Appendix A - Springer978-1-4612-0027-7/1.pdf · batch polymerization reactors. In P.K. Chawdry, R...

32
Appendix A Process Models Used for Case Studies In this section the models used in the application examples are presented. A.I Model of the pH Process The modeling and control of pH (the concentration of hydrogen ions) in a continuous stirred tank reactor (CSTR) is a well-known control problem that presents difficulties due to the nonlinearity of the process dynamics. The CSTR is shown schematically in Figure A.I. FHAC pH FIGURE A.1 Scheme of the pH setup. A dynamic model of the pH in a tank can be obtained by considering the material balances on [Na+J and the total acetate [HAC+AC-J and as- 241 J. Abonyi, Fuzzy Model Identification for Control © Birkhäuser Boston 2003

Transcript of Appendix A - Springer978-1-4612-0027-7/1.pdf · batch polymerization reactors. In P.K. Chawdry, R...

Appendix A

Process Models Used for Case Studies

In this section the models used in the application examples are presented.

A.I Model of the pH Process

The modeling and control of pH (the concentration of hydrogen ions) in a continuous stirred tank reactor (CSTR) is a well-known control problem that presents difficulties due to the nonlinearity of the process dynamics. The CSTR is shown schematically in Figure A.I.

FHAC

pH

FIGURE A.1 Scheme of the pH setup.

A dynamic model of the pH in a tank can be obtained by considering the material balances on [Na+J and the total acetate [HAC+AC-J and as-

241 J. Abonyi, Fuzzy Model Identification for Control

© Birkhäuser Boston 2003

242 Appendix A. Process Models Used for Case Studies

suming that acid-base equilibrium and electroneutrality relationships hold [178].

Total acetate balance:

Sodium ion balance:

HAC equilibrium:

Water equilibrium:

Electroneutrality:

The pH can be calculated from the previous equations as

[H+]3 + [H+]2(Ka + [Na+]) + [H+]([Na+]Ka

-[HAC + AC-]Ka - Kw) - KwKa = 0

The parameters used in our simulations are taken from [52] and are given in Table A.1.

Table A.I Parameters used in the simulations. Parameter V FHAC

FNaOH [NaOH]in [HAC]in [Na+] [HAC + AC-] Ka Kw

Description Volume of the tank Flow rate of acetic acid Flow rate of NaOH Inlet conc. of NaOH Inlet conc. of acetic acid Initial conc. of sodium in the CSTR Initial conc. of acetate in the CSTR Acid equilibrium constant Water equilibrium constant

Nominal Value 1000 [I] 81 [I/min] 515 [I/min] 0.05 [mol/I] 0.32 [mol/I] 0.0432 [mol/I] 0.0432 [mol/I] 1.75310-5

10-14

A.2. Electrical Water-Heater 243

A.2 Electrical Water-Heater

The schematic diagram of the water-heater is shown in Figure A.2.

FIGURE A.2 The scheme of the physical system.

The water comes from the water pipeline into the heater through a con­trol valve and a pair of metal pipes containing a cartridge heater. The control task is to control the Tout outlet temperature by adjusting the u heating signal of the cartridge heater.

The temperature measurement is realized by PtlOO thermometers. The system has four analogue inputs (Tin inlet temperature, Tout outlet tem­perature, valve position and the F flow-rate), and two digital (open and close of the valve, CVO and CVC) and one analogue output (heating con­trol signal, u). The heaters are linked parallel and have a performance of 1 kW. The process is connected to a PC computer through ADVAN­TECH LabCard PCLD-780 and PCL-812 data acquisition boards. GENIE 3.02 data acquisition and control software was used to filter and convert the input signals (0-5V). The control algorithm runs in MATLAB 4.2. The program gets the filtered and converted measured data through DDE every two seconds [12].

For the purpose of physical modeling the system was decomposed into four interacting elements: the cartridge-heater (subscript h), the stream­ing water (subscript w), the pipe wall (subscript p) and the environment (subscript e). The following three heat balances in the form of partial differential equations can be established:

244 Appendix A. Process Models Used for Case Studies

where, Z E [0, L] with L denotes the length of the pipe. The description and the nominal values of the parameters are given in Table A.2.

Table A.2 Parameters used in the simulation model of the heating system.

Parameter Description Nominal value L Length of the pipe 2 X 48010 3 m (!h Density of the cartridge 3650kgjm3

Cph Heat capacity of the cartridge 1047 JjkgK Ah Surface of the cartridge 2.41 X 10-2 m 2

Vh Volume of the cartridge 4.82 X 10-5 m 3

al h - w heat transfer coefficient 316.3 Wm- 2 K-1 (!w Density of the water 1000 kgjm3

Cpw Heat capacity of the water 4186 JjkgK Tin Inlet water temperature l1.8C Vw Volume of the water 1.16 X 10-4 m 3

a2 w - p heat transfer coefficient 1196.1 Wm- 2 K-1 (!p Density of the wall 7850 kgjm3

Cpp Heat capacity of the wall 502 J jkgK te Temperature of the environment 21.6C Ap Inner surface of the wall 4.46 X 10-2 m 2

Vp Volume of the wall 7.37 X 10-5 m 3

Ae Outer surface of the wall 5.36 X 10-2 m 2

a e p - e heat transfer coefficient 1015.9 W m -2 K-1

The performance of the cartridge heater is given by

where QM is the maximal power, and u is the heating signal (voltage). The partial differential equations are approximated by eight compartments of equal volume. As (A.2) shows, the heating performance is a static nonlinear function of the heating signal (control input).

A.3. Distillation Column 245

A.3 Distillation Column The modelled and controlled process is a first-principle model of a binary

distillation column depicted in Figure A.3. The column has 39 trays, a re­boyler and a condenser. The simulation model was developed by Skogestad [241J. The studied column operates in LV configuration with two manip­ulated variables (reflux and boilup rate, UI and U2) and two controlled variables (top and bottom impurities, YI, Y2).

FIGURE A.3 Schematic diagram of a distillation column.

The modeling assumptions are equilibrium on all trays, total condenser, constant molar flows, no vapor holdup, linearised liquid dynamic.

Material balance:

dMi LHI - Vi - B { -Li+Vi-I-D

dt = Li+l - Li + Vi-I - Vi + F LHI - Li + Vi-I - Vi

at the condenser at the reb oiler at feed stage at other trays

(A.l)

at the condenser at the reb oiler at feed stage at other trays

(A.2)

246 Appendix A. Process Models Used for Case Studies

Liquid flow dynamics

Vapor-liquid equilibrium

(A.4)

where

• Xi, Yi: liquid and vapor compositions of the light compound at the i-th tray

• Vi: vapour flow rate from tray i to tray i + 1

• L i : liquid flow rate from tray i + 1 to tray i

• M i : liquid holdup at tray i

• F, D, B: feed flow rate, distillate flow rate, and bottom flow rate respectively

• r: hydraulic time constant

• >.: constant for effect of vapor flow in liquid flow

• MO,i and VO,i-l: nominal values for the liquid flow and holdup on stage i

The column data for the example are given in Table A.3.

Table A.3 The nominal parameter values of the simulation model.

number of trays feed tray feed composition relative volarity distillate flow liquid flow vapour flow liquid holdup time constant for liquid flow effect of vapor flow in liquid flow

N=40 NF =21 ZF = 0.5 a = 1.5 D=0.5 L = 2.706 V = 3.206 Mi = 0.5 r = 0.063 >'=0

The simulated system covers the most important effects for the dy­namic of a real distillation column [241]. Details about the model and the MATLAB implementation are available over the internet (http://www.chembio.ntnu.no/users/skogej).

A.4. Model of the Liquid Level Rig 247

A.4 Model of the Liquid Level Rig The simulated liquid level control problem is a benchmark problem that

allows the comparative assessment of different fuzzy controllers (Graham and Newell [107, 108], Posthlethwaite et al [209, 210, 211], Linkens and Kandiah [168] and Abonyi et al [18, 19]).

As depicted in Figure A.4, the level in a tank is manipulated by the inflow, while the outflow is dependent on the square root of the liquid level in the tank.

