Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ......

92

Transcript of Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ......

Page 1: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

Apdo. Postal 6-641 CDMX, Mexico 06600Email: [email protected]

www.cimmyt.org

Page 2: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

CIMMYTHeadquartered in Mexico, the International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly funded research for development for wheat and maize and for wheat- and maize-based farming systems. CIMMYT works throughout the developing world with hundreds of partners, belongs to CGIAR and leads the CGIAR Research Programs on Wheat and Maize. CIMMYT receives support from CGIAR Fund Donors, national governments, foundations, development banks and other public and private agencies. For more information, visit: www.cimmyt.org.

IPPNInternational Plant Phenotyping Network is an association representing the major plant phenotyping centers. IPPN aims to provide all relevant information about plant phenotyping. The goal is to increase the visibility and impact of plant phenotyping and enable cooperation by fostering communication between stakeholders in academia, industry, government, and the general public. Through workshops and symposia, IPPN seeks to establish different working groups and distribute all relevant information about plant phenotyping in a web-based platform. For more information, visit: www.plant-phenotyping.org.

IWYPThe International Wheat Yield Partnership (IWYP), established under the Wheat Initiative is a new and unique coordinated international research initiative with a goal to generate the breakthroughs that will raise the genetic yield potential of wheat by up to 50% in the next two decades with the ultimate goal of generating significant yield improvements in farmers’ fields. IWYP is a voluntary consortium of international public funders, research organizations and private industry partners who share the common goal of significantly increasing the genetic yield potential of wheat in the near future. IWYP embodies an integrated, multi-disciplinary, international research program involving a combination of public and private funded research, in-kind support, and where possible, aligned with other current relevant research programs worldwide. For more information, visit: www.wheatinitiative.org.

MasAgroMasAgro is a CIMMYT-led project sponsored by Mexico’s Agriculture Department (SAGARPA) that strengthens agricultural productivity at all levels of Mexico’s maize and wheat value chains. MasAgro develops molecular atlases of maize and wheat to help researchers identify genetic traits that determine grain yield and adaptation capacity, and transfer those traits to the varieties farmers and consumers demand. MasAgro has established networks with public research institutions and Mexican seed companies that evaluate and exchange pre-commercial non-transgenic seed of maize varieties and hybrids adapted to tropical and subtropical production areas and to the Mexican Highlands. More than 300,000 farmers (21 percent are women) who participate in MasAgro apply sustainable conservation agriculture practices on more than 970,000 hectares sown to maize, wheat and associated crop varieties. MasAgro trains and provides technical advice to farmers who produce maize, wheat and associated crops so they can sow improved seed, reduce costs and increase productivity and income sustainably. For more information, visit: masagro.mx.

SAGARPAThe Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food, is a unit from the Federal Executive Branch of the Government of Mexico, which has among its objectives promoting the execution of a policy of support, which allows producers to improve their production practices, utilizing in a more efficient manner the competitive advantages from our agricultural, livestock and fisheries sectors, and integrating the economic activities from rural areas into larger productive chains, encouraging the participation of organizations of producers with economic projects on their own, as well as with the proposal of goals and objectives for the agricultural sector within the National Development Plan. For more information, visit: www.gob.mx/sagarpa.

Page 3: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping
Page 4: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

This publication’s copyright (© 2016) is shared by the International Maize and Wheat Improvement Center (CIMMYT) and the International Plant Phenotyping Network (IPPN). All rights are reserved by these parties. Rights to all original content supplied for this publication remain with the original authors.

The designations employed in the presentation of materials in this publication do not imply the expression of any opinion whatsoever on the part of the Organizers of the Symposium, concerning the legal status of any country, territory, city, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The opinions expressed are those of the author(s), and are not necessarily those of CIMMYT or IPPN. The organizers encourage fair use of this material.

Printed in Mexico.

About the International Plant Phenotyping Symposium

Phenotyping is key to understanding the physiological and genetic bases of plant growth and adaptation and their application for crop improvement. A revolution in phenomics is taking place, using non-invasive technologies based on spectral reflectance from plant tissue. Automated proximal sensing in controlled environments has sufficient resolution for detailed genetic and physiological dissection in model plant species. Aerial imaging using manned or unmanned low-flying vehicles or even satellites is transforming field phenotyping, at scales ranging from individual plots for breeding to entire fields to characterize agro-ecosystems.

The 4th annual Symposium focuses on three themes:

Advances in Plant Phenotyping Technologies to explore the frontiers of what can be sensed remotely and other technological breakthroughs.

Phenotyping for Crop Improvement to consider the application of phenotyping technologies for crop improvement (breeding, crop husbandry, and estimating the productivity of agro-ecosystems).

Adding Value to Phenotypic Data to review how phenomics and genomics can combine to improve crop simulation models and breeding methodologies (e.g., genomic selection).

For more information, go to www.cimmyt.org/event/4th-international-plant-phenotyping-symposium.

Event organizing committees

MexicoMatthew Reynolds, Chair, CIMMYTBruno Gerard, CIMMYTMartin Kropff, CIMMYTJennifer Nelson, CIMMYTCarolina Saint Pierre, CIMMYTUrs Schulthess, CIMMYTSamuel Trachsel, CIMMYTViridiana Silva, CIMMYTValeria Ordaz, CIMMYTCatherine Casas Saavedra, CIMMYT

International Ulrich Schurr, Chair IPPN, Forschungszentrum Juelich (Germany)April Carroll, Purdue University (United States)Maurice Moloney, Global Institute for Food Security (Canada)Roland Pieruschka, Forschungszentrum Juelich (Germany)Xavier Sirault, High Resolution Plant Phenomics Centre / CSIRO Agriculture and Food (Australia)

Page 5: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

CONTENTSTuesdayDecember13:Advancesinplantphenotypingtechnologies

Comprehensivedataharvestingforfieldphenomicsandknowledgediscovery.M.Hirafuji,A.Itoh,S.Ikeda,H.Tsuji,K.Usuki,Y.Usui,K.Nagasawa,M.Okada,K.Taguchi,H.Matsuhira,T.Fukatsu,K.Tanaka,T.Kiura,N.Hoshi,S.Ninomiya,W.Guo,H.Iwata,K.Watanabe,H.Nobughara,I.Kitahara,M.Kato,M.Ono,H.Muhamad,S.Sukisaki,R.Simomura,L.Hongyang,Z.Heming,T.Kamiya,K.Sekiya,H.Koizumi,S.Taniguchi

1

PhénoField®,ahigh-throughputphenotypingplatformtoscreengenotyperesponsetodroughtunderfieldconditions.AntoineFournier,KatiaBeauchêne,BenoitDeSolan,SamuelThomas,BenoitPiquemal,MichelBonnefoy,YanFlodrops,JosianeLorgeou,JeanPiereCohan

1

Exploringtherhizosphere:Imaginingroot-soilinteractionusingx-raycomputedtomography.SaoirseTracy 2

Automatedsegmentationofpotatotubercomputedtomographymeasurementsfornon-destructivebiomassdetermination.StefanGerth,NorbertWörlein,JoelleClaußen,NormanUhlmann

3

3Dimagingapproachesinquantitativeplantphenotyping:Applicationscenariosinthelabandinthefield.MarkMüller-Linow,FranciscoPinto,LukaOlbertz,FabioFiorani,UweRascher

3

High-throughputestimationofincidentlight,lightinterceptionandradiation-useefficiencyofthousandsofplantsinaphenotypingplatform.LlorençCabrera-Bosquet,ChristianFournier,Tsu-WeiChen,NicolasBrichet,BenoîtSuard,ClaudeWelcker,FrançoisTardieu

4

Holisticandcomponent-baseddynamicvegetative-stageplantphenotypinganalysis.SrutiDasChoudhury,AshokSamal,JamesSchnable

4

UsingLIDARtomeasureforageyieldofperennialryegrass(LoliumperenneL.)fieldplots.KioumarsGhamkhar,KenjiIrie,MichaelHagedorn,JeffreyHsiao,JacoFourie,SteveGebbie,JasonTrethewey,CaseyFlay,BrentBarrett,AlanStewart,ArminWerner

5

Plantphenotypingrevealsgeneticandphysiologicalfactorsofplantperformance.ThomasAltmann,MosesMuraya,JiantingChu,YushengZhao,AstridJunker,ChristianKlukas,JochenC.Reif,DavidRiewe,RhondaC.Meyer,Hea-JungJeon,MarcHeuermann,JudithSchmeichel,MoniqueSeyfarth,JanLisec,LotharWillmitzer

6

Trackingshort-termgrowthresponsetoenvironmentalvariablesduringwheatstemelongation.LukasKronenberg,KangYu,AchimWalter,AndreasHund

7

TuesdayDecember13:Addingvaluetophenotypicdata

Willhigh-throughputphenotypingandgenotypingtechniqueshelpustobetterpredictGxEinteractions?Perspectivesfromstatisticsandcropgrowthmodeling.FredA.vanEeuwijk,DanielaV.Bustos-Korts,MarcosMalosetti,MartinP.Boer,WillemKruijer,KarineChenu,ScottC.Chapman

8

Phenotypingforcropimprovementinadiversityofclimaticscenarios.FrançoisTardieu,EmilieJ.Millet,SantiagoAlvarezPrado,AudeCoupel-Ledru,LlorençCabrera-Bosquet,SébastienLacube,BorisParent,ClaudeWelcker

9

Strategiestohandleroothydraulicarchitectureatmultiplescales.XavierDraye,ValentinCouvreur,GuillaumeLobet,FelicienMeunier,MathieuJavaux

10

Page 6: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

Usingstructuralmodelstovalidateandimproverootimageanalysispipelines.GuillaumeLobet,IkoKoevoets,ManuNoll,LoïcPagès,PierreTocquinandClairePérilleux

10

Combininghigh-throughputphenotypingandQTLmappingtorevealthedynamicgeneticarchitectureofmaizeplantgrowth.ChenglongHuang,XuehaiZhang,DiWu,FengQiao,KeWang,YingjieXiao,GuoxingChen,LizhongXiong,WannengYang,JianbingYan

11

Useofhigh-throughputphenotypingatCIMMYT:Newmodels,challengesandperspectives.JuanBurgueño,JoséCrossa,SamTrachsel,SuchismitaMondal

11

Usinghigh-throughputphenotypingtoimproveaccuracyingenomicprediction:Examplesforcropsimulatedtraits.DanielaBustos-Korts,MarcosMalosetti,MartinP.Boer,ScottC.Chapman,KarineChenu,FredA.vanEeuwijk

12

PosterSession:Advancesinplantphenotypingtechnologies

AutomatedmeasurementtoolforphenotypingrootandhypocotylgrowthofArabidopsisplants.AdedotunAkintayo,TrevorNolan,YanhaiYin,SoumikSarkar

13

High-throughputscreeningtechniquesforstomatalresponsetoABAbasedonchlorophyllfluorescenceundernon-photorespiratoryconditions.SasanAliniaeifard,UulkevanMeeteren

14

Advancedmathematicalalgorithmstocharacterizeolivevarietiesthroughmorphologicalparameters.KonstantinosN.Blazakisa,LucianaBaldonib,AbdelmajidMoukhlic,MarinaBufacchid,PanagiotisKalaitzisa

15

AIRPHEN:Amultispectralcameradedicatedtofieldphenotypingfromdroneobservations.A.Comar,F.Baret,G.Collombeau,M.Hemmerlé,B.deSolan,D.Dutartre,M.Weiss,S.Madec,F.Toromanoff

15

Derivingcanopyheightfromdroneobservations:Overviewoftheexpectedaccuracyandmaininfluentialfactors.S.Madec,F.Baret,G.Collombeau,S.Thomas,A.Comar,M.Hemmerlé,B.deSolan,D.Dutartre

16

Awirelessenvironmentaldatacollectionsystemforhigh-throughputfieldphenotyping.ThomasTruong,AnhDinh,KhanWahid

17

Decipheringthephenotypiccode:Fromlabtofield-scale.MarcusJansen,StefanPaulus,TinoDornbusch 18

Studiesofrootsystemarchitectureinsoybeanusingcomputervisionandmachinelearning.KevinFalk,TalukdarJubery,SayedVahidMirnezami,KyleParmley,JohnathonShook,ArtiSingh,SoumikSarkar,BaskarGanapathysubramanian,AsheeshK.Singh

18

Recentadvancementindevelopmentofautonomousmobilerobotsforplantphenotyping.RezaFotouhi,AryanSaadatMehr,PierreHucl,MostafaBayati,QianWeiZhang

19

Anautomatedsoybeanmulti-stressdetectionframeworkusingdeepconvolutionalneuralnetworks.SambuddhaGhosal,DavidBlystone,HomagniSaha,DarenMueller,BaskarGanapathysubramanian,AsheeshK.Singh,ArtiSingh,SoumikSarkar

19

High-throughputricephenotypingfacility:Strategiesandchallenges.WannengYang,ChenglongHuang,LingfengDuan,HuiFeng,XiuyingLiang,QianLiu,GuoxingChen,LizhongXiong

20

FieldScanalzyer:Highprecisionphenotypingoffieldcrops.MarcusJansen,StefanPaulus 21

Integratedanalysisofplantgrowthanddevelopmentusinghigh-throughputmulti-sensorplatformsatIPK.AstridJunker,Jean-MichelPape,HenningTschiersch,DanielArend,MatthiasLange,UweScholz,andThomasAltmann

21

Page 7: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

DevelopingtheEnviratron:Afacilityforautomatedphenotypingofplantsgrowingundervariedconditions.StephenH.Howell,LieTang,CarolynJ.Lawrence-Dill,ThomasLubberstedt,StevenWhitham

22

Hyperspectralimagingsystem,individualriceplants,andaccuratepredictionofabove-groundbiomass,greenleafareaandchlorophyll.FengHuietal.

23

Comparingrobotsanddronesasphenotypingtoolsinfieldtrials.MortenLillemo,EivindBleken,GunnarLange,LarsGrimstad,PålJohanFrom,IngunnBurud

23

Theneedtoaccountfordirectionaleffectsandthepresenceofreproductiveorgansoncanopyreflectanceandtemperaturerecordedfromdrones.F.Baret,W.Li,S.Madec,A.Comar,M.Hemmerlé,P.Burger

24

Precisionphenotyping:Wheatdiscotofosteryieldpotential.GemmaMolero,MatthewP.Reynolds 25

Fieldphenotyping:Quantifyingdynamicplanttraitsacrossscalesinthefield.OnnoMuller,M.PilarCendreroMateo,HendrikAlbrecht,BeatKeller,FranciscoPinto,AnkeSchickling,MarkMüller-Linow,RolandPieruschka,UlrichSchurr,UweRascher

25

3Dpointcloud-basedmonitoringofsoybeangrowthinearlystages.KojiNoshita,WeiGuo,AkitoKaga,HiroyoshiIwata

26

Greenhouse,fieldandrootphenotypinginfrastructureattheDepartmentofPlantandEnvironmentalSciencesoftheUniversityofCopenhagen.SvendChristensen,JesperSvensgaard,DominikGrosskinsky,JesperCairoWestergaard,RenéHvidbergPetersen,SigneMarieJensen,JesperRasmussen,HanneLipczakJakobsen,ThomasRoitsch

26

Morphometricsforgenomicpredictionofplantmorphologicaltraits:Itsapplicationtogeneticallydissectsorghumgrainshape.LisaSakamoto,HiromiKanegae,KojiNoshita,MotoyukiIshimori,HidekiTakanashi,WaceraFiona,WataruSakamoto,TsuyoshiTokunaga,NobuhiroTsutsumi,HiroyoshiIwata

27

Image-basedphenotypingandmachinelearningtoadvancegenome-wideassociationandpredictionanalysisinsoybean.JiaopingZhang,HsiangSingNaik,TeshaleAssefa,SoumikSarkar,R.V.ChowdaReddy,ArtiSingh,BaskarGanapathysubramanian,AsheeshK.Singh

28

Proposalforevaluatingplantstressviasteadystatefluorescence.S.Summerer,A.Petrozza,V.Nuzzo,F.Cellini 29

Developmentofhigh-throughputphenotypingsoftwareforplantbreeding,geneticsandphysiologystudies.TakanariTanabata,AtsushiHayashi,SachikoIsobe

30

NationalScienceFoundationprogramsthataddressareaswithhighimpactonfoodsecurity.C.EduardoVallejos,JamesW.Jones

30

Planthealthmonitoringusingmultispectralimagingandvolatileanalysisforspaceandterrestrialapplications.AaronI.Velez-Ramirez,JokeBelza,JoeriVercammen,AlexVanDenBossche,DominiqueVanDerStraeten

31

High-throughputfield-basedphenotypinginbreedingwithUAVplatforms.GuijunYang,ChunjiangZhao,JiangangLiu,HaiyangYu,XiaoqingZhao,BoXu

