.

           Failure   Total    Weight    Submerged   Uplift   Wedge    angle    length  of wedge    length     force   number   (deg)     (ft)    (kips)      (ft)      (kips)   ========================================================      1     0.000     0.000      0.000    0.000     0.000      2     8.297    12.127     11.229   12.127     5.435      3    42.057     8.211      2.064    1.866     0.123

   Wedge     Net force   number     (kips)   ===================      1        0.000      2       ‐2.269      3        2.269   ===================      SUM =    0.000

 +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ | Factor of safety =    6.062 | +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

 *********************** **  Bearing Results  ** ***********************

             Base width =     12.127 (ft)                     Xr =      3.051 (ft)   Effective base width =      6.167 (ft)    (measured along slope)             Base slope =     8.2971 (deg)

                    phi =     32.000 (deg)                      c =      0.000 (ksf)        Effective gamma =     0.0626 (kcf)

            Normal load =      8.684 (kips)       Load inclination =     16.531 (deg)      Load eccentricity =      2.980 (ft)

Page 8

Page 87: Appendix L: Structural Engineering

Floodwall2_11ft6in_Unusual.out.txt              Surcharge =     0.6010 (ksf)              Embedment =      5.500 (ft)           Ground slope =     0.0000 (deg)

           Bearing Capacity Factors =============================================                     C        Q         G ============================================= Bearing         35.4903   23.1768   22.0225 Embedment        1.3218    1.1609    1.1609 Inclination      0.6664    0.6664    0.2337 Base Tilt        0.8194    0.8272    0.8272 Ground Slope     1.0000    1.0000    1.0000

 Net ultimate bearing pressure =     9.4830 (ksf)

 +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ | Factor of safety =      6.735 | +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

Page 9

Page 88: Appendix L: Structural Engineering

Floodwall2_11ft6in_Extreme.out.txt

 ****************** Echoprint of Input Data ******************

 Date: 2019/ 9/30                               Time: 15.44.39 

 Arcadia Floodwall, Height 11 1/2 ft, No Sheetpile            Extreme Case, Cracked, Water Top of Wall w Superiority       Check Design                                                

 Company name:   USACE                                                         Project name:   Arcadia Feasibility Study                                     Project location:   Arcadia, Wisconsin                                            Wall location:   Floodwall, Height 11 1/2 ft                                   Computed by: CNO

 Structural geometry data:   Elevation of top of stem (ELTS)       =   732.50 ft   Height of stem (HTS)                  =    10.25 ft   Thickness top of stem (TTS)           =     1.25 ft   Thickness bottom of stem (TBS)        =     1.25 ft   Dist. of batter at bot. of stem (TBSR)=     0.00 ft   Depth of heel (THEEL)                 =     3.00 ft   Distance of batter for heel (BTRH)    =     0.00 ft   Depth of toe (TTOE)                   =     1.25 ft   Width of toe (TWIDTH)                 =     2.50 ft   Distance of batter for toe (BTRT)     =     0.00 ft   Width of base (BWIDTH)                =    12.00 ft   Depth of key (HK)                     =     1.75 ft   Width of bottom of key (TK)           =     1.25 ft   Dist. of batter at bot. of key (BTRK) =     0.00 ft

 Structure coordinates:

    x (ft)    y (ft)   ==================       0.00    719.25       0.00    722.25       8.25    722.25       8.25    732.50       9.50    732.50       9.50    722.25

Page 1

Page 89: Appendix L: Structural Engineering

Floodwall2_11ft6in_Extreme.out.txt      12.00    722.25      12.00    721.00       1.25    721.00       1.25    719.25

 NOTE: X=0 is located at the left‐hand side       of the structure.  The Y values correspond       to the actual elevation used.

 Structural property data:   Unit weight of concrete =    0.150 kcf

 Driving side soil property data:

                       Moist   Saturated          Elev.    Phi        c      Unit wt.  unit wt.  Delta   soil   (deg)     (ksf)     (kcf)     (kcf)    (deg)   (ft) =======================================================    32.00    0.000     0.123     0.125     0.00  726.50

 Driving side soil geometry:

   Soil      Batter    Distance   point    (in:1ft)     (ft)   =============================    1         0.00      0.00    2         0.00      0.00    3         0.00    500.00

 Driving side soil profile:

   Soil        x          y       point      (ft)       (ft)   =============================    1      ‐991.75    726.50    2         8.25    726.50

 Resisting side soil property data:

                       Moist   Saturated  Elev.    Phi        c      Unit wt.  unit wt.  soil    Batter   (deg)     (ksf)     (kcf)     (kcf)    (ft)   (in:1ft) ========================================================    32.00    0.000     0.123     0.125   726.50    0.00

 Resisting side soil profile:

   Soil        x          y    

Page 2

Page 90: Appendix L: Structural Engineering

Floodwall2_11ft6in_Extreme.out.txt   point      (ft)       (ft)   =============================    1         9.50    726.50    2       509.50    726.50

 Foundation property data:   phi for soil‐structure interface =    32.00 (deg)   c for soil‐structure interface   =    0.000 (ksf)   phi for soil‐soil interface      =    32.00 (deg)   c for soil‐soil interface        =    0.000 (ksf)

 Water data:   Driving side elevation   =   732.50 ft   Resisting side elevation =   722.25 ft   Unit weight of water     =   0.0624 kcf   Seepage pressures computed by Line of Creep method.

 Minimum required factors of safety:   Sliding FS   =    1.10   Overturning  =    0.00% base in compression

 Crack options:   o  Crack *is* down to bottom of heel   o  Computed cracks *will* be filled with water

 All computed failure angles are based on 45+‐(phi developed)/2 Note:  Any wedge angles that are 'set' are not affected by this option.

 Strength mobilization factor =   0.6667

 Resisting side pressures *are not* used in the overturning analysis.

 Forces on the resisting side *are used* in the sliding analysis.

 *Do* iterate in overturning analysis.

 ***** Summary of Results *****

 Arcadia Floodwall, Height 11 1/2 ft, No Sheetpile           

 Project name: Arcadia Feasibility Study                                   

 ***************    *** Satisfied *** * Overturning *    Required base in comp. =   0.00 % ***************    Actual base in comp.   =  82.58 %

Page 3

Page 91: Appendix L: Structural Engineering

Floodwall2_11ft6in_Extreme.out.txt                    Overturning ratio      =   1.59

 Xr (measured from toe) =   3.30 ft Resultant ratio        = 0.2753 Stem ratio             = 0.2083 Base pressure at x=   9.91 ft from toe =    0.0000 ksf Base pressure at toe                   =    1.6873 ksf

 ***********    *** Satisfied *** * Sliding *    Min. Required =   1.10 ***********    Actual FS     =   5.26

 ***********     * Bearing *     ***********    

 Net ultimate bearing pressure =     9.2144 (ksf) Factor of safety =      6.952

 ********************** Output Results **********************

 Date: 2019/ 9/30                               Time: 15.44.39 

 Arcadia Floodwall, Height 11 1/2 ft, No Sheetpile            Extreme Case, Cracked, Water Top of Wall w Superiority       Check Design                                                

 Company name:   USACE                                                        Project name:   Arcadia Feasibility Study                                    Project location:   Arcadia, Wisconsin                                           Wall location:   Floodwall, Height 11 1/2 ft                                  Computed by: CNO

 *************************** **  Overturning Results  ** ***************************

 Solution converged in  1 iterations.

 SMF used to calculate K's =   0.6667 Alpha for the SMF          =   0.0000

Page 4

Page 92: Appendix L: Structural Engineering

Floodwall2_11ft6in_Extreme.out.txt Calculated earth pressure coefficients:   Driving side at rest K    =   0.0000   Driving side at rest Kc   =   0.0000   Resisting side at rest K  =   0.0000   Resisting side at rest Kc =   0.0000   No passive pressures used for resisting side.

 Depth of cracking =     7.25 ft Crack extends to bottom of base of structure.

 ** Driving side pressures **

   Water pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        732.50     0.0000        719.25     0.8268

 ** Resisting side pressures **

   Water pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        722.25     0.0000        721.00     0.1378        721.00     0.7741        719.25     0.8268

   Balancing earth pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        721.00     2.2804        719.25     2.2804

 ** Uplift pressures **

   Water pressures:      x‐coord.   Pressure        (ft)       (ksf)     ======================          0.00     0.8268          1.25     0.7741          1.25     0.5911         12.00     0.1378

Page 5

Page 93: Appendix L: Structural Engineering

Floodwall2_11ft6in_Extreme.out.txt ** Forces and moments **

 ========================================================================               Part          |    Force (kips)    | Mom. Arm  |  Moment |                             |  Vert.   |   Horiz.|    (ft)   |  (ft‐k) | ======================================================================== Structure:                    Structure weight...........    4.500                 ‐5.16    ‐23.24 Structure, driving side:      Moist soil.................    0.000                  0.00      0.00   Saturated soil.............    4.383                 ‐7.88    ‐34.51   Water above structure......    0.000                  0.00      0.00   Water above soil...........    3.089                 ‐7.87    ‐24.32   External vertical loads....    0.000                  0.00      0.00   Ext. horz. pressure loads..               0.000       0.00      0.00   Ext. horz. line loads......               0.000       0.00      0.00 Structure, resisting side:    Moist soil.................    1.307                 ‐1.25     ‐1.63   Saturated soil.............    0.000                  0.00      0.00   Water above structure......    0.000                  0.00      0.00   Water above soil...........    0.000                  0.00      0.00 Driving side:            Effective earth loads......               0.000       0.00      0.00   Shear (due to delta).......    0.000                  0.00      0.00   Horiz. surcharge effects...               0.000       0.00      0.00   Water loads................               5.478       2.67     14.62 Resisting side:               Effective earth loads......               0.000       0.00      0.00   Balancing earth load.......              ‐3.991      ‐0.87      3.47   Water loads................              ‐1.487      ‐0.80      1.19 Foundation:                   Vertical force on base.....   ‐8.360                 ‐3.30     27.62   Uplift.....................   ‐4.918                 ‐7.48     36.81 ======================================================================== ** Statics Check **   SUMS =     0.000      0.000                 0.00

 Angle of base        =     8.30 degrees Normal force on base =    8.849 kips Shear force on base  =    2.742 kips Max. available shear force =    6.172 kips

 Base pressure at x=   9.91 ft from toe =   0.0000 ksf Base pressure at toe                   =   1.6873 ksf

 Xr (measured from toe) =     3.30 ft Resultant ratio        =   0.2753 Stem ratio             =   0.2083 Base in compression    =    82.58 %

Page 6

Page 94: Appendix L: Structural Engineering

Floodwall2_11ft6in_Extreme.out.txt Overturning ratio      =     1.59

 Volume of concrete =     1.11 cubic yds/ft of wall

 NOTE:  The engineer shall verify that the computed bearing pressures below the wall do not exceed the allowable foundation bearing pressure, or, perform a bearing capacity analysis using the program CBEAR. Also, the engineer shall verify that the base pressures do not result in excessive differential settlement of the wall foundation.

 *********************** **  Sliding Results  ** ***********************

 Solution converged.  Summation of forces = 0.

            Horizontal   Vertical   Wedge      Loads       Loads   Number    (kips)       (kips)   ==================================      1       0.000       0.000      2       5.478       3.089      3       0.000       0.000

   Water pressures on wedges:

              Top      Bottom     Wedge    press.   press.   x‐coord.    press.     number   (ksf)    (ksf)     (ft)       (ksf)   ================================================       1    0.0000    0.0000       2                         0.0000     0.8268       2                        12.0000     0.1378       3    0.0000    0.1378

 Points of sliding plane:   Point 1 (left),  x =     0.00 ft,   y =   719.25 ft   Point 2 (right), x =    12.00 ft,   y =   721.00 ft

 Depth of cracking =     7.25 ft Crack extends to bottom of base of structure.

           Failure   Total    Weight    Submerged   Uplift

Page 7

Page 95: Appendix L: Structural Engineering

Floodwall2_11ft6in_Extreme.out.txt   Wedge    angle    length  of wedge    length     force   number   (deg)     (ft)    (kips)      (ft)      (kips)   ========================================================      1     0.000     0.000      0.000    0.000     0.000      2     8.297    12.127     11.229   12.127     5.849      3    41.613     8.282      2.096    1.882     0.130

   Wedge     Net force   number     (kips)   ===================      1        0.000      2       ‐2.337      3        2.337   ===================      SUM =    0.000

 +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ | Factor of safety =    5.260 | +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

 *********************** **  Bearing Results  ** ***********************

             Base width =     12.127 (ft)                     Xr =      3.303 (ft)   Effective base width =      6.676 (ft)    (measured along slope)             Base slope =     8.2971 (deg)

                    phi =     32.000 (deg)                      c =      0.000 (ksf)        Effective gamma =     0.0626 (kcf)

            Normal load =      8.849 (kips)       Load inclination =     17.220 (deg)      Load eccentricity =      2.725 (ft)

              Surcharge =     0.6010 (ksf)              Embedment =      5.500 (ft)           Ground slope =     0.0000 (deg)

           Bearing Capacity Factors =============================================

Page 8

Page 96: Appendix L: Structural Engineering

Floodwall2_11ft6in_Extreme.out.txt                     C        Q         G ============================================= Bearing         35.4903   23.1768   22.0225 Embedment        1.2972    1.1486    1.1486 Inclination      0.6539    0.6539    0.2133 Base Tilt        0.8194    0.8272    0.8272 Ground Slope     1.0000    1.0000    1.0000

 Net ultimate bearing pressure =     9.2144 (ksf)

 +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ | Factor of safety =      6.952 | +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

Page 9

Page 97: Appendix L: Structural Engineering

RailroadClosure_11ft_Usual.out.txt

 ****************** Echoprint of Input Data ******************

 Date: 2019/10/ 3                               Time: 10.47.58 

 Arcadia Railroad Closure, Height 11 ft, No Sheetpile         Usual Case, Cracked, Water 10% AEP                           Check Design                                                

 Company name:   USACE                                                         Project name:   Arcadia Feasibility Study                                     Project location:   Arcadia, Wisconsin                                            Wall location:   Railroad Closure, Height 11 ft.                               Computed by: CNO

 Structural geometry data:   Elevation of top of stem (ELTS)       =   737.00 ft   Height of stem (HTS)                  =     9.00 ft   Thickness top of stem (TTS)           =     1.25 ft   Thickness bottom of stem (TBS)        =     1.25 ft   Dist. of batter at bot. of stem (TBSR)=     0.00 ft   Depth of heel (THEEL)                 =     3.75 ft   Distance of batter for heel (BTRH)    =     0.00 ft   Depth of toe (TTOE)                   =     2.00 ft   Width of toe (TWIDTH)                 =     2.50 ft   Distance of batter for toe (BTRT)     =     0.00 ft   Width of base (BWIDTH)                =    12.00 ft   Depth of key (HK)                     =     1.75 ft   Width of bottom of key (TK)           =     1.25 ft   Dist. of batter at bot. of key (BTRK) =     0.00 ft

 Structure coordinates:

    x (ft)    y (ft)   ==================       0.00    724.25       0.00    728.00       8.25    728.00       8.25    737.00       9.50    737.00       9.50    728.00

Page 1

Page 98: Appendix L: Structural Engineering

RailroadClosure_11ft_Usual.out.txt      12.00    728.00      12.00    726.00       1.25    726.00       1.25    724.25

 NOTE: X=0 is located at the left‐hand side       of the structure.  The Y values correspond       to the actual elevation used.

 Structural property data:   Unit weight of concrete =    0.150 kcf

 Driving side soil property data:

                       Moist   Saturated          Elev.    Phi        c      Unit wt.  unit wt.  Delta   soil   (deg)     (ksf)     (kcf)     (kcf)    (deg)   (ft) =======================================================    32.00    0.000     0.123     0.125     0.00  731.50

 Driving side soil geometry:

   Soil      Batter    Distance   point    (in:1ft)     (ft)   =============================    1         0.00      0.00    2         0.00      0.00    3         0.00    500.00

 Driving side soil profile:

   Soil        x          y       point      (ft)       (ft)   =============================    1      ‐991.75    731.50    2         8.25    731.50

 Resisting side soil property data:

                       Moist   Saturated  Elev.    Phi        c      Unit wt.  unit wt.  soil    Batter   (deg)     (ksf)     (kcf)     (kcf)    (ft)   (in:1ft) ========================================================    32.00    0.000     0.123     0.125   731.50    0.00

 Resisting side soil profile:

   Soil        x          y    

Page 2

Page 99: Appendix L: Structural Engineering

RailroadClosure_11ft_Usual.out.txt   point      (ft)       (ft)   =============================    1         9.50    731.50    2       509.50    731.50

 Foundation property data:   phi for soil‐structure interface =    32.00 (deg)   c for soil‐structure interface   =    0.000 (ksf)   phi for soil‐soil interface      =    32.00 (deg)   c for soil‐soil interface        =    0.000 (ksf)

 Water data:   Driving side elevation   =   732.20 ft   Resisting side elevation =   728.00 ft   Unit weight of water     =   0.0624 kcf   Seepage pressures computed by Line of Creep method.

 Minimum required factors of safety:   Sliding FS   =    2.00   Overturning  =  100.00% base in compression

 Crack options:   o  Crack *is* down to bottom of heel   o  Computed cracks *will* be filled with water

 All computed failure angles are based on 45+‐(phi developed)/2 Note:  Any wedge angles that are 'set' are not affected by this option.

 Strength mobilization factor =   0.6667

 Resisting side pressures *are not* used in the overturning analysis.

 Forces on the resisting side *are used* in the sliding analysis.

 *Do* iterate in overturning analysis.

 ***** Summary of Results *****

 Arcadia Railroad Closure, Height 11 ft, No Sheetpile        

 Project name: Arcadia Feasibility Study                                   

 ***************    *** Satisfied *** * Overturning *    Required base in comp. = 100.00 % ***************    Actual base in comp.   = 100.00 %

Page 3

Page 100: Appendix L: Structural Engineering

RailroadClosure_11ft_Usual.out.txt                    Overturning ratio      =   2.48

 Xr (measured from toe) =   5.01 ft Resultant ratio        = 0.4174 Stem ratio             = 0.2083 Base pressure at heel =    0.3097 ksf Base pressure at toe  =    0.9184 ksf

 ***********    *** Satisfied *** * Sliding *    Min. Required =   2.00 ***********    Actual FS     = 407.92

 ***********     * Bearing *     ***********    

 Net ultimate bearing pressure =    16.9725 (ksf) Factor of safety =     23.125

 ********************** Output Results **********************

 Date: 2019/10/ 3                               Time: 10.47.58 

 Arcadia Railroad Closure, Height 11 ft, No Sheetpile         Usual Case, Cracked, Water 10% AEP                           Check Design                                                

 Company name:   USACE                                                        Project name:   Arcadia Feasibility Study                                    Project location:   Arcadia, Wisconsin                                           Wall location:   Railroad Closure, Height 11 ft.                              Computed by: CNO

 *************************** **  Overturning Results  ** ***************************

 Solution converged in  1 iterations.

 SMF used to calculate K's =   0.6667 Alpha for the SMF          =   0.0000

Page 4

Page 101: Appendix L: Structural Engineering

RailroadClosure_11ft_Usual.out.txt Calculated earth pressure coefficients:   Driving side at rest K    =   0.0000   Driving side at rest Kc   =   0.0000   Resisting side at rest K  =   0.0000   Resisting side at rest Kc =   0.0000   No passive pressures used for resisting side.

 Depth of cracking =     7.25 ft Crack extends to bottom of base of structure.