FIGURE A .. 4

Matlab4.0 tDDE~

Genie 3.02

Schematic diagram of the process.

r- .. -.. -· .. · .. ·· .. ·-·· .. (~

i

h

y

Hence, the simulation model of the process is a simple, nonlinear differ­ential equation

dh A-=F-c.v;;,

dt (A.5)

where A (10 cm2 ) is the cross-sectional area of the tank, h (0-100 cm) is the liquid level, F is the inlet flowrate, c is a flow coefficient (equal to 1).

The simulator was built in MATLABjSimulink. The u(k) = F(k) con­troller output is limited between a and 15 flow units. The investigated problem is the setpoint change over two ranges: the first between 10 and 15 cm, and the second between 90 and 95 cm.

References

[1] J. Abonyi, H.C. Andersen, L. Nagy, and F. Szeifert. Inverse fuzzy process model based direct adaptive control. Mathematics and Com­puters in Simulation, 51(1-2):119-132, 1999.

[2] J. Abonyi and R. Babuska. Local and global identification and inter­pretation of parameters in Takagi-Sugeno fuzzy models. In Proceed­ings IEEE International Conference on Fuzzy Systems, San Antonio, USA, May 2000.

[3] J. Abonyi and R. Babuska. Local and global identification and inter­pretation of parameters in Takagi-Sugeno fuzzy models. In Proceed­ings IEEE International Conference on Fuzzy Systems, San Antonio, USA, May 2000.

[4] J. Abonyi, R. Babuska, M.A. Botto, F. Szeifert, and L. Nagy. Iden­tification and control of nonlinear systems using fuzzy Hammerstein models. Ind. Eng. Chem. Res., 39:4302-4314, 2000.

[5] J. Abonyi, R. Babuska, M. Setnes, H.B. Verbruggen, and F. Szeifert. Constrained parameter estimation in fuzzy modeling. In Proceedings FUZZ-IEEE'99, pages 951-956, Seoul, Korea, August 1999.

[6] J. Abonyi, R. Babuska, and F. Szeifert. Fuzzy expert system for supervision in adaptive control. In 1. Rudas and J. Tar, editors, Proceedings Artificial Intelligence in Real-Time Control 2000, IFAC Proceedings Volumes, pages 245-250. Pergamon Press, 2000.

[7] J. Abonyi, R. Babuska, and F. Szeifert. Fuzzy modeling with multidimensional membership functions: Constrained identification and control design. IEEE Systems, Man and Cybernetics, Part B, 31(5):755-767,2001.

[8] J. Abonyi, R. Babuska, and F. Szeifert. Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models. IEEE Trans. on Systems, Man and Cybernetics, pages 612-621, 2002.

249

250 References

[9] J. Abonyi, R Babuska, F. Szeifert, L. Nagy, and H.B. Verbruggen. Design and application of block-oriented fuzzy models - fuzzy Ham­mer stein model. In Y. Suzuki, S. Ovaska, and T. Furuhashi, editors, Soft Computing in Industrial Applications. Springer, London, UK, September 2000.

[10] J. Abonyi, R Babuska, H. Verbruggen, and F. Szeifert. Using a priori knowledge in fuzzy model identification. International Journal of Systems Science, 31:657-667, 2000.

[11] J. Abonyi, R Babuska, L.F.A. Wessels, H.B. Verbruggen, and F. Szeifert. Fuzzy modeling and model based control with use of a priori knowledge. In 3rd IMACS symposium on Mathematical Mod­elling, MATHMOD 2000, pages 769-772, Vienna, Austria, March 2000.

[12] J. Abonyi, A. Bodizs, L. Nagy, and F. Szeifert. Hybrid fuzzy con­volution model based predictor corrector controller. In M. Mohama­dian, editor, Computational Intelligence for Modelling Control and Automation, pages 265-270. lOS Press, Holland, ISBN 9-051-99474-5 1999.

[13] J. Abonyi, A. Bodizs, L. Nagy, and F. Szeifert. Predictor correc­tor controller using Wiener Fuzzy Convolution Model. Hungarian Journal of Industrial Chemistry, 27(3):227-233, 1999.

[14] J. Abonyi, A. Bodizs, L. Nagy, and F. Szeifert. Hybrid fuzzy con­volution model and its application in predictive control. Chemical Engineering Research and Design, 78:597-604, 2000.

[15] J. Abonyi, T. Chovan, 1. Nagy, and F. Szeifert. Hybrid convolution model and its application in predictive pH control. Computers and Chemical Engineering, S:221-224, 1999.

[16] J. Abonyi, L. Nagy, and F. Szeifert. Fuzzy control of batch polymer­ization reactors. In IEEE International Conference on Intelligent Systems, INES'97, pages 251-255, Budapest, Hungary, September 1997.

[17] J. Abonyi, L. Nagy, and F. Szeifert. Takagi-Sugeno fuzzy control of batch polymerization reactors. In P.K. Chawdry, R Roy, and RK. Plant, editors, Soft Computing In Engineering Design and Manufac­turing, pages 420-429. Springer, London, UK, ISBN 3-540-76214-0 1997.

[18] J. Abonyi, L. Nagy, and F. Szeifert. Adapive Sugeno fuzzy control: A case study. In R Roy, editor, Advances in Soft Computing - En­gineering Design and Manufacturing. Springer, London, UK, ISBN 1-852-33062-7, 1998.

References 251

[19] J. Abonyi, L. Nagy, and F. Szeifert. Adaptive fuzzy inference system and its application in modelling and model based control. Chemical Engineering Research and Design, 77 A:281-290, 1999.

[20] J. Abonyi, L. Nagy, and F. Szeifert. Letter to the editor: Com­ments on block-oriented NARMAX models with output multiplici­ties. AIChE Journal, 45:(8):1838-1839, 1999.

[21] J. Abonyi, L. Nagy, and F. Szeifert. Hybrid fuzzy convolution mod­elling and identification of chemical process systems. International Journal of Systems Science, 31:457-466, 2000.

[22] J. Abonyi, L. Nagy, and F. Szeifert. Fuzzy model based predic­tive control by instantaneous linearisation. Fuzzy Sets and Systems, 120(1):109-122,200l.

[23] J. Abonyi, H. Roubos, R. Babuska, and F. Szeifert. Identification of semi-mechanistic models with interpretable ts-fuzzy submodels by clustering, ols and fis model reduction. In F. Herrera L. Magdalena J. Casillas, O. Cordon, editor, Trade-off between Accuracy and Inter­pretability in Fuzzy Rule-Based Modelling. Studies in Fuzziness and Soft Computing, Physica-Verlag, London, UK, 2002.

[24] J. Abonyi and J .A. Roubos. Initialization of fuzzy classification rules. In 5th Online World Conference on Soft Computing in Industrial Applications, WSC5, Internet, September 2000.

[25] M. Agarwal. Combining neural and conventional paradigms for mod­elling, prediction and control. International Journal of Systems Sci­ence, 28(1):65-81, 1997.

[26] H. C. Andersen, A. Lotfi, and A. C. Tsoi. A new approach to adaptive fuzzy control: The Controller Output Error Method. IEEE Trans­actions on Systems, Man, and Cybernetics, SMC-27-B(4), August 1997.

[27] H. C. Andersen, A. Lotfi, and L. C. Westphal. Comments on 'func­tional equivalence between radial basis function networks and fuzzy inference systems'. IEEE Transactions on Neural Networks, May 1998.

[28] T. Anderson and P. Pucar. Estimation of residence time in continu­ous flow systems with dynamics. Journal of Process Control, 5:9-17, 1995.

[29] M.R. Arahal, M. Berenguel, and E.F. Camacho. Neural identification applied to predictive control of a solar plant. Control Engineering Practice, 6:334-344, 1998.

252 References

[30] C. Arbeithuber, H.P. Jorgl, and H. RamI. Fuzzy control of an iron ore sintering plant. Control Engineering Practice, 3:1669-1674, 1995.

[31] P. Arva and S. Nemeth. Learning algorithm in fuzzy control. Annales Univ. Sci. Budapest Sect. Comp., 12:25-32, 1991.

[32] KJ. Astrom and B. Wittenmark. Adaptive Control. Addison Wesley, Reading, MA, USA, 1989.

[33] KJ. Astrom and B. Wittenmark. Computer Controlled Systems: Theory and Design. Prentice-Hall International, Inc., London, 1990.