32

CapabilitiesoftheFieldPhenotypingPlatformFIPdemonstratedbycharacterizationofthetimeseriesofcanopycoverinwheatasrelatedtoGxEinteractions.KangYu,NorbertKirchgessner,FrankLiebisch,AchimWalter,AndreasHund

32

Next-generationmaizefieldphenotypingapproachesusinginnovativesensingtechniquesforimprovedbreedingefficiency.MainassaraZaman-Allah,JillCairns,CosmosMagorokosho,AmsalTarekegne,MikeOlsen,BoddupalliM.Prasanna

33

Phenotypingleaftraitsinwheatgenotypesbasedonhyperspectraldata.MarekZivcak,MarianBrestic,KatarinaOlsovska,MarekKovar,ViliamBarek,PavolHauptvogel,XinghongYang

34

Page 8: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

PosterSession:Addingvaluetophenotypicdata

Findinganeedleinahaystack–UsingZegamitovisualizephenotypicdatasets.BettinaBerger,GeorgeSainsbury,TrevorGarnett,RogerNoble

35

Takingthenexthurdle:ManagementofphenotypicdatawithPIPPA.StijnDhondt,RaphaelAbbeloos,NathalieWuyts,DirkInzé

35

OPENSIMROOT:Computationalfunctionalplantmodelingandsimulation.ChristianKuppe,JohannesA.Postma 36

Determinationofdifferentialpathogensensitivityofbarleycultivarsbymulti-reflectanceand-fluorescenceimagingincombinationwithdeepphysiologicalphenotyping.DominikGrosskinsky,JesperSvensgaard,SvendChristensen,ThomasRoitsch

37

MaizePhenomap1andPhenomap2datasets:Integrationwithgenomestofields.ZhikaiLiang,SrinidhiBashyam,BhushitAgarwal,GengBai,SrutiDasChaudhury,OscarRodriguez,YumouQiu,YufengGe,AshokSamal,JamesC.Schnable

38

Low-cost3Dimagingsystemsforhigh-throughputfieldphenotyping.ThangCao,KarimPanjvani,AnhDinh,KhanWahid

39

WednesdayDecember14:Phenoptypingforcropimprovement

Phenotypingforroot-basedgainsincropproductivity.MichelleWatt,UlrichSchurr 40

Multi-modalityremotesensinganddataanalysisforhighthroughputphenotyping.M.Crawford 40

PhenotypingatBayerHyperCarefarms.ElisaLiras,GretaDeBoth,StephanieThepot,RandallHess,WalidElfeki,RaphaelDumain

41

Reducinglodginginirrigatedwheat:FocusonstemandrootcharacteristicsandHTPmethods.M.FernandaDreccer,TonyCondon,M.GabrielaBorgognone,GregRebetzke,LynneMcIntyre

41

LeasyScanre-loaded:3Dscanningplusseamlessmonitoringofcropcanopyandwateruse.VincentVadez,JanaKholova

42

Extendingthephenotype:Integrationoffieldandglasshousephenotypingwithcropmodeling.ScottC.Chapman,GraemeL.Hammer,AndriesPotgieter,DavidJordan,BangyouZheng,TaoDuan,RobertFurbank,XavierSirault,JoseJimenez-Berni

43

PhenotypingandGWASforriceimprovement:Astrategyandpartialresultstowardsmulti-traitideotypeconstructionbygenomeediting.MichaelDingkuhn,ArvindKumar,TobiasKretzschmar,ChristophePerin,UttamKumar,MariaCamilaRebolledo,HeiLeung,JulieMaeCristePasuquin,PaulQuick,AnindyaBandyopadhyay,DelphineLuquet

43

Scalablein-fieldphenotypingplatformsfordynamicmeasurementofperformance-relatedtraitsinbreadwheat.JiZhou,DanielReynolds,ThomasLeCornu,ClareLister,SimonOrford,StephenLaycock,MattClark,MikeBevan,SimonGriffiths

44

Effectivedeliveryofphenomicsincommercialbreedingismoreaquestionofwhatandwhen,nothow.G.J.Rebetzke,J.Jimenez-Berni,W.D.Bovill,R.A.James,D.M.Deery,A.Rattey,D.Mullans,M.Quinn

45

Page 9: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

Plantdiseasephenomics:Identificationofquantitativeresistanceincropplantsusingphenomicapproaches.StephenRolfe,SarahSommer,FokionChatziavgerinos,EstrellaLuna,PierrePétriacq,BruceGrieve,DiegoCoronaLopez,CharlesVeys,JohnDoonan,KevinWilliams

46

Strategiesforcropfield-basedhigh-throughputphenotyping(FB-HTP)inbreedingusingUAVplatforms.JiangangLiu,GuijunYang,HaiyangYu,XiaoqingZhao,BoXu

46

Remotesensingforcropimprovement:Fromresearchtoindustry.SebastienPraud,FredericBaret,AlexisComarand,DavidGouache

47

Testingtheefficacyoflarge-scalefieldphenotypingingenomicselectiontoacceleratewheatbreeding.EricOber,RobertJackson,R.ChrisGaynor,AlisonBentley,PhilHowell,JohnHickey,IanMackay

48

Phenotypingforabioticstresstoleranceincrops:Indianinitiatives.JagadishRane,PrashantKumar,MamruthaMadhusudhan,MaheshKumar,SaiPrasad

49

ImprovingtheprecisionofphenotypicdatausingUAV-basedimagery.FranciscoPinto,MatthewReynolds 50

Phenotypingforbreedingandphysiologicalpre-breeding.MatthewReynolds,GemmaMolero,FranciscoPinto,CarolinaRivera,FranciscoPinera,SivakumarSukumaran,MartaLopes,andCarolinaSaintPierre

50

Documentingadvancesandideasinplantphenotyping

Harmonizingeffortsamongphenotypinginitiatives:Bottlenecksandopportunities.JoséL.Araus 51

PosterSession:Phenotypingforcropimprovement

Optimizingwheatrootarchitecturebyexploitingdiversegermplasm.JonathanA.Atkinson,Cai-yunYang,StellaEdwards,SurbhiMehra,JulieKing,IanKing,MalcolmBennett,DarrenM.Wells

52

WaterstressfieldphenotypingandPHENOMOBILE-LVmonitoringofwheat.B.deSolan,F.Baret,S.Thomas,O.Moulin,G.Meloux,S.Liu,S.Madec,M.Weiss,K.Beauchene,A.Comar,A.Fournier,D.Gouache

52

High-throughputphenotypingofearlyvigorinwheat:Rapidmeasuresofleafareaasproxyofearlyplantgrowthparametersandyield.AviyaFadida-Myers,AvivTsubary,AiaSulkoviak,AharonBellalou,KamalNashef,YehoshuaSaranga,DavidJ.Bonfil,ZviPeleg,RoiBen-David

53

Anefficienttooltodescribeolivevarietiesthroughstrictlymathematicallydefinedmorphologicalparameters.KonstantinosN.Blazakis,LucianaBaldoni,AbdelmajidMoukhli,MarinaBufacchi,PanagiotisKalaitzis

54

High-throughputlaboratoryphenotypingoflettucetoassessdroughttolerance.MarianBrestic,MarekKovar,KlaudiaBruckova,MarekZivcak,KatarinaOlsovska,XinghongYang

55

Animage-basedautomatedpipelineformaizeearandsilkdetectioninahigh-throughputphenotypingplatform.NicolasBrichet,LlorençCabrera-Bosquet,OlivierTurc,ClaudeWelcker,FrançoisTardieu

55

IdentificationofresistancetoramulosiscausedbyColletotrichumgossypiivar.cephalosporioidesinadvancedcottonbreedinglinesandmonitoringoframulosisdiseasebyRGB-imageanalysis.OscarBurbano-Figueroa,MilenaMoreno-Moran,KeyraSalazarPertuz,LorenaOsorioAlmanza,KarenMontesMercado,ElianaReveloGomez,MariadelValleRodriguez

56

Page 10: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

PredictingyellowrustandSeptoriatriticiblotchinwheatbyhyperspectralphenotypingandmachinelearning.RitaArmoniené,AlexanderKoc,SalvatoreCaruso,TinaHenriksson,AakashChawade

57

Exploringthepotentialofspectralreflectancefordetectionoforganandcanopypropertiesinwheat.M.FernandaDreccer,JoseJimenez-Berni,StephenGensemer,EthanGoan

58

Improvingnitrogenuseefficiency:Canbetterphenomicsmakeadifference?TrevorGarnett,NicholasSitlington-Hansen,DarrenPlett,MalcolmHawkesford,BettinaBerger

58

Identifyingwheatroottraitsandregulatorygenesthatcontrolnitrogenuptakeefficiency.MarcusGriffiths,JonathanAtkinson,MalcolmJ.Bennett,SachaMooney,DarrenM.Wells

59

Canhigh-throughputphenotypinghelppredictsoybeanyieldincontrastingenvironments?RaceHiggins,KyleParmley,AsheeshK.Singh

59

High-throughputfieldphenotypingofwheatplantheightandgrowthrateinfieldplottrialsusingUAVremotesensing.FennerH.Holman,AndrewB.Riche,AdamMichalski,MarchCastle,MartinJ.Wooster,MalcolmJ.Hawkesford

60

Phenotypingtraitstoimprovedroughttoleranceinwheat.Yin-GangHu,LiangChen 61

Hyperspectraldiseasesignaturesfordetectingcharcoalrotinsoybean.SarahJones,AsheeshK.Singh,SoumikSarkar,BaskarGanapathysubramanian,DarenMueller,ArtiSingh

61

Identificationofwaterusestrategiesatearlygrowthstagesindurumwheatusingmodernshootimagephenotyping.NiklasKörber,AlirezaNakhforoosh,ThomasBodewein,KerstinA.Nagel,FabioFiorani,GernotBodner

62

TacklingamajorepidemicofmaizelethalnecrosisineasternAfrica.L.M.Suresh,YosephBeyene,ManjeGowda,JumboMacDonaldBright,MichaelOlsen,BiswanathDas,DanMakumbi,B.M.Prasanna

62

TheMaizeGenomestoFields(G2F)initiative:Datamanagementandavailability.NaserAlKhalifah,DarwinA.Campbell,ReneeWalton,CintaRomay,Cheng-TingYeh,RamonaWalls,GenomestoFieldsCollaborators,PatrickS.Schnable,DavidErtl,NataliadeLeon,JodeEdwards,CarolynJ.Lawrence-Dill

63

NSFresearchtraineeship–P3,predictiveplantphenomics.JulieDickerson,ThedoreHeindel,CarolynJ.Lawrence-Dill,PatrickSchnable

64

AnalysisofwaterlimitationeffectsonthephenomeandionomeofArabidopsisatthePlantImagingConsortium.LuciaMAcosta-Gamboa,SuxingLiu,ErinLangley,ZacharyCampbell,NormaCastro-Guerrero,DavidMendoza-Cozatl,ArgeliaLorence

64

High-throughputphenotypicexplorationofgeneticvariationfromwildrelativesforbreedinghighbiomassandyieldinwheat.LornaMcAusland,LauraBriers,StellaEdwards,Cai-yungYang,JulieKing,IanKing,ErikMurchie

65

High-throughputphenotypingofcanopydevelopmentinsoybean.FabianaFreitasMoreira,AnthonyA.Hearst,KeithCherkauer,KatyMRainey

65

Mechanismofheattoleranceevaluationinwheatthroughphenotypicparameters.RenuMunjalandS.S.Dhanda 66

IdentificationofroottraitsthatcanserveassuitableselectiontargetstoenhancewinterwheatproductionintheSouthernGreatPlainsoftheUSA.AnaPaez-Garcia,JoshAnderson,FrankMaulana,XuefengMa,andElisonB.Blancaflor

66

High-throughputscreeningtoolsforidentificationoftraitscontributingtosalinitytolerance.KláraPanzarová,MariamAwlia,ArianaNigro,JiříFajkus,ZuzanaBenedikty,MarkTester,MartinTrtílek

67

Page 11: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

Customizingsoybeancultivardevelopmentthroughaerialandgroundphenotyping.KyleParmley,VikasChawla,AkintayoAdedotun,RaceHiggins,TalukdarJubery,SayedVahidMirnezami,NigelLee,BaskarGanapathysubramanian,SoumikSarkar,AsheeshK.Singh

68

Phenotypingandgeneticanalysisoflodging-relatedtraits.FranciscoJ.Piñera-Chavez,PeterM.Berry,MichaelJ.Foulkes,GemmaMolero,SivakumarSukumaran,MatthewP.Reynolds

68

Phenotypingshowsassociationofhighseedyieldwithstemwatersolublecarbohydratesandchlorophyllcontentduringanthesisorgrain-fillinginwheatcultivarsunderheatstress.HafeezurRehman,AbsaarTARIQ,MakhdoomHussain,MatthewP.Reynolds

69

Phenotypingtoolsandphysiologicalbreeding:Optimizingbiomassdistributionwithintheplanttoincreaseharvestindexinwheatcultivars.CarolinaRivera-Amado,GemmaMolero,EliseoTrujilloNegrellos,JohnFoulkes,MatthewReynolds

70

Phenotypingtoolstodissectmorphologicaldiversityinsweetpotato.AmparoRosero,LeiterGranda,José-LuisPérez,DeisyRosero,WilliamBurgos-Paz,RembertoMartínez,IvánPastrana

71

NDVIvaluesandgrainmineralcontentpredictthepotentialofsyntheticspringwheatandwildrelatives.A.I.Abugaliyeva,A.I.Morgounov,K.Kozhakhmetov,T.V.Savin,A.S.Massimgaziyeva,A.Rsymbetov

72

Globalnetworkforprecisionfield-basedwheatphenotyping.CarolinaSaintPierre,AmorYahyaoui,PawanSingh,MatthewReynolds,MichaelBaum,HansBraun

72

Rootcorticalsenescenceinfluencesmetaboliccostsandradialwaterandnutrienttransportinbarley.HannahM.Schneider,TobiasWojciechowski,JohannesA.Postma,DagmarvanDusschoten,JonathanP.Lynch

73

Nutrient-relatedtraitsforimprovedgrowthandgrainqualityinIndianwheat.JaswantSingh,LolitaWilson,ScottD.Young,SindhuSareen,BhudevaS.Tyagi,IanP.King,MartinR.Broadley

74

Large-scalephenotypingfornext-generationwheatvarietalimprovement.SukhwinderSingh,PrashantVikram,CarolinaSaintPierre,JuanAndersBurgueño,HuihuiLi,CarolinaSansaloni,DeepmalaSehgal,SergioCortez,G.EstradaCampuzano,N.Espinosa,PedroFigueroa,GuillermoFuentes,C.G.Martínez,ErnestoSolísMoya,H.E.Villaseñor,VictorZamora,IvanOrtiz-Monasterio,CarlosGuzmán,CesarPetroli,GilbertoSalinas,ThomasPayne,KateDreher,RaviPrakashSingh,VelluGovindan,MathewReynolds,PawanSingh,JoseCrossaandKevinPixley

74

Usingshovelomicstoidentifyrootingtraitsforimprovedwateruptakeunderdroughtinawinterwheatdoubledhaploidpopulation.ShaunaghSlack,LarryM.York,MalcolmBennett,JohnFoulkes

75

Shootandrootphenotypingofspringwheatunderwaterloggedconditionsinfieldandrhizotronexperiments.T.Sundgren,A.K.Uhlen,T.Wojciechowski,W.Waalen,M.Lillemo

75

Predictingsorghumbiomassusingaerialandground-basedphenotypes.AddieThompson,KarthikeyanRamamurthy,ZhouZhang,FangningHe,MelbaMCrawford,AymanHabib,CliffordWeil,MitchellR.Tuinstra

76

Alterationsinrootproteomeofsalt-sensitiveandsalt-tolerantbarleylinesundersaltstressconditions.StanisławWeidner,AgnieszkaMostekA.,AndreasBörner,AnnaBadowiec

77

Page 12: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping
Page 13: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

1

ADVANCESINPLANTPHENOTYPINGTECHNOLOGIES

Tuesday13thDecember(Morning)ADVANCESINPLANTPHENOTYPINGTECHNOLOGIES

ComprehensivedataharvestingforfieldphenomicsandknowledgediscoveryM.Hirafuji1,2,A.Itoh1,S.Ikeda1,H.Tsuji1,K.Usuki1,Y.Usui1,K.Nagasawa1,M.Okada1,K.Taguchi1,H.Matsuhira1,T.Fukatsu1,K.Tanaka1,T.Kiura1,N.Hoshi1,S.Ninomiya3,W.Guo3,H.Iwata3,K.Watanabe3,H.Nobughara2,I.Kitahara2,M.Kato2,M.Ono2,H.Muhamad2,S.Sukisaki2,R.Simomura2,L.Hongyang2,Z.Heming2,T.Kamiya4,K.Sekiya4,H.Koizumi4,S.Taniguchi4