 ** Driving side pressures **

   Water pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        732.20     0.0000        724.25     0.4961

 ** Resisting side pressures **

   Water pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        728.00     0.0000        726.00     0.1619        726.00     0.4756        724.25     0.4961

   Balancing earth pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        726.00     0.5484        724.25     0.5484

 ** Uplift pressures **

   Water pressures:      x‐coord.   Pressure        (ft)       (ksf)     ======================          0.00     0.4961          1.25     0.4756          1.25     0.3378         12.00     0.1619

Page 5

Page 102: Appendix L: Structural Engineering

RailroadClosure_11ft_Usual.out.txt ** Forces and moments **

 ========================================================================               Part          |    Force (kips)    | Mom. Arm  |  Moment |                             |  Vert.   |   Horiz.|    (ft)   |  (ft‐k) | ======================================================================== Structure:                    Structure weight...........    5.616                 ‐5.45    ‐30.61 Structure, driving side:      Moist soil.................    0.000                  0.00      0.00   Saturated soil.............    3.609                 ‐7.88    ‐28.42   Water above structure......    0.000                  0.00      0.00   Water above soil...........    0.360                 ‐7.87     ‐2.84   External vertical loads....    0.000                  0.00      0.00   Ext. horz. pressure loads..               0.000       0.00      0.00   Ext. horz. line loads......               0.000       0.00      0.00 Structure, resisting side:    Moist soil.................    1.076                 ‐1.25     ‐1.35   Saturated soil.............    0.000                  0.00      0.00   Water above structure......    0.000                  0.00      0.00   Water above soil...........    0.000                  0.00      0.00 Driving side:            Effective earth loads......               0.000       0.00      0.00   Shear (due to delta).......    0.000                  0.00      0.00   Horiz. surcharge effects...               0.000       0.00      0.00   Water loads................               1.972       0.91      1.80 Resisting side:               Effective earth loads......               0.000       0.00      0.00   Balancing earth load.......              ‐0.960      ‐0.88      0.85   Water loads................              ‐1.012      ‐0.61      0.62 Foundation:                   Vertical force on base.....   ‐7.368                 ‐5.01     36.91   Uplift.....................   ‐3.293                 ‐7.00     23.04 ======================================================================== ** Statics Check **   SUMS =     0.000      0.000                 0.00

 Angle of base        =     8.30 degrees Normal force on base =    7.430 kips Shear force on base  =   ‐0.114 kips Max. available shear force =    5.285 kips

 Base pressure at heel =   0.3097 ksf Base pressure at toe  =   0.9184 ksf

 Xr (measured from toe) =     5.01 ft Resultant ratio        =   0.4174 Stem ratio             =   0.2083 Base in compression    =   100.00 %

Page 6

Page 103: Appendix L: Structural Engineering

RailroadClosure_11ft_Usual.out.txt Overturning ratio      =     2.48

 Volume of concrete =     1.39 cubic yds/ft of wall

 NOTE:  The engineer shall verify that the computed bearing pressures below the wall do not exceed the allowable foundation bearing pressure, or, perform a bearing capacity analysis using the program CBEAR. Also, the engineer shall verify that the base pressures do not result in excessive differential settlement of the wall foundation.

 *********************** **  Sliding Results  ** ***********************

 Factor of safety > 100.  Last iteration printed.

            Horizontal   Vertical   Wedge      Loads       Loads   Number    (kips)       (kips)   ==================================      1       0.000       0.000      2       1.972       0.360      3       0.000       0.000

   Water pressures on wedges:

              Top      Bottom     Wedge    press.   press.   x‐coord.    press.     number   (ksf)    (ksf)     (ft)       (ksf)   ================================================       1    0.0000    0.0000       2                         0.0000     0.4961       2                        12.0000     0.1619       3    0.0000    0.1619

 Points of sliding plane:   Point 1 (left),  x =     0.00 ft,   y =   724.25 ft   Point 2 (right), x =    12.00 ft,   y =   726.00 ft

 Depth of cracking =     7.25 ft Crack extends to bottom of base of structure.

           Failure   Total    Weight    Submerged   Uplift

Page 7

Page 104: Appendix L: Structural Engineering

RailroadClosure_11ft_Usual.out.txt   Wedge    angle    length  of wedge    length     force   number   (deg)     (ft)    (kips)      (ft)      (kips)   ========================================================      1     0.000     0.000      0.000    0.000     0.000      2     8.297    12.127     11.340   12.127     3.990      3    44.956     7.784      1.867    2.831     0.229

   Wedge     Net force   number     (kips)   ===================      1        0.000      2       ‐0.253      3        1.870   ===================      SUM =    1.616

 +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ | Factor of safety =  407.917 | +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

 *********************** **  Bearing Results  ** ***********************

             Base width =     12.127 (ft)                     Xr =      5.009 (ft)   Effective base width =     10.123 (ft)    (measured along slope)             Base slope =     8.2971 (deg)

                    phi =     32.000 (deg)                      c =      0.000 (ksf)        Effective gamma =     0.0626 (kcf)

            Normal load =      7.430 (kips)       Load inclination =      0.876 (deg)      Load eccentricity =      1.002 (ft)

              Surcharge =     0.5557 (ksf)              Embedment =      5.500 (ft)           Ground slope =     0.0000 (deg)

           Bearing Capacity Factors =============================================

Page 8

Page 105: Appendix L: Structural Engineering

RailroadClosure_11ft_Usual.out.txt                     C        Q         G ============================================= Bearing         35.4903   23.1768   22.0225 Embedment        1.1960    1.0980    1.0980 Inclination      0.9806    0.9806    0.9460 Base Tilt        0.8194    0.8272    0.8272 Ground Slope     1.0000    1.0000    1.0000

 Net ultimate bearing pressure =    16.9725 (ksf)

 +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ | Factor of safety =     23.125 | +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

Page 9

Page 106: Appendix L: Structural Engineering

RailroadClosure_11ft_Unusual_Construction.out.txt

 ****************** Echoprint of Input Data ******************

 Date: 2019/10/ 3                               Time: 10.50.30 

 Arcadia Railroad Closure, Height 11 ft, No Sheetpile         Unusual Construction Case, Cracked, Design Flood EL          Check Design                                                

 Company name:   USACE                                                         Project name:   Arcadia Feasibility Study                                     Project location:   Arcadia, Wisconsin                                            Wall location:   Railroad Closure, Height 11 ft.                               Computed by: CNO

 Structural geometry data:   Elevation of top of stem (ELTS)       =   737.00 ft   Height of stem (HTS)                  =     9.00 ft   Thickness top of stem (TTS)           =     1.25 ft   Thickness bottom of stem (TBS)        =     1.25 ft   Dist. of batter at bot. of stem (TBSR)=     0.00 ft   Depth of heel (THEEL)                 =     3.75 ft   Distance of batter for heel (BTRH)    =     0.00 ft   Depth of toe (TTOE)                   =     2.00 ft   Width of toe (TWIDTH)                 =     2.50 ft   Distance of batter for toe (BTRT)     =     0.00 ft   Width of base (BWIDTH)                =    12.00 ft   Depth of key (HK)                     =     1.75 ft   Width of bottom of key (TK)           =     1.25 ft   Dist. of batter at bot. of key (BTRK) =     0.00 ft

 Structure coordinates:

    x (ft)    y (ft)   ==================       0.00    724.25       0.00    728.00       8.25    728.00       8.25    737.00       9.50    737.00       9.50    728.00

Page 1

Page 107: Appendix L: Structural Engineering

RailroadClosure_11ft_Unusual_Construction.out.txt      12.00    728.00      12.00    726.00       1.25    726.00       1.25    724.25

 NOTE: X=0 is located at the left‐hand side       of the structure.  The Y values correspond       to the actual elevation used.

 Structural property data:   Unit weight of concrete =    0.150 kcf

 Driving side soil property data:

                       Moist   Saturated          Elev.    Phi        c      Unit wt.  unit wt.  Delta   soil   (deg)     (ksf)     (kcf)     (kcf)    (deg)   (ft) =======================================================    32.00    0.000     0.123     0.125     0.00  731.50

 Driving side soil geometry:

   Soil      Batter    Distance   point    (in:1ft)     (ft)   =============================    1         0.00      0.00    2         0.00      0.00    3         0.00    500.00

 Driving side soil profile:

   Soil        x          y       point      (ft)       (ft)   =============================    1      ‐991.75    731.50    2         8.25    731.50

 Resisting side soil property data:

                       Moist   Saturated  Elev.    Phi        c      Unit wt.  unit wt.  soil    Batter   (deg)     (ksf)     (kcf)     (kcf)    (ft)   (in:1ft) ========================================================    32.00    0.000     0.123     0.125   731.50    0.00

 Resisting side soil profile:

   Soil        x          y    

Page 2

Page 108: Appendix L: Structural Engineering

RailroadClosure_11ft_Unusual_Construction.out.txt   point      (ft)       (ft)   =============================    1         9.50    731.50    2       509.50    731.50

 Foundation property data:   phi for soil‐structure interface =    32.00 (deg)   c for soil‐structure interface   =    0.000 (ksf)   phi for soil‐soil interface      =    32.00 (deg)   c for soil‐soil interface        =    0.000 (ksf)

 Water data:   Driving side elevation   =   736.20 ft   Resisting side elevation =   728.00 ft   Unit weight of water     =   0.0624 kcf   Seepage pressures computed by Line of Creep method.

 Uniform load data:   Magnitude of load =     0.2500 k/ft

 Minimum required factors of safety:   Sliding FS   =    1.50   Overturning  =   75.00% base in compression

 Crack options:   o  Crack *is* down to bottom of heel   o  Computed cracks *will* be filled with water

 All computed failure angles are based on 45+‐(phi developed)/2 Note:  Any wedge angles that are 'set' are not affected by this option.

 Strength mobilization factor =   0.6667

 Resisting side pressures *are not* used in the overturning analysis.

 Forces on the resisting side *are used* in the sliding analysis.

 *Do* iterate in overturning analysis.

 ***** Summary of Results *****

 Arcadia Railroad Closure, Height 11 ft, No Sheetpile        

 Project name: Arcadia Feasibility Study                                   

Page 3

Page 109: Appendix L: Structural Engineering

RailroadClosure_11ft_Unusual_Construction.out.txt ***************    *** Satisfied *** * Overturning *    Required base in comp. =  75.00 % ***************    Actual base in comp.   = 100.00 %                    Overturning ratio      =   2.08

 Xr (measured from toe) =   4.75 ft Resultant ratio        = 0.3962 Stem ratio             = 0.2083 Base pressure at heel =    0.3115 ksf Base pressure at toe  =    1.3402 ksf

 ***********    *** Satisfied *** * Sliding *    Min. Required =   1.50 ***********    Actual FS     =  30.43

 ***********     * Bearing *     ***********    

 Net ultimate bearing pressure =    12.4915 (ksf) Factor of safety =     11.725

 ********************** Output Results **********************

 Date: 2019/10/ 3                               Time: 10.50.30 

 Arcadia Railroad Closure, Height 11 ft, No Sheetpile         Unusual Construction Case, Cracked, Design Flood EL          Check Design                                                

 Company name:   USACE                                                        Project name:   Arcadia Feasibility Study                                    Project location:   Arcadia, Wisconsin                                           Wall location:   Railroad Closure, Height 11 ft.                              Computed by: CNO

 *************************** **  Overturning Results  ** ***************************

 Solution converged in  1 iterations.

Page 4

Page 110: Appendix L: Structural Engineering

RailroadClosure_11ft_Unusual_Construction.out.txt

 SMF used to calculate K's =   0.6667 Alpha for the SMF          =   0.0000 Calculated earth pressure coefficients:   Driving side at rest K    =   0.0000   Driving side at rest Kc   =   0.0000   Resisting side at rest K  =   0.0000   Resisting side at rest Kc =   0.0000   No passive pressures used for resisting side.

 Depth of cracking =     7.25 ft Crack extends to bottom of base of structure.

 ** Driving side pressures **

   Water pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        736.20     0.0000        724.25     0.7457

   Surcharge pressures:        Elev.   Press.        (ft)    (ksf)     ===================

 ** Resisting side pressures **

   Water pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        728.00     0.0000        726.00     0.1972        726.00     0.7057        724.25     0.7457

   Balancing earth pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        726.00     1.7076        724.25     1.7076

 ** Uplift pressures **

   Water pressures:

Page 5

Page 111: Appendix L: Structural Engineering

RailroadClosure_11ft_Unusual_Construction.out.txt      x‐coord.   Pressure        (ft)       (ksf)     ======================          0.00     0.7457          1.25     0.7057          1.25     0.5406         12.00     0.1972

 ** Forces and moments **

 ========================================================================               Part          |    Force (kips)    | Mom. Arm  |  Moment |                             |  Vert.   |   Horiz.|    (ft)   |  (ft‐k) | ======================================================================== Structure:                    Structure weight...........    5.616                 ‐5.45    ‐30.61 Structure, driving side:      Moist soil.................    0.000                  0.00      0.00   Saturated soil.............    3.609                 ‐7.88    ‐28.42   Water above structure......    0.000                  0.00      0.00   Water above soil...........    2.420                 ‐7.87    ‐19.05   External vertical loads....    2.062                 ‐7.88    ‐16.24   Ext. horz. pressure loads..               0.000       0.00      0.00   Ext. horz. line loads......               0.000       0.00      0.00 Structure, resisting side:    Moist soil.................    1.076                 ‐1.25     ‐1.35   Saturated soil.............    0.000                  0.00      0.00   Water above structure......    0.000                  0.00      0.00   Water above soil...........    0.000                  0.00      0.00 Driving side:            Effective earth loads......               0.000       0.00      0.00   Shear (due to delta).......    0.000                  0.00      0.00   Horiz. surcharge effects...               0.000       0.00      0.00   Water loads................               4.455       2.24      9.97 Resisting side:               Effective earth loads......               0.000       0.00      0.00   Balancing earth load.......              ‐2.988      ‐0.89      2.65   Water loads................              ‐1.467      ‐0.67      0.99 Foundation:                   Vertical force on base.....   ‐9.910                 ‐4.75     47.12   Uplift.....................   ‐4.873                 ‐7.17     34.95 ======================================================================== ** Statics Check **   SUMS =     0.000      0.000                 0.00

 Angle of base        =     8.30 degrees Normal force on base =   10.238 kips Shear force on base  =    1.527 kips Max. available shear force =    7.040 kips

Page 6

Page 112: Appendix L: Structural Engineering

RailroadClosure_11ft_Unusual_Construction.out.txt

 Base pressure at heel =   0.3115 ksf Base pressure at toe  =   1.3402 ksf

 Xr (measured from toe) =     4.75 ft Resultant ratio        =   0.3962 Stem ratio             =   0.2083 Base in compression    =   100.00 % Overturning ratio      =     2.08

 Volume of concrete =     1.39 cubic yds/ft of wall

 NOTE:  The engineer shall verify that the computed bearing pressures below the wall do not exceed the allowable foundation bearing pressure, or, perform a bearing capacity analysis using the program CBEAR. Also, the engineer shall verify that the base pressures do not result in excessive differential settlement of the wall foundation.

 *********************** **  Sliding Results  ** ***********************

 Solution converged.  Summation of forces = 0.

            Horizontal   Vertical   Wedge      Loads       Loads   Number    (kips)       (kips)   ==================================      1       0.000       0.000      2       4.455       4.482      3       0.000       0.000

   Water pressures on wedges:

              Top      Bottom     Wedge    press.   press.   x‐coord.    press.     number   (ksf)    (ksf)     (ft)       (ksf)   ================================================       1    0.0000    0.0000       2                         0.0000     0.7457       2                        12.0000     0.1972       3    0.0000    0.1972

Page 7

Page 113: Appendix L: Structural Engineering

RailroadClosure_11ft_Unusual_Construction.out.txt Points of sliding plane:   Point 1 (left),  x =     0.00 ft,   y =   724.25 ft   Point 2 (right), x =    12.00 ft,   y =   726.00 ft

 Depth of cracking =     7.25 ft Crack extends to bottom of base of structure.

           Failure   Total    Weight    Submerged   Uplift   Wedge    angle    length  of wedge    length     force   number   (deg)     (ft)    (kips)      (ft)      (kips)   ========================================================      1     0.000     0.000      0.000    0.000     0.000      2     8.297    12.127     11.340   12.127     5.717      3    44.412     7.859      1.903    2.858     0.282

   Wedge     Net force   number     (kips)   ===================      1        0.000      2       ‐1.934      3        1.934   ===================      SUM =    0.000

 +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ | Factor of safety =   30.433 | +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

 *********************** **  Bearing Results  ** ***********************

             Base width =     12.127 (ft)                     Xr =      4.754 (ft)   Effective base width =      9.609 (ft)    (measured along slope)             Base slope =     8.2971 (deg)

                    phi =     32.000 (deg)                      c =      0.000 (ksf)        Effective gamma =     0.0626 (kcf)

            Normal load =     10.238 (kips)       Load inclination =      8.483 (deg)      Load eccentricity =      1.259 (ft)

Page 8

Page 114: Appendix L: Structural Engineering

RailroadClosure_11ft_Unusual_Construction.out.txt

              Surcharge =     0.5557 (ksf)              Embedment =      5.500 (ft)           Ground slope =     0.0000 (deg)

           Bearing Capacity Factors =============================================                     C        Q         G ============================================= Bearing         35.4903   23.1768   22.0225 Embedment        1.2065    1.1033    1.1033 Inclination      0.8204    0.8204    0.5401 Base Tilt        0.8194    0.8272    0.8272 Ground Slope     1.0000    1.0000    1.0000

 Net ultimate bearing pressure =    12.4915 (ksf)

 +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ | Factor of safety =     11.725 | +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

Page 9

Page 115: Appendix L: Structural Engineering

RailroadClosure_11ft_Unusual.out.txt

 ****************** Echoprint of Input Data ******************

 Date: 2019/10/ 3                               Time: 10.45.14 

 Arcadia Railroad Closure, Height 11 ft, No Sheetpile         Unusual Case, Cracked, Water Design Flood EL                 Check Design                                                

 Company name:   USACE                                                         Project name:   Arcadia Feasibility Study                                     Project location:   Arcadia, Wisconsin                                            Wall location:   Railroad Closure, Height 11 ft.                               Computed by: CNO

 Structural geometry data:   Elevation of top of stem (ELTS)       =   737.00 ft   Height of stem (HTS)                  =     9.00 ft   Thickness top of stem (TTS)           =     1.25 ft   Thickness bottom of stem (TBS)        =     1.25 ft   Dist. of batter at bot. of stem (TBSR)=     0.00 ft   Depth of heel (THEEL)                 =     3.75 ft   Distance of batter for heel (BTRH)    =     0.00 ft   Depth of toe (TTOE)                   =     2.00 ft   Width of toe (TWIDTH)                 =     2.50 ft   Distance of batter for toe (BTRT)     =     0.00 ft   Width of base (BWIDTH)                =    12.00 ft   Depth of key (HK)                     =     1.75 ft   Width of bottom of key (TK)           =     1.25 ft   Dist. of batter at bot. of key (BTRK) =     0.00 ft

 Structure coordinates:

    x (ft)    y (ft)   ==================       0.00    724.25       0.00    728.00       8.25    728.00       8.25    737.00       9.50    737.00       9.50    728.00

Page 1

Page 116: Appendix L: Structural Engineering

RailroadClosure_11ft_Unusual.out.txt      12.00    728.00      12.00    726.00       1.25    726.00       1.25    724.25

 NOTE: X=0 is located at the left‐hand side       of the structure.  The Y values correspond       to the actual elevation used.