[34] M. Athans. Debate with Prof. Lotfi A. Zadeh. In 7th European Conference on Intelligent Techniques and Soft Computing (EUFIT '99). Aachen, Germany, Sep 1999.

[35] R. Babuska. Fuzzy Modeling for Control. Kluwer Academic Publish­ers, Boston, 1998.

[36] R. Babuska, C. Fantuzzi, U. Kaymak, and H.B. Verbruggen. Im­proved inference for Takagi-Sugeno models. In Proceedings Fifth IEEE International Conference on Fuzzy Systems, pages 701-706, New Orleans, USA, Sep 1996.

[37] R. Babuska, J .A. Roubos, and H.B. Verbruggen. Identification of MIMO systems by input-output TS fuzzy models. In Proceedings FUZZ-IEEE'98, pages 657-662, Anchorage, USA, 1998.

[38] R. Babuska, J.M. Sousa, and H.B. Verbruggen. Inverse fuzzy model based predictive control. In D. Driankov and R. Palm, editors, Ad­vances in Fuzzy Control, pages 129-154. Springer, Heidelberg, Ger­many, 1998.

[39] R. Babuska, H.A.B. te Braake, A.J. Krijgsman, and H.B. Ver­bruggen. Comparison of intelligent control schemes for real-time pressure control. Control Engineering Practice, 4(11):1585-1592, 1996.

[40] R. Babuska and H.B. Verbruggen. An overview of fuzzy modeling for control. Control Engineering Practice, 4(11):1593-1606, 1996.

[41] R. Babuska and H.B. Verbruggen. Fuzzy identification of Hammer­stein systems. In Proceedings Seventh IFSA World Congress, vol­ume II, pages 348-353, Prague, Czech Republic, June 1997.

[42] R. Babuska and H.B. Verbruggen. Fuzzy set methods for local mod­eling and identification. In R. Murray-Smith and T. A. Johansen, editors, Multiple Model Approaches to Nonlinear Modeling and Con­trol, pages 75-100. Taylor & Francis, London, UK, 1997.

References 253

[43] R. Babuska, H.B. Verbruggen, and H.J.L. van Can. Fuzzy modeling of enzymatic penicillin-G conversion. Engineering Applications of Artificial Intelligence, 12(1):79-92, 1999.

[44] T.C Backx. Combining first principles dynamic modelling and plant identification for design of an industrial MPC application to a poly­mer reactor. In Proceedings of the 14th Triennieal IFAC World Congress, pages N-7a-03-4. 1999.

[45] V. Balakrishnan, A. Zheng, and M. Morari. Constrained stabilization of discrete-time systems. Advances in MBPC. Oxford University Press, 1994.

[46] A. Banerjee and Y. Arkun. Model predictive control of plant transi­tions using a new identification technique for interpolating nonlinear models. Journal of Process Control, 8:441-457, 1998.

[47] P. Baranyi, 1.M. Bavelaar, R. Babuska, L.T. K6czy, A. Titli, and H.B. Verbruggen. A method to invert a linguistic fuzzy model. In­ternational Journal of Systems Science, 29(7):711-721, 1998.

[48] G. Barko, J. Abonyi, and J. Hlavay. Application of fuzzy clustering and piezoelectric chemical sensor array for investigation on organic compounds. Analitica Chimica Acta, 398(2-3):219-222, 1999.

[49] B. W. Bequette. Nonlinear control of chemical processes: A review. Industrial Engineering Chemical Research, 30:1391-1413, 1991.

[50] M. Berger. Self-tuning of a PI controller using fuzzy logic for a construction unit testing apparatus. Control Engineering Practice, 4:785-790, 1996.

[51] N.V. Bhat and T.J. McAvoy. Use of neural nets for dynamic mod­elling and control of chemical process systems. Computers and Chem­ical Engineering, 4/5:573-585, 1990.

[52] N.V. Bhat and T.J. McAvoy. Determining model structure for neural models by network stripping. Computers and Chemical Engineering, 16:271-281, 1992.

[53] N.V. Bhat, P.A. Minderman, T.J. McAvoy, and N.S. Wang. Mod­elling chemical process systems via neural computation. IEEE Con­trol Systems Magazine, April:24-30, 1990.

[54] K.K. Biassizo, 1. Skrjanc, and D. Matko. Fuzzy predictive control of highly nonlinear pH process. Computers and Chemical Engineering, 21/S:613-618, 1997.

[55] H.H.J. Bloemen and T.J.J. van den Boom. MPC for Wiener systems. In Proceedings of the 38th Conference on Decision and Control, pages 4595-4600, Phoenix, Arizona, USA, Dec. 1999.

254 References

[56] A. Bodizs, F. Szeifert, and T. Chovan. Convolution model based predictive controller for a nonlinear process. Ind. Eng. Chem. Res., 38:154-161, 1999.

[57] J.D. Bomberger and D.E. Seborg. Determination of model order for NARX models directly from input-output data. Journal of Process Control, 8:459-468, Oct-Dec 1998.

[58] K.M. Bossley. Neurofuzzy Modelling Approaches in System Identifi­cation. PhD thesis, University of Southampton, 1997.

[59] M.A. Botto, T. Boom, A. Krijgsman, and J.Sa Costa. Constrained nonlinear predictive control based on input-output linearization us­ing a neural network. International Journal of Control, 72(17):1538-1554, 1999.

[60] G.E.P. Box and C.M. Jenkins. Time Series Analysis, Forecasting and Control. Holden Day, San Francisco, USA, 1970.

[61] S.P. Boyd, L.E. Ghaoui, and E. Feron. Linear Matrix Inequalities in Systems and Control Theory. SIAM, Philadelphia, 1994.

[62] H.A.B.T Braake, van H.J.L. Can, and H.B. Verbruggen. Semi­mechanistic modelling of chemical processes with neural networks. Engineering Applications Artificial Intelligence, 11(4):507-515, 1998.

[63] D.M. Brengel and W.D. Sieder. Multistep nonlinear predictive con­troller. Ind. Eng. Chem. Res, 28:1812-1822, 1989.

[64] L. Brieman. Classification, and function approximation. Hinging Hyperplanes for Regression, 39(3):999-1013, 1993.

[65] A. Brooms and B. Kouvaritakis. Successive constrained optimiza­tion and interpolation in non-linear model based predictive control. International Journal of Control, 68(3):599-623, 2000.

[66] M. Brown and C. Harris. Neurofuzzy Adaptive Modelling and Control. Prentice Hall, New York, 1994.

[67] M. Brown and C.J. Harris. A perspective and critique of adaptive neurofuzzy systems used for modelling and control applications. In­ternational Journal of Neural Systems, 6:197-220, 1995.

[68] M. Brown and T. Ullrich. Comparison of node insertion algorithms for Delaunay networks. In Proceedings of IMACS 2nd MATHMOD Conference, pages 445-780, Vienna, 1997.

[69] P.M. Brujin and H.B. Verbruggen. Model algorithmic control using impulse response model. Journal A, 25(2):69-74, 1984.

References 255

[70] A.E. Bryson and Y.C. Ho. Adaptive Optimal Control. Hemisphere Publishing Corporation, 1975.

[71] E.F. Camacho and C. Bordons. Model Predictive Control in the Pro­cess Industry. Springer Verlag, Berlin, Germany, 1995.

[72] H.J.L. Can, H.A.B. Braake te, C. Hellinga, K.Ch.A.M. Luyben, and J.J. Heijnen. An efficient model development strategy for biopro­cesses based on neural networks in macroscopic balances. Biotech­nology and Bioengineering, 54:549-566, 1997.

[73] H.J.L. Can, H.A.B. te Brake, C. Hellinga, A.J. Krisgsman, H.B. Ver­bruggen, K.Ch.A.M. Luyben, and J.J. Heijnen. Design and real time testing of neural model predictive controller for nonlinear systems. Chemical Engineering Science, 50(15):2419-2430, 1995.

[74] C.T. Chou and M. Verhaegen. An indirect approach to closed-loop identification of Wiener models. In Proceedings of the American Con­trol Conference, San Diego, USA, June 1999.

[75] M.Y. Chow, S. Altug, and H.J. Trussel. Heuristic constraints enforce­ment for training of and knowledge extraction from a fuzzy/neural arhitecture. IEEE Transactions on Fuzzy Systems, 7(2):143-159, 1999.