1NARO(NationalAgricultureandFoodResearchOrganization),Japan.E-mail:[email protected],Japan3TheUniversityofTokyo,Japan4NECSolutionInnovators,Ltd.,JapanRecentlydataonyieldandrateoffertilizerapplicationinthefieldcanbecollectedautomaticallyasgeolocationdatameasuredbyRTK-GPS.However,suchsnapshotdataarenotsufficient,sinceplantsgrowdynamicallyunderadiversityofenvironmentalconditionsandsymbioticmicroorganisms.WearedevelopingData-Harvestertocollecttime-seriesdatainthefieldaswellasaKnowledgeDiscoverySupportSystem(KDSS).Data-Harvesterconsistsofsensornetworks,dronesandwalkingrobotsandcollectstime-seriesdatasuchasairtemperature,soilmoistureandhourly/dailyimagesofplants.KDSSprovidesservicessuchasdatamanagement,3D-reconstructionfrom2D-images,machinelearning,patternrecognition,dataassimilationandmeta-computing.IdeallyData-Harvestershouldalsoautomaticallycollecttime-seriesdataonmicroscopicphenotypes,microorganismsandsymptomexpression,sothewalkingrobotsareequippedwithmanipulators.Asforpracticalapplications,collectedbigdatacanbeminedforsimpleknowledge.However,forthefirsttimewearetacklingdifficultproblemssuchastheelucidationofhybridvigortoevaluatethecapabilitiesofData-HarvesterandKDSS.Wewillimprovethembyappendingrequiredfunctionstosolveproblemsquicklywithartificialintelligence,crowdintelligence,etc.ThisworkissupportedbyCREST,JST.PhénoField®,ahigh-throughputphenotypingplatformtoscreengenotyperesponsetodroughtunderfieldconditionsAntoineFournier1,KatiaBeauchêne1,BenoitDeSolan1,2,SamuelThomas1,2,BenoitPiquemal1,MichelBonnefoy1,YanFlodrops1,JosianeLorgeou1,JeanPiereCohan2

1ARVALIS–Institutduvégétal,France.Email:[email protected],UMTCAPTE,FranceTheFrenchPlantPhenotypingNetwork(FPPN-PHENOME)providesacademicandprivatecommunitieswithanetworkofnineinstrumentedplatformsabletodealwithmostcropspecies,biologicalquestionsandenvironmentalstresses.PhénoField®,theplatformmanagedbyARVALIS,isahighlyinstrumentedfieldresearchfacilityallowingdetailanalysisofyieldbuild-upofmaizeandothercropgenotypesundermanagedwaterdeficit.LocatedintheBeauceRegioninFrance,itconsistsofeightmobilerainsheltersequippedwithcontrolledirrigation.Theavailablewatercapacityismonitoredbyanensembleof

Page 14: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

2

ADVANCESINPLANTPHENOTYPINGTECHNOLOGIES

sensorsdistributedinmanyplacesselectedtorepresentthevariabilityofsoilpropertiesthatarescaledupusingasub-metricspatialresolutionmap.PhenotypictraitsaremeasuredbyasuiteofnovelsensorsincludingRGBcameras,LIDARsandspectrometerswhichperiodicallyacquiredatafromafullyautomatedgantry,alongwithcontinuousmonitoringofplotmicro-meteorology.RGBandmultispectralacquisitionofthefullplatformisregularlyperformedfromunmannedaerialvehiclestocomplementspatialandtemporalsampling.Ateamofspecialistsininstrumentation,signalprocessing,plantmodeling,plantphysiologyandappliedagronomyisrunningtheexperimentandtransformingrawmeasurementsintopertinenttraitstobedirectlyusedbybreeders.In2015,PhénoFieldscreenedahistoricpanelofmaizehybridsintheframeworkoftheAMAIZINGprojectsoastoevaluatethegeneticprogressindroughtresponseandidentifythephysiologicaltraitsunderpinningit.In2016,PhénoFieldwelcomedacomprehensivepanelrepresentingthelast25yearsofwheatbreedingintheframeworkoftheBREEDWHEATproject.Thistrialshouldprovideinsightintothegeneticandphysiologicalarchitectureofthedroughtresponseofwheat.Thefirstinstrumentalresultsandmethodologicalstudieswillbepresentedalongwithatestimonyofourexperienceduringthecommissioningofsuchsemi-controlledfieldplatform,includingcalibrationconstraints,real-timecampaignmonitoring,datamanagementandsignalvalidationforagronomicuse.Exploringtherhizosphere:Imagingroot-soilinteractionsusingX-raycomputedtomographySaoirseTracySchoolofAgriculture,UniversityCollege,Dublin,Ireland.Email:saoirse.tracy@ucd.ieAlthoughrootsplayacrucialroleinplantgrowthanddevelopmentthroughtheiracquisitionanddeliveryofwaterandnutrientstoabove-groundorgans,ourunderstandingofhowtheyinteractwiththeirimmediatesoilenvironmentlargelyremainsamystery,astheopaquenatureofsoilhaspreventedundisturbedinsiturootvisualization.Thespatialarrangementofrootsandthesoilstructureareextrinsicallylinkedtotheoverallproductivityofaplant,astheycontroltheabilityofaplantroottoextractessentialresourcesforgrowth.Inaworldwitharapidlyincreasingpopulationandthethreatofclimatechange,maximizingplantproductivityisvital.Therefore,visualizationandquantificationofrootgrowthinsoilisneededtounderstandplantrootgrowthdynamics.Theuseofnon-invasivetechniquessuchasX-raycomputedtomography(CT)meansthatitisnowpossibletovisualizeagrowingrootwithinanundisturbedsoilcore.TheX-rayCTtechniqueenablesnon-destructive3Dinvestigationsintoroot:soilinteractionsatthemicro-scale.Byimagingtheactual3Dgeometriesofsoilstructureandvisualizingtheinterfacesbetweenroots,soil,waterandair-filledpores,anaccuraterepresentationofwatermovementandrootgrowthinsoilisachieved.Destructivemethodssuchasrootwashingthatwerecommonlyemployedforrootstudiescouldnotprovidedetailedinformationonrootarchitecture,includingbranchingcharacteristicsandextensionrate,whichareinherentlylinkedtoconditionswithinthesoilmatrix.Incontrast,thistechniqueenablesrootphenotypingofdifferentcropspeciesandvarietiesinsoil.Thisinformationiscrucialiflaboratoryresearchistobetranslatedintoanunderstandingofresponsesunderfieldconditions.

Page 15: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

3

ADVANCESINPLANTPHENOTYPINGTECHNOLOGIES

Automatedsegmentationofpotatotubercomputedtomographymeasurementsfornon-destructivebiomassdeterminationStefanGerth,NorbertWörlein,JoelleClaußen,NormanUhlmann

DevelopmentCenterX-RayTechnologyEZRT,Germany.Email:stefan.gerth@iis.fraunhofer.deThereconstructedvolumedatasetofX-raycomputedtomography(CT)consistsofgraylevelswhichrepresentinformationaboutX-rayattenuation.Thisattenuationcoefficientdependsonthedensitydistributionofthematerial,theelementalcompositionoftheX-raysourceanditsspectraldistribution.A3Dimagesegmentationisneededtostudythebelow-groundgrowthoftubers.Increasingthedimensionalityfrom2Dtoreal3Denhancesthecomplexityofimagesegmentationalgorithms.Atthesametime,volumeinformationisaccessiblefordirectcorrelationwithvolumetrictraits,forexample,tubervolumesorformfactors.Additionally,thecalculatedX-rayattenuationcoefficientofthesegmentedtuberscanbeusedtotrackdensitychangeswithinthetuber.Automaticsegmentationandanalyticalroutinesareneededtocreatecomparableresultsbetweenthedifferentpointsandbetweendifferentsamplingtimes.Wewillpresenttheimagesegmentationprinciplesandthegathereddataonvolumetrictubergrowthofdifferentvarieties.Usingthismethod,itispossibletomonitorthegrowthofeachindividualtuber.Additionally,thedestructivesamplingofasubsetofallmeasuredpotsallowedustocorrelatefreshanddryweightwithabsorptionandvolumetricparametersfromtheX-raymeasurement.UsingthepresentedprincipleofbiomassdeterminationfromX-rayCTdata,thesamecorrelationcanbeobtainedforallkindsofplantmaterialsusingdifferentsegmentationalgorithms.3Dimagingapproachesinquantitativeplantphenotyping:ApplicationscenariosinthelabandinthefieldMarkMüller-Linow1,FranciscoPinto2,LukaOlbertz1,FabioFiorani1,UweRascher1

1ForschungszentrumJuelichGmbH,Germany.Email:[email protected],MexicoInplantphenotyping,3Dimagingapproachesareincreasinglyusedtostudytheimpactofgeneticvariabilityandenvironmentalfactorsthatinfluenceleafanglesandlightinterceptionresultinginvaryingcanopyarchitecture.Thenon-invasiveacquisitionof3Dstructureofdifferentplantorganssuchasleaves,roots,fruitsorseedsrequiresusingdifferentmethodologicalapproaches.Apartfromactivemethods,whichmakeuseofanartificiallightsource(e.g.,LightDetectionandRanging[LIDAR],LightSectioningorStructuredLight),camera-basedmethodsarewidelyusedandsubstantiallydifferintermsofimagedataprocessing.Herewegiveanoverviewof3Dimagingapproaches,whichweredevelopedattheInstituteofBiosciences(IBG-2,ForschungszentrumJuelich,Germany)withafocusondevelopingandbenchmarkingmeasurementsaspartofthetwoGermanprojectclustersCrop.Sense.net(www.cropsense.uni-bonn.de)andtheGermanPlantPhenotypingNetwork(DPPN;www.dppn.de).Wewilldemonstratetheuseofdifferentsensortechniques,rangingfromstructuredlightmethodsinthelabuptolight-sectioningapproachesandstereo-imagingindifferentapplicationscenariosinthelaband

Page 16: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

4

ADVANCESINPLANTPHENOTYPINGTECHNOLOGIES

inthefield,therebycoveringthescaleofsmallplantpopulationstosmallerscalesofsingleplants.Usingstructuredlight,wewereabletoresolveandquantitativelycharacterizesingleleavesuptoasizeof2mm.Wewillhighlighttheapplicationofmulti-camerasetupsundernaturalenvironmentalconditionsatthescaleofexperimentalplots(upto2m2)alongwithnewimageprocessingpipelinestoestimateleafareaandleafangledistributioninsugarbeetexperiments.Hereplantswereanalyzedonthebasisofindividualleaf3Dmodelsfromsegmentedstereoimages.High-throughputestimationofincidentlight,lightinterceptionandradiation-useefficiencyofthousandsofplantsinaphenotypingplatformLlorençCabrera-Bosquet,ChristianFournier,Tsu-WeiChen,NicolasBrichet,BenoîtSuard,ClaudeWelcker,FrançoisTardieuUMRLEPSE,INRA,MontpellierSupAgro,34060,Montpellier,France.Email:[email protected]

Understandingthegeneticcontrolofbiomassproductionandyieldisamajorchallengeinthecontextofclimatechange.Wedevelopedasuiteofmethodstomeasurelightinterception,interceptionefficiencyandradiation-useefficiency(RUE)inthousandsofplantsusingahigh-throughputphenotypingplatform.Differentmodelswereinterfacedtocalculate:(i)thespatialdistributionofincidentlight,asexperiencedbyhundredsofplantsinagreenhouse,bysimulatingsunbeamtrajectoriesthroughglasshousestructureseverydayoftheyear;(ii)theamountoflightinterceptedbyplants(IPPFD)viaafunctional-structuralmodelusing3Dreconstructionsofeachplantplacedinavirtualscenereproducingthecanopyinthegreenhouse;(iii)RUEcalculatedastheratioofplantbiomasstoIPPFD.Inputsforthesemodelswere(i)imagesofeachplanttakenevery30°everydayforestimatingleafarea,biomassandarchitecture;and(ii)environmentaldatacollectedevery15minat8siteswithinthegreenhouse.ThesemethodsweretestedusingthePhenoArchplantphenotypingplatform(www6.montpellier.inra.fr/lepse/M3P)duringsixexperimentswithpanelsof1,680maize(ZeamaysL.)hybridsorlinesgrownindifferentseasons(contrastinglightandevaporativedemand)anddifferentsoilwaterpotentials.Eachofthestudiedtraitsdisplayedlargegenotypicvariability.Bycalculating"hiddenvariables"encapsulatingspatialandtemporalenvironmentalvariationssuchasRUE,weidentifiedheritablephysiologicaltraitsusableingeneticanalysesandcropmodelingthatarecurrentlyappliedinfieldstudies,therebyopeningthewayforlarge-scalegeneticanalysesofplantperformancecomponents.Holisticandcomponent-baseddynamicvegetative-stageplantphenotypinganalysisSrutiDasChoudhury1,AshokSamal1,JamesSchnable2

1DepartmentofComputerScienceandEngineering,UniversityofNebraska-Lincoln,USA2DepartmentofAgronomyandHorticulture,UniversityofNebraska-Lincoln,USAExtractingmeaningfulnumericalphenotypesfromplantimagesremainsacriticalbottleneckinautomatedplantphenotyping.Weclassifyimage-basedphenotypingapproachesintoholisticandcomponent-based.Holisticanalysesconsiderthewholeplantasasingleobjectandmeasureits

Page 17: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

5

ADVANCESINPLANTPHENOTYPINGTECHNOLOGIES

attributes,whereascomponent-basedphenotypinganalyzesindividualplantparts,e.g.,leavesandstems.Twonovelholisticphenotypiccomponentsareintroduced:bi-angularconvex-hullarearatioandplantaspectratio.Bi-angularconvex-hullarearatioisdefinedastheratiooftheareaoftheconvex-hulloftheplantwhenviewedfromthesideataparticularangleandtheareaoftheconvex-hullofthesameplantwhenviewedatarotationof90°.Itprovidesinformationabouttemporalchangesinphyllotaxy,i.e.,thearrangementofleavesaroundastem.Plantaspectratioisdefinedastheratiooftheheightoftheboundingrectangleoftheplantfromthesideviewandthediameteroftheminimumenclosingcirclefromthetopview.Itcharacterizesthecanopyarchitecturethatisgeneratedbythecropaccessionsinthefield.Thefollowingcomponent-basedphenotypesarecomputed:leafcount,leafsize,stemangleandleafcurvature.Thegrowthofplantisbestinterpretedbythenumberofleavesandthesizeofeachleafduringtheplant’slifecycle.Thus,weintroduceanalgorithmforleaf-countandleaf-sizemeasurement.Thestemangle,i.e.,theanglebetweenthestemandthehorizontalaxis,awayfromvertical,canbeanearlysignalthatagivenplantisgoingtobesusceptibletolodging.YieldlossesduetolodgingreducetheUSmaizeharvestbetween5-25%ayear($2.4-12billionat2015maizeprices).Leafcurvatureismeasuredtoprovideinformationonleafdrooping.Aplant-componenttrackingalgorithmisintroducedtostudythetemporalvariationofthesecomponent-basedphenotypesinmaizeusingournewlyintroducedbenchmarkdatasetcalledComponentPhenocornDataset.UsingLIDARtomeasureforageyieldofperennialryegrass(LoliumperenneL.)fieldplotsKioumarsGhamkhar1,KenjiIrie2,MichaelHagedorn2,JeffreyHsiao2,JacoFourie2,SteveGebbie3,JasonTrethewey2,CaseyFlay1,BrentBarrett1,AlanStewart4,ArminWerner2

1ForageScience,GrasslandsResearchCentre,AgResearch,PalmerstonNorth,NewZealand.Email:[email protected]

2LincolnAgritechLtd,Lincoln,NewZealand3DevelopmentEngineering,LincolnResearchCentre,AgResearch,Lincoln,NewZealand4PGGWrightsonSeeds,Christchurch,NewZealandALIDAR-basedtoolfornon-invasiveestimationofplantbiomassinperennialryegrassfieldplotswasdeveloped.ThisincludeddesigningandmakingaprototypeofamachineforLIDARdatacollection,anddevelopingalgorithmsfordataprocessing.Thebiomassestimateswerevalidatedwithregressionanalysisagainstharvestdata.Theprojectwasimplementedinthreephases.Inphase1,aprototype-carryingframeandalight-excludingcoverwasconstructedfortheLIDARscanner.Analgorithmwasdevelopedforgrassplotsegmentation,groundsurfacedetectionandestimationofplantbiomass.Phase2focusedondevelopingtheprototypetoolfurther,includingapplication-specificreal-timecaptureend-usersoftwarefordatacaptureandanalysis.Thisincludedtestingthealgorithmandin-fieldtestingofthesoftware.Anexperimentwasalsoconductedtostudyhowthevariationingroundlevelbetweendifferentscansaffectedthemeasurement.Itwasfoundthatthevariationofgroundlevelwassignificant(morethan20mm)betweenadjacentscansandwithineachsegment.Animprovedmethodwithcorrectionforsoilsurfacevariationwasdevelopedtoestimatethegroundlevelofeachscanandincreasetheaccuracyofbiomassestimation.Inphase3,86segmentsinreplicatedfieldplotsofaperennialryegrasscultivartrialinCanterbury,NewZealand,werescannedwithLIDARatearly,midandlatetimepoints,withmechanicalharvestandyielddatacollectionatthelategrowthstage.Significant(P<0.0005)correlationswereobservedbetweenprocessedLIDARdataandfreshanddryweightsof