 Structural property data:   Unit weight of concrete =    0.150 kcf

 Driving side soil property data:

                       Moist   Saturated          Elev.    Phi        c      Unit wt.  unit wt.  Delta   soil   (deg)     (ksf)     (kcf)     (kcf)    (deg)   (ft) =======================================================    32.00    0.000     0.123     0.125     0.00  731.50

 Driving side soil geometry:

   Soil      Batter    Distance   point    (in:1ft)     (ft)   =============================    1         0.00      0.00    2         0.00      0.00    3         0.00    500.00

 Driving side soil profile:

   Soil        x          y       point      (ft)       (ft)   =============================    1      ‐991.75    731.50    2         8.25    731.50

 Resisting side soil property data:

                       Moist   Saturated  Elev.    Phi        c      Unit wt.  unit wt.  soil    Batter   (deg)     (ksf)     (kcf)     (kcf)    (ft)   (in:1ft) ========================================================    32.00    0.000     0.123     0.125   731.50    0.00

 Resisting side soil profile:

   Soil        x          y    

Page 2

Page 117: Appendix L: Structural Engineering

RailroadClosure_11ft_Unusual.out.txt   point      (ft)       (ft)   =============================    1         9.50    731.50    2       509.50    731.50

 Foundation property data:   phi for soil‐structure interface =    32.00 (deg)   c for soil‐structure interface   =    0.000 (ksf)   phi for soil‐soil interface      =    32.00 (deg)   c for soil‐soil interface        =    0.000 (ksf)

 Water data:   Driving side elevation   =   736.20 ft   Resisting side elevation =   728.00 ft   Unit weight of water     =   0.0624 kcf   Seepage pressures computed by Line of Creep method.

 Horizontal line load data:

    Elevation   Force      (ft)      (kips) ========================    736.20      0.50

 Minimum required factors of safety:   Sliding FS   =    1.50   Overturning  =   75.00% base in compression

 Crack options:   o  Crack *is* down to bottom of heel   o  Computed cracks *will* be filled with water

 All computed failure angles are based on 45+‐(phi developed)/2 Note:  Any wedge angles that are 'set' are not affected by this option.

 Strength mobilization factor =   0.6667

 Resisting side pressures *are not* used in the overturning analysis.

 Forces on the resisting side *are used* in the sliding analysis.

 *Do* iterate in overturning analysis.

 ***** Summary of Results *****

Page 3

Page 118: Appendix L: Structural Engineering

RailroadClosure_11ft_Unusual.out.txt Arcadia Railroad Closure, Height 11 ft, No Sheetpile        

 Project name: Arcadia Feasibility Study                                   

 ***************    *** Satisfied *** * Overturning *    Required base in comp. =  75.00 % ***************    Actual base in comp.   =  80.99 %                    Overturning ratio      =   1.56

 Xr (measured from toe) =   3.24 ft Resultant ratio        = 0.2700 Stem ratio             = 0.2083 Base pressure at x=   9.72 ft from toe =    0.0000 ksf Base pressure at toe                   =    1.6148 ksf

 ***********    *** Satisfied *** * Sliding *    Min. Required =   1.50 ***********    Actual FS     =   6.93

 ***********     * Bearing *     ***********    

 Net ultimate bearing pressure =     9.1274 (ksf) Factor of safety =      7.228

 ********************** Output Results **********************

 Date: 2019/10/ 3                               Time: 10.45.14 

 Arcadia Railroad Closure, Height 11 ft, No Sheetpile         Unusual Case, Cracked, Water Design Flood EL                 Check Design                                                

 Company name:   USACE                                                        Project name:   Arcadia Feasibility Study                                    Project location:   Arcadia, Wisconsin                                           Wall location:   Railroad Closure, Height 11 ft.                              Computed by: CNO

 ***************************

Page 4

Page 119: Appendix L: Structural Engineering

RailroadClosure_11ft_Unusual.out.txt **  Overturning Results  ** ***************************

 Solution converged in  1 iterations.

 SMF used to calculate K's =   0.6667 Alpha for the SMF          =   0.0000 Calculated earth pressure coefficients:   Driving side at rest K    =   0.0000   Driving side at rest Kc   =   0.0000   Resisting side at rest K  =   0.0000   Resisting side at rest Kc =   0.0000   No passive pressures used for resisting side.

 Depth of cracking =     7.25 ft Crack extends to bottom of base of structure.

 ** Driving side pressures **

   Water pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        736.20     0.0000        724.25     0.7457

 ** Resisting side pressures **

   Water pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        728.00     0.0000        726.00     0.1972        726.00     0.7057        724.25     0.7457

   Balancing earth pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        726.00     1.9933        724.25     1.9933

 ** Uplift pressures **

   Water pressures:      x‐coord.   Pressure

Page 5

Page 120: Appendix L: Structural Engineering

RailroadClosure_11ft_Unusual.out.txt        (ft)       (ksf)     ======================          0.00     0.7457          1.25     0.7057          1.25     0.5406         12.00     0.1972

 ** Forces and moments **

 ========================================================================               Part          |    Force (kips)    | Mom. Arm  |  Moment |                             |  Vert.   |   Horiz.|    (ft)   |  (ft‐k) | ======================================================================== Structure:                    Structure weight...........    5.616                 ‐5.45    ‐30.61 Structure, driving side:      Moist soil.................    0.000                  0.00      0.00   Saturated soil.............    3.609                 ‐7.88    ‐28.42   Water above structure......    0.000                  0.00      0.00   Water above soil...........    2.420                 ‐7.87    ‐19.05   External vertical loads....    0.000                  0.00      0.00   Ext. horz. pressure loads..               0.000       0.00      0.00   Ext. horz. line loads......               0.500      10.20      5.10 Structure, resisting side:    Moist soil.................    1.076                 ‐1.25     ‐1.35   Saturated soil.............    0.000                  0.00      0.00   Water above structure......    0.000                  0.00      0.00   Water above soil...........    0.000                  0.00      0.00 Driving side:            Effective earth loads......               0.000       0.00      0.00   Shear (due to delta).......    0.000                  0.00      0.00   Horiz. surcharge effects...               0.000       0.00      0.00   Water loads................               4.455       2.24      9.97 Resisting side:               Effective earth loads......               0.000       0.00      0.00   Balancing earth load.......              ‐3.488      ‐0.86      3.00   Water loads................              ‐1.467      ‐0.67      0.99 Foundation:                   Vertical force on base.....   ‐7.848                 ‐3.24     25.42   Uplift.....................   ‐4.873                 ‐7.17     34.95 ======================================================================== ** Statics Check **   SUMS =     0.000      0.000                 0.00

 Angle of base        =     8.30 degrees Normal force on base =    8.269 kips Shear force on base  =    2.319 kips Max. available shear force =    5.809 kips

Page 6

Page 121: Appendix L: Structural Engineering

RailroadClosure_11ft_Unusual.out.txt Base pressure at x=   9.72 ft from toe =   0.0000 ksf Base pressure at toe                   =   1.6148 ksf

 Xr (measured from toe) =     3.24 ft Resultant ratio        =   0.2700 Stem ratio             =   0.2083 Base in compression    =    80.99 % Overturning ratio      =     1.56

 Volume of concrete =     1.39 cubic yds/ft of wall

 NOTE:  The engineer shall verify that the computed bearing pressures below the wall do not exceed the allowable foundation bearing pressure, or, perform a bearing capacity analysis using the program CBEAR. Also, the engineer shall verify that the base pressures do not result in excessive differential settlement of the wall foundation.

 *********************** **  Sliding Results  ** ***********************

 Solution converged.  Summation of forces = 0.

            Horizontal   Vertical   Wedge      Loads       Loads   Number    (kips)       (kips)   ==================================      1       0.000       0.000      2       4.955       2.420      3       0.000       0.000

   Water pressures on wedges:

              Top      Bottom     Wedge    press.   press.   x‐coord.    press.     number   (ksf)    (ksf)     (ft)       (ksf)   ================================================       1    0.0000    0.0000       2                         0.0000     0.7457       2                        12.0000     0.1972       3    0.0000    0.1972

 Points of sliding plane:

Page 7

Page 122: Appendix L: Structural Engineering

RailroadClosure_11ft_Unusual.out.txt   Point 1 (left),  x =     0.00 ft,   y =   724.25 ft   Point 2 (right), x =    12.00 ft,   y =   726.00 ft

 Depth of cracking =     7.25 ft Crack extends to bottom of base of structure.

           Failure   Total    Weight    Submerged   Uplift   Wedge    angle    length  of wedge    length     force   number   (deg)     (ft)    (kips)      (ft)      (kips)   ========================================================      1     0.000     0.000      0.000    0.000     0.000      2     8.297    12.127     11.340   12.127     5.717      3    42.425     8.153      2.040    2.965     0.292

   Wedge     Net force   number     (kips)   ===================      1        0.000      2       ‐2.193      3        2.193   ===================      SUM =    0.000

 +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ | Factor of safety =    6.934 | +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

 *********************** **  Bearing Results  ** ***********************

             Base width =     12.127 (ft)                     Xr =      3.240 (ft)   Effective base width =      6.548 (ft)    (measured along slope)             Base slope =     8.2971 (deg)

                    phi =     32.000 (deg)                      c =      0.000 (ksf)        Effective gamma =     0.0626 (kcf)

            Normal load =      8.269 (kips)       Load inclination =     15.668 (deg)      Load eccentricity =      2.789 (ft)

Page 8

Page 123: Appendix L: Structural Engineering

RailroadClosure_11ft_Unusual.out.txt              Surcharge =     0.5557 (ksf)              Embedment =      5.500 (ft)           Ground slope =     0.0000 (deg)

           Bearing Capacity Factors =============================================                     C        Q         G ============================================= Bearing         35.4903   23.1768   22.0225 Embedment        1.3031    1.1515    1.1515 Inclination      0.6821    0.6821    0.2605 Base Tilt        0.8194    0.8272    0.8272 Ground Slope     1.0000    1.0000    1.0000

 Net ultimate bearing pressure =     9.1274 (ksf)

 +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ | Factor of safety =      7.228 | +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

Page 9

Page 124: Appendix L: Structural Engineering

RailroadClosure_11ft_Extreme.out.txt

 ****************** Echoprint of Input Data ******************

 Date: 2019/10/ 3                               Time: 10.54.03 

 Arcadia Railroad Closure, Height 11 ft, No Sheetpile         Extreme Case, Cracked, Water Top of Closure w Superiority    Check Design                                                

 Company name:   USACE                                                         Project name:   Arcadia Feasibility Study                                     Project location:   Arcadia, Wisconsin                                            Wall location:   Railroad Closure, Height 11 ft.                               Computed by: CNO

 Structural geometry data:   Elevation of top of stem (ELTS)       =   737.00 ft   Height of stem (HTS)                  =     9.00 ft   Thickness top of stem (TTS)           =     1.25 ft   Thickness bottom of stem (TBS)        =     1.25 ft   Dist. of batter at bot. of stem (TBSR)=     0.00 ft   Depth of heel (THEEL)                 =     3.75 ft   Distance of batter for heel (BTRH)    =     0.00 ft   Depth of toe (TTOE)                   =     2.00 ft   Width of toe (TWIDTH)                 =     2.50 ft   Distance of batter for toe (BTRT)     =     0.00 ft   Width of base (BWIDTH)                =    12.00 ft   Depth of key (HK)                     =     1.75 ft   Width of bottom of key (TK)           =     1.25 ft   Dist. of batter at bot. of key (BTRK) =     0.00 ft

 Structure coordinates:

    x (ft)    y (ft)   ==================       0.00    724.25       0.00    728.00       8.25    728.00       8.25    737.00       9.50    737.00       9.50    728.00

Page 1

Page 125: Appendix L: Structural Engineering

RailroadClosure_11ft_Extreme.out.txt      12.00    728.00      12.00    726.00       1.25    726.00       1.25    724.25

 NOTE: X=0 is located at the left‐hand side       of the structure.  The Y values correspond       to the actual elevation used.

 Structural property data:   Unit weight of concrete =    0.150 kcf

 Driving side soil property data:

                       Moist   Saturated          Elev.    Phi        c      Unit wt.  unit wt.  Delta   soil   (deg)     (ksf)     (kcf)     (kcf)    (deg)   (ft) =======================================================    32.00    0.000     0.123     0.125     0.00  731.50

 Driving side soil geometry:

   Soil      Batter    Distance   point    (in:1ft)     (ft)   =============================    1         0.00      0.00    2         0.00      0.00    3         0.00    500.00

 Driving side soil profile:

   Soil        x          y       point      (ft)       (ft)   =============================    1      ‐991.75    731.50    2         8.25    731.50

 Resisting side soil property data:

                       Moist   Saturated  Elev.    Phi        c      Unit wt.  unit wt.  soil    Batter   (deg)     (ksf)     (kcf)     (kcf)    (ft)   (in:1ft) ========================================================    32.00    0.000     0.123     0.125   731.50    0.00

 Resisting side soil profile:

   Soil        x          y    

Page 2

Page 126: Appendix L: Structural Engineering

RailroadClosure_11ft_Extreme.out.txt   point      (ft)       (ft)   =============================    1         9.50    731.50    2       509.50    731.50

 Foundation property data:   phi for soil‐structure interface =    32.00 (deg)   c for soil‐structure interface   =    0.000 (ksf)   phi for soil‐soil interface      =    32.00 (deg)   c for soil‐soil interface        =    0.000 (ksf)

 Water data:   Driving side elevation   =   736.70 ft   Resisting side elevation =   728.00 ft   Unit weight of water     =   0.0624 kcf   Seepage pressures computed by Line of Creep method.

 Minimum required factors of safety:   Sliding FS   =    1.10   Overturning  =    0.00% base in compression

 Crack options:   o  Crack *is* down to bottom of heel   o  Computed cracks *will* be filled with water

 All computed failure angles are based on 45+‐(phi developed)/2 Note:  Any wedge angles that are 'set' are not affected by this option.

 Strength mobilization factor =   0.6667

 Resisting side pressures *are not* used in the overturning analysis.

 Forces on the resisting side *are used* in the sliding analysis.

 *Do* iterate in overturning analysis.

 ***** Summary of Results *****

 Arcadia Railroad Closure, Height 11 ft, No Sheetpile        

 Project name: Arcadia Feasibility Study                                   

 ***************    *** Satisfied *** * Overturning *    Required base in comp. =   0.00 % ***************    Actual base in comp.   =  93.32 %

Page 3

Page 127: Appendix L: Structural Engineering

RailroadClosure_11ft_Extreme.out.txt                    Overturning ratio      =   1.66

 Xr (measured from toe) =   3.73 ft Resultant ratio        = 0.3111 Stem ratio             = 0.2083 Base pressure at x=  11.20 ft from toe =    0.0000 ksf Base pressure at toe                   =    1.4123 ksf

 ***********    *** Satisfied *** * Sliding *    Min. Required =   1.10 ***********    Actual FS     =   8.09

 ***********     * Bearing *     ***********    

 Net ultimate bearing pressure =     9.6005 (ksf) Factor of safety =      8.724

 ********************** Output Results **********************

 Date: 2019/10/ 3                               Time: 10.54.03 

 Arcadia Railroad Closure, Height 11 ft, No Sheetpile         Extreme Case, Cracked, Water Top of Closure w Superiority    Check Design                                                

 Company name:   USACE                                                        Project name:   Arcadia Feasibility Study                                    Project location:   Arcadia, Wisconsin                                           Wall location:   Railroad Closure, Height 11 ft.                              Computed by: CNO

 *************************** **  Overturning Results  ** ***************************

 Solution converged in  1 iterations.

 SMF used to calculate K's =   0.6667 Alpha for the SMF          =   0.0000

Page 4

Page 128: Appendix L: Structural Engineering

RailroadClosure_11ft_Extreme.out.txt Calculated earth pressure coefficients:   Driving side at rest K    =   0.0000   Driving side at rest Kc   =   0.0000   Resisting side at rest K  =   0.0000   Resisting side at rest Kc =   0.0000   No passive pressures used for resisting side.

 Depth of cracking =     7.25 ft Crack extends to bottom of base of structure.

 ** Driving side pressures **

   Water pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        736.70     0.0000        724.25     0.7769

 ** Resisting side pressures **

   Water pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        728.00     0.0000        726.00     0.2017        726.00     0.7345        724.25     0.7769

   Balancing earth pressures:     Elevation   Pressure       (ft)        (ksf)     ======================        726.00     1.8925        724.25     1.8925

 ** Uplift pressures **

   Water pressures:      x‐coord.   Pressure        (ft)       (ksf)     ======================          0.00     0.7769          1.25     0.7345          1.25     0.5660         12.00     0.2017

Page 5

Page 129: Appendix L: Structural Engineering

RailroadClosure_11ft_Extreme.out.txt ** Forces and moments **

 ========================================================================               Part          |    Force (kips)    | Mom. Arm  |  Moment |                             |  Vert.   |   Horiz.|    (ft)   |  (ft‐k) | ======================================================================== Structure:                    Structure weight...........    5.616                 ‐5.45    ‐30.61 Structure, driving side:      Moist soil.................    0.000                  0.00      0.00   Saturated soil.............    3.609                 ‐7.88    ‐28.42   Water above structure......    0.000                  0.00      0.00   Water above soil...........    2.677                 ‐7.87    ‐21.08   External vertical loads....    0.000                  0.00      0.00   Ext. horz. pressure loads..               0.000       0.00      0.00   Ext. horz. line loads......               0.000       0.00      0.00 Structure, resisting side:    Moist soil.................    1.076                 ‐1.25     ‐1.35   Saturated soil.............    0.000                  0.00      0.00   Water above structure......    0.000                  0.00      0.00   Water above soil...........    0.000                  0.00      0.00 Driving side:            Effective earth loads......               0.000       0.00      0.00   Shear (due to delta).......    0.000                  0.00      0.00   Horiz. surcharge effects...               0.000       0.00      0.00   Water loads................               4.836       2.40     11.63 Resisting side:               Effective earth loads......               0.000       0.00      0.00   Balancing earth load.......              ‐3.312      ‐0.86      2.84   Water loads................              ‐1.524      ‐0.68      1.03 Foundation:                   Vertical force on base.....   ‐7.907                 ‐3.73     29.52   Uplift.....................   ‐5.071                 ‐7.19     36.44 ======================================================================== ** Statics Check **   SUMS =     0.000      0.000                 0.00

 Angle of base        =     8.30 degrees Normal force on base =    8.303 kips Shear force on base  =    2.136 kips Max. available shear force =    5.831 kips

 Base pressure at x=  11.20 ft from toe =   0.0000 ksf Base pressure at toe                   =   1.4123 ksf

 Xr (measured from toe) =     3.73 ft Resultant ratio        =   0.3111 Stem ratio             =   0.2083 Base in compression    =    93.32 %

Page 6

Page 130: Appendix L: Structural Engineering

RailroadClosure_11ft_Extreme.out.txt Overturning ratio      =     1.66

 Volume of concrete =     1.39 cubic yds/ft of wall

 NOTE:  The engineer shall verify that the computed bearing pressures below the wall do not exceed the allowable foundation bearing pressure, or, perform a bearing capacity analysis using the program CBEAR. Also, the engineer shall verify that the base pressures do not result in excessive differential settlement of the wall foundation.

 *********************** **  Sliding Results  ** ***********************

 Solution converged.  Summation of forces = 0.