[76] D. W. Clarke and C. Mohtadi. Properties of generalized predictive control. Automatica, 25(6):859-875, 1989.

[77] D. W. Clarke, C. Mothadi, and P.S.C. Tuffs. Generalized predictive control - Part 1. The basic algorithm. A utomatica, 23: 137-148, 1989.

[78] B.J. Cott, R.G. Durham, and G.R. Sullivan. Process model based en­gineering. Computers and Chemical Engineering, 13:973-984, 1989.

[79] M.G. Cox. Practical spline approximation. In Technical Report DITC 1/82. National Physical Laboratory, USA, 1982.

[80] D. Cubanski and D. Cyganski. Multivariable classification through adaptive Delaunay-based CO spline approximation. IEEE Trans­actions on Pattern Analyzis and Machine Intelligence, 17:403-417, 1995.

[81] J.M. Dion, L. Dugard, A. Franco, Nguyen Minh Tri, and D. Rey. MIMO adaptive constrained predictive control case study: An envi­romental test chamber. Automatica, 27:611-626, 1991.

[82] D. Dong and T.J. McAvoy. Nonlinear principal component analysis - based on principal curves and neural networks. Computers and Chemical Engineering, 20(1):65-78, 1996.

256 References

[83] D. Driankov, H. Hellendoorn, and M. Reinfrank. An Introduction to Fuzzy Control. Springer-Verlag, Heidelberg, Germany, 1993.

[84] D. Driankov, H. Hellendoorn, and M. Reinfrank. An Introduction to Fuzzy Control. Springer, Berlin, 1993.

[85] D. Driankov and R. Palm, editors. Advances in Fuzzy Control. Springer, Heidelberg, Germany, 1998.

[86] H.Al. Duwaish and N.M. Karim. A new method for identification of Hammerstein model. Automatica, 33(10):1871-1875, 1997.

[87] H.Al. Duwaish, N.M. Karim, and V. Chandrasekar. Use of mul­tilayer feed forward neural networks in identification and control of Wiener model. lEE Proceedings of Control Theory and Applications, 143(3):255-258, 1996.

[88] J.W. Eaton and J.B. Rawlings. Feedback control of chemical pro­cesses using on-line optimization techniques. Computers and Chem­ical Engineering, 14:469-479, 1990.

[89] C.G. Economou, M. Morari, and B.O. Palsson. Internal model con­trol. 5. Extension to nonlinear systems. Ind. Eng. Chem. Process Des. Dev., 25:403-411, 1986.

[90] E. Eskinat, S.H. Johnson, and W. Luyben. Use of Hammerstein mod­els in identification of nonlinear systems. AIChE Journal, 37(2):255-268, 1991.

[91] J.J. Espinosa and J. Vandewalle. Predictive control using fuzzy mod­els. In R. Roy, editor, Advances in Soft Computing - Engineering Design and Manufacturing. Springer, London, UK, 1998.

[92] B. Feil, J. Abonyi, and F. Szeifert. Determining the model order of nonlinear input-output systems by fuzzy clustering. In 7th On­line World Conference on Soft Computing in Industrial Applications (WSC'l). http://wsc7.ugr.es. London, UK, September 2002.

[93] M. Fischer and R. Isermann. Inverse fuzzy process models for robust hybrid control. In D. Driankov and R. Palm, editors, In Advances in Fuzzy Control, pages 103-128. Physica-Verlag, Heildelberg, New York, 1998.

[94] M. Fischer and O. Nelles. Predictive control based on local linear fuzzy models. International Journal of Systems Science, 29:679-697, 1998.

[95] U. Forssell. Properties and Usage of Closed-loop identification meth­ods. Ph.D Thesis, Linkoping University, 1997.

References 257

[96] T. R Fortesque, L.S. Kershenbaum, and B.E. Y dstie. Implementa­tion of self tuning regulators with variable forgetting factor. Auto­matica, 17:831-935, 1981.

[97] B.A. Foss, T.A. Johansen, and A.V. Sorensen. Nonlinear predictive control using local models - applied to a batch fermentation pro­cesses. Control Engineering Practice, 3:389-396, 1995.

[98] KP. Fruzetti, A. Palazoglu, and KA. McDonald. Nonlinear model predictive control using Hammerstein models. Journal of Process Control, 7(1):31-41, 1997.

[99] C. Fu and M. Poch. Fuzzy modelling and pattern recognition for dy­namic processes and its application for an activated sludge processes. Chemical Engineering Science, 50:3715-3725, 1995.

[100] C.E. Garcia and M. Morari. Internal model control: 1. A unifying review and some new results. Ind. Eng. Chem. Process Res. Dev., 21:308-323, 1982.

[101] C.E. Garcia and A.M. Morshedi. Quadratic programming solution of dynamic matrix control (QDMC). Chemical Engineering Commu­nications, 46:73-87, 1986.

[102] S.E. Garcia, D.M. Prett, and M. Morari. Model predictive control: Theory and practice - a survey. Automatica, 25(3):335-348, 1989.

[103] A.K Garga and N.K Bose. A neural network approach to the con­struction of Delaunay tessellation points in rd. IEEE Transactions on Circuits and Systems -I, 41:611-613, 1994.

[104] E.P. Gatzke and F. Doyle III. Multiple model approach for CSTR control. In Proceedings of the 14th Triennieal IFAC World Congress, pages N-7a-11-5. 1999.

[105] G. Goodwin and KS. Sin. Adaptive Filtering Prediction and Control. Prentice-Hall Inc.,Englewood Cliffs, New Jersey, 1984.

[106] A. Grace. Optimization Toolbox User's Guide. The Math Works Inc, Massachusetts, USA, 1992.

[107] P. Graham and RB. Newel. Fuzzy identification and control of a liquid level rig. Fuzzy Sets and Systems, 26:255-273, 1988.

[108] P. Graham and RB. Newel. Fuzzy adaptive control of a first order process. Fuzzy Sets and Systems, 31:47-65, 1989.

[109] A. Grauel and H. Mackenberg. Mathematical analysis of the Sugeno controller leading to general design rules. Fuzzy Sets and Systems, 85:165-175, 1997.

258 References

[110] F. Guely and P. Siarry. Gradient descent method for optimizing various fuzzy rule bases. In Proc. of the IEEE-Fuzz-93, pages 1241-1246. 1993.

[111] F. Guely and P. Siarry. A centred formulation of Takagi-Sugeno rules for improved learning efficiency. Fuzzy Sets and Systems, 62:277-285, 1994.

[112] E. J. Hartman, J. D. Keeler, and J. M. Kowalski. Layered Neural Networks with Gaussian Hidden Units As Universal Approximations. Neural Computation, 2:210-215, 1990.

[113] H. Hellendoorn and D. Driankov, editors. Fuzzy Model Identification: Selected Approaches. Springer, Berlin, Germany, 1997.

[114] M. Henson and D.E. Seborg. Nonlinear Process Control. Prentice Hall, Englewood Cliffs N.J., USA, 1997.

[115] M.A. Henson. Nonlinear model predictive control: Current status and future directions. Computers and Chemical Engineering, 23:187-202,1998.

[116] E. Hernandez and Y. Arkun. Study of control-relevant properties of backpropagation neural network models of nonlinear dynamical systems. Computers and Chemical Engineering, 16(4):227-240,1992.

[117] E. Hernandez and Y. Arkun. Control of nonlinear systems using polynomial ARMA models. AICHE Journal, 39(3):446-460, 1993.

[118] J.Q. Hu and E. Rose. Predictive fuzzy control applied to the sinter strand process. Control Engineering Practice, 5:247-253, 1997.

[119] KJ. Hunt, R. Haas, and R. Murray-Smith. Extending the functional equivalence of radial basis function networks and fuzzy inference sys­tems. IEEE Transactions on Neural Networks, 7(3):776-781, 1996.

[120] KJ. Hunt and T.A. Johansen. Design and analysis of gain-scheduled control using local controller networks. International Journal of Con­trol, 66(5):619-651, 1997.

[121] KJ. Hunt and D. Sbarbaro. Neural networks for nonlinear internal model control. lEE Proceedings -D., 138:431-438, 1991.

[122] KJ. Hunt, D. Sbarbaro, R. Zbikowki, and P.J. Gawthrop. Neural networks for control systems - A survey. IEEE Transactions on Neural Networks, 28:1083-1112, 1992.