Page 18: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

6

ADVANCESINPLANTPHENOTYPINGTECHNOLOGIES

plantfoliagebiomasswithR2valuesof0.78and0.76,respectively.Thelate-growthcalibrateddatawereusedtoexploreryegrassgrowthdynamicsusingLIDARscansatearlygrowthandmid-growthstages.PlantphenotypingrevealsgeneticandphysiologicalfactorsofplantperformanceThomasAltmann1,MosesMuraya1,2,JiantingChu1,YushengZhao1,AstridJunker1,ChristianKlukas1,3,JochenC.Reif1,DavidRiewe1,RhondaC.Meyer1,Hea-JungJeon1,MarcHeuermann1,JudithSchmeichel1,MoniqueSeyfarth1,JanLisec4,LotharWillmitzer41LeibnizInstituteofPlantGeneticsandCropPlantResearch(IPK)Gatersleben,Germany.E-mail:[email protected]

2ChukaUniversity,Kenya3LemnaTecGmbH,Germany4Max-Planck-InstituteofMolecularPlantPhysiology,GermanyKnowledgeofthestructuralandfunctionalgeneticarchitectureofagriculturaltraitsisaprerequisiteforthesystematicexplorationandutilizationofplantgeneticresourcesinplantbreeding.Touncovermechanisticlinksbetweengeneticvariation,physiologicalfactorsandwholeplantperformancefordevelopingnovelcropimprovementstrategies,Arabidopsis,maize,andrapeseedwerestudiedusingintegratinggenotyping,transcriptandmetaboliteprofiling,andautomatedplantphenotypingwithdedicatedplatforms.Thethreehigh-throughputplantphenotypingfacilitiesatIPKsupportautomatedwhole-plantanalysesforsmall,mediumandlargeplantsincludingcultivation,transport(plant-to-sensor)andimagingofplantsinclimatecontrolledphytotron/glasshousecabins.Theywereequippedwithcamerasandilluminationsystemsforvisible,fluorescenceandnear-infraredimagingusingtopviewandsideviews.Furthermore,3DlaserscannersandLEDpanelsandCCDcamerasforfunctionalchlorophyllfluorescencedetectionandabroadrangeofenvironmentalsensorswereinstalled.Thevalueofrepeatednon-invasive/non-destructivemonitoringoflargeplantpopulationsishighlightedbyresultsoftheanalysisofacollectionof261maizedentlinesusingaspecificallyoptimizedcultivationandphenotypingsetupcharacterizedforbiomassaccumulationandwaterconsumption,andthus,forwateruseefficiency.Combinedwith50kSNPinformation,thesedatahavebeenusedtoidentifyQTLofthesetraitsandofthegrowthdynamicsbygenome-wideassociationtesting.Twelvemain-effectQTLand6pairsofepistaticinteractionsweredetectedthatdisplayeddifferentexpressionpatternsatseveralindividualdevelopmentaltimepoints.Asubsetalsoshowedsignificanteffectsonrelativegrowthratesatdifferentintervals.Usingnonparametricfunctionalmappingandmultivariatemappingapproaches,fouradditionalQTLaffectinggrowthdynamicsweredetected.Ourresultsdemonstratethatplantbiomassaccumulationisacomplextraitgovernedbymanysmall-effectloci,mostofwhichactatcertainrestricteddevelopmentalstages.Thishighlightstheneedtodetectandinvestigatestage-specificgrowthcontrolgenesoperatingatdifferentdevelopmentalphases.IntegratedmetabolomeanalysisandwholeplantphenotypingperformedinArabidopsisrevealeddirectlinksbetweenapromoterInDelpolymorphismoftheFUM2gene,itsmRNAexpression,fumaraseenzymeactivity,andfumarate:malateratioinleaves.ThepromoterInDelthatcoincidedwithafumarateQTLfoundinArabidopsisCol-0/C24

Page 19: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

7

ADVANCESINPLANTPHENOTYPINGTECHNOLOGIES

RILsandILswasalsosignificantlyassociatedwiththefumarate:malateratio,withmalateandfumaratelevels,andwithdryweightin174naturalaccessionsat15daysaftersowing(DAS)andwasassociatedwithbiomassproductioninanother251accessions(at22DAS).ThissupportsaroleofthecytosolicFUM2,whichspecificallyoccursinBrassicaceae,indiurnalcarbonstorageandindicatesagrowthadvantageofaccessionscarryingtheFUM2Col-0alleleoccurringmostlyincolderclimates.Trackingshort-termgrowthresponsetoenvironmentalvariablesduringwheatstemelongationLukasKronenberg1,KangYu1,AchimWalter1,AndreasHund11SwissFederalInstituteofTechnologyETH,Switzerland.Email:[email protected](SE)inwheatiscriticalforyieldandisdrivenbytemperature.Wheatgrowthresponsetotemperatureduringthisphaseisthereforeanimportanttraitintermsofcropadaptationtodifferentenvironmentsandyield.AccurateplantheightmeasurementsinhightemporalresolutionarerequiredtoquantifySEgrowthdynamicsandtheirresponsetotemperature.Usingtraditionalmeasuringtoolsistediousandreliesonasubjectivechoiceofafewindividualplantstobemeasured.Terrestrial3Dlaserscanning(TLS)hasrecentlybeenpresentedasanoveltoolformeasuringplantheightinthefield,basedonassessingtheheightofthewholeuppercanopy.Inthisstudy,weusedTLSwithascannermountedontheETHfieldphenotypingplatform(FIP)tomeasurecanopyheightat3Dayintervalsduringthewholestemelongationperiodinafieldtrialcomprising340winterwheatvarieties.TheFIPisanovelmultisensoryphenotypingplatformthatcoversa1-hafieldbymeansofasensorheadhangingfromarope.Theaimsweretotestthemeasurementsystem’scapabilitytomeasurecanopyheightintermsofaccuracyandthroughputandinvestigategenotypicdifferencesingrowthdynamicsandingrowthresponsetotemperatureduringSE.TheTLSapproachprovedpromisingforcanopyheightmeasurements(R2=0.99comparedtomanualmeasurements)athighprecisionandthroughput.Atotalof714plotscouldbemeasuredwithin3.5hours,whichallowsforveryhighmeasurementfrequency(i.e.,twiceaday).Inthisway,growthcanbecapturedinhightemporalresolution.Genotypesdifferedsignificantlyindaystofinalheightaswellasindaysto50%finalheight.Dailygrowthratesdifferedmarkedlybetweenmeasurementintervalsandamonggenotypes.Theanalysisofvariancesuggestedsignificantgenotypiceffectsinshort-termgrowthresponsetotemperatureandvaporpressuredeficit(p<0.001),withheritabilitiesof0.4and0.6,respectively.ThemeasurementapproachpresentedgeneratesnewpossibilitiesformonitoringwheatgrowthduringSEintermsofaccuracyandthroughput.Theresultssuggestgenotype-specificgrowthhabitsareresponsivetoenvironmentalfactors,providinginsightsforfurtherinvestigationintoplantgrowthresponsetoachangingenvironmentduringSE.

Page 20: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

8

ADDINGVALUETOPHENOTYPICDATA

Tuesday13thDecember(Afternoon)ADDINGVALUETOPHENOTYPICDATA

Willhigh-throughputphenotypingandgenotypingtechniqueshelpustobetterpredictGxEinteractions?PerspectivesfromstatisticsandcropgrowthmodelingFredA.vanEeuwijk1,DanielaV.Bustos-Korts1,2,MarcosMalosetti1,MartinP.Boer1,WillemKruijer1,KarineChenu3,ScottC.Chapman41Biometrics,WageningenUniversityandResearchCentre,theNetherlands2C.T.deWitGraduateSchoolforProductionEcology&ResourceConservation(PE&RC),TheNetherlands,email:[email protected]

3TheUniversityofQueensland,CPS,QueenslandAllianceforAgricultureandFoodInnovation,Toowoomba,Australia

4CSIROAgricultureandFood,Brisbane,AustraliaPredictionsofphenotypictraitsfordiversesetsofgenotypesacrossbroadrangesofenvironmentalconditionsareatthebasisofattemptstomaximizeselectionresponsesinplantbreedingprograms.Forthelastdecade,multi-environmenttrialsprovidedtheinformationforbuildingsuchpredictionmodels.Thesepredictionmodelsweremostlylinearmixedmodels(LMMs).LMMsareaflexibleclassofmodelswithfacilitiesformodelinggeneticandenvironmentalcorrelationsbetweentraitsandenvironmentsandallowforheterogeneityofgeneticandenvironmentalvariances.Inaddition,onthegenotypicsideofpredictionmodels,LMMsprovidethepossibilitytoincludemarkerandsequenceinformationasgenotypiccovariatestoimprovephenotypicprediction,whichisthencalledgenomicprediction.Ontheenvironmentalside,LMMscanbeextendedbyincludingenvironmentalcharacterizationsasenvironmentalcovariatestoimproveprediction.Recently,theuseofphenotypingplatformshasledtoanadditionalsourceofinformationthatmaybeusefultoimproveprediction.InthecontextofLMMs,thisinformationentersthepredictionmodelasadditionalgenotypiccovariates.Modelsforphenotypicpredictionneedtoaddressgenotypebyenvironmentinteractions(GxE).ThestatisticalobjectiveistofindfunctionsofgenotypicandenvironmentalcovariatesthatcanpredictGxE.Statisticalcriteriaforchoosingappropriategenotype-to-phenotypefunctions(linear,non-linear,parametric,non-parametric,univariate,multivariate,networks,graphicalmodels)andselectinggenotypic(markers,sequences,platformcharacterizations,resistances,tolerances)andenvironmental(environmentalcharacterizations,sensors,cropgrowthmodeloutputs,stressindices)covariatesmaybeinsufficientlycleartoguidethemodel-buildingprocessandmaynotleadtoaccuratephenotypicpredictions.Asacomplementtopurelystatisticalapproachestophenotypicprediction,cropgrowthmodelshavebeenproposed.Onthepositiveside,cropgrowthmodelsprovideacausalorderingandidentificationofphysiologicalparameters,componenttraitsandtargettraits(yield,resistance,tolerance,quality)thatcanhelpstreamlinetheprocessofphenotypicprediction,whereasstatisticalmodelsmayatbestselectandestimateapproximatetraitconfigurationsandorderingsfromthedataitself.Cropgrowthmodelsalsomakeexplicittheenvironmentalinformationthatisrequiredforphenotypicprediction.Onthenegativeside,cropgrowthmodelsoftencontainparametersandinputsthatarehardtoobtainandmeasureinpracticeondiversesetsofgenotypes.

Page 21: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

9

ADDINGVALUETOPHENOTYPICDATA

Wehavebeenstudyingvariouswaysofhybridizingstatisticalpredictionmodelswithcropgrowthmodels.Astraightforwardhybridmethodofpredictioninsertsgenomicpredictionsforcomponenttraitsincropgrowthmodelsforyieldandothertargettraits.Moresophisticatedhybridizationsarepossibleandwillbepresented.Pointsofconsiderationarethedesignandanalysisofindividualphenotypingtrials,bothinfieldtrialsandonplatforms,thechoiceofgenotype-to-phenotypemodels,andtheselectionofgenotypicandenvironmentalcovariates.Specialattentionwillbegiventotheaddedvalueofhigh-throughputgenotyping,phenotypingandenvirotypinginformationforprediction.PhenotypingforcropimprovementinadiversityofclimaticscenariosFrançoisTardieu1,EmilieJ.Millet1,SantiagoAlvarezPrado1,AudeCoupel-Ledru1,LlorençCabrera-Bosquet1,SébastienLacube1,BorisParent1,ClaudeWelcker11INRALEPSE,Montpellier,France;email:francois.tardieu@supagro.inra.frTheplantsciencecommunityhastodesignnewgenotypesabletocopewithdiverseenvironmentalconditions,inparticularthoselinkedtoclimatechange.Amajorissueistocombine"blackbox"strategies,suchasgenomicselection,withtheknowledgeoriginatedfromphenotyping.Themaincomparativeadvantageofthelatteristohelpdealwiththeenvironment-dependentvariabilityofalleliceffects.Weadoptedamulti-scalemulti-environmentapproach,which,inthefield,consistsof(i)clusteringtimecoursesofenvironmentalvariablessimulatedbyacropmodelin60sitesx30yearsundercurrentandfutureconditionsintosixtemperatureandwaterdeficitscenariosexperiencedbyplants;(ii)performingfieldexperimentsincontrastingenvironmentalconditionsacrossEuropewithapanelofmaizehybrids;(iii)assigningindividualexperimentstopreviouslydefinedscenariosbasedonenvironmentalconditionsmeasuredineachfield;and(iv)analyzingthegeneticvariationofplantperformanceforeachenvironmentalscenarioviagenome-wideassociationstudies(GWAS).LargevariationsofQTLeffectsdependingonenvironmentalscenariosresultedinapatternassociatedwitheachQTL,definedbythescenariosinwhichithadpositive,negativeornoeffect.Inaphenotypingplatform(Phenoarch),weestimatedinterceptedlightandradiationuseefficiencyofeachhybridinthesamepanelviaafunctional-structuralmodelusing3Dreconstructionsofeachplant.Wealsoestimatedthesensitivityofgrowthtowaterdeficitofeachhybridviaajointanalysisofseveralexperimentswithcontrastinglight,evaporativedemandandsoilwaterpotential.Asawhole,thecombinationoffieldandplatformstepsresultsinadatasetthatallowsidentifyinggenomicregionsassociatedwithtoleranceinspecificheatanddroughtscenarios,andwithtraitsassociatedwiththesegenomicregions.Finally,modelsallowidentifyinggeographicalregionsinwhichagivencombinationofallelesislikelytohavecomparativeadvantages.Thisapproachcanbeusedforassessingthegenotypicperformanceandthecontributionofgenomicregionsundercurrentandfuturestresssituationsandthusforacceleratingcropbreedingfordiverseenvironments.

Page 22: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

10

ADDINGVALUETOPHENOTYPICDATA

StrategiestohandleroothydraulicarchitectureatmultiplescalesXavierDraye1,ValentinCouvreur1,GuillaumeLobet1,2,FelicienMeunier1,MathieuJavaux1,21UCL,EarthandLifeInstitute,Belgium2FZ-Juelich,GermanyTheimportanceofadeeprootsystemhasbeenwidelyadvocatedasacontributingcomponenttodroughtadaptation.Nevertheless,recentresultsandmodellingstudiesindicatethat,beyondthedepthoftherootsystem,thedynamicsofsoilexplorationandthespatialdistributionofrootwateruptakemayhaveastronginfluenceonshorttermplanttranspirationandlong-termsoilwateravailability.Inparticular,hydraulicpropertiesofindividualrootsegmentsplayakeyroleindeterminingthedistributionofwateruptakethroughouttherootsystem.Wehaverecentlydevelopedadetailedmodelofwaterfluxacrossrootsthatstreamlinestheintegrationofmolecular(e.g.aquaporinexpression),anatomicalandhistologicaldatatopredictmacroscopicrootsegmenthydraulicproperties.Thelatterfeedintoasoil-plantmodelofsoilwaterdynamics(R-SWMS)whichscalesuplocalpropertiestoplant-andplot-levelwateruptake.Wearecurrentlydevelopingananalysisframebasedon(1)observedstandardrootsystemarchitecturesobtainedwithhighthroughputrootphenotypingplatform(usingaeroponicsasunconstrainedgrowingsystem),(2)predictedrootsegmenthydraulicproperties(guidedfrommolecular-andorgan-scaledataofhypotheses),(3)simulationsofastandardwateruptakeunderspatiallyuniformsoilmoistureand,(4)analysisofthedeviationsfromthestandarduptakeinconditionsofheterogeneousandvariablesoilmoisture.UsingstructuralmodelstovalidateandimproverootimageanalysispipelinesGuillaumeLobet1,2,5,IkoKoevoets3,ManuNoll1,LoïcPagès4,PierreTocquin1andClairePérilleux11InBioS,UniversitédeLiège,Belgium.Email:[email protected]:Agrosphare,ForschungszentrumJülich,Germany3SwammerdamInstituteofLifeSciences,UniversityofAmsterdam,TheNetherlands4PlantesetSystèmesdeCultureHorticoles,INRA,Avignon,FranceManystructuralrootmodelshavebeendeveloped,eithergenericorforspecificspecies,andthesehaverepeatedlybeenshowntofaithfullyrepresenttherootsystemstructure,aswellasbeingabletooutputground-trutheddataforeverysimulationandimage,independentofrootsystemsize.However,theyhavealmostneverbeenusedasvalidationtoolsforimageanalysisprocedure.Herewewillshowthatstructuralrootmodelscanbeusedincombinationwithimageanalysispipelinestoassessandimprovetheiroverallperformance.First,wewillshowthatanin-depthanalysisofrootimageanalysispipelinesusingsuchmodelsrevealsstronglimitationsintheirabilitytomeasurecomplexrootsystems.Secondly,wewillpresentaninnovativestrategythatcombinesrootmodelsandmachine-learningalgorithms(random-forests),thathastheabilitytoincreasethemeasurementaccuracy.