            Horizontal   Vertical   Wedge      Loads       Loads   Number    (kips)       (kips)   ==================================      1       0.000       0.000      2       4.836       2.677      3       0.000       0.000

   Water pressures on wedges:

              Top      Bottom     Wedge    press.   press.   x‐coord.    press.     number   (ksf)    (ksf)     (ft)       (ksf)   ================================================       1    0.0000    0.0000       2                         0.0000     0.7769       2                        12.0000     0.2017       3    0.0000    0.2017

 Points of sliding plane:   Point 1 (left),  x =     0.00 ft,   y =   724.25 ft   Point 2 (right), x =    12.00 ft,   y =   726.00 ft

 Depth of cracking =     7.25 ft Crack extends to bottom of base of structure.

           Failure   Total    Weight    Submerged   Uplift

Page 7

Page 131: Appendix L: Structural Engineering

RailroadClosure_11ft_Extreme.out.txt   Wedge    angle    length  of wedge    length     force   number   (deg)     (ft)    (kips)      (ft)      (kips)   ========================================================      1     0.000     0.000      0.000    0.000     0.000      2     8.297    12.127     11.340   12.127     5.933      3    42.791     8.096      2.014    2.944     0.297

   Wedge     Net force   number     (kips)   ===================      1        0.000      2       ‐2.142      3        2.142   ===================      SUM =    0.000

 +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ | Factor of safety =    8.087 | +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

 *********************** **  Bearing Results  ** ***********************

             Base width =     12.127 (ft)                     Xr =      3.733 (ft)   Effective base width =      7.544 (ft)    (measured along slope)             Base slope =     8.2971 (deg)

                    phi =     32.000 (deg)                      c =      0.000 (ksf)        Effective gamma =     0.0626 (kcf)

            Normal load =      8.303 (kips)       Load inclination =     14.429 (deg)      Load eccentricity =      2.291 (ft)

              Surcharge =     0.5557 (ksf)              Embedment =      5.500 (ft)           Ground slope =     0.0000 (deg)

           Bearing Capacity Factors =============================================

Page 8

Page 132: Appendix L: Structural Engineering

RailroadClosure_11ft_Extreme.out.txt                     C        Q         G ============================================= Bearing         35.4903   23.1768   22.0225 Embedment        1.2630    1.1315    1.1315 Inclination      0.7051    0.7051    0.3015 Base Tilt        0.8194    0.8272    0.8272 Ground Slope     1.0000    1.0000    1.0000

 Net ultimate bearing pressure =     9.6005 (ksf)

 +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+ | Factor of safety =      8.724 | +‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+

Page 9

Page 133: Appendix L: Structural Engineering

1

Nunez-Orta, Coralys N CIV USARMY USACE (USA)

From: Foss, Jason R CIV USARMY CEMVP (USA)Sent: Tuesday, July 23, 2019 09:56To: Fares, Tony S CIV USARMY CEMVP (USA)Cc: Nunez-Orta, Coralys N CIV USARMY USACE (USA)Subject: RE: Arcadia Soil Parameters

Tony,  Typical geologic section in Arcadia has 3 to 8 feet of finer grained blanket underlain by 80 to 100 feet of fine grained alluvial sand aquifer. The geologic setting is quite variable though, making it hard to define a typical section.  Here’s what I’ve been using so far: 

Name Sat. Unit Weight 

Moist Unit Weight  Cohesion  Phi 

Fine Grained Alluvial Sands (aquifer)  120  118  0  30 

Fine Grained Blanket (Lean Clay)  117  116  0  34 

Levee Fill  125  123  0  32 

 Let me know if you have questions.  Jason 651.290.5583  

From: Fares, Tony S CIV USARMY CEMVP (USA)  Sent: Wednesday, July 17, 2019 3:46 PM To: Foss, Jason R CIV USARMY CEMVP (USA) <[email protected]> Cc: Nunez‐Orta, Coralys N CIV USARMY USACE (USA) <Coralys.N.Nunez‐[email protected]> Subject: Arcadia Soil Parameters  

Hi Jason,  Please provide soil parameters to be used in the design of floodwalls and closures. Such as:  Soil Parameters

Soil parameters established for Arcadia and used in the structure design are defined in Table 1-9.

Table 1-9 Structural Soil Parameters

Parameter Value

Moist Unit Weight (pcf) 115

Saturated Unit Weight (pcf) 120

Friction Angle (deg) 30

Cohesion (psf) 0

 Thanks 

Page 134: Appendix L: Structural Engineering

2

 Tony S. Fares, P.E. Structural Engineer 651‐290‐5568 (office) 651‐290‐5825 (fax) [email protected]   

Page 135: Appendix L: Structural Engineering

1

Nunez-Orta, Coralys N CIV USARMY USACE (USA)

From: Dessner, Amy J CIV USARMY CEMVP (US)Sent: Thursday, July 18, 2019 09:17To: Fares, Tony S CIV USARMY CEMVP (USA)Cc: Nunez-Orta, Coralys N CIV USARMY USACE (USA)Subject: RE: Arcadia Water Elevations

Tony,  Please see below and let me know if you need any further information.  Amy  

HEC-RAS 1% AEP

Design Flood

Elevation (100 yr + 3)

Top of wall w.

Superiority Structure Station

RR bridge   3078.974  733.2  736.2  736.7 

River Street  17539.2  731.4  734.4  734.9 

Main Street  17243.55  730.5  733.5  734.9 

  

From: Fares, Tony S CIV USARMY CEMVP (USA)  Sent: Wednesday, July 17, 2019 2:02 PM To: Dessner, Amy J CIV USARMY CEMVP (US) <[email protected]> Cc: Nunez‐Orta, Coralys N CIV USARMY USACE (USA) <Coralys.N.Nunez‐[email protected]> Subject: Arcadia Water Elevations  

Amy,  We are refining our wall sections and closures design for the 100 year +3'.  We will select the structures sizes to meet stability and strength based on performance objectives for hydraulic structures. These performance objectives will be adopted from Table 1 of ECB 2017‐2 for critical sections following the intent of guidance in EM 1110‐2‐2502 and EM 1110‐2‐2607.  The tables below is from different project.  

Table 1-2 Load Categories to Satisfy Performance Requirements

Load Condition Categories

Return Period

Annual Exceedance

Probability (AEP)

Water Elevation

Flood Side

Usual 10-Year Event 10% 714.98

Unusual 10- to 750-Year Event 10% - 0.133% 728.40

Page 136: Appendix L: Structural Engineering

2

Extreme Greater than 750 years or Top of

Structure

Less than 0.133% 728.60

 

Water Surface Elevations

The XXX hydraulics models were used to calculate the water surface elevations for the 10 percent annual exceedance probability (AEP), 1 percent AEP, design flood elevation, and minimum design grade surface elevations in support of the structural analysis. The minimum design grade corresponds with the top of levee/wall. A discussion of the hydraulic modeling is presented in Section XX. Water surface elevations used to determine hydrostatic loading on structural features is in Table 1-7.

 able 1-7 Structure Flood Elevations

Structure

10% AEP Design Flood Elevation (2)

Top of wall Overtopping (3)

Floodwall, Gate wells, Pump Station, etc…

714.98 728.40 728.60 728.99

Road and Railroad Closure 714.98 728.40 728.60 728.99 714.98 728.40 728.60 728.99

(2) Corresponds to the flood of record?? (3) Corresponds to water upstream??

Structural Superiority Structural superiority for the “Projects” generally involves adding height to project features to control the location of overtopping if a flood event exceeds the capacity of the system thus reducing the potential for scour on the Landside of the structures. This results in the structures being taller than adjacent levee features. Elevations for the minimum design project grade, the top of levee adjacent to structures, and the top of structures with structural superiority are in Table 1-8.

Table 1-8 Structure Elevations

Structure Minimum Design Project Grade

(feet) (1)

Top of Levee at Structure

(feet)

Top of Structure Elevation (feet)

Floodwall, Gate wells, Pump Station, etc..

Road and Railroad Closure

(1) Refer to Table XX

 Can you provide similar tables for water elevations for the 100 year + 3’ so we can refine our design of the floodwall sections and the closures?  Thanks  Tony S. Fares, P.E. Structural Engineer 651‐290‐5568 (office) 651‐290‐5825 (fax) [email protected] 

Page 137: Appendix L: Structural Engineering

1

Nunez-Orta, Coralys N CIV USARMY USACE (USA)

From: Dessner, Amy J CIV USARMY CEMVP (US)Sent: Wednesday, September 25, 2019 12:23To: Nunez-Orta, Coralys N CIV USARMY USACE (USA)Subject: RE: Load Condition Categories (UNCLASSIFIED)

Sure!  10‐yr water surface elevations RR   732.2 River  728.9 Main  728.5  ‐‐‐‐‐Original Message‐‐‐‐‐ From: Nunez‐Orta, Coralys N CIV USARMY USACE (USA)  Sent: Wednesday, September 25, 2019 11:36 AM To: Dessner, Amy J CIV USARMY CEMVP (US) <[email protected]> Subject: RE: Load Condition Categories (UNCLASSIFIED)  CLASSIFICATION: UNCLASSIFIED  Hey Amy,  I'm sorry not explaining it better. Under the EM 2104, the Usual case is for a return period of 10‐years, the Unusual case is for a return period from 10‐750 years (this would be the 1% AEP), and the Extreme for a return period above 750 years or the Top of the Structure (currently using the Top of the Wall with Superiority). Do you happen to have the 10‐year water surface elevations?  Thanks, Cora   ‐‐‐‐‐Original Message‐‐‐‐‐ From: Dessner, Amy J CIV USARMY CEMVP (US)  Sent: Tuesday, September 24, 2019 19:38 To: Nunez‐Orta, Coralys N CIV USARMY USACE (USA) <Coralys.N.Nunez‐[email protected]> Cc: Fares, Tony S CIV USARMY CEMVP (USA) <[email protected]> Subject: RE: Load Condition Categories (UNCLASSIFIED)  Hey Cora ‐ The top of levee is generally set at the 100 year (1% AEP) water surface elevation + 3 or 3.5 feet.  I hope that helps – I am not familiar with the load condition categories.     From: Nunez‐Orta, Coralys N CIV USARMY USACE (USA)  Sent: Tuesday, September 24, 2019 12:00 PM To: Dessner, Amy J CIV USARMY CEMVP (US) <[email protected]> Cc: Fares, Tony S CIV USARMY CEMVP (USA) <[email protected]> Subject: Load Condition Categories (UNCLASSIFIED)  

Page 138: Appendix L: Structural Engineering

2

   CLASSIFICATION: UNCLASSIFIED     *Switch to HTML     Hi Amy,     I’m doing a table with the AEP and water elevations that you sent. I’m a bit confused with the Usual load condition. If it’s a 1% AEP, wouldn’t that place it in the Unusual load Case?                    Water Elevation  Flood Side  Load Condition Categories  Return Period  Annual Exceedance Probability (AEP)   Calculated Annual Exceedance Probability  Railroad Bridge  River Street  Main Street  Usual  ≤10‐Year Event  1 ‐ 0.1 

Page 139: Appendix L: Structural Engineering

3

 (≥10%)  1% AEP  733.20’  731.4’  730.5’  Unusual (critical)  10‐ to 750‐Year Event  0.1 ‐ 0.00133  (10% ‐ 0.13%)  Design Flood Elevation  (100 yr. + 3’)  736.2’  734.4’  733.5’  Extreme (critical)  >750 years or Top of Structure  Less than 0.00133  (≤0.133%)  Top of Wall  w. Superiority  736.7’  734.9’  734.9’        Thanks, 

Page 140: Appendix L: Structural Engineering

4

    Coralys "Cora" Núñez Orta, EIT  U.S. Army Corps of Engineers  St. Paul District, CEMVP‐ECD‐S  O: 651‐290‐5512 | C: 787‐463‐6663        CLASSIFICATION: UNCLASSIFIED  CLASSIFICATION: UNCLASSIFIED 

Page 141: Appendix L: Structural Engineering

US Army Corps of Engineers DATE:

10/28/2019

Saint Paul District

CHK BY: TMG

Load Case: Design Flood Elevation (100 yr. + 3 ft.) - Unusual

Design Information: Note: Data located with-in a black box is an input, not a calculated value.

Labels and data below are from an overturning and sliding analysis performed by CTWALL

Top of Stem El 735.00 feet Toe Thickness 1.00 feet

Height of Stem 9.00 feet Toe Width 2.50 feet

Top Stem Thickness 1.00 feet Toe Slope 0.00 feet

Base Stem Thickness 1.00 feet Total Base Width 11.00 feet

Stem Batter 0.00 feet Key Depth 1.50 feet

Heel Thickness 2.50 feet Key Thickness 1.25 feet

Heel Slope 0.00 feet Key Slope 0.00 feet

ACI 318-19

Weight of Water (w) = 62.40 lbs/cu.ft fy = 60 ksi

Water Ele. L. (HwL) = 734.40 feet f'c = 4.0 ksi

Water Ele. R. (HwR) = 726.00 feet modification factor = 1.00

B. Wt. of Soil (b) = 62.60 lbs/cu.ft shear = 0.75 ACI 21.2

Soil Ele. L. (HsL) = 730.50 feet moment = 0.90 ACI 21.2

Soil Ele. R. (HsR) = 730.50 feet Load Condition Factor (LCF) = 0.75

Weight of Conc. (c) = 150.00 lbs/cu.ft Hydraulic Load Factor (HLF) = 1.30

M. Wt. of Soil (b) = 123.00 lbs/cu.ft Load Factor (LF) = 1.70

Ice/Debris = 500.00 lbs/ft Design Load Factor (DLF) = 1.66

Wind load = 0.00 lbs/sf

Bottom of Footing = 723.50 feet

PROJECT TITLE: Arcadia Feasibility Study CMP BY:

CNO

SHEET:

SUBJECT TITLE: Floodwall 10 ft, Unusual Case, Cracked Heel. No Sheetpile

COMPUTER FILE:

.xls

700

705

710

715

720

725

730

-5 5 15 25 35

Concrete Water Soil

700

705

710

715

720

725

730

-5 5 15 25 35

Concrete Water Soil

722.00

724.00

726.00

728.00

730.00

732.00

734.00

736.00

-5 5 15

Concrete Water Soil

Page 142: Appendix L: Structural Engineering

Calculations: (STEM)

Moment and Shear

Force due to water (V) = 2.701 kips

Moment at bottom (M) = 10.364 kip-ftPlus Ice/Debris

Flexure Steel Dia. = 0.88 inchesT & S Steel Dia. = 0.88 inches

Required Concrete Cover = 3.00 inchesMinimum Depth based on ShearVu=(DLF)(V) ==> Vu = 4.48 kips Vu<(phi shear(Vc)= ACI 22.5.1.2

9.75 kips > Vu = 4.48 kips OKslab

d min = 3.93 in [Vu/(phi shear)(2)(l mod fctr)(sqrt(f'c))(bw)] ACI 22.5.5.1Actual depth d = 8.56

Vc = 9.75 kips =(phi shear)(l mod fctr)(2)(sqrt(f'c))(b d)] ACI 22.5.5.1As Maximum max = .25 balanced EM 1110-2-2104

1= 0.85 0.85-(0.05*(f'c-4000)/1000) 4000 < f'c <8000 balanced = 0.0285 [((.85 1 f'c)/fy)(87000/(87000+fy))] ACI 22.2.4.3

max = 0.0071 [.25( balanced)]As Maximum = 0.73 in^2 max)(bw)(d)]

ρmin = (200 psi)/fy = 0.0033

As Required

Mn = Mu where Mn = (As fy d)[1-(As fy)/(1.7 f'c b d)]

solve for As to determine area of steel necessary to resist moment

Mu = 17.18 kip-ft [(M)(DLF)]

As = 0.46 in^2 [solved for based on above formula]

Flexure Capacity:[a = (Ass*fy)/(0.85*f'c*b)] Equivalent Depth of Stress Block, a = 0.88 in

[Mn = Φm*0.85*f'c*a*b*(d-a/2)] Concrete Moment Capacity, Mn = 22.0 kip-ft

[ρ = Ass/(b*d)] Reinforcement Ratio, ρ = 0.0058

(from previously) Mu = 17.2 kip-ft if: 1.00

Strength vs. Load Effect, Mn/Mu = 1.28 > 1.00 Ok! if: > 1.00 Ok!if: < 1.00 NG!

As MAX 0.73 sq inAs MIN (INCLUDE YES OR NO) YES 0.34 sq in ACI 9.6.1.2 see note

S & T STEEL = 0.0028*Ag/2 <= 1.00 SQ IN 0.29 sq in EM 2104

S & T STEEL = 0.0018*Ag/2 <= 1.00 SQ IN 0.13 sq in ACI 7.12.2.1

(4/3) As REQUIRED 0.62 sq in ACI 9.6.1.3 ACI 10.5.3

As DESIGN 0.46 sq in

NOTE: ACI 10.5.2; 10.5.4 "NO" FOR SLABS AND FOOTINGS

SELECT FLEXURAL REINFORCEMENT

BAR SIZE (3,4,5,6,7,8,9 etc) = 7BAR SPACING (inches) = 12

As (provided) = 0.60 in^2 OK

Is design slab or beam?

Note: Soil was neglected as it is taken to be equal and opposite. Resisting side water was neglected to be conservative.

Page 143: Appendix L: Structural Engineering

Calculations: Key

Calculation of Moment and Shear (Counter Clock Wise Positive)

Depth of Key below base: 1.5 ft

D/S Water Pressure - Rectangular portion of pressurex1 x2 Length p1 p2 Shear arm Moment

0.00 1.50 1.50 -0.638 -0.638 -0.957 0.75 -0.72

D/S Water Pressure - Triangular portion of pressure

x1 x2 Length p1 p2 Shear arm Moment0.00 1.50 1.50 0 -0.048 -0.036 1.00 -0.04

D/S Soil Pressure - Rectangular portion of pressurex1 x2 Length p1 p2 Shear arm Moment

0.00 1.50 1.50 -2.153 -2.153 -3.229 0.75 -2.42

U/S Water Pressure - Rectangular portion of pressure

x1 x2 Length p1 p2 Shear arm Moment0.00 1.50 1.50 0.587 0.587 0.880 0.75 0.66

U/S Water Pressure - Triangular portion of pressure

x1 x2 Length p1 p2 Shear arm Moment0.00 1.50 1.50 0 0.100 0.075 1.00 0.07

U/S Soil Pressure - Triangular portion of pressure

x1 x2 Length p1 p2 Shear arm Moment0.00 1.50 1.50 0.000 0.000 0.000 0.75 0.00

Total Shear (V) = -3.267 kips

Total Moment (M) = -2.441 kip-ft

Page 144: Appendix L: Structural Engineering

Calculations: Key

Moment and Shear

Force due to water (V) = -3.267 kips

Moment at bottom (M) = -2.441 kip-ft

Flexure Steel Dia. = 0.88 inchesT & S Steel Dia. = 0.88 inches

Required Concrete Cover = 3.00 inchesMinimum Depth based on ShearVu=(DLF)(V) ==> Vu = -5.41 kips Vu<(phi shear(Vc)= ACI 22.5.1.2

9.75 kips > Vu = -5.41 kips OKslab

d min = -4.76 in [Vu/(phi shear)(2)(l mod fctr)(sqrt(f'c))(bw)] ACI 22.5.5.1Actual depth d = 8.56

Vc = 9.75 kips =(phi shear)(l mod fctr)(2)(sqrt(f'c))(b d)] ACI 22.5.5.1As Maximum max = .25 balanced EM 1110-2-2104

1= 0.85 0.85-(0.05*(f'c-4000)/1000) 4000 < f'c <8000 balanced = 0.0285 [((.85 1 f'c)/fy)(87000/(87000+fy))] ACI 22.2.4.3

max = 0.0071 [.25( balanced)]As Maximum = 0.73 in^2 max)(bw)(d)]

ρmin = (200 psi)/fy = 0.2000

As Required

Mn = Mu where Mn = (As fy d)[1-(As fy)/(1.7 f'c b d)]

solve for As to determine area of steel necessary to resist moment

Mu = -4.05 kip-ft [(M)(DLF)]

As = -0.10 in^2 [solved for based on above formula]

Flexure Capacity:[a = (Ass*fy)/(0.85*f'c*b)] Equivalent Depth of Stress Block, a = 0.88 in

[Mn = Φm*0.85*f'c*a*b*(d-a/2)] Concrete Moment Capacity, Mn = 22.0 kip-ft

[ρ = Ass/(b*d)] Reinforcement Ratio, ρ = 0.0058

(from previously) Mu = -4.0 kip-ft if: 1.33

Strength vs. Load Effect, Mn/Mu = 5.43 > 1.33 Ok! if: > 1.33 Ok!if: < 1.33 NG!