[123] W.H. Hwang, J.I. Chey, and J.I. Rhee. Modelling and control of continuous stirred tank reactor for thermal copolymerisation. In­ternational Journal of Applied Polymerisation Science, 67:921-931, 1998.

References 259

[124] E. Ikonen, K Najim, and U. Kortela. Identification of non-linear processes using steady-state models with linear FIR dynamics. In Proceedings of the 14th Triennieal IFAC World Congress, pages H-3a-02-3. 1999.

[125] S.R Inamdar and M.S. Chiu. Fuzzy logic control of an unstable bio­logical reactor. Chemical Engineering Technology, 20:414-418, 1997.

[126] R Isermann and KH. Lachmann. Parameter adaptive control with configurational aids and supervision functions. Automatica, 21(6):625-638, 1985.

[127] H. Ishibuchi, T. Nakashima, and T. Murata. Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems. IEEE Transaction on Systems, Man, and Cybernetics: Part B, 29:601-618, 1999.

[128] H. Ishibuchi, K Nozaki, H. Tanaka, Y. Hosaka, and M. Matsuda. Empirical study on learning in fuzzy systems by rice taste analysis. Fuzzy Sets and Systems, 64:129-144, 1994.

[129] RA. Jacobs and M.l. Jordan. Learning piecewise control strategies in a modular neural network architecture. IEEE Transactions on Systems, Man, and Cybernetics, 23(2):337-345, 1993.

[130] R Jager. Fuzzy logic in control. Delft University of Technology, The Netherlands, 1995.

[131] J.-S. R Jang and Sun C.-T. Functional Equivalence Between Ra­dial Basis Function Networks and Fuzzy Inference Systems. IEEE Transactions on Neural Networks, 4(1):156-159, Jan. 1993.

[132] J.-S.R Jang. Input selection for anfis learning. In Proceedings of the IEEE International Conference on Fuzzy Systems, Orlando, USA, 1994.

[133] J.-S.R Jang, C.-T. Sun, and E. Mizutani. Neuro-Fuzzy and Soft Computing; a Computational Approach to Learning and Machine In­telligence. Prentice-Hall, Upper SadIe River, 1997.

[134] J.S.R Jang. ANFIS: Adaptive-network-based fuzzy inference sys­tems. IEEE Transactions on Systems, Man and Cybernetics, 23:665-685, 1993.

[135] J.S.R Jang and C.T. Sun. Neuro-fuzzy modelling and control. Pro­ceedings of the IEEE, 83:378-406, 1995.

[136] C. Jian. A predicting system based on combining an adaptive pre­dictor and a knowledge base as applied to a blast furnace. Journal of Forecasting, 12:93-102, 1993.

260 References

[137] Y. Jin. Fuzzy modeling of high-dimensional systems. IEEE Trans­actions on Fuzzy Systems, 8:212-221, 2000.

[138] Z. Jinxiang, Z. Zaiman, Q. Yanbin, Y. Limu, W. Suqin, and 1. Lianyu. pH fuzzy control of automated industrial electroplating of gold. Chemical Engineering Technology, 20:576-580, 1997.

[139] T.A. Johansen. Operating regime based process modeling and identi­fication. PhD thesis, Department of Engineering Cybernetics, Nor­wegian Institute of Technology, University of Trondheim, Norway, 1994.

[140] T.A. Johansen. Identification of non-linear systems using empirical data and a priori knowledge - an optimisation approach. Automatica, 32:337-356, 1996.

[141] T.A. Johansen. Constrained and regularized system identification. Modeling, Identification and Control, 19(2):109-116, 1998.

[142] T.A. Johansen, R Shorten, and R Murray-Smith. On the inter­pretation and identification of Takagi-Sugeno fuzzy models. IEEE Transactions on Fuzzy Systems, 8:297-313, 2000.

[143] C.R Johnson and E. Tse. Adaptive implementation of one-step­ahead optimal control via input matching. IEEE Transactions on Automatic Control, AC-23(5):865-872, October 1978.

[144] C.R Johnson. Lectures on Adaptive Parameter Estimation. Prentice Hall, Englewood Cliffs, 1988.

[145] S.B. Jorgensen and K.M. Hangos. Grey box modelling for control: Qualitative models as a unifying framework. International Journal of Adaptive Control and Signal Processing, 9:547-562, 1995.

[146] M. Karny, A. Haluskova, and P. Nedoma. Recursive approximation by ARX model: A tool for grey-box modelling. Int. J. Adaptive Control and Signal Processing, 9:525-546, 1995.

[147] T. Kavli. ASMOD - an algorithm for adaptive spline modelling of observation data. International Journal of Control, 58(4):947-967, 1993.

[148] T. Kavli and G.T. Lines. A unifying framework for mechanistic: Fuzzy and data driven modelling. In EUFIT'96, pages 1241-1246. Aachen, Germany, Sep 1996.

[149] RM.C. Keyser, G.A. Velde, and F.A.G. Dumortier. A comparative study of self-adaptive long-range predictive control methods. Auto­matica, 24(2):149-163, 1988.

References 261

[150] E. Kim, M. Park, S. Kim, and M. Park. A transformed input-domain approach to fuzzy modeling. IEEE Transactions on Fuzzy Systems, 6:596-604, 1998.

[151] G.J. Klir and B. Yuan. Fuzzy sets and fuzzy logic; theory and appli­cations. Prentice Hall, 1995.

[152] M.V. Kothare, V. Balakrihnan, and M. Morari. Robust constrained predictive control using linear matrix inequalities. Automatica, 32(10) :1361-1379, 1996.

[153] C.W. Koung and J.F. MacGregor. Design of identification exper­iments for robust control. A geometric approach for bivariate pro­cesses. Ind. Eng. Chem. Res., 32:1658-1666, 1993.

[154] A. Kraslawski, W. Pedrycz, T. Koiranen, and L. Nystrom. Hybrid knowledge-based tool for mixing equipment selection - the fuzzy neural network. Chemical Engineering Technology, 19:233-239, 1996.

[155] A. Kroll. Identification of functional fuzzy models using multidimen­sional reference sets. Fuzzy Sets and Systems, 80:149-158, 1996.

[156] M.J. Kurtz and M.A. Henson. Input-output linearizing control of constrained nonlinear processes. Journal of Process Control, 7:3-17, 1997.

[157] A. Lagerberg and C. Breitholtz. A study of gain scheduling control applied to an exothermic CSTR. Chemical Engineering Technology, 20:435-444, 1997.

[158] D. Lee and T. Kang. Adaptive fuzzy control of the molten steel level in a strip-casting process. Control Engineering Practice, 4:1511-1520, 1996.

[159] J.H. Lee. Modeling for nonlinear model predictive control: Re­quirements, current status and future research needs. In Allgower and A. Zheng, editors, Nonlinear Model Predictive Control, Progress in Systems and Control Theory Series, volume 26, pages 348-353. Birkhiiuser Verlag, Basel, 2000.

[160] J.H. Lee and Z.H. Yu. Tuning of model predictive controllers for ro­bust performance. Computers and Chemical Engineering, 18(1):15-37, 1994.

[161] R. Leitch. Artificial intelligence in control: Some myths, some fears but plenty prospects. Computing and Control Engineering Journal, July:153-163, 1992.

[162] D.J. Leith and W.E. Leithead. Analytic framework for blended mul­tiple model systems using linear local models. International Journal of Control, 72:605-619, May 1999.

262 References

[163J I.J. Leontaritis and S. A. Billings. Experimental design and identifi­ably for nonlinear systems. International Journal of Systems Science, 18:189-202, 1987.

[164J W.C. Li and L.T. Biegler. Multistep, Newton-type control strategies for constrained, nonlinear processes. Chem. Eng. Res. Des. (Trans IChemE), 67:532-, 1989.

[165J G. Lightbody, P. O'Reilly, K. Kelly, and J. McCormick. Neural mod­elling of chemical plant using MLP and B-spline networks. Control Engineering Practice, 5(11):150-1515, 1997.

[166J P. Lindskog. Fuzzy identification from a grey box modeling point of view. In H. Hellendoorn and D. Driankov, editors, Fuzzy Model Identification: Selected Approaches. Springer, Berlin, Germany, 1997.

