App Ends

download App Ends

of 5

Transcript of App Ends

  • 7/27/2019 App Ends

    1/5

    458

    APPENDIX A Similitude for Model Tests in a 1-g Gravitational Field (Iai, 1989)

    Geometric Scaling Factor 8

    Soil Density Scaling Factor 1

    Model Soil Shear Wave Velocity (Vs)m 100

    Prototype Soil Shear Wave Velocity (Vs) 282.8

    Soil Strain Scaling Factor = / [(Vs)p/(Vs)m]2

    1

    prototype:model

    x length 8

    density of saturated soil p 1

    strain of soil 1

    t time ()0.5

    2.83

    0 strain of soil due to creep, temperature, etc. 1

    total stress of soil 8

    ' effective stress of soil 8

    D tangent modulus of soil p/ 8

    Ks bulk modulus of the solid grains of soil p/ 8

    p pressure of pore water and/or external water 8

    k permeability of soil ()0.5

    /p 2.83

    u displacement of soil and/or structure 8

    u velocity of soil and/or structure ()0.5

    2.83

    u acceleration of soil and/or structure 1 1

    w average displacement of pore water relative to the soil skeleton 8

    w rate of pore water flow ()0.5

    2.83

    n porosity of soil 1 1

    Kf bulk modulus of pore water and/or external water p/ 8

    EI flexural rigidity (per unit breadth of the beam) 4p/ 4096

    EA longitudinal rigidity (per unit breadth of the beam) 2

    p/ 64 inclination of the beam 1

    M bending moment of the beam (per unit breadth of the beam) 3 512

    S shear force of the beam (per unit breadth of the beam) 2 64

    F axial force of the beam (per unit breadth of the beam) 2p 64

    f density of pore water and/or external water p 1

    b density of the beam ( mass per unit length and breadth of the beam) 8

    T traction acting on the soil specified on the boundary 8

    u displacement of the soil and/or the beam specified on the boundary 8

    p pressure of pore water and/or external water specified on the boundary 8

    w average displacement of pore water, on the boundary, relative to the soil skeleton 8

    inclination of the beam specified at the boundary 1

    M bending moment of the beam specified at the boundary (per unit breadth) 3 512

    S shear force of the beam specified at the boundary (per unit breadth) 2 64

    F axial force of the beam specified at the boundary (per unit breadth) 2p 64

    i hydraulic gradient of external water specified at the boundary p 1

  • 7/27/2019 App Ends

    2/5

    459

    APPENDIX B Model Pile Design Spreadsheet

    Geometric Scaling Factor: 8

    Prototype Input Parameters

    Prototype Pile OD: 16 inchesPrototype Pile Wall: 0.50 inches

    Prototype Pile Length: 44 feet

    Prototype Soil Shear Strength: 1000 psf

    Prototype Soil Vs: 1000 fps

    E Steel: 29000 ksi

    E Concrete: 4000 ksi

    % Concrete EI Contribution: 50%

    Prototype Pile Computed Properties

    Prototype Pile L/D Ratio: 33

    Prototype Pile d/t Ratio: 32Prototype Epile/Gsoil: 1392

    Prototype EIpile/Esoil*D^4: 96

    Area Steel: 0.1691 ft^2

    Steel Moment of Inetria: 0.0353 ft^4

    Steel Flexural Rigidity EI: 147405 k-ft^2

    Area Concrete: 1.2272 ft^2

    Concrete Moment of Inertia: 0.1198 ft^4

    Concrete EI: 34515 k-ft^2

    Composite Concrete/Steel EI: 181920 k-ft^2

    Total Mass/ft length: 266.93 lbs/ft

    Prototype First Mode Period: 0.7386 seconds

    Model Input Parameters

    Model Pile OD: 2 inches

    Model Pile Wall: 0.028 inches

    Model Pile E: 10000 ksi

    Model Pile Density: 40.00 pcf

    Model Soil Vs: 100 fps

    Model Pile Computed Properties

    Model Pile Cross Sectional Area: 0.0012 ft^2

    Model Pile Mass/ft length 0.0482 lbs/ft

    Model Pile Moment of Inertia: 4.0673E-06 ft^4 Target % difference

    Model Pile EI: 5.8568 k-ft^2 5.5517 5%

    Model Pile L/D Ratio: 36.0 33.0 9%

    Model Pile d/t Ratio: 71.4 32.0 123%

    Model Pile First Mode Period: 0.0273 seconds 0.2611 90%

    Model Epile/Gsoil: 3840 1392 176%

    Model EIpile/Esoil*D^4: 101 96 5%

  • 7/27/2019 App Ends

    3/5

    APPENDIX C Analysis of Seismic Response of Cylindrical Tank

    Container Properties:radius R, height H, wall thickness h, soil unit weight, soil mass m, depth z:

    R .3.5 ft H .7 ft h .0.064 in .94lb

    ft3

    m ... R2

    H =m 12.661 ton z ..,.0 ft .1 ft H

    Container dynamic respose modeled as flexible wall tank with three response components:hydrodynamic convective, hydrodynamic impulsive, and hydrostatic.