As MAX 0.73 sq inAs MIN (INCLUDE YES OR NO) YES 0.34 sq in ACI 9.6.1.2 see note

S & T STEEL = 0.004*Ag/2 <= 1.00 SQ IN 0.29 sq in EM 2104

S & T STEEL = 0.0018*Ag/2 <= 1.00 SQ IN 0.13 sq in ACI 7.12.2.1

(4/3) As REQUIRED -0.14 sq in ACI 9.6.1.3 ACI 10.5.3

As DESIGN 0.29 sq in

NOTE: ACI 10.5.2; 10.5.4 "NO" FOR SLABS AND FOOTINGS

SELECT FLEXURAL REINFORCEMENT

BAR SIZE (3,4,5,6,7,8,9 etc) = 7BAR SPACING (inches) = 12

As (provided) = 0.60 in^2 OK

Is design slab or beam?

Page 145: Appendix L: Structural Engineering

Length of Base Press.= 11.000 feet Sheetpile cutoff ? no (YES or NO)

Base pressure at toe = 1.630 ksf CTWALL Distance to Cutoff = 0.000 feet

Base press. at heel = 0.000 ksf CTWALL

Hydro. Press. at toe = 0.638 ksf CTWALL

Hydro. Press. at heel = 0.587 ksf CTWALL

Hydro. Press. D/S key = 0.686 ksf CTWALL

Hydro. Press. U/s key = 0.686 ksf CTWALL

Base Pressure - Rectangular portion of base pressure

x1 x2 Length p1 p2 Shear arm Moment7.50 0.00 7.50 0.000 0.000 0.000 3.75 0.00

Base Pressure - Triangular portion of base pressure (Assumes maximum pressure is at Toe)x1 x2 Length p1 p2 Shear arm Moment

5.14 0.00 5.14 0 -0.970 -2.492 1.71 -4.27Uplift Pressure - Under Key With no sheetpile - Reactangular Portion

x1 x2 Length p1 p2 Shear arm Moment1.25 0.00 1.25 -0.638 -0.638 -0.798 6.88 -5.48

Uplift Pressure - Under Key With no sheetpile - Triangular Portion

x1 x2 Length p1 p2 Shear arm Moment1.25 0.00 1.25 -0.048 0.000 -0.030 7.08 -0.21

Uplift Pressure D/S of key - triangular uplift if no sheetpile x1 x2 Length p1 p2 Shear arm Moment

6.25 0.00 6.25 0.000 -0.167 -0.523 4.17 -2.18

Uplift Pressure D/S of key- rectangular uplift if no sheetpilex1 x2 Length p1 p2 Shear arm Moment

6.25 0.00 6.25 -0.319 -0.319 -1.993 3.13 -6.23Weight of Water on Heel

x1 x2 Length p1 p2 Shear arm Moment7.50 0.00 7.50 0.243 0.243 1.825 3.75 6.84

Weight of Soil on Heel

x1 x2 Length p1 p2 Shear arm Moment7.50 0.00 7.50 0.5535 0.5535 4.151 3.75 15.57

7.50 0.00 7.50 0 0 0.000 5.00 0.00

Weight of Buoyant Riprap on Heel

x1 x2 Length p1 p2 Shear arm Moment7.50 0.00 7.50 0.01 0.01 0.075 3.75 0.28

Weight of Heel Concrete

x1 x2 Length p1 p2 Shear arm Moment7.50 0.00 7.50 0.375 0.375 2.813 3.75 10.55

Weight of Key Concrete

x1 x2 Length p1 p2 Shear arm Moment1.25 0.00 1.25 0.375 0.375 0.469 6.88 3.22

Total Shear (V) = 3.498 kips

Total Moment (M) = 18.093 kip-ft

Page 146: Appendix L: Structural Engineering

Calculations: HEEL at stem with no Forces on key, Top of base

Moment and Shear

Force due to water (V) = 3.498 kips

Moment at bottom (M) = 18.093 kip-ft

Flexure Steel Dia. = 0.88 inchesT & S Steel Dia. = 0.88 inches

Required Concrete Cover = 3.00 inchesMinimum Depth based on ShearVu=(DLF)(V) ==> Vu = 5.80 kips Vu<(phi shear(Vc)= ACI 22.5.1.2

30.24 kips > Vu = 5.80 kips OKslab

d min = 5.09 in [Vu/(phi shear)(2)(l mod fctr)(sqrt(f'c))(bw)] ACI 22.5.5.1Actual depth d = 26.56

Vc = 30.24 kips =(phi shear)(l mod fctr)(2)(sqrt(f'c))(b d)] ACI 22.5.5.1As Maximum max = .25 balanced EM 1110-2-2104

1= 0.85 0.85-(0.05*(f'c-4000)/1000) 4000 < f'c <8000 balanced = 0.0285 [((.85 1 f'c)/fy)(87000/(87000+fy))] ACI 22.2.4.3

max = 0.0071 [.25( balanced)]As Maximum = 2.27 in^2 max)(bw)(d)]

ρmin = (200 psi)/fy = 0.0033

As Required

Mn = Mu where Mn = (As fy d)[1-(As fy)/(1.7 f'c b d)]

solve for As to determine area of steel necessary to resist moment

Mu = 29.99 kip-ft [(M)(DLF)]

As = 0.25 in^2 [solved for based on above formula]

Flexure Capacity:[a = (Ass*fy)/(0.85*f'c*b)] Equivalent Depth of Stress Block, a = 0.88 in

[Mn = Φm*0.85*f'c*a*b*(d-a/2)] Concrete Moment Capacity, Mn = 70.6 kip-ft

[ρ = Ass/(b*d)] Reinforcement Ratio, ρ = 0.0019

(from previously) Mu = 30.0 kip-ft if: 1.33

Strength vs. Load Effect, Mn/Mu = 2.36 > 1.33 Ok! if: > 1.33 Ok!if: < 1.33 NG!

As MAX 2.27 sq inAs MIN (INCLUDE YES OR NO) YES 1.06 sq in ACI 9.6.1.2 see note

S & T STEEL = 0.004*Ag/2 <= 1.00 SQ IN 0.29 sq in EM 2104

S & T STEEL = 0.0018*Ag/2 <= 1.00 SQ IN 0.13 sq in ACI 7.12.2.1

(4/3) As REQUIRED 0.34 sq in ACI 9.6.1.3 ACI 10.5.3

As DESIGN 0.34 sq in

NOTE: ACI 10.5.2; 10.5.4 "NO" FOR SLABS AND FOOTINGS

SELECT FLEXURAL REINFORCEMENT

BAR SIZE (3,4,5,6,7,8,9 etc) = 7BAR SPACING (inches) = 12

As (provided) = 0.60 in^2 OK

Is design slab or beam?

Page 147: Appendix L: Structural Engineering

Calculations: HEEL at stem with Forces on key

Moment and Shear

Total Shear (V) = 3.5 kips

Total Moment (M) = 20.5 kip-ft

Flexure Steel Dia. = 0.88 inchesT & S Steel Dia. = 0.88 inches

Required Concrete Cover = 4.00 inchesMinimum Depth based on ShearVu=(DLF)(V) ==> Vu = 5.80 kips Vu<(phi shear(Vc)= ACI 22.5.1.2

30.24 kips > Vu = 5.80 kips OKslab

d min = 5.09 in [Vu/(phi shear)(2)(l mod fctr)(sqrt(f'c))(bw)] ACI 22.5.5.1Actual depth d = 26.56

Vc = 30.24 kips =(phi shear)(l mod fctr)(2)(sqrt(f'c))(b d)] ACI 22.5.5.1As Maximum max = .25 balanced EM 1110-2-2104

1= 0.85 0.85-(0.05*(f'c-4000)/1000) 4000 < f'c <8000 balanced = 0.0285 [((.85 1 f'c)/fy)(87000/(87000+fy))] ACI 22.2.4.3

max = 0.0071 [.25( balanced)]As Maximum = 2.27 in^2 max)(bw)(d)]

ρmin = (200 psi)/fy = 0.0033

As Required

Mn = Mu where Mn = (As fy d)[1-(As fy)/(1.7 f'c b d)]

solve for As to determine area of steel necessary to resist moment

Mu = 34.04 kip-ft [(M)(DLF)]

As = 0.29 in^2 [solved for based on above formula]

Flexure Capacity:[a = (Ass*fy)/(0.85*f'c*b)] Equivalent Depth of Stress Block, a = 0.88 in

[Mn = Φm*0.85*f'c*a*b*(d-a/2)] Concrete Moment Capacity, Mn = 70.6 kip-ft

[ρ = Ass/(b*d)] Reinforcement Ratio, ρ = 0.0019

(from previously) Mu = 34.0 kip-ft if: 1.33

Strength vs. Load Effect, Mn/Mu = 2.08 > 1.33 Ok! if: > 1.33 Ok!if: < 1.33 NG!

As MAX 2.27 sq inAs MIN (INCLUDE YES OR NO) YES 1.06 sq in ACI 9.6.1.2 see note

S & T STEEL = 0.004*Ag/2 <= 1.00 SQ IN 0.29 sq in EM 2104

S & T STEEL = 0.0018*Ag/2 <= 1.00 SQ IN 0.13 sq in ACI 7.12.2.1

(4/3) As REQUIRED 0.38 sq in ACI 9.6.1.3 ACI 10.5.3

As DESIGN 0.38 sq in

NOTE: ACI 10.5.2; 10.5.4 "NO" FOR SLABS AND FOOTINGS

SELECT FLEXURAL REINFORCEMENT

BAR SIZE (3,4,5,6,7,8,9 etc) = 7BAR SPACING (inches) = 12

As (provided) = 0.60 in^2 OK

Is design slab or beam?

Page 148: Appendix L: Structural Engineering

Calculations: (Bottom of Toe)

Calculation of Moment and Shear (Counter Clock Wise Positive)

Base Pressure - Rectangular portion of base pressure

x1 x2 Length p1 p2 Shear arm Moment0.00 2.50 2.50 -1.158 -1.158 -2.896 1.25 3.62

Base Pressure - Triangular portion of base pressure (Assumes maximum pressure is at Toe)

x1 x2 Length p1 p2 Shear arm Moment0.00 2.50 2.50 0 -0.472 -0.590 1.67 0.98

Uplift Pressure - triangular uplift

x1 x2 Length p1 p2 Shear arm Moment0.00 2.50 2.50 0.000 -0.097 -0.122 0.83 0.10

Uplift Pressure - rectangular uplift

x1 x2 Length p1 p2 Shear arm Moment0.00 2.50 2.50 -0.106 -0.106 -0.265 1.25 0.33

Weight of Soil on Toe

x1 x2 Length p1 p2 Shear arm Moment0.00 2.50 2.50 0.5535 0.5535 1.384 1.25 -1.73

Weight of Concrete

x1 x2 Length p1 p2 Shear arm Moment0.00 2.50 2.50 0.375 0.375 0.938 1.25 -1.17

Total Shear (V) = -1.551 kips

Total Moment (M) = 2.134 kip-ft

Page 149: Appendix L: Structural Engineering

Calculations: (Bottom of Toe)

Moment and Shear

Total Shear (V) = -1.6 kips

Total Moment (M) = 2.1 kip-ft

Flexure Steel Dia. = 0.88 inchesT & S Steel Dia. = 0.88 inches

Required Concrete Cover = 3.00 inchesMinimum Depth based on ShearVu=(DLF)(V) ==> Vu = -2.57 kips Vu<(phi shear(Vc)= ACI 22.5.1.2

30.24 kips > Vu = -2.57 kips OKslab

d min = -2.26 in [Vu/(phi shear)(2)(l mod fctr)(sqrt(f'c))(bw)] ACI 22.5.5.1Actual depth d = 26.56

Vc = 30.24 kips =(phi shear)(l mod fctr)(2)(sqrt(f'c))(b d)] ACI 22.5.5.1As Maximum max = .25 balanced EM 1110-2-2104

1= 0.85 0.85-(0.05*(f'c-4000)/1000) 4000 < f'c <8000 balanced = 0.0285 [((.85 1 f'c)/fy)(87000/(87000+fy))] ACI 22.2.4.3

max = 0.0071 [.25( balanced)]

As Maximum = 2.27 in^2 max)(bw)(d)]

ρmin = (200 psi)/fy = 0.0033

As Required

Mn = Mu where Mn = (As fy d)[1-(As fy)/(1.7 f'c b d)]

solve for As to determine area of steel necessary to resist moment

Mu = 3.54 kip-ft [(M)(DLF)]

As = 0.03 in^2 [solved for based on above formula]

Flexure Capacity:[a = (Ass*fy)/(0.85*f'c*b)] Equivalent Depth of Stress Block, a = 0.88 in

[Mn = Φm*0.85*f'c*a*b*(d-a/2)] Concrete Moment Capacity, Mn = 70.6 kip-ft

[ρ = Ass/(b*d)] Reinforcement Ratio, ρ = 0.0019

(from previously) Mu = 3.5 kip-ft if: 1.33

Strength vs. Load Effect, Mn/Mu = 19.97 > 1.33 Ok! if: > 1.33 Ok!if: < 1.33 NG!

As MAX 2.27 sq inAs MIN (INCLUDE YES OR NO) YES 1.06 sq in ACI 9.6.1.2 see note

S & T STEEL = 0.004*Ag/2 <= 1.00 SQ IN 0.29 sq in EM 2104

S & T STEEL = 0.0018*Ag/2 <= 1.00 SQ IN 0.13 sq in ACI 7.12.2.1

(4/3) As REQUIRED 0.04 sq in ACI 9.6.1.3 ACI 10.5.3

As DESIGN 0.29 sq in

NOTE: ACI 10.5.2; 10.5.4 "NO" FOR SLABS AND FOOTINGS

SELECT FLEXURAL REINFORCEMENT

BAR SIZE (3,4,5,6,7,8,9 etc) = 7BAR SPACING (inches) = 12

As (provided) = 0.60 in^2 OK

Is design slab or beam?

Page 150: Appendix L: Structural Engineering

Calculations - Bearing Capacity: (EM 1110-2-2502, Chapter 5)

BEARING CAPACITY = Q

Q= B1[(EcdEciEctEcgCNc)+(EqdEqiEqtEqgqoNq)+(ErdEriErtErgB1§Nr)/2] EQU. 5-2

FOOTING WIDTH, (B)= 11.00 ft.

SOIL DEPTH TOE SIDE (D)= 5.50 ft.

SATURATION HT.TOE SIDE (Dw)= 1.00 ft.

BASE SLOPE, alpha, ()= 7.77 degrees CTWALL

FRICTION ANGLE OF SOIL (0f)= 32.00 deg., Below Footing

FRICTION ANGLE OF SOIL (03)= 32.00 deg., Resisting Wedge

COHESION OF FOUNDATION Cfr= 0.00 k / ft2

SOIL UNIT Wt.,MOIST (§m)= 0.123 k / ft3

SOIL UNIT Wt.,SATUR. (§s)= 0.125 k / ft3

WATER UNIT WEIGHT (§w)= 0.0624 k / ft3

SOIL UNIT Wt.,BOUYANT (§b)= 0.0626 k / ft3

NET HORIZONTAL FORCE (SUM H)= 2.25 kip CTWALL

NET VERTICAL FORCE (SUM V)= 7.41 kip CTWALL

Xr (measured from toe) = 2.88 ft. CTWALL

SURCHARGE LOADING= 0.00 ksf

SOIL SURFACE SLOPE,RISE/RUN= 0.00 deg.

BETA ANGLE ()= 0.00 deg.

EFF. WIDTH OF BASE B1 = B-2e = 2Xr = 5.76

BEARING CAPACITY FACTORS FROM TABLE 5-1 EM 1110-2-2502

Nq = 23.18

Nc = 35.49

Nr = 22.02

EMBEDMENT FACTORS

Ecd = 1+0.2(D/B1)TAN(45+/2) = 1.345 EQU.5-4a

Eqd=Erd = = 1.000 EQU.5-4b IF( = O)

Eqd=Erd = 1+0.1(D/B1)TAN(45+/2) = 1.172 EQU.5-4c IF( >10)

Eqd=Erd = = 1.172

INTERPOLATE BETWEEN EQU. 5-4b AND 4c FOR (O<<=1O)

Page 151: Appendix L: Structural Engineering

INCLINATION FACTORS

§o = ARCTAN[(SUM H)/SUM V] = 16.868 DEG.

Eqi=Eci = (1-§o/90)^2 = 0.660 EQU.5-5a

Eri = IF §o > THEN Eri = 0, ELSE,

Eri = (1-§o/)^2 = 0.224 EQU.5-5b

BASE TILT FACTORS ( IN RADIANS)

Eqt=Ert = (1-*TAN)^2 = 0.838 EQU.5-6a

Ect = 1-(2*/+2) = 0.947 EQU.5-6b

Ect = Eqt-[(1-Eqt)/(NcTAN)] = 0.830 EQU.5-6c

Ect = 0.830

GROUND SLOPE FACTORS ( is positive when the ground slopes down and away from the footing.)

Erg=Eqg = [1-TAN(-)]^2 = 1.000 EQU.5-7a

Ecg = 1-[2*(-)/(PI+2)] = 1.000 EQU.5-7b

Ecg = Eqg-[(1-Eqg)/Nc*TAN] = 1.000 EQU.5-7d

Ecg = 1.000

EFFECTIVE OVERBURDEN PRESSURE

qo = (Q+§*D)*COS() = 0.616 EQU.5-8a

0.616 §b*Dw+§m(D-Dw)

EFFECTIVE SOIL UNIT WEIGHT

§ = IF(Dw=0,§m,§b)= 0.0626 ksf

BEARING CAPACITY = 58.36 kips EQU. 5-2

F.O.S. = Q/SUM V= 7.87 EQU. 5-1

F.O.S. Required For = 3.0

Thus, Design is OK

Page 152: Appendix L: Structural Engineering

Calculations: Flotation FOS

PartVertical Force (kip)

Horz. Force (kip)

Moment Arm (ft)

Moment (kip-ft)

Structure:

Structure Weight 3.281 -4.89 -16.04

Structure, driving side:Moist soil weight 0.00Saturated soil 4.219 -7.25 -30.59Water above structure 0.00Water above soil 1.872 -7.25 -13.57External vertical loads 0.00Ext. hz. pressure loads 0.00Ext. hz. line loads 0.50 9.50 4.75

Structure, resisting side:

Moist soil weight 1.384 -1.25 -1.73Saturated soil 0.00Water above structure 0.00Water above soil 0.00

Driving side:Effective earth loads 0.00Shear (due to delta) 0.00Hz. Surcharge effects 0.00Water loads 3.775 2.16 8.15

Resisting side:

Effective earth loads 0.00

Balancing earth loads -3.229 -0.72 2.32

Water loads -1.046 -0.72 0.75

Foundation:Vertical force on base -7.042 -2.88 20.28Uplift -3.714 -6.91 25.66

Flotation FOS

Req. FOS (Usual Case) 1.2Ws 8.884 kipWc 0.00 kipS 0.00 kipU 3.71 kip

Wg 1.872 kipCalculated FOS 4.82

EM 1110-2-2100, Table 3-4

Page 153: Appendix L: Structural Engineering

US Army Corps of Engineers DATE:

10/28/2019

Saint Paul District

CHK BY: TMG

Load Case: Design Flood Elevation (100 yr. + 3 ft.) - Unusual

Design Information: Note: Data located with-in a black box is an input, not a calculated value.