[167J P. Lindskog and L. Ljung. Tools for semiphysical modelling. Interna­tional Journal of Adaptive Control and Signal Processing, 9(6):509-523,1995.

[168J D.A. Linkens and S. Kandiah. Long-range predictive control using fuzzy process models. Chem. Eng. Res. Des. (Trans IChemE), 74:77-88, 1996.

[169J L. Ljung. System Identification, Theory for the User. Prentice-Hall, New Jersey, 1987.

[170J L. Ljung and T. Soderstrom. Theory and practice of recursive iden­tification. MIT Press, Cambridge, Massachusetts, 1983.

[171J A. Lofti, H.C. Andersen, and A.C. Tsoi. Interpretation preserva­tion of adaptive fuzzy inference systems. International Journal of Approximate Reasoning, 15(4):379-394, 1996.

[172J R.F Luo and Z.J. Zhang. Fuzzy-neural-net-based inferential control for a high-purity distillation column. Control Engineering Practice, 3:31-40, 1995.

[173J W. Luo, M.N. Karim, A.J. Morris, and E.B. Martin. A control rele­vant identification of a pH waste water neutralization process using adaptive radial basis function networks. Computers and Chemical Engineering, 20/S:1017-1022, 1996.

[174J M.M. Mahesh and M. Chidambaram. Fuzzy state estimator for semi­batch copolimerisation reactor. Chemical Engineering Technology, 15:395-400, 1992.

[175J E.H. Mamdani. Advances in the linguistic synthesis of fuzzy con­trollers. International Journal of Man-Machine Studies, 8:669-678, 1976.

References 263

[176] E.H. Mamdani, T. Teraqno, K Asai, and M. Sugeno. Fuzzy-systems theory and its applications. Nature, 359:788-788, 1992.

[177] J.L. Marchetti, D.A. Mellichamp, and D.E. Seborg. Predictive con­trol based on discrete convolution models. Industrial Engineering Chemical Process Design and Development, 22:488-495, 1983.

[178] T.J. McAvoy, E. Hsu, and S. Lowenthal. Dynamics of pH in con­trolled stirred tank reactor. Industrial Engineering Chemical Process Design and Development, 11(1):68-~0, 1972.

[179] E.S. Meadows and J .B. Rawlings. Model predictive control. In M.A. Henson and D.E. Seborg, editors, Nonlinear Process Control, pages 233-310. Prentice-Hall, Englewood Cliffs, NJ, 1997.

[180] J. Medek, S. Hradecka, and M. Dohnal. Fuzzy evaluation of large suspension mixing tanks. Chemical Engineering Technology, 16:125-129, 1993.

[181] J.M. Mendel. Fuzzy logic systems for engineering: A tutorial. Pro­ceedings of the IEEE, 83:345-377, 1995.

[182] S. Mollov, P. van de Veen, R. Babuska, J. Abonyi, J.A. Roubos, and H.B. Verbruggen. Extraction of local linear models from Takagi­Sugeno fuzzy model with application to model-based predictive con­trol. In Proceedings Seventh European Congress on Intelligent Tech­niques and Soft Computing EUFIT'99, pages 147-154, Aachen, Ger­many, Sep 1999.

[183] Moody. Fast Learning in Networks of Locally-Tuned Processing Units. Neural Computation, 1:281-294, 1989.

[184] K Murakami and D.E. Seborg. Constrained parameter estimation with applications to blending operations. Journal of Process Control, 10:195-202, 2000.

[185] R. Murray-Smith. A local model network approach to nonlinear mod­elling. In PhD Thesis. University of Strathclyde, Computer Science Department, 1994.

[186] R. Murray-Smith and T.A. Johansen, editors. Multiple Model Ap­proaches to Nonlinear Modeling and Control. Taylor & Francis, Lon­don, UK, 1997.

[187] KR. Muske. Nonlinear state estimation. In M.A. Henson and D.E. Seborg, editors, Nonlinear Process Control, pages 311-370. Prentice­Hall, Englewood Cliffs, NJ, 1997.

[188] KS. Narendra and J. Balakrishnan. Adaptive control using multiple models. IEEE Transactions on Automatic Control, AC-42:171-187, 1997.

264 References

[189J KS. Narendra and P.G. Gallman. An iterative method for the iden­tification of nonlinear systems using the Hammerstein model. IEEE Transactions on Automatic Control, 12:546, 1966.

[190J KS. Narendra and K Parthasarathy. Identification and control of dynamical systems. IEEE Transactions on Neural Networks, 1:4-27, 1990.

[191J H. Ni, K Debelak, and D. Hunkeler. Temperature control of highly exothermic batch polymerisation reactors. International Journal of Applied Polymerisation Science, 69:761-772, 1997.

[192J H. Nomura, 1. Hayashi, and N.A. Wakami. Self-tuning method of fuzzy control by descent method. In Proceedings of the IFSA '91, pages 155-158. 1991.

[193J S. J. Norquay, A. Palazoglu, and J.A. Romagnoli. Application of Wiener model predictive control (WMPC) to an industrial c2-splitter. Journal of Process Control, 9:461-473, 1999.

[194J S. J. Norquay, A. Palazoglu, and J.A. Romagnoli. Application of Wiener model predictive control (WMPC) to a pH neutralization ex­periment. IEEE Transactions on Control Systems Technology, 7:437-445, 1999.

[195J J.V. Oliveira de. Semantic constraints for membership function op­timization. IEEE Transactions on Fuzzy Systems, 19:128-138, 1999.

[196J N. Oliveira de and 1. Biegler. An extension of newton-type algo­rithms for nonlinear process control. A utomatica, 31 :281-286, 1995.

[197J S. M. Omohundro. The Delaunay triangulation and function learn­ing. In Technical Report 90-001. International Computer Science Institute Berkeley, California, 1989.

[198J M.J.L. Orr. Introduction to radial basis function networks. In Re­search Report. Centre of Cognitive Science, University of Edinburgh, Edinburgh, Schotland, April 1996.

[199J R. Palm, D. Driankov, and H. Hellendoorn. Model Based Fuzzy Con­trol. Springer, Berlin, 1997.

[200J KK Pankratov. Spatial and geometric analysis toolbox. http://puddle. mit.edu/§lenn/kirill/saga.html, SaGA version 1.3, 1995.

[201J D. Passaquay, M. Bross, R. Babuska, S. Boverie, and A. Titli. Perfor­mance evaluation of fuzzy rule base for control purpose. In Proceed­ings IEEE International Conference on Fuzzy Systems, San Antonio, USA, May 2000.

References 265

[202J KM. Passino and S. Yurkovic. Fuzzy Control. Addison-Wesley, New York, USA, 1998.

[203J RK Pearson. Nonlinear input/output modelling. Journal of Process Control, 5(4):197-211, 1995.

[204J RK Pearson. Steady-states of empirical models. In Proceedings of the 14th World Congress of IFAC, pages N-7a-03-6, Beijing, China, 1999.

[205J RK Pearson and B.A. Ogunnaike. Nonlinear process identification. In M.A. Henson and D.E. Seborg, editors, Nonlinear Process Control, pages 11-109. Prentice-Hall, Englewood Cliffs, NJ, 1997.

[206J W. Pedrycz. Fuzzy Control and Fuzzy Systems (second, ex-tended, edition). John Wiley and Sons, New York, 1993.

[207J W. Pedrycz. Why triangular membership functions? Fuzzy Sets and Systems, 64:21-30, 1994.

[208J T. Peterson, E. Hernandez, Y. Arkun, and F.J. Schork. A nonlinear DMC algorithm and its application to a semi batch polimerization reactor. Computers and Chemical Engineering, 47:737-753, 1992.

[209J B. Posthlethwaite. A model-based fuzzy controller. Chemical Engi­neering Research and Design (Trans IChemE), 72(A1):38-46, 1994.

[21OJ B. Posthlethwaite. Building a model-based fuzzy controller. Fuzzy Sets and Systems, 79:3-13, 1997.

[211J B. Posthlethwaite, M. Brown, and C. H. Sing. A new identification algorithm for fuzzy relational models and its applications in model­based control. Chemical Engineering Research and Design (Trans IChemE), 75(A1):453-458, 1997.