    Convective Response: modal frequency fc, modal mass mc, modal height hc

    from the zeroes of the Bessel function derivative: 1.841

    fc .1

    .2 ..

    g

    Rtanh .

    H

    R=fc 0.654 Hz

    mc ...

    2 m

    2

    1

    R. H

    tanh . HR

    =mcm

    0.227

    hc H .R

    tanh .

    H

    .2 R=

    hc

    H0.742

    Response Maxima: Peak ground acceleration xmax, amplification factorc, pseudoacceleration Ac:

    xmax .0.8 g c 1 Ac .c xmax =Ac 0.8 g kip .1000 lbf

    Wall pressure pc, base shear Qc, base moment Mc, normal stress c, shear stress c, hoop stress c:

    Qc .mc Ac =Qc 4.6 kip

    Mc ..mc hc Ac =Mc 23.883 .kip ftCc( )z .

    2

    2

    1

    cosh . zR

    cosh .H

    Rc

    Mc

    .. R2

    h

    =c 808.047 psi

    pc( )z ...Cc( )z R Ac cQc

    .. R h=c 544.692 psi

    c( )z .pc( )zR

    h c( )z

    psi

    50.517

    57.668

    81.146

    127.597

    210.173

    352.252

    594.058

    .1.004 103

    pc( )z

    psi

    0.0770.088

    0.124

    0.194

    0.32

    0.537

    0.905

    1.53

  • 7/27/2019 App Ends

    4/5

    Impulsive Response: modal frequency fi, effective modal mass mi, effective modal height hi,peak ground acceleration xmax, amplification factori, pseudoacceleration Ai :

    fi .1 Hz mi .0.763 m hi .0.422 H i 2.5 Ai .i xmax =Ai 2 g

    Wall pressure pi, base shear Qi, base moment Mi, normal stress i, shear stress i, hoop stress i:

    Ci( )z ..( )H z0.133

    fte

    .0.186z

    ftQi .mi Ai =Qi 38.643 kip

    Mi ..mi hi Ai =Mi 114.15 .kip ft

    pi( )z ...Ci( )z R Ai

    iMi

    .. R2

    h

    =i 3.862 103

    psi

    pi( )z

    psi

    4.254

    4.3924.408

    4.247

    3.837

    3.081

    1.855

    0

    iQi

    .. R h=i 4.576 10

    3psi

    i( )z.

    pi( )z

    R

    h

    i( )z

    psi

    .2.792 103

    .2.882 103

    .2.893 103

    .2.787 103

    .2.518 103

    .2.022 103

    .1.217 103

    0

    Hydrostatic Response: wall pressure ph, hoop stress h:

    ph( )z ..( )H z g

    ph( )z

    psi

    4.569

    3.917

    3.264

    2.611

    1.958

    1.3060.653

    0

    h( )z .ph( )zR

    h

    h( )z

    psi

    .2.999 103

    .2.57 103

    .2.142 103

    .1.714 103

    .1.285 103

    856.771

    428.385

    0

  • 7/27/2019 App Ends

    5/5

    Total Dynamic Response: Conservatively sum components (ABSSUM):Wall pressure p, base shear Q, base moment M, normal stress , shear stress , hoop stress :

    p( )z pc( )z pi( )z ph( )zQ Qc Qi =Q 43.242 kipp( )z

    psi8.901

    8.396

    7.796

    7.053

    6.115

    4.923

    3.413

    1.53

    ( )z c( )z i( )z h( )z M Mc Mi =M 138.033 .kip ft

    c i = 4.67 103

    psi

    c i = 5.121 103

    psi

    0 2 4 6 8 100

    2

    4

    6

    8

    0

    z

    ft

    zft

    0

    ,p( )z

    psi

    ph( )z

    psi

    0 1000 2000 3000 4000 5000 60000

    2

    4

    6

    8

    z

    ft

    z

    ft

    ,( )z

    psi

    h( )z

    psi

    ( )z

    psi

    .5.841 103

    .5.51 103

    .5.116 103

    .4.628 103

    .4.013 103

    .3.231 103

    .2.24 103

    .1.004 103