Labels and data below are from an overturning and sliding analysis performed by CTWALL

Top of Stem El 732.50 feet Toe Thickness 1.25 feet

Height of Stem 10.25 feet Toe Width 2.50 feet

Top Stem Thickness 1.25 feet Toe Slope 0.00 feet

Base Stem Thickness 1.25 feet Total Base Width 12.00 feet

Stem Batter 0.00 feet Key Depth 1.75 feet

Heel Thickness 3.00 feet Key Thickness 1.25 feet

Heel Slope 0.00 feet Key Slope 0.00 feet

ACI 318-19

Weight of Water (w) = 62.40 lbs/cu.ft fy = 60 ksi

Water Ele. L. (HwL) = 731.50 feet f'c = 4.0 ksi

Water Ele. R. (HwR) = 722.25 feet modification factor = 1.00

B. Wt. of Soil (b) = 62.60 lbs/cu.ft shear = 0.75 ACI 21.2

Soil Ele. L. (HsL) = 726.50 feet moment = 0.90 ACI 21.2

Soil Ele. R. (HsR) = 726.50 feet Load Condition Factor (LCF) = 0.75

Weight of Conc. (c) = 150.00 lbs/cu.ft Hydraulic Load Factor (HLF) = 1.30

M. Wt. of Soil (b) = 123.00 lbs/cu.ft Load Factor (LF) = 1.70

Ice/Debris = 500.00 lbs/ft Design Load Factor (DLF) = 1.66

Wind load = 0.00 lbs/sf

Bottom of Footing = 719.25

PROJECT TITLE: Arcadia Feasibility Study CMP BY:

CNO

SHEET:

SUBJECT TITLE: Floodwall 11.5 ft, Unusual Case, Cracked Heel. No Sheetpile

COMPUTER FILE: .xls

700

705

710

715

720

725

730

-5 5 15 25 35

Concrete Water Soil

700

705

710

715

720

725

730

-5 5 15 25 35

Concrete Water Soil

718.00

720.00

722.00

724.00

726.00

728.00

730.00

732.00

734.00

-5 5 15

Concrete Water Soil

Page 154: Appendix L: Structural Engineering

Calculations: (STEM)

Moment and Shear

Force due to water (V) = 3.170 kips

Moment at bottom (M) = 12.856 kip-ftPlus Ice/Debris

Flexure Steel Dia. = 0.88 inchesT & S Steel Dia. = 0.88 inches

Required Concrete Cover = 3.00 inchesMinimum Depth based on ShearVu=(DLF)(V) ==> Vu = 5.25 kips Vu<(phi shear(Vc)= ACI 22.5.1.2

13.16 kips > Vu = 5.25 kips OKslab

d min = 4.61 in [Vu/(phi shear)(2)(l mod fctr)(sqrt(f'c))(bw)] ACI 22.5.5.1Actual depth d = 11.56

Vc = 13.16 kips =(phi shear)(l mod fctr)(2)(sqrt(f'c))(b d)] ACI 22.5.5.1As Maximum max = .25 balanced EM 1110-2-2104

1= 0.85 0.85-(0.05*(f'c-4000)/1000) 4000 < f'c <8000 balanced = 0.0285 [((.85 1 f'c)/fy)(87000/(87000+fy))] ACI 22.2.4.3

max = 0.0071 [.25( balanced)]As Maximum = 0.99 in^2 max)(bw)(d)]

ρmin = (200 psi)/fy = 0.0033

As Required

Mn = Mu where Mn = (As fy d)[1-(As fy)/(1.7 f'c b d)]

solve for As to determine area of steel necessary to resist moment

Mu = 21.31 kip-ft [(M)(DLF)]

As = 0.42 in^2 [solved for based on above formula]

Flexure Capacity:[a = (Ass*fy)/(0.85*f'c*b)] Equivalent Depth of Stress Block, a = 0.88 in

[Mn = Φm*0.85*f'c*a*b*(d-a/2)] Concrete Moment Capacity, Mn = 30.1 kip-ft

[ρ = Ass/(b*d)] Reinforcement Ratio, ρ = 0.0043

(from previously) Mu = 21.3 kip-ft if: 1.00

Strength vs. Load Effect, Mn/Mu = 1.41 > 1.00 Ok! if: > 1.00 Ok!if: < 1.00 NG!

As MAX 0.99 sq inAs MIN (INCLUDE YES OR NO) YES 0.46 sq in ACI 9.6.1.2 see note

S & T STEEL = 0.0028*Ag/2 <= 1.00 SQ IN 0.36 sq in EM 2104

S & T STEEL = 0.0018*Ag/2 <= 1.00 SQ IN 0.16 sq in ACI 7.12.2.1

(4/3) As REQUIRED 0.56 sq in ACI 9.6.1.3 ACI 10.5.3

As DESIGN 0.46 sq in

NOTE: ACI 10.5.2; 10.5.4 "NO" FOR SLABS AND FOOTINGS

SELECT FLEXURAL REINFORCEMENT

BAR SIZE (3,4,5,6,7,8,9 etc) = 7BAR SPACING (inches) = 12

As (provided) = 0.60 in^2 OK

Is design slab or beam?

Note: Soil was neglected as it is taken to be equal and opposite. Resisting side water was neglected to be conservative.

Page 155: Appendix L: Structural Engineering

Calculations: Key

Calculation of Moment and Shear (Counter Clock Wise Positive)

Depth of Key below base: 1.75 ft

D/S Water Pressure - Rectangular portion of pressure

x1 x2 Length p1 p2 Shear arm Moment0.00 1.75 1.75 -0.717 -0.717 -1.255 0.88 -1.10

D/S Water Pressure - Triangular portion of pressure

x1 x2 Length p1 p2 Shear arm Moment0.00 1.75 1.75 0 -0.047 -0.041 1.17 -0.05

D/S Soil Pressure - Rectangular portion of pressure

x1 x2 Length p1 p2 Shear arm Moment0.00 1.75 1.75 -2.173 -2.173 -3.803 0.88 -3.33

U/S Water Pressure - Rectangular portion of pressure

x1 x2 Length p1 p2 Shear arm Moment0.00 1.75 1.75 0.655 0.655 1.147 0.88 1.00

U/S Water Pressure - Triangular portion of pressure

x1 x2 Length p1 p2 Shear arm Moment0.00 1.75 1.75 0 0.109 0.095 1.17 0.11

U/S Soil Pressure - Triangular portion of pressure

x1 x2 Length p1 p2 Shear arm Moment0.00 1.75 1.75 0.000 0.000 0.000 0.88 0.00

Total Shear (V) = -3.858 kips

Total Moment (M) = -3.360 kip-ft

Page 156: Appendix L: Structural Engineering

Calculations: Key

Moment and Shear

Force due to water (V) = -3.858 kips

Moment at bottom (M) = -3.360 kip-ft

Flexure Steel Dia. = 0.88 inchesT & S Steel Dia. = 0.88 inches

Required Concrete Cover = 3.00 inchesMinimum Depth based on ShearVu=(DLF)(V) ==> Vu = -6.39 kips Vu<(phi shear(Vc)= ACI 22.5.1.2

13.16 kips > Vu = -6.39 kips OKslab

d min = -5.62 in [Vu/(phi shear)(2)(l mod fctr)(sqrt(f'c))(bw)] ACI 22.5.5.1Actual depth d = 11.56

Vc = 13.16 kips =(phi shear)(l mod fctr)(2)(sqrt(f'c))(b d)] ACI 22.5.5.1As Maximum max = .25 balanced EM 1110-2-2104

1= 0.85 0.85-(0.05*(f'c-4000)/1000) 4000 < f'c <8000 balanced = 0.0285 [((.85 1 f'c)/fy)(87000/(87000+fy))] ACI 22.2.4.3

max = 0.0071 [.25( balanced)]As Maximum = 0.99 in^2 max)(bw)(d)]

ρmin = (200 psi)/fy = 0.1714

As Required

Mn = Mu where Mn = (As fy d)[1-(As fy)/(1.7 f'c b d)]

solve for As to determine area of steel necessary to resist moment

Mu = -5.57 kip-ft [(M)(DLF)]

As = -0.11 in^2 [solved for based on above formula]

Flexure Capacity:[a = (Ass*fy)/(0.85*f'c*b)] Equivalent Depth of Stress Block, a = 1.15 in

[Mn = Φm*0.85*f'c*a*b*(d-a/2)] Concrete Moment Capacity, Mn = 38.8 kip-ft

[ρ = Ass/(b*d)] Reinforcement Ratio, ρ = 0.0057

(from previously) Mu = -5.6 kip-ft if: 1.33

Strength vs. Load Effect, Mn/Mu = 6.97 > 1.33 Ok! if: > 1.33 Ok!if: < 1.33 NG!

As MAX 0.99 sq inAs MIN (INCLUDE YES OR NO) YES 0.46 sq in ACI 9.6.1.2 see note

S & T STEEL = 0.004*Ag/2 <= 1.00 SQ IN 0.36 sq in EM 2104

S & T STEEL = 0.0018*Ag/2 <= 1.00 SQ IN 0.16 sq in ACI 7.12.2.1

(4/3) As REQUIRED -0.14 sq in ACI 9.6.1.3 ACI 10.5.3

As DESIGN 0.36 sq in

NOTE: ACI 10.5.2; 10.5.4 "NO" FOR SLABS AND FOOTINGS

SELECT FLEXURAL REINFORCEMENT

BAR SIZE (3,4,5,6,7,8,9 etc) = 8BAR SPACING (inches) = 12

As (provided) = 0.79 in^2 OK

Is design slab or beam?

Page 157: Appendix L: Structural Engineering

Length of Base Press.= 12.000 feet Sheetpile cutoff ? NO (YES or NO)

Base pressure at toe = 1.796 ksf CTWALL Distance to Cutoff = 0.000 feet

Base press. at heel = 0.000 ksf CTWALL

Hydro. Press. at toe = 0.717 ksf CTWALL

Hydro. Press. at heel = 0.655 ksf CTWALL

Hydro. Press. D/S key = 0.764 ksf CTWALL

Hydro. Press. U/s key = 0.764 ksf CTWALL

Base Pressure - Rectangular portion of base pressure

x1 x2 Length p1 p2 Shear arm Moment8.25 0.00 8.25 0.000 0.000 0.000 4.13 0.00

Base Pressure - Triangular portion of base pressure (Assumes maximum pressure is at Toe)x1 x2 Length p1 p2 Shear arm Moment

5.40 0.00 5.40 0 -1.009 -2.724 1.80 -4.90Uplift Pressure - Under Key With no sheetpile - Reactangular Portion

x1 x2 Length p1 p2 Shear arm Moment1.25 0.00 1.25 -0.717 -0.764 -0.926 7.63 -7.06

Uplift Pressure - Under Key With no sheetpile - Triangular Portion

x1 x2 Length p1 p2 Shear arm Moment1.25 0.00 1.25 -0.047 0.000 -0.029 7.83 -0.23

Uplift Pressure D/S of key - triangular uplift if no sheetpile x1 x2 Length p1 p2 Shear arm Moment

7.00 0.00 7.00 0.062 -0.266 -0.716 4.67 -3.34

Uplift Pressure D/S of key- rectangular uplift if no sheetpilex1 x2 Length p1 p2 Shear arm Moment

7.00 0.00 7.00 -0.275 -0.275 -1.923 3.50 -6.73Weight of Water on Heel

x1 x2 Length p1 p2 Shear arm Moment8.25 0.00 8.25 0.312 0.312 2.574 4.13 10.62

Weight of Soil on Heel

x1 x2 Length p1 p2 Shear arm Moment8.25 0.00 8.25 0.52275 0.52275 4.313 4.13 17.79

8.25 0.00 8.25 0 0 0.000 5.50 0.00

Weight of Buoyant Riprap on Heel

x1 x2 Length p1 p2 Shear arm Moment8.25 0.00 8.25 0.01 0.01 0.083 4.13 0.34

Weight of Heel Concrete

x1 x2 Length p1 p2 Shear arm Moment8.25 0.00 8.25 0.45 0.45 3.713 4.13 15.31

Weight of Key Concrete

x1 x2 Length p1 p2 Shear arm Moment1.25 0.00 1.25 0.375 0.375 0.469 7.63 3.57

Total Shear (V) = 4.833 kips

Total Moment (M) = 25.375 kip-ft

Page 158: Appendix L: Structural Engineering

Calculations: HEEL at stem with no Forces on key, Top of base

Moment and Shear

Force due to water (V) = 4.833 kips

Moment at bottom (M) = 25.375 kip-ft

Flexure Steel Dia. = 0.88 inchesT & S Steel Dia. = 0.88 inches

Required Concrete Cover = 3.00 inchesMinimum Depth based on ShearVu=(DLF)(V) ==> Vu = 8.01 kips Vu<(phi shear(Vc)= ACI 22.5.1.2

37.07 kips > Vu = 8.01 kips OKslab

d min = 7.04 in [Vu/(phi shear)(2)(l mod fctr)(sqrt(f'c))(bw)] ACI 22.5.5.1Actual depth d = 32.56

Vc = 37.07 kips =(phi shear)(l mod fctr)(2)(sqrt(f'c))(b d)] ACI 22.5.5.1As Maximum max = .25 balanced EM 1110-2-2104

1= 0.85 0.85-(0.05*(f'c-4000)/1000) 4000 < f'c <8000 balanced = 0.0285 [((.85 1 f'c)/fy)(87000/(87000+fy))] ACI 22.2.4.3

max = 0.0071 [.25( balanced)]As Maximum = 2.78 in^2 max)(bw)(d)]

ρmin = (200 psi)/fy = 0.0033

As Required

Mn = Mu where Mn = (As fy d)[1-(As fy)/(1.7 f'c b d)]

solve for As to determine area of steel necessary to resist moment

Mu = 42.06 kip-ft [(M)(DLF)]

As = 0.29 in^2 [solved for based on above formula]

Flexure Capacity:[a = (Ass*fy)/(0.85*f'c*b)] Equivalent Depth of Stress Block, a = 0.88 in

[Mn = Φm*0.85*f'c*a*b*(d-a/2)] Concrete Moment Capacity, Mn = 86.9 kip-ft

[ρ = Ass/(b*d)] Reinforcement Ratio, ρ = 0.0015

(from previously) Mu = 42.1 kip-ft if: 1.33

Strength vs. Load Effect, Mn/Mu = 2.07 > 1.33 Ok! if: > 1.33 Ok!if: < 1.33 NG!

As MAX 2.78 sq inAs MIN (INCLUDE YES OR NO) YES 1.30 sq in ACI 9.6.1.2 see note

S & T STEEL = 0.004*Ag/2 <= 1.00 SQ IN 0.36 sq in EM 2104

S & T STEEL = 0.0018*Ag/2 <= 1.00 SQ IN 0.16 sq in ACI 7.12.2.1

(4/3) As REQUIRED 0.39 sq in ACI 9.6.1.3 ACI 10.5.3

As DESIGN 0.39 sq in

NOTE: ACI 10.5.2; 10.5.4 "NO" FOR SLABS AND FOOTINGS

SELECT FLEXURAL REINFORCEMENT

BAR SIZE (3,4,5,6,7,8,9 etc) = 7BAR SPACING (inches) = 12

As (provided) = 0.60 in^2 OK

Is design slab or beam?

Page 159: Appendix L: Structural Engineering

Calculations: HEEL at stem with Forces on key

Moment and Shear

Total Shear (V) = 4.8 kips

Total Moment (M) = 28.7 kip-ft

Flexure Steel Dia. = 0.88 inchesT & S Steel Dia. = 0.88 inches

Required Concrete Cover = 3.00 inchesMinimum Depth based on ShearVu=(DLF)(V) ==> Vu = 8.01 kips Vu<(phi shear(Vc)= ACI 22.5.1.2

37.07 kips > Vu = 8.01 kips OKslab

d min = 7.04 in [Vu/(phi shear)(2)(l mod fctr)(sqrt(f'c))(bw)] ACI 22.5.5.1Actual depth d = 32.56

Vc = 37.07 kips =(phi shear)(l mod fctr)(2)(sqrt(f'c))(b d)] ACI 22.5.5.1As Maximum max = .25 balanced EM 1110-2-2104

1= 0.85 0.85-(0.05*(f'c-4000)/1000) 4000 < f'c <8000 balanced = 0.0285 [((.85 1 f'c)/fy)(87000/(87000+fy))] ACI 22.2.4.3

max = 0.0071 [.25( balanced)]As Maximum = 2.78 in^2 max)(bw)(d)]

ρmin = (200 psi)/fy = 0.0033

As Required

Mn = Mu where Mn = (As fy d)[1-(As fy)/(1.7 f'c b d)]

solve for As to determine area of steel necessary to resist moment

Mu = 47.63 kip-ft [(M)(DLF)]

As = 0.33 in^2 [solved for based on above formula]

Flexure Capacity:[a = (Ass*fy)/(0.85*f'c*b)] Equivalent Depth of Stress Block, a = 0.88 in

[Mn = Φm*0.85*f'c*a*b*(d-a/2)] Concrete Moment Capacity, Mn = 86.9 kip-ft

[ρ = Ass/(b*d)] Reinforcement Ratio, ρ = 0.0015

(from previously) Mu = 47.6 kip-ft if: 1.33

Strength vs. Load Effect, Mn/Mu = 1.82 > 1.33 Ok! if: > 1.33 Ok!if: < 1.33 NG!

As MAX 2.78 sq inAs MIN (INCLUDE YES OR NO) YES 1.30 sq in ACI 9.6.1.2 see note

S & T STEEL = 0.004*Ag/2 <= 1.00 SQ IN 0.36 sq in EM 2104

S & T STEEL = 0.0018*Ag/2 <= 1.00 SQ IN 0.16 sq in ACI 7.12.2.1

(4/3) As REQUIRED 0.44 sq in ACI 9.6.1.3 ACI 10.5.3

As DESIGN 0.44 sq in

NOTE: ACI 10.5.2; 10.5.4 "NO" FOR SLABS AND FOOTINGS

SELECT FLEXURAL REINFORCEMENT

BAR SIZE (3,4,5,6,7,8,9 etc) = 7BAR SPACING (inches) = 12

As (provided) = 0.60 in^2 OK

Is design slab or beam?