[212J M. Pottman and RK Pearson. Block-oriented narmax models with output multiplicities. AIChE Journal, 44:131-140, 1998.

[213J M. Pottman, H. Unbehauen, and D.E. Seborg. Application of a general muti-model approach for identification of highly nonlinear systems. International Journal of Control, 57:97-120, 1993.

[214J M.J.D. Powell. Radial basis functions for multivariable interpola­tion - A review. In Algorithms for Approximation, pages 143-167. Clarendon Press, Oxford, 1987.

[215J D.M. Prett and C.E. Garcia. Fundamental Process Control. Butter­worths, Boston, 1988.

[216J T.J. Procyk and E.H. Mamdani. A linguistic self-organising process controller. Automatica, 15:15-30, 1979.

266 References

[217] D.C. Psichogios and L.R. Ungar. Direct and indirect model based control using artificial neural networks. Ind. Eng. Chem. Process Des. Dev., 30:2564-2573, 1991.

[218] D.C. Psichogios and L.R. Ungar. A hybrid neural network - first principles approach to process modeling. AIChE J., 38:1499-1511, 1992.

[219] S.J. Qin and T.J. McAvoy. Nonlinear PLS modeling using neural net­works. Computers and Chemical Engineering, 12(4):379-391, 1992.

[220] S. Ramchandran. Consider steady-state models for process control. Chemical Engineering Progress, February:75-81, 1998.

[221] J.B. Rawlings and K.R. Muske. The stability of constrained re­ceding horizon control. IEEE Transactions on Automatic Control, 38(10):1512-1516, 1993.

[222] J .M. Renders, M. Saerens, and R. Rugues. Fuzzy adaptive control of a certain class of SISO discrete-time processes. Fuzzy Sets and Systems, 85:49-61, 1997.

[223] C. Rhodes and M. Morari. Determining the model order of nonlinear input/output systems. AIChE Journal, 44:151-163, 1998.

[224] J. Richalet. Industrial applications of model based predictive control. Automatica, 29:1251-1274, 1993.

[225] J. Richalet, A. Rault, J.L. Testud, and J. Papon. Model predictive heuristic control: Applications to industrial processes. Automatica, 14:413-428, 1978.

[226] A. Riid and E. Rustern. Gradient descent based optimization of transparent Mamdani systems. In 6th Int. Conf. on Neural Networks and Soft Computing, Zakopane, Poland, June 11-15., 2002.

[227] B. Roffel and P.A. Chin. Fuzzy control of a polymerization reactor. Hydrocarbon Processing, June:47-49, 1991.

[228] J.A. Roubos, S. Mollov, R. Babuska, and R.B. Verbruggen. Fuzzy model based predictive control by using Takagi-Sugeno fuzzy models. International Journal of Approximate Reasoning, 22:3-30, 1999.

[229] J.A. Roubos, M. Setnes, and J. Abonyi. Learning fuzzy classification rules from data. In R. John and R. Birkenhead, editors, Developments in Soft Computing. Springer, Physica Verlag, 2001.

[230] L.E. Scales. Introduction to Non-linear Optimization. Computer Science Series, Macmillan, 1985.

References 267

[231] J. Schubert, R. Simutis, M. Dors, and 1. Havlik ab A. Lubbert. Bio­process optimization and control: Application of hybrid modelling. Journal of Biotechnology, 35:51-68, 1994.

[232] D.E. Seborg, T.F. Edgar, and D.A. Mellichamp. Process Dynamics and Control. John Wiley, New York, 1989.

[233] M. Setnes, R. Babuska, U. Kaymak, and H.R. van Nauta Lemke. Similarity measures in fuzzy rule base simplification. IEEE Transac­tion on Systems, Man, and Cybernetics: Part B, 28:376-386, 1998.

[234] M. Setnes, R. Babuska, and H.B. Verbruggen. Rule-based modeling: Precision and transparency. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 28(1):165-169, 1998.

[235] M. Setnes, V. Lacrose, and A. Titli. Complexity reduction methods for fuzzy systems design. In H.B. Verbruggen and R. Babuska, edi­tors, Fuzzy Logic Control: Advances in Applications, pages 185-218. World Scientific, Singapore, 1999.

[236] R. Shridhar and D.J. Cooper. A tuning strategy for unconstrained SISO model/ predictive control. Industrial Engineering Chemistry Research, 36:729-746, 1997.

[237] R. Shridhar and D.J. Cooper. A tuning strategy for unconstrained multivariable model predictive control. Industrial Engineering Chem­istry Research, 37:4003-4016, 1998.

[238] P.B. Sistu and B.W. Bequette. Nonlinear predictive control of uncertain processes: Application to a CSTR. AICHE Journal, 37(11):1711-1722,1991.

[239] J. Sjoberg, Q. Zhang, L. Ljung, A. Benveniste, B. Deylon, P-Y. Glorennec, H. Hjalmarsson, and A. Juditsky. Nonlinear black-box modeling in system identification: a unified overview. A utomatica, 31:1691-1724, Dec 1995.

[240] A. Skeppstedt and L. Ljung abd M. Millnert. Construction of com­posite models from observed data. International Journal of Control, 55:141-152, 1992.

[241] S. Skogestad. Dynamics and control of distilation columns. Chem. Eng. Res. Des. (Trans IChemE) , 75:539-562, 1997.

[242] E. D. Sontag. An algebraic approach to bounded controllability of lin­ear systems. International Journal of Control, pages 181-188, 1984.

[243] O. Sorensen. Neural networks in control applications. In PhD Theis. Aalborg University, Department of Control Engineering, 1994.

268 References

[244] P. Stoica. On the convergence of an iterative algorithm used for Hammerstein system identification. IEEE Transactions on A uto­matic Control, 26:967-969, 1981.

[245] H.T. Su and T.J. McAvoy. Integration of multilayer percepton net­works and linear dynamic models: A Hammerstein modeling ap­proach. Ind. Eng. Chem. Res., 32:1927-1936, 1993.

[246] M. Sugeno and G.T. Kang. Fuzzy modelling and control of multilayer incinerator. Fuzzy Sets and Systems, 18:329-346, 1986.

[247] M. Sugeno and G.T. Kang. Structure identification of fuzzy model. Fuzzy Sets and Systems, 28:15-33, 1988.

[248] M. Sugeno and K. Tanaka. Successive identification of a fuzzy model and its application to prediction of a complex system. Fuzzy Sets and Systems, 42:315-334, 1991.

[249] M. Sugeno and T. Yasukawa. A fuzzy-logic-based approach to qual­itative modeling. IEEE Transactions on Fuzzy Systems, 1(1):7-31, 1993.

[250] F. Szeifert, T. Chovan, and L. Nagy. Adaptive optimizing con­trol algorithm for a CSTR. Computers and Chemical Engineering, 16/S:197-204, 1992.

[251] T. Takagi and M. Sugeno. Fuzzy identification of systems and its application to modeling and control. IEEE Transactions on Systems, Man and Cybernetics, 15(1):116-132, 1985.

[252] H. Takatsu and T. Itoh. Future need for control theory in industry -report of the control technology survey in japanese industry. IEEE Transactions on Control Systems Technology, 7:298-305, 1999.

[253] M.L. Thompson and M.A. Kramer. Modeling chemical processes using prior knowledge and neural networks. AIChE Journal, 40:1328-1340, 1994.

[254] W.D. Timmons, H.J. Chizeck, and P.G. Katona. Parameter­constrained adaptive control. Ind. Eng. Chem. Res., 36:4894-4905, 1997.

[255] A.Y.D. Tsen, S.S. Jang, and D.S.H. Wong. Predictive control of quality in batch polymerization using hybrid ANN models. AIChE Journal, 42(2):455-465, 1996.

[256] H.J.A.F Tulleken. Gray-box modelling and identification using phys­ical knowledge and Bayesian techniques. Automatica, 29:285-308, 1993.

References 269

[257] T. Ullrich and M. Brown. Delaunay-based nonlinear internal model control. In International Conference on Applications of Computer Systems (ACS 97). Szczecin, Poland, 1997.

[258] T. Ullrich, K. Hohm, and H. Tolle. On the integration of expert knowledge in interpolating controllers. In International ICSCIIFAC Symposium on Neural Computation (NC 98). Vienna, Austria, 1998.