Page 23: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

11

ADDINGVALUETOPHENOTYPICDATA

Combininghigh-throughputphenotypingandQTLmappingtorevealthedynamicgeneticarchitectureofmaizeplantgrowthChenglongHuang1,2,4,XuehaiZhang1,4,DiWu2,FengQiao1,KeWang2,YingjieXiao1,GuoxingChen3,LizhongXiong1,WannengYang1,2,JianbingYan1

1NationalKeyLaboratoryofCropGeneticImprovement,NationalCenterofPlantGeneResearch(Wuhan),HuazhongAgriculturalUniversity,Wuhan430070,PRChina

2CollegeofEngineering,HuazhongAgriculturalUniversity,Wuhan430070,PRChina3MOAKeyLaboratoryofCropEcophysiologyandFarmingSystemintheMiddleReachesoftheYangtzeRiver,HuazhongAgriculturalUniversity,Wuhan430070,PRChina

4Theseauthorscontributedequallytothiswork.Correspondingauthors:WannengYang([email protected])andJianbingYan([email protected])Withtheincreasingdemandsincropbreedingfornoveltraits,theplantresearchcommunityhastoquantitativelyanalyzethestructureandfunctionoflargenumbersofplants.Acleargoalofhigh-throughputphenotypingistobridgethegapbetweengenomicsandphenomics.Inthisstudy,weobtained106traitsfromamaizerecombinantinbredlinepopulationacross16developmentstagesusingtheautomaticphenotypingplatform.Theresultsshowedthattheexponentialmodelhadbetterpredictionabilityforbiomassaccumulation,eveninearlyplantgrowthstages.QTLmappingwithahigh-densitygeneticlinkagemapwasusedtouncoverthegeneticbasisofthesecomplexagronomictraits,anditidentified2249QTLsforallinvestigatedtraits.Wealsoconductedtraits-locinetworkanalysisandthreehousekeepinglociweredetectedinthehubpointsfortwotraits.Theseresultsrevealthedynamicgeneticarchitectureofmaizeplantgrowth,whichwill,inthenearfuture,enhancethemaizeideotypeusedinbreeding.Useofhigh-throughputphenotypingatCIMMYT:Newmodels,challengesandperspectivesJuanBurgueño,JoséCrossa,SamTrachsel,SuchismitaMondalInternationalMaizeandWheatImprovementCenter(CIMMYT)CIMMYTannuallyestablishesalargenumberofmaizeandwheattrialsatsitesinMexicoandwithpartnersfromthepublicandprivatesectorindevelopingcountriesinAfrica,AsiaandCentralAmerica.Oneofthebiggestchallengesistogeneratedataofconsistentlyhighqualityfromhundredsofexperimentsperyearbecausetheseexperimentsareconductedinseveralcountriesunderdifferentenvironmentalandagronomicconditions.Commercialavailabilityofunmannedaerialvehicles(UAV)andthecontinuedimprovementofcameras(multi-spectral,hyper-spectralandthermal)haveopenednewopportunitiesforthedevelopmentandadoptionofHPPinlarge-scalemulti-environmenttrials.Thesetechnologiesobtainhighqualitydataquicklyandatrelativelowcost.Adoptionofthesetechnologieswillenablefield-levelgenetictestingatascalethatwasnotpreviouslypossible.CIMMYThasbeenintroducingsomeofthesenewtechnologiesinfieldphenotypingsincetheearly2000s.Modernhigh-resolutioncamerascanprovidereflectancedataathundredsofwavelengths.Thisinformationcanbeusedtoderivevegetationindices(VI)thatarecorrelatedwithimportantagronomic

Page 24: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

12

ADDINGVALUETOPHENOTYPICDATA

andphysiologicaltraits.However,thedatageneratedbyhigh-resolutioncamerasisricherthanwhatcanbesummarizedinaVI.Tomakefulluseofrichreflectancedata,wecomparethepredictiveperformanceofseveralVIwiththatofpredictionequationsthatuseinformationfromtheentireavailablespectrum.Weconsideredthreestatisticalmethods:ordinaryleastsquares(OLS),partialleastsquares(PLS,adimensionreductionmethod)andaBayesianshrinkage/variableselectionprocedure(BayesB,whichhasbeenusedingenomicpredictionbuthereisusedtoselectthemostimportantspectralbands).Correlationsbetween0.3and0.6werefoundwhenpredictingmaizeyieldinasetof12experiments.Also,wefoundthatusingthecompletespectralbandsproduceshighercorrelationswithgrainyieldthanusingsomevegetativeindexes.Simultaneously,geneticevaluationofseveralvegetativeindexesbycalculatinggeneticvariability,heritabilityandotherrelatedmeasurementsshowedhighvariabilitybetweentrialswithrepeatabilityrangingfromto0to0.9.Resultsarepromisingbutmoreresearchisrequiredtoincreasedataqualityandprecisionatthelowestpossiblecostandtoimproveanalyticalmethodologies.Usinghigh-throughputphenotypingtoimproveaccuracyingenomicprediction:ExamplesforcropsimulatedtraitsDanielaBustos-Korts1,2,MarcosMalosetti1,MartinP.Boer1,ScottC.Chapman3,KarineChenu4,FredA.vanEeuwijk11Biometris,WageningenUniversityandResearchCentre,TheNetherlands2C.T.deWitGraduateSchoolforProductionEcology&ResourceConservation(PE&RC),TheNetherlands.Email:[email protected]

3CSIROAgricultureandFood,Brisbane,Australia4TheUniversityofQueensland,CPS,QueenslandAllianceforAgricultureandFoodInnovation,Toowoomba,Australia

Predictionofthefinalstateofatargetcomplexandcompositetrait(yield)canbeimprovedbyaddinginformationonthedynamicsofthistraitanditsconstituentcomponents.High-throughputphenotypingtechniquesprovideinformationonthedynamicsoftargetandcomponenttraits.Thisinformationcanbesummarizedbyparametricorsemi-parametricstatisticalmodelsforgrowth.Statisticalparameterscharacterizinggrowthovertimeareexpectedtohavegreaterheritabilityandofferabetterintegrationofplantresponsestoenvironmentalconditionsthansingletimemeasurementsonthesametraitsandshouldbeusefulascorrelatedtraitsinmulti-traitgenomicpredictionmodels.Multi-traitgenomicpredictionmodelsarepreferredoversingle-traitmodelsforthefollowingscenarios:(1)predictingatargettraitfrommeasurementsofcomponenttraitsatearlygrowthstages,therebyreducingtheselectioncycle;and(2)increasingaccuracyforpredictionofatargettraitbyusingmulti-traitpredictionmodelsthatcombinethetargettraitwithitscomponents.Thesuccessofthesetwopredictionscenariosdependsontheheritabilitiesofalltraitsinvolvedandthecorrelationstructureofthetargettraitwithitscomponents.Tostudytheabovepredictionscenarios,wesimulatedaRILpopulationwithsegregatingQTLsfortheAPSIM-Wheatparametersthatregulatephenology,biomasspartitioningandtheabilitytocaptureenvironmentalresources.Thephysiologicalparametervaluesdefiningthesegregatingpopulationwere

Page 25: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

13

ADDINGVALUETOPHENOTYPICDATA

usedtosimulateyield,yieldcomponentsandphenologyduringthegrowingseason.Weconsidereddifferentexperimentalandmeasurementerrorscenarios.Lowheritabilityofsingletimepointswascompensatedbyusingphenotypesatmultipletimepointssimultaneously(h2increasedfrom0.2to0.6).Incorporatingtraitdynamicsovertimeinamulti-traitgenomicpredictionmodelshowedhigheraccuracy,comparedtosingletraitpredictionandcouldpotentiallybeusedtoshortentheselectioncyclebyproducingyieldpredictionsearlyinthegrowingseason.APSIM-Wheatwithgenotype-dependentparametersprovedtobeavaluabletooltoassesstheconvenienceofinvestinginmoreprecisefieldmeasurements,ortodeterminethenumberandtimingofmeasurementsrequiredtobestcharacterizecomponenttraits.

PosterSession:AdvancesinPlantPhenotypingTechnologies

AutomatedmeasurementtoolforphenotypingrootandhypocotylgrowthofArabidopsisplantsAdedotunAkintayo1,TrevorNolan2,YanhaiYin2,SoumikSarkar11DepartmentofMechanicalEngineering,IowaStateUniversity.Email:[email protected],DevelopmentandCellBiology,IowaStateUniversityPlantgrowthresponsestovariousenvironmentalconditionsorchemicaltreatmentscanbequantitativelyassayedbymeasuringhypocotylorrootlengthsofArabidopsis(Arabidopsisthaliana)seedlings.Thesemeasurementscanbeemployedtofurtherunderstandabiologicalprocessofinterest—forexample,howaclassofplantsteroidhormonescalledBrassinosteroidsregulatethousandsofgenestocontrolplantgrowth.Inthisresearch,weautomatedtheprocessofmeasuringhypocotylandrootlengthsinArabidopsisandappliedthedevelopedtooltogainfurtherinsightintotheBrassinosteroidpathwaybyperformingmeasurementsinthepresenceorabsenceofBrassinazole,aBrassinosteroidbiosynthesisinhibitor.Recentadvancesinphenotypingtechniquesarerapidlyencouragingtheubiquityoflarge-scaleimagingofplants,whilehardware-basedphenotypingmethodsbyrobotsnowrequireembeddingofintelligentalgorithms.Theautomatedmeasurementtoolproposedisanenhancedversionofthehierarchicalstructure-basedpolylinesimplificationalgorithmthathasprovensuccessfulincartographicapplications.Itwasimprovedsothatitcoulddeterminethesortedcoordinatesoftheverticesbetweentwonodesmorerobustlythanthemorphologicaloperation,thinning,whichfailswithmulti-angularforegrounddisturbancecrossingthedesiredobjects.Ourforward-backwardevaluationalgorithmadjuststheshortestpathobjectivefunctionofthebi-directionalsearchmethodtomarchingfromoneidentifiedtissuepointtoanotherontheforegroundobjectinablindpathdetectionmanner.Itsignificantlyreducesthenumberofverticesthatneedstobespecifiedoneachplanttoonlythoseoftheendpointswithhigherresolution,whilethecurrentlyapplied‘ImageJ’toolrequiresmorecoordinates.Itwasdeployedandtestedonseveralimagesinasemi-automatic,human-in-the-loopmannerforthemeasurements.WecompareitsresultswiththoseoftheImageJmeasurementtool.

Page 26: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

14

Posters:AdvancesinPlantPhenotypingTechnologies

High-throughputscreeningtechniquesforstomatalresponsetoABAbasedonchlorophyllfluorescenceundernon-photorespiratoryconditionsSasanAliniaeifard1,UulkevanMeeteren2

1DepartmentofHorticulture,CollegeofAbureyhan,UniversityofTehran,Iran.Email:[email protected]

2HorticultureandProductPhysiology,WageningenUniversity,theNetherlandsFineregulationofstomataapertureisrequiredtoallowsufficientCO2uptakeforphotosynthesis,whilepreventingexcessivewaterlossthroughtranspiration.Althoughstomatalmovementsarecontrolledbyastrongandcomplicatedsystem,thiscontrolsystemcanbedisturbedundercertainenvironmentalconditions,causingchangesinclosureresponseofthestomata.Sinceanalysisofstomatalresponseshasbeenmainlylimitedtomicroscopicandgasexchangemeasurements,limitingthescaleofscreening,hereweusedchlorophyllfluorescenceimagingundernon-photorespiratoryconditions(20mmolmol-1O2)toanalyzestomatalresponsestoexogenousABA.AdecreaseinphotosystemIIphotochemicalefficiency(ΦPSII)iscloselyrelatedtostomatalclosurewhenphotorespirationisinhibitedthroughexposuretoadecreasedO2environment,butthisrelationshipisnotalwayslinear.ToconfirmthatdecreasedΦPSIIwasduetostomatalclosure,attheendofΦPSIIimagingsampleswerekeptinanatmospherewithhighCO2(20mmolmol-1O2,50,000µmolmol-1CO2)for5minutestotesttherecoveryofΦPSII.ClosureofstomataresultsinscarceCO2inthestomatalcavity.Inthissituation,whendecreasedFPSIIisduetolackofinternalCO2,veryhighCO2concentrationwilldiffuseintothestomatalcavityandrestoretheFPSII.ToscreenforstomatalresponsestoABA,leafdiscswerepreparedfromdifferentleaves.Theleafdiscswereputwiththeirabaxialsurfaceupinpetridishesfilledwithstomata-openingmediapfdifferentABAconcentrations.Toenablefastanduniformuptakeofthesolutions,3minvacuuminfiltrationwasused.Aftervacuuminfiltration,theleafdiscswerepre-incubatedintheabove-mentionedABA-solutionsat20°Cand40µmolm-2s-1irradiance.Thereafterthepetridisheswereplacedinaflow-throughcuvetteunderachlorophyllfluorescenceimagingsystem.Just10minutesexposuretonon-photorespiratoryconditionsplus5minutesexposuretohighCO2concentrationwereenoughtoanalyzethestomatalresponsesofmorethan40samples.Withthistechnique,notonlywerehugenumbersofstomataanalyzedinaveryshortperiodoftime,butheterogeneityinstomatalresponseovertheleafsurfacewasalsovisible.

Page 27: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

15

Posters:AdvancesinPlantPhenotypingTechnologies

AdvancedmathematicalalgorithmstocharacterizeolivevarietiesthroughmorphologicalparametersKonstantinosN.Blazakisa1,LucianaBaldonib2,AbdelmajidMoukhlic3,MarinaBufacchid4,PanagiotisKalaitzisa1

1DepartmentofHorticulturalGenetics&Biotechnology,MediterraneanAgronomicInstituteofChania(MAICh),73100Chania-Crete,Greece.

2ItalianNationalResearchCouncil,InstituteofBiosciencesandBio-Resources(CNR-IBBR),ViaMadonnaAlta,06128Perugia,Italy.

3INRAMarrakech,URAméliorationdesPlantes,Marrakech,Morocco4ItalianNationalResearchCouncil,InstituteforAgricultureandForestSystemsintheMediterranean(CNR-ISAFOM),ViaMadonnaAlta,06128Perugia,Italy.