Page 160: Appendix L: Structural Engineering

Calculations: (Bottom of Toe)

Calculation of Moment and Shear (Counter Clock Wise Positive, Vertical Downwards Positive, Horizontal Right Positive)

Base Pressure - Rectangular portion of base pressure

x1 x2 Length p1 p2 Shear arm Moment0.00 2.50 2.50 -1.305 -1.305 -3.263 1.25 4.08

Base Pressure - Triangular portion of base pressure (Assumes maximum pressure is at Toe)

x1 x2 Length p1 p2 Shear arm Moment0.00 2.50 2.50 0 -0.491 -0.613 1.67 1.02

Uplift Pressure - triangular uplift

x1 x2 Length p1 p2 Shear arm Moment0.00 2.50 2.50 -0.014 -0.095116 -0.137 0.83 0.11

Uplift Pressure - rectangular uplift

x1 x2 Length p1 p2 Shear arm Moment0.00 2.50 2.50 0.132 0.132 -0.330 1.25 0.41

Weight of Soil on Toe

x1 x2 Length p1 p2 Shear arm Moment0.00 2.50 2.50 0.52275 0.52275 1.307 1.25 -1.63

Weight of Concrete

x1 x2 Length p1 p2 Shear arm Moment0.00 2.50 2.50 0.45 0.45 1.125 1.25 -1.41

Total Shear (V) = -1.912 kips

Total Moment (M) = 2.588 kip-ft

Page 161: Appendix L: Structural Engineering

Calculations: (Bottom of Toe)

Moment and Shear

Total Shear (V) = -1.9 kips

Total Moment (M) = 2.6 kip-ft

Flexure Steel Dia. = 0.88 inchesT & S Steel Dia. = 0.88 inches

Required Concrete Cover = 3.00 inchesMinimum Depth based on ShearVu=(DLF)(V) ==> Vu = -3.17 kips Vu<(phi shear(Vc)= ACI 22.5.1.2

37.07 kips > Vu = -3.17 kips OKslab

d min = -2.78 in [Vu/(phi shear)(2)(l mod fctr)(sqrt(f'c))(bw)] ACI 22.5.5.1Actual depth d = 32.56

Vc = 37.07 kips =(phi shear)(l mod fctr)(2)(sqrt(f'c))(b d)] ACI 22.5.5.1As Maximum max = .25 balanced EM 1110-2-2104

1= 0.85 0.85-(0.05*(f'c-4000)/1000) 4000 < f'c <8000 balanced = 0.0285 [((.85 1 f'c)/fy)(87000/(87000+fy))] ACI 22.2.4.3

max = 0.0071 [.25( balanced)]

As Maximum = 2.78 in^2 max)(bw)(d)]

ρmin = (200 psi)/fy = 0.0033

As Required

Mn = Mu where Mn = (As fy d)[1-(As fy)/(1.7 f'c b d)]

solve for As to determine area of steel necessary to resist moment

Mu = 4.29 kip-ft [(M)(DLF)]

As = 0.03 in^2 [solved for based on above formula]

Flexure Capacity:[a = (Ass*fy)/(0.85*f'c*b)] Equivalent Depth of Stress Block, a = 0.88 in

[Mn = Φm*0.85*f'c*a*b*(d-a/2)] Concrete Moment Capacity, Mn = 86.9 kip-ft

[ρ = Ass/(b*d)] Reinforcement Ratio, ρ = 0.0015

(from previously) Mu = 4.3 kip-ft if: 1.33

Strength vs. Load Effect, Mn/Mu = 20.25 > 1.33 Ok! if: > 1.33 Ok!if: < 1.33 NG!

As MAX 2.78 sq inAs MIN (INCLUDE YES OR NO) YES 1.30 sq in ACI 9.6.1.2 see note

S & T STEEL = 0.004*Ag/2 <= 1.00 SQ IN 0.36 sq in EM 2104

S & T STEEL = 0.0018*Ag/2 <= 1.00 SQ IN 0.16 sq in ACI 7.12.2.1

(4/3) As REQUIRED 0.04 sq in ACI 9.6.1.3 ACI 10.5.3

As DESIGN 0.36 sq in

NOTE: ACI 10.5.2; 10.5.4 "NO" FOR SLABS AND FOOTINGS

SELECT FLEXURAL REINFORCEMENT

BAR SIZE (3,4,5,6,7,8,9 etc) = 7BAR SPACING (inches) = 12

As (provided) = 0.60 in^2 OK

Is design slab or beam?

Page 162: Appendix L: Structural Engineering

Calculations - Bearing Capacity: (EM 1110-2-2502, Chapter 5)

BEARING CAPACITY = Q

Q= B1[(EcdEciEctEcgCNc)+(EqdEqiEqtEqgqoNq)+(ErdEriErtErgB1§Nr)/2] EQU. 5-2

FOOTING WIDTH, (B)= 12.00 ft.

SOIL DEPTH TOE SIDE (D)= 5.50 ft.

SATURATION HT.TOE SIDE (Dw)= 1.25 ft.

BASE SLOPE, alpha, ()= 8.30 degrees CTWALL

FRICTION ANGLE OF SOIL (0f)= 32.00 deg., Below Footing

FRICTION ANGLE OF SOIL (03)= 32.00 deg., Resisting Wedge

COHESION OF FOUNDATION Cfr= 0.00 k / ft2

SOIL UNIT Wt.,MOIST (§m)= 0.123 k / ft3

SOIL UNIT Wt.,SATUR. (§s)= 0.125 k / ft3

WATER UNIT WEIGHT (§w)= 0.0624 k / ft3

SOIL UNIT Wt.,BOUYANT (§b)= 0.0626 k / ft3

NET HORIZONTAL FORCE (SUM H)= 2.58 kip CTWALL

NET VERTICAL FORCE (SUM V)= 8.68 kip CTWALL

Xr (measured from toe) = 3.05 ft. CTWALL

SURCHARGE LOADING= 0.00 ksf

SOIL SURFACE SLOPE,RISE/RUN= 0.00 deg.

BETA ANGLE ()= 0.00 deg.

EFF. WIDTH OF BASE B1 = B-2e = 2Xr = 6.1

BEARING CAPACITY FACTORS FROM TABLE 5-1 EM 1110-2-2502

Nq = 23.18

Nc = 35.49

Nr = 22.02

EMBEDMENT FACTORS

Ecd = 1+0.2(D/B1)TAN(45+/2) = 1.325 EQU.5-4a

Eqd=Erd = = 1.000 EQU.5-4b IF( = O)

Eqd=Erd = 1+0.1(D/B1)TAN(45+/2) = 1.163 EQU.5-4c IF( >10)

Page 163: Appendix L: Structural Engineering

INCLINATION FACTORS

§o = ARCTAN[(SUM H)/SUM V] = 16.528 DEG.

Eqi=Eci = (1-§o/90)^2 = 0.666 EQU.5-5a

Eri = IF §o > THEN Eri = 0, ELSE,

Eri = (1-§o/)^2 = 0.234 EQU.5-5b

BASE TILT FACTORS ( IN RADIANS)

Eqt=Ert = (1-*TAN)^2 = 0.827 EQU.5-6a

Ect = 1-(2*/+2) = 0.944 EQU.5-6b

Ect = Eqt-[(1-Eqt)/(NcTAN)] = 0.819 EQU.5-6c

Ect = 0.819

GROUND SLOPE FACTORS ( is positive when the ground slopes down and away from the footing.)

Erg=Eqg = [1-TAN(-)]^2 = 1.000 EQU.5-7a

Ecg = 1-[2*(-)/(PI+2)] = 1.000 EQU.5-7b

Ecg = Eqg-[(1-Eqg)/Nc*TAN] = 1.000 EQU.5-7d

Ecg = 1.000

EFFECTIVE OVERBURDEN PRESSURE

qo = (Q+§*D)*COS() = 0.601 EQU.5-8a

0.601 §b*Dw+§m(D-Dw)

EFFECTIVE SOIL UNIT WEIGHT

§ = IF(Dw=0,§m,§b)= 0.0626 ksf

BEARING CAPACITY = 60.23 kips EQU. 5-2

F.O.S. = Q/SUM V= 6.94 EQU. 5-1

F.O.S. Required For = 3.0

Thus, Design is OK

Page 164: Appendix L: Structural Engineering

Calculations: Flotation FOS

PartVertical Force (kip)

Horz. Force (kip)

Moment Arm (ft)

Moment (kip-ft)

Structure:

Structure Weight 4.5 -5.16 -23.22

Structure, driving side:Moist soil weight 0.00Saturated soil 4.383 -7.88 -34.54Water above structure 0.00Water above soil 2.574 -7.87 -20.26External vertical loads 0.00Ext. hz. pressure loads 0.00Ext. hz. line loads 0.50 10.50 5.25

Structure, resisting side:

Moist soil weight 1.307 -1.25 -1.63Saturated soil 0.00Water above structure 0.00Water above soil 0.00

Driving side:Effective earth loads 0.00Shear (due to delta) 0.00Hz. Surcharge effects 0.00Water loads 4.682 2.33 10.91

Resisting side:

Effective earth loads 0.00

Balancing earth loads -3.803 -0.88 3.35

Water loads -1.379 -0.82 1.13

Foundation:Vertical force on base -8.221 -3.05 25.07Uplift -4.543 -7.47 33.94

Flotation FOS

Req. FOS (Usual Case) 1.2Ws 10.19 kipWc 0.00 kipS 0.00 kipU 4.54 kip

Wg 2.574 kipCalculated FOS 5.18

EM 1110-2-2100, Table 3-4

Page 165: Appendix L: Structural Engineering

US Army Corps of Engineers DATE:

10/28/2019

Saint Paul District

CHK BY: TMG

Load Case: Design Flood Elevation (100 yr. + 3 ft.) - Unusual

Design Information: Note: Data located with-in a black box is an input, not a calculated value.

Labels and data below are from an overturning and sliding analysis performed by CTWALL

Top of Stem El 737.00 feet Toe Thickness 2.00 feet

Height of Stem 9.00 feet Toe Width 2.50 feet

Top Stem Thickness 1.25 feet Toe Slope 0.00 feet

Base Stem Thickness 1.25 feet Total Base Width 12.00 feet

Stem Batter 0.00 feet Key Depth 1.75 feet

Heel Thickness 3.75 feet Key Thickness 1.25 feet

Heel Slope 0.00 feet Key Slope 0.00 feet

ACI 318-19

Weight of Water (w) = 62.40 lbs/cu.ft fy = 60 ksi

Water Ele. L. (HwL) = 736.20 feet f'c = 4.0 ksi

Water Ele. R. (HwR) = 728.00 feet modification factor = 1.00

B. Wt. of Soil (b) = 62.60 lbs/cu.ft shear = 0.75 ACI 21.2

Soil Ele. L. (HsL) = 731.50 feet moment = 0.90 ACI 21.2

Soil Ele. R. (HsR) = 731.50 feet Load Condition Factor (LCF) = 0.75

Weight of Conc. (c) = 150.00 lbs/cu.ft Hydraulic Load Factor (HLF) = 1.30

M. Wt. of Soil (b) = 123.00 lbs/cu.ft Load Factor (LF) = 1.70

Ice/Debris = 500.00 lbs/ft Design Load Factor (DLF) = 1.66

Wind load = 0.00 lbs/sf

Bottom of Footing = 724.25

PROJECT TITLE: Arcadia Feasibility Study CMP BY:

CNO

SHEET:

SUBJECT TITLE: Floodwall 11 ft, Unusual Case, Cracked Heel. No Sheetpile

COMPUTER FILE:

.xls

700

705

710

715

720

725

730

-5 5 15 25 35

Concrete Water Soil

700

705

710

715

720

725

730

-5 5 15 25 35

Concrete Water Soil

723.00

725.00

727.00

729.00

731.00

733.00

735.00

737.00

-5 5 15

Concrete Water Soil

Page 166: Appendix L: Structural Engineering

Calculations: (STEM)

Moment and Shear

Force due to water (V) = 2.598 kips

Moment at bottom (M) = 9.834 kip-ftPlus Ice/Debris

Flexure Steel Dia. = 0.88 inchesT & S Steel Dia. = 0.88 inches

Required Concrete Cover = 3.00 inchesMinimum Depth based on ShearVu=(DLF)(V) ==> Vu = 4.31 kips Vu<(phi shear(Vc)= ACI 22.5.1.2

13.16 kips > Vu = 4.31 kips OKslab

d min = 3.78 in [Vu/(phi shear)(2)(l mod fctr)(sqrt(f'c))(bw)] ACI 22.5.5.1Actual depth d = 11.56

Vc = 13.16 kips =(phi shear)(l mod fctr)(2)(sqrt(f'c))(b d)] ACI 22.5.5.1As Maximum max = .25 balanced EM 1110-2-2104

1= 0.85 0.85-(0.05*(f'c-4000)/1000) 4000 < f'c <8000 balanced = 0.0285 [((.85 1 f'c)/fy)(87000/(87000+fy))] ACI 22.2.4.3

max = 0.0071 [.25( balanced)]As Maximum = 0.99 in^2 max)(bw)(d)]

ρmin = (200 psi)/fy = 0.0033

As Required

Mn = Mu where Mn = (As fy d)[1-(As fy)/(1.7 f'c b d)]

solve for As to determine area of steel necessary to resist moment

Mu = 16.30 kip-ft [(M)(DLF)]

As = 0.32 in^2 [solved for based on above formula]

Flexure Capacity:[a = (Ass*fy)/(0.85*f'c*b)] Equivalent Depth of Stress Block, a = 0.88 in

[Mn = Φm*0.85*f'c*a*b*(d-a/2)] Concrete Moment Capacity, Mn = 30.1 kip-ft

[ρ = Ass/(b*d)] Reinforcement Ratio, ρ = 0.0043

(from previously) Mu = 16.3 kip-ft if: 1.00

Strength vs. Load Effect, Mn/Mu = 1.85 > 1.00 Ok! if: > 1.00 Ok!if: < 1.00 NG!

As MAX 0.99 sq inAs MIN (INCLUDE YES OR NO) YES 0.46 sq in ACI 9.6.1.2 see note

S & T STEEL = 0.0028*Ag/2 <= 1.00 SQ IN 0.36 sq in EM 2104

S & T STEEL = 0.0018*Ag/2 <= 1.00 SQ IN 0.16 sq in ACI 7.12.2.1

(4/3) As REQUIRED 0.43 sq in ACI 9.6.1.3 ACI 10.5.3

As DESIGN 0.43 sq in

NOTE: ACI 10.5.2; 10.5.4 "NO" FOR SLABS AND FOOTINGS

SELECT FLEXURAL REINFORCEMENT

BAR SIZE (3,4,5,6,7,8,9 etc) = 7BAR SPACING (inches) = 12

As (provided) = 0.60 in^2 OK

Is design slab or beam?

Note: Soil was neglected as it is taken to be equal and opposite. Resisting side water was neglected to be conservative.

Page 167: Appendix L: Structural Engineering

Calculations: Key

Calculation of Moment and Shear (Counter Clock Wise Positive)

Depth of Key below base: 2 ft

D/S Water Pressure - Rectangular portion of pressure

x1 x2 Length p1 p2 Shear arm Moment0.00 1.75 1.75 -0.706 -0.706 -1.236 0.88 -1.08

D/S Water Pressure - Triangular portion of pressure

x1 x2 Length p1 p2 Shear arm Moment0.00 1.75 1.75 0 -0.040 -0.035 1.17 -0.04

D/S Soil Pressure - Rectangular portion of pressure

x1 x2 Length p1 p2 Shear arm Moment0.00 1.75 1.75 -1.993 -1.993 -3.488 0.88 -3.05

U/S Water Pressure - Rectangular portion of pressure

x1 x2 Length p1 p2 Shear arm Moment0.00 1.75 1.75 0.636 0.636 1.114 0.88 0.97

U/S Water Pressure - Triangular portion of pressure

x1 x2 Length p1 p2 Shear arm Moment0.00 1.75 1.75 0 0.110 0.096 1.17 0.11

U/S Soil Pressure - Triangular portion of pressure

x1 x2 Length p1 p2 Shear arm Moment0.00 1.75 1.75 0.000 0.000 0.000 0.88 0.00

Total Shear (V) = -3.549 kips

Total Moment (M) = -3.088 kip-ft

Page 168: Appendix L: Structural Engineering

Calculations: Key

Moment and Shear

Force due to water (V) = -3.549 kips

Moment at bottom (M) = -3.088 kip-ft

Flexure Steel Dia. = 0.88 inchesT & S Steel Dia. = 0.88 inches

Required Concrete Cover = 3.00 inchesMinimum Depth based on ShearVu=(DLF)(V) ==> Vu = -5.88 kips Vu<(phi shear(Vc)= ACI 22.5.1.2

13.16 kips > Vu = -5.88 kips OKslab

d min = -5.17 in [Vu/(phi shear)(2)(l mod fctr)(sqrt(f'c))(bw)] ACI 22.5.5.1Actual depth d = 11.56

Vc = 13.16 kips =(phi shear)(l mod fctr)(2)(sqrt(f'c))(b d)] ACI 22.5.5.1As Maximum max = .25 balanced EM 1110-2-2104

1= 0.85 0.85-(0.05*(f'c-4000)/1000) 4000 < f'c <8000 balanced = 0.0285 [((.85 1 f'c)/fy)(87000/(87000+fy))] ACI 22.2.4.3

max = 0.0071 [.25( balanced)]As Maximum = 0.99 in^2 max)(bw)(d)]

ρmin = (200 psi)/fy = 0.1714

As Required

Mn = Mu where Mn = (As fy d)[1-(As fy)/(1.7 f'c b d)]

solve for As to determine area of steel necessary to resist moment

Mu = -5.12 kip-ft [(M)(DLF)]

As = -0.10 in^2 [solved for based on above formula]

Flexure Capacity:[a = (Ass*fy)/(0.85*f'c*b)] Equivalent Depth of Stress Block, a = 0.88 in

[Mn = Φm*0.85*f'c*a*b*(d-a/2)] Concrete Moment Capacity, Mn = 30.1 kip-ft

[ρ = Ass/(b*d)] Reinforcement Ratio, ρ = 0.0043

(from previously) Mu = -5.1 kip-ft if: 1.33

Strength vs. Load Effect, Mn/Mu = 5.88 > 1.33 Ok! if: > 1.33 Ok!if: < 1.33 NG!

As MAX 0.99 sq inAs MIN (INCLUDE YES OR NO) YES 0.46 sq in ACI 9.6.1.2 see note

S & T STEEL = 0.004*Ag/2 <= 1.00 SQ IN 0.36 sq in EM 2104

S & T STEEL = 0.0018*Ag/2 <= 1.00 SQ IN 0.16 sq in ACI 7.12.2.1

(4/3) As REQUIRED -0.13 sq in ACI 9.6.1.3 ACI 10.5.3

As DESIGN 0.36 sq in

NOTE: ACI 10.5.2; 10.5.4 "NO" FOR SLABS AND FOOTINGS

SELECT FLEXURAL REINFORCEMENT

BAR SIZE (3,4,5,6,7,8,9 etc) = 7BAR SPACING (inches) = 12

As (provided) = 0.60 in^2 OK

Is design slab or beam?