[259] T. Ullrich and H. Tolle. Delaunay-based local model networks for nonlinear system identification. In lASTED International Conference Applied Modelling and Simulation. Banff, Canada, 1997.

[260] H.J.L. van Can, H.A.B. te Braake, C. Hellinga, K.Ch.A.M. Luyben, and J.J. Heijnen. Strategy for dynamic process modeling based on neural networks and macroscopic balances. AIChE Journal, 42:3403-3418, 1996.

[261] H.B. Verbruggen and P.M. Brujin. Fuzzy control and conventional control: What is (and can be) the real contribution of fuzzy systems? Fuzzy Sets and Systems, 90:151-160, 1997.

[262] M. Verhaegen and D. Westwick. Identifying MIMO Hammerstein systems in the context of subspace model identification methods. International Journal of Control, 63:331-349, 1996.

[263] B. Wahlberg. System-identification using laguerre models. IEEE Transactions on Automatic Control, 36(5):551-562, 1991.

[264] B. Wahlberg. System-identification using kautz models. IEEE Trans­actions on Automatic Control, 39(6):1276-1282, 1994.

[265] L. X. Wang and J. M. Mendel. Fuzzy Basis Functions, Universal Ap­proximators, and Orthogonal Least-Squares Learning. IEEE Trans Neural Networks, 3(5):807-814, Sept. 1992.

[266] L.X. Wang. A course in Fuzzy Systems and Control. Prentice Hall, New York, USA, 1997.

[267] D. F. Watson. Computing the N-dimensional Delaunay tessellation, application to Voronoi polytopes. The Computer Journal, 24:167-172, 1981.

[268] T. Wiegren. Convergence analysis of recursive-identification algo­rithms based on the nonlinear Wiener model. IEEE Transactions on Automatic Control, 39:2191-2206, 1994.

[269] RR Yager and D.P. Filev. Essentials of Fuzzy Modeling and Control. John Wiley, New York, 1994.

270 References

[270] Y. Yam. Fuzzy approximation via grid point sampling and singu­lar value decomposition. IEEE Transactions on Systems, Man, and Cybernetics -Part B., 27(6):933-951, 1997.

[271] Y. Yamashita, S. Matshumoto, and M. Suzuki. Start-up of a cat­alytic reactor by fuzzy controller. Journal of Chemical Engineering of Japan, 21:277-281, 1988.

[272] B.B. Y dstie. Forecasting and control using adaptive connection-ist networks. Computers and Chemical Engineering Journals, 15(4/5):583-599, 1990.

[273] J. Yen and L. Wang. Simplifying fuzzy rule-based models using orthogonal transformation methods. IEEE Transaction on Systems, Man, and Cybernetics: Part B, 29:13-24, 1999.

[274] J. Yen, 1. Wang, and C.W. Gillespie. Improving the interpretability of TSK fuzzy models by combining global learning and local learning. IEEE Transactions on Fuzzy Systems, 6(4):531-537, 1998.

[275] S.Y. Yi and M.J. Chung. Identification of fuzzy relational model and its application to control. Fuzzy Sets and Systems, 59(1):25-33, 1993.

[276] J.P. Ylen and P. Jutila. Fuzzy self-organising pH control of an am­monia scrubber. Control Engineering Practice, 5:1233-1244, 1997.

[277] L. A. Zadeh. Fuzzy Sets. Information and Control, 8:338-353, 1965.

[278] E. Zafiriou. Robust model predictive control of processes with hard constraints. Computers and Chemical Engineering, 14(4/5):359-371, 1990.

[279] A. Zheng and M. Morari. Global stabilization of linear discrete­time systems with bounded controls - a model predictive control approach. In Proceedings of the American Control Conference, pages 2847-2851, Baltimore, Maryland, USA, June 1994.

[280] Yucai Zhu. Parametric Wiener model identification for control. In Proceedings IFAC Word Congress, pages H-3a-02-1, Bejing, China, July 1999.

Index

adaptive adaptation parameter, 124 adaptive fuzzy control, 174, 226 affine model, 48 Akaike Information Criteria, 121 AN OVA decomposition, 57 augmented data approach, 11

B-spline network, 36 barrier function, 124 barycentric coordinate, 41 basis function, 37 Bayesian Information Criteria, 121 bias modeling, 6 black-box model, 2 block-oriented modeling, 13, 58

constrained identification, 15, 107 continuous stirred tank reactor,

61, 194 control horizon, 181 convolution model, 74 cores, 34 cost function, 181 curse of dimensionality, 73

data preprocessing, 25 defuzzification, 28 Delaunay triangulation, 40 delay coordinate method, 63 disturbance, 182, 191 dynamic linearization, 17

empirical modeling, 53

excitation signal, 146 expert know ledge, 2 explicit use of prior knowledge, 5

feedback block-oriented model, 59 feedback linearization, 217 filter design, 171 Final Prediction Error Criteria, 121 firing strength, 28 first-principle model, 2 forced response, 188 forward selection, 121 free response, 187 free run simulation, 56 fuzzification, 25 fuzzy basis function, 29 fuzzy control, 165 fuzzy Hammerstein model, 80 fuzzy inference, 28 fuzzy model based control, 166 fuzzy relational model, 27 fuzzy set, 25

Gauss-Newton method, 89 generalized Hamerstein model, 157 global constraints, 108 global identification, 92 gradient-descent method, 89 grey-box modeling, 11 grid partitioning, 30 grid-type partition, 126

271

272

Hammerstein model, 58 heuristic identification, 93 hierarchical defuzzification, 44 high-gain direction, 105 hybrid fuzzy convolution model,

73

identification, 87 if-then rule, 27 implicit use of prior knowledge, 3 impulse response model, 55, 56,

75 indirect adaptive control, 226 indirect adaptive IMC controller,

175 inequality constraints, 109 input constraint, 184 input multiplicity, 63 input projection, 57 input selection, 118 input sequence design, 54 input transformation, 57 internal model control, 169 interpretability, 123 inverse model, 46

least squares estimation, 90 leave-one-out validation, 120 Levenberg-Marquardt method, 89 linear parameter-varying (LPV) sys-

tem interpretation, 65 linearization, 50 linearization of the model, 65 linguistic interpretability, 123 liquid level control, 176, 247 local constraints, 108 local identification, 92 local model, 11

Mamdani fuzzy model, 27 measurement data, 2 mechanistic knowledge, 2 membership function, 25 model inversion, 46

Index

model predictive control, 180 model validation, 55 modern control theory, 16 Moore-Penrose pseudo-inverse, 92 multi-step-ahead prediction, 56 multiple-input, multiple-output sys-

tems (MIMO), 71 multivariate membership functions,

40

NAARX model, 58 Narendra and Gallman algorithm,

153 NARMAX model, 56 NARX model, 60 NARX model, 56 neuro-fuzzy system, 6 Newton method, 89 NOE model, 56 noise modeling, 55 nonlinear predictive control, 185

operating regime, 36 operating regime based model, 11 orthogonal transform, 122 output constraint, 184 output multiplicity, 63 output-error (OE) model, 56

p-fold cross-validation, 119 parameter estimation, 55 partial derivative, 50 partial input reduction, 44 pH control, 241 PID control, 16 piecewise models, 36 postprocessing, 28 prediction horizon, 180 prior knowledge, 1 product-sum-gravity inference, 31

quadratic programming, 108

radial basis function, 38 receding horizon principle, 185

Index

reference trajectory, 181 regularity criteria, 119 regularization, 124 relative constraints, 108 residence time distribution, 75 rule base, 26 rule generation on extrema, 118

sampling time, 110 scatter partition, 31 semi-mechanistic modeling, 7 sequential technique, 186 settling time, 112 simultaneous technique, 186 singleton, 25 singleton fuzzy model, 31 smoothed maximum inference, 98 stability, 64, 110 state estimation, 183 state-space model, 8 state-space realization, 63 steady-state behavior, 63

steady-state gain, 112 steady-state offset, 183 structure identification, 118 structure selection, 54

273

successive linearization technique, 186

Taylor expansion, 50 tree partition, 31 triangular membership function,

34

universal approximation, 28

variance accounted for index, 114 variance of accounted for index

(VAF) , 106 Volterra model, 58

weighted least-squares, 93 white-box model, 2 Wiener model, 59