Themorphologicalanalysisofolivefruits,leavesandstonesmayrepresentanefficienttoolforthecharacterizationanddiscriminationofvarietiesandtheestablishmentofphenotypicrelationshipsamongthem.Inrecentyears,muchattentionhasbeenfocusedontheapplicationofDNAmolecularmarkersduetotheirhighcapacitytoefficientlyandreliablydiscriminatecultivars.Inthistalk,wewillpresentasemi-automaticmethodologyofdetectingvariousmorphologicalparametersbasedonimageanalysistools.Anumberofmorphologicalparametershavebeenusedtocharacterizeolivegermplasmcollectionsfromdifferentcountries.Thedataobtainedcouldcomplementolivedatabasescomprisedofgenetic,molecularandmorphologicaldatasupportingeffortstoefficientlydiscriminatethemandinfereithergeneticand/ormorphologicalrelations.Withtheaidofcomputingandimageanalysissoftware,wecreatedsemi-automaticalgorithmsapplyingintuitivemathematicaldescriptorsthatquantifymanyfruit,leafandendocarpfeatures.Inparticular,weexaminedquantitativeandqualitativecharacterssuchassize,shape,symmetry,surfaceroughnessandthepresenceofadditionalstructures(nipple,petiole,etc.).Finally,inthistalkwewillpresenttheefficiencyandrobustnessoftheproposedmethodologyforthedescriptionofothercropmorphologiessuchastomatoes,pears,grapes,etc.AIRPHEN:AmultispectralcameradedicatedtofieldphenotypingfromdroneobservationsA.Comar1,F.Baret2,G.Collombeau2,M.Hemmerlé1,B.deSolan3,D.Dutartre4,M.Weiss2,S.Madec2,F.Toromanoff3

1HIPHEN,Avignon,France2INRA,UMREMMAH,Avignon,France3ARVALISInstitutduvégétal,Avignon,France4ITB,Avignon,FranceTheAIRPHENmultispectralcamerawasspecificallydesignedforaccessingcanopybiophysicalvariablesfromdroneobservationswithinfieldphenotypingexperiments.Thecameraweighsabout200g,recordsGPSandIMUinformationandallowstriggeringcompaniondevicesincludingathermalinfraredorRGBhighresolutioncamera.Sixnarrowwavebandsselectedtosamplethechlorophyllspecificabsorptioncoefficientrecordthereflectedradiationataresolutionof1,280x960pixels.The8-mmfocallengthprovidesresolutionsatgroundlevelrangingfromafewmillimeterstoafewcentimeters,dependingon

Page 28: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

16

Posters:AdvancesinPlantPhenotypingTechnologies

flightaltitude.Oneofthesixcamerasisequippedwitha4.2-mmfocallengthlenstoeasetheimagealignmentprocessandgeneratemoreaccurate3Dpointclouds,whileprovidingtheincreasedthroughputallowedbythelargerswathofthecamerainthisband.Apipelinecalled‘phenoscript’wasdevelopedtoprocesstherawimagesoftheAIRPHENcamera,computeasoutputsamultispectralortho-image,andextractthemicroplotsfromtheoriginalimagesandthecorresponding3Ddensepointcloud.Theextractscanlaterbeusedtocomputevegetationindices,measurecanopyheight,andderiveafewbiophysicalvariablesfromeitherempiricalapproachesorradiativetransfermodelinversion.TheuseoftheAIRPHENcameraisillustratedinseveralexperimentsconductedonarangeofspeciesincludingwheat,maize,sugarbeetandpotatoes.Thedynamicsofthevegetationindicesshowaverygoodconsistencyofthemeasurementsovertime.Theaccuracyofestimatesofseveralbiophysicalvariablesincludingthegreenfraction(GF),theGreenAreaIndex(GAI),thefractionofinterceptedradiation(FIPAR)andcanopy(CCC)orleaf(LCC)chlorophyllcontentispresented.Thecapacitytocombinethemultispectralcamerawiththermalinfraredimageryisalsoillustratedbythecharacterizationofwaterstress.FurtherdevelopmentsontheuseoftheAIRPHENcameraarediscussed,includingadvancedinterpretationoftheimagesbasedon3Dcanopystructuremodels,installationonothervectorssuchasthephenomobileforworkinginactivemode,orahandheldsystemdedicatedtosmallandlow-costexperiments.Derivingcanopyheightfromdroneobservations:OverviewoftheexpectedaccuracyandmaininfluentialfactorsS.Madec1,F.Baret1,G.Collombeau1,S.Thomas2,A.Comar3,M.Hemmerlé3,B.deSolan2,D.Dutartre4

1INRA,UMREMMAH,Avignon,France,email:[email protected]égétal,Avignon,France3HIPHEN,Avignon,France4ITB,Avignon,FranceDronesallowcollectingimageswithlargeoverlapssothatthesamepointonthegroundcanbeseeninseveralimagesandthusfromdifferentangles.Photogrammetrictechniquesarethenappliedtoexploitthispropertyandderiveadense3Dpointcloudfromwhichthemacro-structure(i.e.,theconvexhullofthevegetation)andthecorrespondingcanopyheightcanbecomputed.Thiscanopycharacteristicisveryappealinginthecontextofhigh-throughputplantphenotypingunderfieldconditions.Althoughthistechniqueisbecomingrelativelycommon,theexpectedaccuracyandthemaininfluentialfactorsarenotpreciselyknown.Theobjectiveofthisstudywastoquantifytheaccuracywithwhichcanopyheightcanbeestimatedandtoidentifythemainfactorsthathavetobeaccountedfortoachievethebestperformance.Aseriesoffieldphenotypingtrialswereconductedonsugarbeet,wheatandmaizein2015and2016.AhexacopterwasflowncarryingeitheraSonyAlphahigh-resolutioncamera(24Mpixels)oranAIRPHENmultispectralcamera(1.3Mpixels).GroundmeasurementsofcanopyheightwereconcurrentlycompletedusingeithervisualnotationsorvaluesextractedfromLIDARobservations.TheimagesfromthecamerasaboardthedronewereprocessedusingAgisoftPhotoScansoftwarethatalignsimagesand

Page 29: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

17

Posters:AdvancesinPlantPhenotypingTechnologies

generatesadense3Dpointcloudfromwhichtheverticaldistributioncanbecomputed.Apercentileofthedistributionisusedtodeterminethecorrespondingcanopyheight.Image-basedcanopyheightwasingoodagreementwithvisualnotationsofcanopyheight,withanuncertaintyofaround7cm(sugarbeet)to15cm(maize).MoredetailedresultsgatheredonwheatusingLIDARshowedthatmostoftheseuncertaintiesareattributabletotheprecisionofthevisualnotations.SeveralfactorspotentiallyaffectingtheaccuracyofcanopyheightestimationfromUAVobservationswereanalyzed.Oneofthemostimportantfactorsisthewaythesoilreferencealtitudeiscomputed.Indensecanopieswherethesoilcanhardlybeseen,itisadvisabletouseapreviousreference3Dpointcloudcorrespondingtobaresoil.Otherfactorsincludethegroundresolutionrelativetothesizeofthevegetationelements,thenumberofimagesfromwhicheachpointonthegroundisseen,thefieldofviewandtherangeofdirectionsavailable.TheinfluenceoftheparametersusedinAgisoftPhotoScanforgeneratingthe3Dpointcloudwasalsoevaluated.Finally,anoptimalprocedureispresentedthatshouldensureaccurateestimatesofcanopyheightthatcanbeusedforgenotypecharacterizationinphenotypingexperiments.Awirelessenvironmentaldatacollectionsystemforhigh-throughputfieldphenotypingThomasTruong,AnhDinh,KhanWahidUniversityofSaskatchewan,Canada.Email:anh.dinh@usask.caTheplantresearchcommunityneedstocombinetheenvironmentalconditionswithplantphenotypingtohaveacompletepictureofthegrowingprocess.Thedataprovidedbystate-levelweatherstationsdonotaccuratelyrepresentfieldconditions.Inaddition,otherenvironmentalconditionsaroundtheplantsarenotreadilyavailablewithoutafieldtrip.Asaresult,thereisaneedforaremotedatacollectioninthefieldforenvironmentalconditions.Thisarticledescribesthedesignofalocalenvironmentstationtobeinstalledinafieldforphenotyping.Thesystemincludesvarioussensors,amicrocontroller,awirelessmodule,awirelessinternet,andaclouddatabase.Theabovegroundsensorsincludeairtemperature,relativehumidity,sunlight,leafmoisture,CO2level,windspeed,winddirection,andrainfall.Thesoilwatercontent,soiltemperature,andpHsensorsarecurrentlyusedtomeasureundergroundconditions.Allsensorlevelsarecollectedbyamicrocontrollerwhichconvertsthesignalsintoenvironmentaldata.Thedataarestoredevery10minutes(oratatimeintervaldeterminedbytheusers)inasecuredigitalcardandalsosenttoahostdatabaseinthecloudasthesystemhasanInternetofThingsfeaturebuilt-in.Updateddatacanbeviewedandretrievedanytimeonawebsite.Thesystemisalsoequippedwithalocalwirelesssensornetworktohavemoredetailedenvironmentdatainarangeof1,000mindiameter.Thesystemrequiresnomaintenanceduringoperationandhasitsownsolarcharging.Relocationofthesystemdoesnotrequireanyset-upastheGPSwillautomaticallyupdatethelocation,date,andtimetothewebsitewithcoordinatesonGoogleMap.Threesystemswerebuiltandsuccessfullycollecteddatainthespring.

Page 30: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

18

Posters:AdvancesinPlantPhenotypingTechnologies

Decipheringthephenotypiccode:Fromlabtofield-scaleMarcusJansen,StefanPaulus,TinoDornbuschLemnaTecGmbH,Germany.Email:tino.dornbusch@lemnatec.deTheBookofNatureiswritteninthelanguageofmathematics,asGalileoGalileiaptlyformulatedalmost400yearsago.Havingthelatestinventionsinbiotechnologyathand,scientistsstarteddecipheringthemolecularcodeoflife.Althoughtremendousprogressinmolecularbiologyhasbeenachieved,thetranslationofgenotypesintophenotypesispoorlyunderstood.Nowadays,progressinnon-invasiveimagingsensorsprovidesaframeworktolookintophenotypesatthesubcellular(e.g.,microscope)andfield(e.g.,airborneimagery)levels.Theamountanddiversityofdatasuchas1Dsensorreadings,2Dimagesor3Dpointcloudshavespecificstorageandanalyticaldemands.Thechallengeistotranslatedataintoinformationrelatedtothebiologicalobjectorprocess.Therefore,dataanalysisisonepartofthephenotypingbottleneck,whichisbeingaddressedbyvarioussoftwaretools.MakingthesetoolseasilyaccessibletoresearchersandbreedersisoneofLemnaTec’smainobjectives.Incontrasttocode-basedimageanalysisapproaches,LemnaTecprovidesagraphicalprogramminginterfacecalledLemnaGrid.Inotherwords,nolineofcodeneedstobewritten.LemnaGridcontainsvarioustoolboxesfor2Dimageanalysis,hyperspectraldataor3Dpointclouds.Theoutputdeliversdimensions,morphologies,andspectralreflectanceofthemeasuredobjects.LemnaGridiscurrentlyappliedstartingfrommicroscopyimagesinthelaboratory,whole-plantimagesinthegreenhouse,andcanopyimagesinthefield.Phenotypingsolutionsaredesignedtoworkforrelatedexperimentsandtobesharedamongusers.TheapplicationrangeofLemnaTecsoftwareisconstantlybeingbroadened,andnewplatformssuchasthenewFieldScanalyzerarebeingdeveloped.Recentresultsfrommulti-sensorfieldmeasurementsdelivereddataoncanopypropertiesofcereals.LinkinginformationderivedfromsuchRGB,hyperspectral,laserscanningandfluorescencedatatothecrops’biologicalandagronomicalpropertieswillenablecomprehensivefieldphenotyping.StudiesofrootsystemarchitectureinsoybeanusingcomputervisionandmachinelearningKevinFalk1,TalukdarJubery2,SayedVahidMirnezami2,KyleParmley1,JohnathonShook1,ArtiSingh1,SoumikSarkar2*,BaskarGanapathysubramanian2*,AsheeshK.Singh1*

1DepartmentofAgronomy,IowaStateUniversity,Ames,USA.Email:[email protected],IowaStateUniversity,Ames,USAWiththeadventofcomputervision,thereisrenewedinterestinuncovering“thehiddenhalf”ofplants,usingmeasurementsofrootsystemarchitecture(RSA)inconjunctionwithmachinelearningtodiscovertraitcorrelationswithinandbetweengenotypesandphenotypes.Thisstudyincludedmorethan300diversesoybeanaccessionsunder2D(undercontrolledconditions)and3D(fieldtests)imagingplatforms,supportedbyprocessinganddataanalytictoolstodeepphenotypeforimportantRSAtraitsusinganin-houseimagingsoftware,ARIA.Both2Dand3Dimagingplatformsrevealedtremendous

Page 31: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

19

Posters:AdvancesinPlantPhenotypingTechnologies

geneticvariabilityfortraitssuchasrootshape,length,massandangle.The3Dimagingplatformdevelopedmakesitpossibletophenotypehundredsofgenotypesandextractnumerousrootsystemtraits.The2Dplatformisnon-destructive,addingobservationsofseedlingrootgrowthrates.WearefocusingonuseofmachinelearningalgorithmstounveilrelationshipsbetweenRSAandcorrelatethemwithabove-groundperformancetraits,primarilyseedyieldandparametersrelatedtotheMonteithequation.Buildingontheimagingplatformdeveloped,wearenowpursuingdeepgenome-widestudies.RecentadvancementindevelopmentofautonomousmobilerobotsforplantphenotypingRezaFotouhi,AryanSaadatMehr,PierreHucl,MostafaBayati,QianWeiZhangCollegeofEngineering,UniversityofSaskatchewan,Saskatoon,Canada.Email:reza.fotouhi@usask.caConsideringthecurrentneedsoftheworldpopulationtoincreasetherateofcropproduction,thereisastrongneedforresearchonscreeningcropsbyuseoftechnologyforhigh-throughputphenotyping(HTP).Theobjectiveofourresearchistodevelopafield-basedHTPmobileplatformforrapidassessmentofmultiplequantitativeplanttraitswithafocusonwheat,canola,andlentil.Thefieldplatformwillbedesigned,fabricated,andtestedinalaboratorysettingandevaluatedincropbreedingnurseriesinSaskatchewan.Manyimagingtechnologiesarewelldevelopedandsophisticated,butnotnecessarilyoptimalforinsituhigh-throughputplantcharacterization.Whichtechnologiesareappropriateforfieldplotscaleadvancedcharacterizationofplantsinthefield,andhowcanthesebedeliveredina“locationindependentmethod”aresomeofthequestionstobeanswered.Whichsensorsaremostimportantforplantcharacterizationinabreedingprogram,andisitpossibletocharacterizeplantsbelowgroundinthefield?Aliteraturereviewofdevicesforplantphenotypingandthestateofresearchindevelopinganautonomousmobilerobotforplantphenotypingwillbepresented.Anautomatedsoybeanmulti-stressdetectionframeworkusingdeepconvolutionalneuralnetworksSambuddhaGhosal1*,DavidBlystone2*,HomagniSaha1,DarenMueller3,BaskarGanapathysubramanian1,AsheeshK.Singh2,ArtiSingh2,SoumikSarkar11DepartmentofMechanicalEngineering,IowaStateUniversity,USA.Email:[email protected],IowaStateUniversity,USA.Email:[email protected],IowaStateUniversity,USASignificantcropyieldlossesarecausedbybioticandabioticstresses.Tomitigatepotentialcroplossesfromsuchstresses,ahigh-throughputandearlydetectionsystemforregularandwidespreadmonitoringisofvitalimportance.Traditionally,soybeanabiotic/bioticstressdetectionmethodshavereliedonsubjectivesymptom-basedassessmentbyagriculturalscouts.Machinelearning-basedautomatedstressdetectionusingreadilyavailablesensorsorsmartphonecamerascanhaveatransformativeimpactonsoybeanfarmingandscouting.Thegoalofthisstudywastodevelopanautomatedframeworktoidentifyabiotic/bioticstressesonsoybean[Glycinemax(L.)Merr.]underfieldconditions,basedonimageclassification,usingDeepConvolutionalNeuralNetworks(DCNN).More

Page 32: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

20

Posters:AdvancesinPlantPhenotypingTechnologies

than25,000leafletimageswerecollectedfromIowa(USA)fieldsforfivebioticstresses(bacterialleafblight,bacterialpustule,frogeyeleafspot,Septoriabrownspotandsuddendeathsyndrome)andthreeabioticstresses(irondeficiencychlorosis,potassiumdeficiencyandherbicideinjury)aswellashealthysoybeanleafletsusingastandardimagingprotocol.Afterprocessingtheseimagesfurther,adatasetcomprisedof16,210leafletimagesfromallthecollectedimageswasusedtodeveloptheDCNNmodel.Forourinitialexperiment,themodelwastrainedbasedonatrainingsetof11,345images,whichwasthenvalidatedon3,242imagesandfinallytestedon1,630images.Preliminaryresultsshowthatthetrainedmodelisabletoefficientlydifferentiatebetweentheeightdifferentsoybeanstressesunderconsiderationaswellashealthyleaflets.Thetrainedmodelcanbeeasilyexportedtoamobileplatformutilizingvisualsensorsinadedicatedlow-costimagingdeviceorevensmartphonecamerastoperformefficientandrobustonlinedetectionofsoybeanstressesinrealtime.High-throughputricephenotypingfacility:StrategiesandchallengesWannengYang1,2,3,ChenglongHuang2,3,LingfengDuan2,3,HuiFeng2,XiuyingLiang3,QianLiu4,GuoxingChen5,LizhongXiong1

1NationalKeyLaboratoryofCropGeneticImprovement,NationalCenterofPlantGeneResearch,HuazhongAgriculturalUniversity,Wuhan430070,China

2HubeiKeyLaboratoryofAgriculturalBioinformatics,HuazhongAgriculturalUniversity,Wuhan430070,China

3CollegeofEngineering,HuazhongAgriculturalUniversity,Wuhan430070,China4BrittonChanceCenterforBiomedicalPhotonics,WuhanNationalLaboratoryforOptoelectronics,HuazhongUniversityofScienceandTechnology,Wuhan430074,China

5MOAKeyLaboratoryofCropEcophysiologyandFarmingSystemintheMiddleReachesoftheYangtzeRiver,HuazhongAgriculturalUniversity,Wuhan430070,China

Correspondingauthor:WannengYang([email protected])Theadventofnext-generationsequencingtechnologyhashadamajorimpactongenomicsinashortperiodoftime.However,phenomics,anewdisciplineinvolvingthecharacterizationofthefullsetofphenotypesofagivenspecies,stilllagsfarbehindgenomics.Traditionalphenotypingtools,whichinefficientlymeasurealimitedsetofphenotypes,havebecomeabottleneckinfunctionalgenomicsandplantbreedingstudies.Torelievethebottleneck,wedevelopedahigh-throughputricephenotypingfacilitythatincludesriceautomaticphenotyping(RAP),yieldtraitsscorer(YTS),high-throughputleafscorer(HLS),andhigh-throughputhyperspectralimagingsystem(HHIS).Equippedwithmultidisciplinarytechniques,includingphotonics,automatics,computers,andmechanics,theintegratedfacilitycanextractnumerousmorphology-relatedtraits,biomass-relatedtraits,yield-relatedtraitsandphysiologicaltraits.Whencontinuouslyoperated,thetotalthroughputofourfacilityis1,920pot-grownriceplantsoutofatotalgreenhousecapacityof5,472pots.Inaddition,wediscussthefuturechallengesofricephenotyping.