Page 169: Appendix L: Structural Engineering

Length of Base Press.= 12.000 feet Sheetpile cutoff ? no (YES or NO)

Base pressure at toe = 1.615 ksf CTWALL Distance to Cutoff = 0.000 feet

Base press. at heel = 0.000 ksf CTWALL

Hydro. Press. at toe = 0.197 ksf CTWALL

Hydro. Press. at heel = 0.512 ksf CTWALL

Hydro. Press. D/S key = 0.746 ksf CTWALL

Hydro. Press. U/s key = 0.746 ksf CTWALL

Base Pressure - Rectangular portion of base pressure

x1 x2 Length p1 p2 Shear arm Moment8.25 0.00 8.25 0.000 0.000 0.000 4.13 0.00

Base Pressure - Triangular portion of base pressure (Assumes maximum pressure is at Toe)x1 x2 Length p1 p2 Shear arm Moment

5.97 0.00 5.97 0 -0.992 -2.961 1.99 -5.89Uplift Pressure - Under Key With no sheetpile - Reactangular Portion

x1 x2 Length p1 p2 Shear arm Moment1.25 0.00 1.25 -0.706 -0.706 -0.883 7.63 -6.73

Uplift Pressure - Under Key With no sheetpile - Triangular Portion

x1 x2 Length p1 p2 Shear arm Moment1.25 0.00 1.25 -0.040 0.000 -0.025 7.83 -0.20

Uplift Pressure D/S of key - triangular uplift if no sheetpile x1 x2 Length p1 p2 Shear arm Moment

7.00 0.00 7.00 -0.315 -0.224 -1.887 4.67 -8.80

Uplift Pressure D/S of key- rectangular uplift if no sheetpilex1 x2 Length p1 p2 Shear arm Moment

7.00 0.00 7.00 -0.317 -0.317 -2.219 3.50 -7.77Weight of Water on Heel

x1 x2 Length p1 p2 Shear arm Moment8.25 0.00 8.25 0.293 0.293 2.420 4.13 9.98

Weight of Soil on Heel

x1 x2 Length p1 p2 Shear arm Moment8.25 0.00 8.25 0.4305 0.4305 3.552 4.13 14.65

8.25 0.00 8.25 0 0 0.000 5.50 0.00

Weight of Buoyant Riprap on Heel

x1 x2 Length p1 p2 Shear arm Moment8.25 0.00 8.25 0.01 0.01 0.083 4.13 0.34

Weight of Heel Concrete

x1 x2 Length p1 p2 Shear arm Moment8.25 0.00 8.25 0.5625 0.5625 4.641 4.13 19.14

Weight of Key Concrete

x1 x2 Length p1 p2 Shear arm Moment1.25 0.00 1.25 0.375 0.375 0.469 7.63 3.57

Total Shear (V) = 3.189 kips

Total Moment (M) = 18.301 kip-ft

Page 170: Appendix L: Structural Engineering

Calculations: HEEL at stem with no Forces on key, Top of base

Moment and Shear

Force due to water (V) = 3.189 kips

Moment at bottom (M) = 18.301 kip-ft

Flexure Steel Dia. = 0.88 inchesT & S Steel Dia. = 0.88 inches

Required Concrete Cover = 3.00 inchesMinimum Depth based on ShearVu=(DLF)(V) ==> Vu = 5.29 kips Vu<(phi shear(Vc)= ACI 22.5.1.2

47.32 kips > Vu = 5.29 kips OKslab

d min = 4.64 in [Vu/(phi shear)(2)(l mod fctr)(sqrt(f'c))(bw)] ACI 22.5.5.1Actual depth d = 41.56

Vc = 47.32 kips =(phi shear)(l mod fctr)(2)(sqrt(f'c))(b d)] ACI 22.5.5.1As Maximum max = .25 balanced EM 1110-2-2104

1= 0.85 0.85-(0.05*(f'c-4000)/1000) 4000 < f'c <8000 balanced = 0.0285 [((.85 1 f'c)/fy)(87000/(87000+fy))] ACI 22.2.4.3

max = 0.0071 [.25( balanced)]As Maximum = 3.55 in^2 max)(bw)(d)]

ρmin = (200 psi)/fy = 0.0033

As Required

Mn = Mu where Mn = (As fy d)[1-(As fy)/(1.7 f'c b d)]

solve for As to determine area of steel necessary to resist moment

Mu = 30.33 kip-ft [(M)(DLF)]

As = 0.16 in^2 [solved for based on above formula]

Flexure Capacity:[a = (Ass*fy)/(0.85*f'c*b)] Equivalent Depth of Stress Block, a = 0.88 in

[Mn = Φm*0.85*f'c*a*b*(d-a/2)] Concrete Moment Capacity, Mn = 111.2 kip-ft

[ρ = Ass/(b*d)] Reinforcement Ratio, ρ = 0.0012

(from previously) Mu = 30.3 kip-ft if: 1.33

Strength vs. Load Effect, Mn/Mu = 3.67 > 1.33 Ok! if: > 1.33 Ok!if: < 1.33 NG!

As MAX 3.55 sq inAs MIN (INCLUDE YES OR NO) YES 1.66 sq in ACI 9.6.1.2 see note

S & T STEEL = 0.004*Ag/2 <= 1.00 SQ IN 0.36 sq in EM 2104

S & T STEEL = 0.0018*Ag/2 <= 1.00 SQ IN 0.16 sq in ACI 7.12.2.1

(4/3) As REQUIRED 0.22 sq in ACI 9.6.1.3 ACI 10.5.3

As DESIGN 0.36 sq in

NOTE: ACI 10.5.2; 10.5.4 "NO" FOR SLABS AND FOOTINGS

SELECT FLEXURAL REINFORCEMENT

BAR SIZE (3,4,5,6,7,8,9 etc) = 7BAR SPACING (inches) = 12

As (provided) = 0.60 in^2 OK

Is design slab or beam?

Page 171: Appendix L: Structural Engineering

Calculations: HEEL at stem with Forces on key

Moment and Shear

Total Shear (V) = 3.2 kips

Total Moment (M) = 21.4 kip-ft

Flexure Steel Dia. = 0.88 inches

Is design slab or beam?

Page 172: Appendix L: Structural Engineering

Calculations: (Bottom of Toe)

Calculation of Moment and Shear (Counter Clock Wise Positive)

Base Pressure - Rectangular portion of base pressure

x1 x2 Length p1 p2 Shear arm Moment0.00 2.50 2.50 -1.200 -1.200 -2.999 1.25 3.75

Base Pressure - Triangular portion of base pressure (Assumes maximum pressure is at Toe)

x1 x2 Length p1 p2 Shear arm Moment0.00 2.50 2.50 0 -0.415 -0.519 1.67 0.87

Uplift Pressure - triangular uplift

x1 x2 Length p1 p2 Shear arm Moment0.00 2.50 2.50 0.000 -0.080 -0.100 0.83 0.08

Uplift Pressure - rectangular uplift

x1 x2 Length p1 p2 Shear arm Moment0.00 2.50 2.50 -0.197 -0.197 -0.493 1.25 0.62

Weight of Soil on Toe

x1 x2 Length p1 p2 Shear arm Moment0.00 2.50 2.50 0.4305 0.4305 1.076 1.25 -1.35

Weight of Concrete

x1 x2 Length p1 p2 Shear arm Moment0.00 2.50 2.50 0.5625 0.5625 1.406 1.25 -1.76

Total Shear (V) = -1.628 kips

Total Moment (M) = 2.210 kip-ft

Page 173: Appendix L: Structural Engineering

Calculations: (Bottom of Toe)

Moment and Shear

Total Shear (V) = -1.6 kips

Total Moment (M) = 2.2 kip-ft

Flexure Steel Dia. = 0.88 inchesT & S Steel Dia. = 0.88 inches

Required Concrete Cover = 3.00 inchesMinimum Depth based on ShearVu=(DLF)(V) ==> Vu = -2.70 kips Vu<(phi shear(Vc)= ACI 22.5.1.2

47.32 kips > Vu = -2.70 kips OKslab

d min = -2.37 in [Vu/(phi shear)(2)(l mod fctr)(sqrt(f'c))(bw)] ACI 22.5.5.1Actual depth d = 41.56

Vc = 47.32 kips =(phi shear)(l mod fctr)(2)(sqrt(f'c))(b d)] ACI 22.5.5.1As Maximum max = .25 balanced EM 1110-2-2104

1= 0.85 0.85-(0.05*(f'c-4000)/1000) 4000 < f'c <8000 balanced = 0.0285 [((.85 1 f'c)/fy)(87000/(87000+fy))] ACI 22.2.4.3

max = 0.0071 [.25( balanced)]

As Maximum = 3.55 in^2 max)(bw)(d)]

ρmin = (200 psi)/fy = 0.0033

As Required

Mn = Mu where Mn = (As fy d)[1-(As fy)/(1.7 f'c b d)]

solve for As to determine area of steel necessary to resist moment

Mu = 3.66 kip-ft [(M)(DLF)]

As = 0.02 in^2 [solved for based on above formula]

Flexure Capacity:[a = (Ass*fy)/(0.85*f'c*b)] Equivalent Depth of Stress Block, a = 0.88 in

[Mn = Φm*0.85*f'c*a*b*(d-a/2)] Concrete Moment Capacity, Mn = 111.2 kip-ft

[ρ = Ass/(b*d)] Reinforcement Ratio, ρ = 0.0012

(from previously) Mu = 3.7 kip-ft if: 1.33

Strength vs. Load Effect, Mn/Mu = 30.36 > 1.33 Ok! if: > 1.33 Ok!if: < 1.33 NG!

As MAX 3.55 sq inAs MIN (INCLUDE YES OR NO) YES 1.66 sq in ACI 9.6.1.2 see note

S & T STEEL = 0.004*Ag/2 <= 1.00 SQ IN 0.36 sq in EM 2104

S & T STEEL = 0.0018*Ag/2 <= 1.00 SQ IN 0.16 sq in ACI 7.12.2.1

(4/3) As REQUIRED 0.03 sq in ACI 9.6.1.3 ACI 10.5.3

As DESIGN 0.36 sq in

NOTE: ACI 10.5.2; 10.5.4 "NO" FOR SLABS AND FOOTINGS

SELECT FLEXURAL REINFORCEMENT

BAR SIZE (3,4,5,6,7,8,9 etc) = 7BAR SPACING (inches) = 12

As (provided) = 0.60 in^2 OK

Is design slab or beam?

Page 174: Appendix L: Structural Engineering

Calculations - Bearing Capacity: (EM 1110-2-2502, Chapter 5)

BEARING CAPACITY = Q

Q= B1[(EcdEciEctEcgCNc)+(EqdEqiEqtEqgqoNq)+(ErdEriErtErgB1§Nr)/2] EQU. 5-2

FOOTING WIDTH, (B)= 12.00 ft.

SOIL DEPTH TOE SIDE (D)= 5.50 ft.

SATURATION HT.TOE SIDE (Dw)= 2.00 ft.

BASE SLOPE, alpha, ()= 8.30 degrees CTWALL

FRICTION ANGLE OF SOIL (0f)= 32.00 deg., Below Footing

FRICTION ANGLE OF SOIL (03)= 32.00 deg., Resisting Wedge

COHESION OF FOUNDATION Cfr= 0.00 k / ft2

SOIL UNIT Wt.,MOIST (§m)= 0.123 k / ft3

SOIL UNIT Wt.,SATUR. (§s)= 0.125 k / ft3

WATER UNIT WEIGHT (§w)= 0.0624 k / ft3

SOIL UNIT Wt.,BOUYANT (§b)= 0.0626 k / ft3

NET HORIZONTAL FORCE (SUM H)= 2.32 kip CTWALL

NET VERTICAL FORCE (SUM V)= 8.27 kip CTWALL

Xr (measured from toe) = 3.24 ft. CTWALL

SURCHARGE LOADING= 0.00 ksf

SOIL SURFACE SLOPE,RISE/RUN= 0.00 deg.

BETA ANGLE ()= 0.00 deg.

EFF. WIDTH OF BASE B1 = B-2e = 2Xr = 6.48

BEARING CAPACITY FACTORS FROM TABLE 5-1 EM 1110-2-2502

Nq = 23.18

Nc = 35.49

Nr = 22.02

EMBEDMENT FACTORS

Ecd = 1+0.2(D/B1)TAN(45+/2) = 1.306 EQU.5-4a

Eqd=Erd = = 1.000 EQU.5-4b IF( = O)

Eqd=Erd = 1+0.1(D/B1)TAN(45+/2) = 1.153 EQU.5-4c IF( >10)

Eqd=Erd = = 1.153

INTERPOLATE BETWEEN EQU. 5-4b AND 4c FOR (O<<=1O)

Page 175: Appendix L: Structural Engineering

INCLINATION FACTORS

§o = ARCTAN[(SUM H)/SUM V] = 15.666 DEG.

Eqi=Eci = (1-§o/90)^2 = 0.682 EQU.5-5a

Eri = IF §o > THEN Eri = 0, ELSE,

Eri = (1-§o/)^2 = 0.261 EQU.5-5b

BASE TILT FACTORS ( IN RADIANS)

Eqt=Ert = (1-*TAN)^2 = 0.827 EQU.5-6a

Ect = 1-(2*/+2) = 0.944 EQU.5-6b

Ect = Eqt-[(1-Eqt)/(NcTAN)] = 0.819 EQU.5-6c

Ect = 0.819

GROUND SLOPE FACTORS ( is positive when the ground slopes down and away from the footing.)

Erg=Eqg = [1-TAN(-)]^2 = 1.000 EQU.5-7a

Ecg = 1-[2*(-)/(PI+2)] = 1.000 EQU.5-7b

Ecg = Eqg-[(1-Eqg)/Nc*TAN] = 1.000 EQU.5-7d

Ecg = 1.000

EFFECTIVE OVERBURDEN PRESSURE

qo = (Q+§*D)*COS() = 0.556 EQU.5-8a

0.556 §b*Dw+§m(D-Dw)

EFFECTIVE SOIL UNIT WEIGHT

§ = IF(Dw=0,§m,§b)= 0.0626 ksf

BEARING CAPACITY = 61.50 kips EQU. 5-2

F.O.S. = Q/SUM V= 7.44 EQU. 5-1

F.O.S. Required For = 3.0

Thus, Design is OK

Page 176: Appendix L: Structural Engineering

Calculations: Flotation FOS

PartVertical Force (kip)

Horz. Force (kip)

Moment Arm (ft)

Moment (kip-ft)

Structure:

Structure Weight 5.616 -5.45 -30.61

Structure, driving side:Moist soil weight 0.00Saturated soil 3.609 -7.88 -28.44Water above structure 0.00Water above soil 2.42 -7.87 -19.05External vertical loads 0.00Ext. hz. pressure loads 0.00Ext. hz. line loads 0.50 10.20 5.10

Structure, resisting side:

Moist soil weight 1.076 -1.25 -1.35Saturated soil 0.00Water above structure 0.00Water above soil 0.00

Driving side:Effective earth loads 0.00Shear (due to delta) 0.00Hz. Surcharge effects 0.00Water loads 4.455 2.24 9.98

Resisting side:

Effective earth loads 0.00

Balancing earth loads -3.488 -0.86 3.00

Water loads -1.467 -0.67 0.98

Foundation:Vertical force on base -7.848 -3.24 25.43Uplift -4.873 -7.17 34.94

Flotation FOS

Req. FOS (Usual Case) 1.2Ws 10.301 kipWc 0.00 kipS 0.00 kipU 4.87 kip

Wg 2.42 kipCalculated FOS 4.20

EM 1110-2-2100, Table 3-4

Page 177: Appendix L: Structural Engineering

Arcadia Floodwalls

PROJECT: Arcadia FeasibilityDESIGNER: Coralys Nunez-OrtaCHECKER: Tony FaresESTIMATOR: Susan Taylor

Date Prepared: 10/23/2019

Type Of Structure Reinforced Concrete T-WallStructure Name Floodwall 1Water Flood EL 100 YEAR + 3'

10' Wall

Wall lengths

Item Description Units QuantitySTA R2 46+00.00 to STA R2 52+07.32 FT 610.00

Site PreparationItem Description Units QuantityExisting Ground Elevation (Varies) FT 730.500Bottom of Excavation (Varies) FT 726.500Wall's length FT 795.000Excavation From B Sprang CY 4707.431Backfill to top of berm CY 4421.759

Slab Concrete and SteelItem Description Units QuantityForms SF 1920.000Reinforcing LBS 85293.953Concrete CY 379.097

Wall Concrete and SteelItem Description Units QuantityForms wall SF 14580.000Reinforcing wall LBS 71690.909Concrete wall CY 265.000

Misc.Item Description Units QuantityU Waterstop LF 192.500Y Waterstop, 9" wide LF 154.000Expansion Joint: Sealant, Backer Rod, Joint Filler LF 500.500Dowels: 2' #11 plus 1' 1.5" metallic tube EACH 101.111Wall Cap, 12"x8", cast in place or precast LF 795.000

11.5' Wall

Wall lengths

Item Description Units QuantitySTA R2 39+31.30 to STA R2 46Ashley Ft 670.00

Site PreparationItem Description Units QuantityExisting Ground Elevation (Varies) FT 726.500Bottom of Excavation (Varies) FT 719.250Wall's length FT 670.000Excavation CY 4136.319Backfill totop of berm CY 3577.986

Slab Concrete and SteelItem Description Units QuantityForms SF 2035.000Reinforcing LBS 78476.186Concrete CY 426.505

Wall Concrete and SteelItem Description Units QuantityForms wall SF 14042.500Reinforcing wall LBS 67827.202Concrete wall CY 317.940

Misc.Item Description Units QuantityU Waterstop LF 166.375Y Waterstop, 9" wide LF 139.150Expansion Joint: Sealant, Backer Rod, Joint Filler LF 444.675Dowels: 2' #11 plus 1' 1.5" metallic tube EACH 90.444Wall Cap, 12"x8", cast in place or precast LF 670.000Sheetpile, PZ 22, transition into levee, 2 places SF 172.500

Between Main and River Streets

Ashley

FTSTA R2 36+02.43 to STA R2 37+85.30 185.00

Page 178: Appendix L: Structural Engineering

Arcadia

PROJECT Arcadia FeasibilityDesigned By Coralys Nunez-OrtaChecked By Tony Fares

Date Prepared 24/10/2019

Type Of Structure Swing Gate Closure Structures 100 YEAR + 3'

Units Main St. Closure River St. Closure East RR ClosureFT 68.00 38.00 42.00FT 3.25 4.00 5.50FT 124.00 94.00 98.00FT 11.00 11.00 12.00FT 2.00 2.00 2.00FT 1.50 1.50 1.50FT 3.50 3.50 3.50FT 6.75 7.50 9.00FT 66.00 36.00 40.00FT 4.00 4.00 4.00FT 12.75 13.50 15.00

Elev 735.00 735.00 737.00Elev 730.50 730.50 731.50Elev 723.50 723.50 724.25FT 7.00 7.00 7.25FT 131.00 101.00 105.25FT 18.00 18.00 19.25

Units Quantity Quantity QuantityCY 611.33 471.33 544.04CY 432.46 341.35 390.98

Units Quantity Quantity QuantitySF 518.00 398.00 416.00

LBS 13359.58 10170.94 11413.70CY 101.04 76.59 87.11

Units Quantity Quantity QuantitySF 3346.00 1954.00 2406.00

LBS 19959.66 12270.13 14567.59CY 77.83 53.39 65.94

Units Quantity Quantity QuantitySF 330.00 165.00 360.00

Units Quantity Quantity QuantityLBS 2256.04 1551.67 2358.13LBS 5401.34 3662.12 4344.96LBS 829.01 877.77 975.30LBS 300.00 300.00 300.00LBS 666.40 372.40 411.60FT 74.50 46.00 53.00

Frame MembersPostsMisc Steel Parts Sill, Channel C7*9.8Seal, Hallow Bulb, J Seal

Skin Plate, 1/4" thick

ReinforcingConcrete

Sill, Piers and Walls ConcreteItem DescriptionFormsReinforcingConcrete

Sheep pile @ ends to integrate into leveeSheet Piling PZ22

Swing Gate, welded and painted A36 steel, made of skin plate HSS frame and post members, hinges and rodsItem Description

Forms

Existing Ground Surface ElevationBottom of Excavation ElevationDepth of ExcavationExcavation Length at BottomExcavation Width at Bottom

Site PreparationItem DescriptionExcavationBackfill Material from Excavation

Base Slab ConcreteItem Description

Top of closure line of protection

Closure WidthClosure HeightBase LengthBase WidthThickness of BaseSill and Walls ThicknessSill Height above SlabWalls Height above SlabWalls LengthPiers ThicknessPiers Height above Slab

1