Page 33: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

21

Posters:AdvancesinPlantPhenotypingTechnologies

FieldScanalzyer:HighprecisionphenotypingoffieldcropsMarcusJansen,StefanPaulusLemnaTecGmbH,Germany.Email:Marcus.Jansen@lemnatec.deCurrentphenotypingtakesplaceinastateoftensionbetweenthroughputandaccuracy,alsodescribedasscreeningversusdeepphenotyping.Moreover,theimportanceoffielddataisbecomingincreasinglyprevalent,asmostindoorcultivationenvironmentslackcomparabilitytofieldgrowthsituations.Deepphenotypingatthefieldlevelrequiressensorfusionthatallowscollectingvarioustypesofdataontheplants,farbeyondtakingRGBimages.Sensorfusionforfieldphenotypingbringstogetherlaserscanningandthermal,fluorescence,andspectralimagingcombinedwithsensorsforenvironmentalfactors.High-precisionpositioningallowsmovingeachofthesensorstothesamespotofvegetation,therebycollectingthewholerangeofdatatypesforeachindividualinthefield.Moreover,itenablestime-resolveddatatoberecorded.TheFieldScanalyzerisadeepphenotypingplatformconsistingofhighprecisionsensorsthatmonitorexperimentalplotsdaybyday,andevenseveraltimesaday.3Dlaserscannersprovidemeasurementsofthevolumeoftheplantmaterial,whichishighlycorrelatedtothebiomass.Hyperspectralcamerasallowmeasuringvegetationindicesthatarecorrelatedtophysiologicalparameterssuchasgrowth,waterandfertilizer,ortheplants’healthstatus.Furthermore,theanalysisoffluorescenceandthermalimagesdeliversparametersthatcanbelinkedtotheplants’photosynthesisandtranspirationviadedicatedmodels.Byrecordingenvironmentaldataateachmeasurementandlinkingpositiondataofallmeasurementstogenomicinformationabouttheplantsgrowingatagivenlocation,themethodallowsanalyzinglinkagesbetweenphenotypes,genotypesandenvironmentinhighspatialandtemporalresolution.Integratedanalysisofplantgrowthanddevelopmentusinghigh-throughputmulti-sensorplatformsatIPKAstridJunker,Jean-MichelPape,HenningTschiersch,DanielArend,MatthiasLange,UweScholz,andThomasAltmann

LeibnizInstituteofPlantGeneticsandCropPlantResearch(IPK)Gatersleben,Correnstr.3,06466SeelandOTGatersleben,Germany

IPKrunsthreephenotypingfacilitiesforhigh-throughputimagingofwholeplantsofsmallsize(suchasArabidopsisthaliana),mediumsize(suchasHordeumvulgare)andlargesize(suchasZeamays).Ineachsystem,plantimagesareacquiredinnear-infrared(NIR)andvisiblespectra(forRGBandfluorescenceimaging)fromtopandsideviews.Imagingisperformedrepeatedlyandthusfollowsplantgrowthdynamics.TheImageAnalysisPlatform(IAP)automaticallyextractsplantarchitecturaltraits(heightandwidth,projectedleafarea,estimatedvolume)andcolor-relatedandphysiologicaltraits(staticfluorescence,moisturecontent-relatedparameters).Thephenotypingfacilitieshavebeenextendedforfunctionalchlorophyllfluorescenceanalysisusingpulsedamplitude-modulatedchlorophyllfluorescenceimagingsystemsandforacquiring3Dheightprofilesofplantsandplantstands.Thesesystemsareintegratedintophenotypingprocedures,allowingsimultaneousacquisitionofmultiplecomplementaryplanttraits.Co-registrationoffeaturedataderivedfromallthedifferentsensors(sensorfusion)willbe

Page 34: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

22

Posters:AdvancesinPlantPhenotypingTechnologies

usedtodeducenovelandrefinedinformationonplantarchitecturalandphysiologicaltraitsandprovidethebasisformulti-traitassociationstudies.Opportunitiesandchallengesofintegratedanalyseswillbediscussedusingdifferentusecases.Furthermore,currentdevelopmentsinphenomicsdatamanagement(e.g.,MIAPPEcompliantstandardizedmetadatarepresentationforpersistentdocumentationofhigh-throughputplantphenotypingexperiments)willbeintroduced.DevelopingtheEnviratron:AfacilityforautomatedphenotypingofplantsgrowingundervariedconditionsStephenH.Howell,LieTang,CarolynJ.Lawrence-Dill,ThomasLubberstedt,StevenWhithamIowaStateUniversityTheEnviratronisanewconceptanddesigninplantphenotypingwiththepurposeoftestingplantperformanceunderdifferentenvironmentalconditions.Incontrasttocurrentphenotypingfacilities,theEnviratronisdesignedtoanalyzeplantgrowthandperformanceunderuptoeightdifferentenvironmentalconditionsinoneexperiment.Alsounlikecurrentphenotypingfacilities,plantsarenotconveyedtoacentralanalyzingstation,insteadamobileroboticanalyzer(rover)equippedwithasensorarrayvisitsplants,minimizingdisturbancesinthegrowthenvironment.InanalyzingtherelationshipbetweenGxE,mostphenotypingfacilitiesareequippedtovaryG.TheEnviratron’sspecialfeatureisitscapacitytovaryE.TheEnviratronconsistsofeightgrowthchambersthateachcanbeprogrammedtoauniqueenvironmentthatcanvaryslightlyinasingleparameterorbydifferentclimatescenarios,includingtemperature,CO2,humidity,water,andlight(durationandintensity).Therover’ssensorarrayincludesaholographiccamera,hyperspectralsensor,fluorescencedetector,infrareddetector,andRamanscatteringspectrometer.Individualpotsaredesignedtohavesoilwaterpotentialsensorswithawateringsystemtomaintainchosensoilwaterpotentials.ToenabledownstreamdiscoveryandreuseofdiversedatacollectedusingtheEnviratronsystem,aMIAPPE-compliantmetadatacollectionandreportingmechanismisunderdevelopment.LearnmoreaboutEnviratrononlineathttp://enviratron.iastate.edu/.

Page 35: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

23

Posters:AdvancesinPlantPhenotypingTechnologies

Hyperspectralimagingsystem,individualriceplants,andaccuratepredictionofabove-groundbiomass,greenleafareaandchlorophyllFengHuietal.NationalKeyLaboratoryofCropGeneticImprovementandNationalCenterofPlantGeneResearch,HuazhongAgriculturalUniversity,Wuhan,Hubei,430070,P.R.China

WuhanNationalLaboratoryforOptoelectronics-HuazhongUniversityofScienceandTechnology,1037LuoyuRd.,Wuhan,Hubei,430074,P.R.China

CollegeofEngineering,HuazhongAgriculturalUniversity,Wuhan,Hubei,430070,P.R.ChinaCollegeofInformatics,HuazhongAgriculturalUniversity,Wuhan,Hubei,430070,P.R.ChinaEmail:[email protected];[email protected],greenleafareaandchlorophyllareimportantcomponentsofplantphenomicsandtheexistingmethodsforestimationoftheseonindividualplantsareeitherdestructiveorlackaccuracy.Hyperspectralimagingisanemergingandnondestructivetechnologythatcanacquirespectralandspatialinformationsimultaneouslyforplantphenotyping.Thesystemhasthepotentialtocharacterizecerealplants.ComparingrobotsanddronesasphenotypingtoolsinfieldtrialsMortenLillemo1,EivindBleken1,GunnarLange2,LarsGrimstad2,PålJohanFrom2,IngunnBurud2

1DepartmentofPlantSciences,NorwegianUniversityofLifeSciences.Email:morten.lillemo@nmbu.no2DepartmentofMathematicalSciencesandTechnology,NorwegianUniversityofLifeSciencesNewapproachesarenecessarytomeetthegoalsofincreasedfoodproduction.Plantbreedingcanplayakeyrolebydevelopingcultivarswithhigheryieldpotentialandbetteradaptationtostress.Progressinbreedingdependsontheabilitytodesigncrosseswithcomplementarytraits,andthenperformeffectiveselectionamongtheoffspring.Thisrequirespreciseandcost-effectivemethodstoevaluatelargenumbersofplantsacrossrelevantenvironmentsandstresses.Traditionaldatacapturebasedonlow-throughputandmanualmethodsislabor-intensiveandpronetohumanerror.Whilethecostsofsequencingandgenotypinghavedroppeddramaticallyoverthelastdecade,thelaborcosthasincreasedandphenotypinghasnowbecomethebiggestbottleneckforrealizingthefullpotentialofgenomicsinplantbreeding.Toaddressthesechallenges,astrategiccollaborationhasbeeninitiatedattheNorwegianUniversityofLifeSciences,whereresearchgroupsacrossdepartmentsanddisciplinesarejoiningforcestotestnewphenotypingtechnologiesinplantbreedingresearch.Thisincludesdevelopingandtestingmultispectralimaginginvisibleandnearinfraredwavelengthsofplantsinfieldtrials,usingcamerasmountedonanautonomousfieldrobotandonanUnmannedAerialVehicle(UAV).Thisequipmentispartofacommonsensorlabthathasbeenestablishedattheuniversity,whichalsoservesmanyotherresearchpurposes.

Page 36: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

24

Posters:AdvancesinPlantPhenotypingTechnologies

Basedonpilotprojectsrunduringthesummerof2016,thereareplanstoupgradethefieldresearchstationwithnewfacilitiesforhigh-throughputfieldphenotyping.Examplesofongoingresearchandsomepreliminaryresultsfromapilotexperimentcomparingtheuseofarobotanddronesinawheatyieldtrialwillbepresented.TheneedtoaccountfordirectionaleffectsandthepresenceofreproductiveorgansoncanopyreflectanceandtemperaturerecordedfromdronesF.Baret1,W.Li1,S.Madec1,A.Comar2,M.Hemmerlé2,P.Burger3

1INRA,UMREMMAH,Avignon,France2HIPHEN,Avignon,France3INRA,UMRAGIR,Toulouse,FranceAfterthefloweringstage,severalcropsgrowears(wheat),malepanicles(maize)orflowers(sunflower)atthetopofthecanopythathaveparticularstructuresandopticalproperties.Thissignificantlyimpactstheradiationregime,whichmayinducediscontinuityfromreflectanceandbiastheestimatesofcanopycharacteristics.Theobjectiveofthisstudywastoquantifytheinfluenceofthesereproductiveorgansontheestimationofselectedcanopycharacteristics.Specificattentionwaspaidtothedirectionalvariationofthiseffect.Threededicatedexperimentswereconductedin2016onwheat,maizeandsunfloweratspecifictimesafterflowering,whengreenleavesstillrepresentthemaincontributionofthegreenareaindex.Thetargetsitesweresquaresmeasuringabout10mperside.Thereproductiveorgansononehalfofeachsquarewereeliminated,whiletheotherhalfwasleftundisturbed.AhexacopterequippedwithanAIRPHENmultispectralcameraandaFLIRtau2thermalinfraredcamerawasflownseveraltimesovereachexperimenttocapturethevariationofthesignaldependingonthesun’sposition.Inthemiddleofthesquare,areferencepanelwaspositionedhorizontallytocalibratethesignalrecordedbytheAIRPHENcamera.ThebrightnesstemperatureofthereferencepanelwasalsorecordedcontinuouslyusingathermoradiometerconnectedtoadataloggertocalibratetheFLIRcamera.Foreachelevation,thedronesampledtheviewdirectionsbyflyingin4to6concentriccirclesatarangeofaltitudes.Thediameterandaltitudeofthecirclesweredefinedtokeepthesamedistancefromthereferencepanelatthecenterofthe10mx10msquareandmaintainapproximatelythesamespatialresolution.TheAIRPHENandFLIRcamerasonthegimbalalwayspointedtowardsthereferencepanel.Aftertheexperiment,thevegetationstructure(silhouettephotos,areaoforgans)andopticalpropertiesweremeasured.Resultsshowthatcanopyreflectanceandtemperaturearestronglydependentontheviewandsundirections,withamaximuminthebackscatteringdirectioncorrespondingtothehotspot.Reflectanceandbrightnesstemperatureshowsimilarpatterns,mainlyexplainedbythefractionofshadowobserved.Bycomparingtheareawherethereproductiveorganswereeliminatedwiththeundisturbedarea,wefoundsignificantvariationofcanopyreflectanceandbrightnesstemperature.Theimpactofcurrentvegetationindicesaswellasestimatesofvegetationstatevariablesusingradiativetransfermodelinversionwasassessed.

Page 37: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

25

Posters:AdvancesinPlantPhenotypingTechnologies

Precisionphenotyping:WheatdiscotofosteryieldpotentialGemmaMolero,MatthewP.Reynolds

InternationalMaizeandWheatImprovementCenter(CIMMYT),ElBatán,Texcoco,CP56130,MexicoFutureincreasesinwheatyieldpotentialwillrelylargelyonimprovedbiomassproductionboostedbyhigherradiationuseefficiency(RUE).Recentstudiesusingarecombinantdoubledhaploidwheatpopulationderivedfromthecrossbetweenacultivarwithhighgrainnumber(Bacanora)andonewithhighgrainweight(Weebil)showedspectaculargainsingrainyield(from23to31%)overtheparentalcultivarsassociatedwithhigherRUE.However,thesamepopulationstudiedinnorthwesternMexicoonlyshowedamodestyieldincrease.Atthelevelofplantgrowthanddevelopment,amoreoptimalbalancebetweensourceandsinkisexpectedtoimproveoverallRUE.Themainobjectivewastoprovideextrailluminationduringtherapidspikegrowthphase(frombootinginitiationuntilsevendaysafteranthesis)andanalyzetheeffectonsource-sinkrelatedtraits.Fieldphenotyping:QuantifyingdynamicplanttraitsacrossscalesinthefieldOnnoMuller,M.PilarCendreroMateo,HendrikAlbrecht,BeatKeller,FranciscoPinto1,AnkeSchickling,MarkMüller-Linow,RolandPieruschka,UlrichSchurr,UweRascherForschungszentrumJuelich,Germany.Email:[email protected]:CIMMYT,MexicoPhenotypinginthefieldisanessentialstepinthephenotypingchainfromwell-definedandcontrolledconditionsinthelaboratoryandgreenhousetotheheterogeneousandfluctuatingenvironmentinthefield.Fieldmeasurementsareasignificantreferencefortherelevanceoflaboratoryandgreenhouseapproachesandanimportantsourceofinformationonpotentialmechanismsandconstraintsforplantperformancetobetestedundercontrolledconditions.Herewepresentarangeofmethodsfocusingonplantarchitecture,photosynthesisandwaterrelations,thatarebeingdeployedwithintheGermanPlantPhenotypingNetwork(DPPN,www.dppn.de).Specializedfieldplatformsareestablished(a)totestinnovativephenotypingtechnologies;(b)toprovideaccesstosemi-controlledfieldinstallationtosupportbreedingapproachesforfutureCO2concentrations(breed-FACE);and(c)tostudythetranslationofphenotypicpropertiesfromcontrolledenvironmentstostandsinthefield.Herewereportthatstereoimagingenablesthequantificationofcanopystructure;activethermographyestimatesleafwatercontentandprovidesinformationontranspirationconditions;andsun-induced(SIF)andlight-inducedfluorescencetransient(LIFT)techniquesallowremoteestimatingofphotosynthesisatthecanopyandleaf-to-plantlevels,respectively.Forphotosynthesis,SIFwillbemeasuredbythenextEuropeanSpaceAgencysatelliteEarthExplorermission.Allmethodswillbefurthertestedandincorporatedin(semi-)automatedsystemsthatpositionsensorsinthefield.Apromisingportfoliowillbeintroducedtomeasureplanttraitsforfieldphenotypingandtoenhanceourunderstandingofrelevanttraitsundernaturalconditions.

Page 38: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

26

Posters:AdvancesinPlantPhenotypingTechnologies

3Dpointcloud-basedmonitoringofsoybeangrowthinearlystagesKojiNoshita1,WeiGuo1,AkitoKaga2,HiroyoshiIwata1

1TheUniversityofTokyo,Japan.Email:[email protected],JapanCurrently,high-resolutionpointclouddatacanbeacquiredeasilyandcost-effectively.Forexample,apipelineusingStructurefromMotion(SfM)andMulti-ViewStereo(MVS),whichisapromisingtechniqueforreconstructinga3Dsurfaceaspointclouddatafromaseriesof2Dimagestakenfromdifferentangles,hasbeenimplementedinseverallibrariesandsoftwareproducts.Inthisstudy,wedevelopedaworkflowformeasuringthecanopygrowthofthreesoybeancultivarstocomparethegrowthspeedofthecanopiesbasedonpointclouddataacquiredfromtheSfMandMVSpipeline.First,wetookmulti-view2Dimagesofsoybeanplantsgrowinginafieldwithadigitalcamera(EOS60D,Canon,Tokyo).Theimagesofplantsinasingleplotweretakenfromaround40differentdirections.Toscaletheimagesandcalibratecameraparameters,weusedCalibratedPhotogrammetricScaleBars(CulturalHeritageImaging).Fromthesemulti-view2Dimages,pointclouddataofsoybeancanopieswerereconstructedusingtheSfMandMVSpipeline.Second,wesegmentedthepointcloudofplantsandtheirleavesforeachplotfromthereconstructeddata.Finally,wefittedseveralmodelstothepointclouddataforestimatingphenotypicvaluesofplantorgansconstitutingthecanopyarchitecture(e.g.,leafarea,leafshape,curvature).Forexample,wereconstructed3DsurfacesofleavesfromthepointclouddatawiththepenalizedB-splinesurfacefittingbyregardingaleafasa2DclosedsurfaceembeddedintheEuclideanspaceℝ".Usingtheworkflow,wesuccessfullyacquiredhigh-resolutionpointclouddataofcanopiesofsoybeanplantsgrowinginthefield.Evenwhenleavesslightlyoverlappedeachother,asingleleafwassuccessfullydistinguishedfromthepointcloud.Whenfieldconditionswerenotdesirable(e.g.,wind,changeinlightconditions)foracquiringcorrespondingpointsamongmulti-viewimages,incompletepointclouddatawerereconstructed.Aphotogrammetricsystemthatallowsustotakemulti-viewimagessimultaneouslywillbenecessarytoobtainhigh-resolutionpointcloudsofplantsgrowinginafield.Greenhouse,fieldandrootphenotypinginfrastructureattheDepartmentofPlantandEnvironmentalSciencesoftheUniversityofCopenhagenSvendChristensen,JesperSvensgaard,DominikGrosskinsky,JesperCairoWestergaard,RenéHvidbergPetersen,SigneMarieJensen,JesperRasmussen,HanneLipczakJakobsen,ThomasRoitschUniversityofCopenhagen,DepartmentofPlantandEnvironmentalSciences.Email:Roitsch@plen.ku.dkTheDepartmentofPlantandEnvironmentalSciencesattheUniversityofCopenhagenhasestablishedabroadrangeofstate-of-the-artfacilitiesandequipmentforplantphenotyping.Specializedandexperiencedtechnicians,gardenersandresearchersensureoptimalandqualifieduseforbothinternalandexternalcollaborators.PhenoFieldanddronesareavailableforfieldphenotyping.PhenoFieldisamobile,closed,multi-spectralimagingsystemthatshutsoutwindandsunlighttoensurethehighestpossibleprecision.ImagesareacquiredwithatopcenteredmonochromaticCCDcamera2mabovegroundcoveringanareaof1mx1m,andaspatialresolutionof0.43mm/pixeland9narrowbandLEDs

Page 39: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

27

Posters:AdvancesinPlantPhenotypingTechnologies

astheactivelightsource.Threerotary-wingunmannedaerialvehicles(UAVs),twohexacoptersandoneoctocopterequippedwithtruecolor(RGB)andcolor-infrared(CIR)camerasareusedformeasuringcropcoverageandvegetationindices.Anin-housesemi-automatedprocesstohandleandanalyzeimagesofplotsinfieldexperimentsisused.Rootscanbestudiedinroottowers,tuberhizotrons,minirhizotronsandtheRadimaxfacility.Withminirhizotrons,rootscanbestudiedtoadepthof2.7munderfieldconditionsbysinglecameras,whichcanbeusedincombinationwithisotopeplacementandirrigationsystems.Thetuberhizotronscanbeusedforvisualinspectioninrootstudiesupto2mundergreenhouseoroutdoorconditions.Twelveroottowersconsistingoftwocompartmentsseparatedineast-westorientationallowvisualinspectionforrootstudiesuptoadepthof4m.TheRadiMaxfacilityconsistsof4individualpitswithanareaof400m2eachwithmoveablerainoutshelters,asophisticatedunder-watering-systemand150fixed-installedrhizotronsperpitforsemi-automatedmulti-camerasystemsallowingrootstudiesofupto150differentlinesatatimedowntoadepthof3m.Theautomated,conveyor-bandbased,high-throughputphenotypingplatformPhenoLabisinstalledinatemperaturecontrolledgreenhouseformonitoringandcaringforupto468pots.Thepotscanberandomized,rotated,measuredandweighed,andthesystemisabletomanageplantsindividually.Soilwaterpotentialismeasuredcontinuouslyineachpotandindividualirrigationisadjustedaccordingly.Italsohasmulti-reflectanceandmulti-fluorescenceimagingsystems,andthermalcamerasinsidetheimagingstationaswellasoutsideundercultivationlightconditions.Thesensor-basedimagingtechniquesarecomplementedbyvariousplatformsforadvancedphysiologicalphenotypingforphotosyntheticactivityandgasexchangemeasurementsandthedeterminationofactivitysignaturesofkeyenzymesofcarbohydrateandantioxidantmetabolism,antioxidantcapacityandphytohormoneprofiles.Morphometricsforgenomicpredictionofplantmorphologicaltraits:ItsapplicationtogeneticallydissectsorghumgrainshapeLisaSakamoto1,HiromiKanegae1,KojiNoshita1,2,MotoyukiIshimori1,HidekiTakanashi1,WaceraFiona3,WataruSakamoto3,TsuyoshiTokunaga4,NobuhiroTsutsumi1,HiroyoshiIwata11Grad.Sch.Agr.LifeSci.,Univ.Tokyo,Japan.Email:[email protected],JST,Japan3Inst.PlantSci.Res.,OkayamaUniv.,Japan4EARTHNOTECo.,Ltd.JapanRecentadvancesinimagingandremotesensingallowthecollectionoflargedatasetsofimagesforthegeneticdissectionofplantmorphologicaltraits.Inadditiontosize(length,area)andcolor,whicharecommoncharacteristicsmeasuredinimageanalysis,shapeisimportant,buthashigh-dimensionalcomplexity.Sincemorphometricmethodscanreducecomplexitywithoutseriouslossofinformation,theycanbeusefulforgeneticallydissectingplantmorphologicaltraits.Grainshapeisanimportantbreedingtargetincerealcrops.Weappliedtwomorphometricmethods—i.e.,ellipticFourieranalysis(EFA)andgeneralizedProcrustesanalysis(GPA)—togeneticallydissecttheremarkablediversityofgrainshapeinsorghum(Sorghumbicolor(L.)Moench).EFAtreatstheshapeofacontourasasumof

Page 40: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

28

Posters:AdvancesinPlantPhenotypingTechnologies

waves,anddescribesitwithellipticFourierdescriptors(EFDs).GPAsuperimposescontourstominimizetheProcrustesdistancebetweenthem,andobtainssuperimposedlandmarkpoints(SLPs).Principalcomponent(PC)analysisofEFDsandSLPsidentifiedandquantifiedshapecharacteristics,whichweredifficulttocapturebylengthsandtheirratios.InGWAS,ahighlysignificantassociationwasfoundinthesecondPCofSLPs,whilenosignificantassociationwasdetectedinlengthsandtheirratios.TheassociationdetectedinthePCofSLPswasconfirmedinabi-parentalsegregatingpopulation.Ingenomicprediction,thecontourshapeofagrainwaspredictedfromgenome-widemarkergenotypesbyusingkernelpartialleastsquares(PLS)regressionofEFDs.Thepredictedshapeshowedclosesimilaritytotheobservedshapeexceptinafewcultivars,suggestingthehighaccuracyofgenomicselectionofgrainshape.Theresultssuggesttheimportantrolemorphometricsplayinthegeneticdissectionofplantmorphologicaltraits,whosedatawillbemoreaccessibleviahigh-throughputimagingandremotesensing.Image-basedphenotypingandmachinelearningtoadvancegenome-wideassociationandpredictionanalysisinsoybeanJiaopingZhang1,HsiangSingNaik2,TeshaleAssefa1,SoumikSarkar2,R.V.ChowdaReddy1,ArtiSingh1*,BaskarGanapathysubramanian2*,AsheeshK.Singh1*1DepartmentofAgronomy,IowaStateUniversity,Ames,IA50011,USA.Email:[email protected],IowaStateUniversity,Ames,IA50011,USATraditionalvisualevaluationofcropbioticandabioticstressesistime-consumingandlabor-intensive,andlimitstheabilitytodissectthegeneticbasisofquantitativetraits.Toaddresstheseconstraints,amachinelearning(ML)-enabledimage-phenotypingpipelinewasdevelopedandappliedtogenome-widestudiesofirondeficiencychlorosis(IDC),oneoftheleadingabioticfactorsloweringsoybean(Glycinemax)yieldintheUnitedStates.Thepipelineconsistedofamulti-stageprocedure:(1)optimizedimagecaptureacrossplantcanopies;(2)canopyidentificationandregistrationfromclutteredbackgrounds;(3)accuratelyrepresentedIDCexpressionbyextractingdomainexpertinformedfeaturesfromtheprocessedimages;and(4)supervisedML-basedclassificationandseverityassessmentofcanopyimages.Thegenotypepanelconsistedof461diverseaccessions.GenotypesweregrowninafieldsuitableforIDCtesting,andimagedusinganRGBcamera.StatisticalanalysiswasdoneinRusingappropriatepackages.Genome-wideassociationstudiesidentifiedapreviouslyreportedlocus.Additionally,anovellocusharboringagenehomologinvolvedinironacquisitionfromlowbioavailabilitysourceswasidentified,indicatingthereliabilityandadvantageofML-enabledimage-phenotyping.Genomicpredictionanalysisusingsurrogatetraitsinthepredictionmodelhadhigherpredictionaccuracythanmarkeralonemodel(s),suggestingapromisingpathforfurtherincreaseofgeneticgainsviaintegratingthispipelineintobreedingprograms.Thisstudyprovidesasystematicframeworkthatenablesquickerrobustphenotypingofleafsymptomsinsoybean(andothercrops).

Page 41: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

29

Posters:AdvancesinPlantPhenotypingTechnologies

ProposalforevaluatingplantstressviasteadystatefluorescenceS.Summerer1,A.Petrozza1,V.Nuzzo2,F.Cellini11PlantPhenotypingPlatformPhen-Italy,ALSIAMetapontumAgrobios,75012,Metaponto,Italy2DipartimentodelleCultureEuropeeedelMediterraneo:Architettura,Ambiente,PatrimoniCulturali,75100Matera,Italy

ChlorophyllfluorescenceanalysisisapowerfultooltoestimatephotosystemII(PSII)performanceunderstandardorbioticorabioticstressconditions.Animportantlimitingfactorwhenmeasuringchlorophyllfluorescenceparametersinahigh-throughputphenomicssystemistheavailabilityofaflashinglightsource(usedtoblockthephotosyntheticapparatus),whichislargeandhomogeneousenoughforwholeplants.Untilrecently,suchsystemswerelimitedtosmallerplantssuchasArabidopsis.Largerphenomicsystemswere,andoftenstillare,builtwithimagingchambersthatmeasuredchlorophyllfluorescenceundersteadystateconditions.Undertheseconditions,asinglefluorescencevalueforeachimagepixelismeasuredandquantumefficienciescannotbecalculated.Inthisstudy,weinvestigatetheuseofthehuecomponentoftheHSI(hue,saturation,intensity)colorspace,whichisanalogoustothelightspectrum,fromplantchlorophyllfluorescencelightasaparametertomeasureplantstressandcompareittoparametersderivedfromtraditionalchlorophyllfluorescencekinetics.Tomatoplantsweresubjectedtoheatordroughtstress;subsequentlychlorophyllfluorescencekineticmeasurementsweretaken,aswellasimagesatsteadystatefluorescence.Byanalyzingthechlorophyllfluorescencehuechannel,wewereabletodetectdifferencesfromcontrolplantsinboththeheat-shockedanddrought-affectedplants,whilethestandardPSIIyieldmeasurementwasonlycapableofmeasuringdifferencesintheheat-shockedplants.Theseresultsappeartosuggestthattheanalysisofchlorophyllfluorescencelightinthehuechanneliscapableofidentifyingperturbationsduetoabioticstressintomatoplants.Currentlywearecontinuingtoinvestigatewhetherthismethodcanbeappliedformoreplantspeciesandabioticstresses.

Page 42: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

30

Posters:AdvancesinPlantPhenotypingTechnologies

Developmentofhigh-throughputphenotypingsoftwareforplantbreeding,geneticsandphysiologystudiesTakanariTanabata,AtsushiHayashi,SachikoIsobeKazusaDNAResearchInstitute,LaboratoryofPlantGenomicsandGenetics,Japan.Email:[email protected],reliableandhigh-throughputphenotypingistime-consumingandsometimesdifficult.Tosolvetheseproblems,wehavebeendevelopinghigh-throughputphenotypingsoftwareusingdigitalimagingandinformationtechnologies.Thisincludes(1)imageanalysissoftwaretomeasurecroporplantorgansizes;wearedevelopinganimageanalysismethodthatrecognizesoutlinesofcropandplantorgansfromdigitalimagesbasedoncolorsegmentationandmeasureshapeparameters(length,areaandsoon);wealsodevelopedthesoftwareSmartGrainforautomaticseedsizemeasurements;and(2)aniOSprogramforsupportingfieldphenotyping.Fieldphenotypingfocusesonscoringtargettraits.Wearedevelopinganapplicationforrecordingtasksviafunctionsoftappingthedisplayednumbersoritems,feedingshortnotesandshootingpictures.Forgreatestefficiency,weneedtomakecustomizedsoftwareforspecificmeasurementaims.Teamsite:http://www.kazusa.or.jp/phenotyping/NationalScienceFoundationprogramsthataddressareaswithhighimpactonfoodsecurityC.EduardoVallejos1,JamesW.Jones2

1PlantGenomeResearchProgram(PGRP),DivisionofIntegrativeOrganismalSystems,DirectorateforBiologicalSciences(BIO),NationalScienceFoundation,Arlington,VA

2InnovationsattheNexusofFood,Energy,andWaterSystems(INFEWS)Program,DivisionofChemical,Bioengineering,Environmental,andTransportSystems,DirectorateforEngineering(ENG),NationalScienceFoundation,Arlington,VA

TheNationalScienceFoundation(NSF)wasestablishedin1950andistheonlyUSfederalagencydedicatedtosupportingfundamentalresearchandeducationinallscientificandengineeringdisciplines,whicharerepresentedinitssevendirectorates.PGRPisintheDivisionofIntegrativeOrganismalSystemsintheBIODirectorate.PGRPsupportsbasicresearchineconomicallyimportantplants.Amongthefocusareasarethestudyofthestructureandfunctionofplantgenomesandtheirinteractionswithothergenomes,responsestotheenvironment,andthedevelopmentoftoolstoconnectthegenotypetothephenotype.ThetoolsandresourcesdevelopedbyPGRP-sponsoredprojectsareexpectedtotransformandmodernizeagricultureforthebettermentofsociety.SeveralPGRP-sponsoredprojectshaveactiveinternationalcollaborations.TheInnovationsattheNexusofFood,Energy,andWaterSystems(INFEWS)ProgramhastheparticipationofmostNSFDirectorates.TheDivisionofChemical,Bioengineering,Environmental,andTransportSystems(CBET)intheENGDirectorateisoneoftheprincipalcontributorstotheINFEWSinitiativealongwiththeGeologicalSciences(GEO)Directorate;theNSF-wideINFEWSWorkingGroupisco-chairedbyCBETandGEO.ThisinitiativewasdevelopedatNSFinresponsetorecognizedthreatsposedbyclimatechangeandpopulationgrowth,whichcanhaveasignificantimpactontheadequatesupplyofwater,energyandfood.INFEWSsupportsprojectsthatincreaseourunderstandingofthefood-energy-watersupplysystemthroughmodelingapproaches.

Page 43: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

31

Posters:AdvancesinPlantPhenotypingTechnologies

Projectsinthisprogramaddressthedevelopmentoftechnologicalsolutionsthatproviderobustdecisionsupportcapabilities.AnimportantcomponentofNSFprogramsistheeducation,traininganddevelopmentofhumanresources.NSFisinterestedinfacilitatingopportunitiesforscientistsintheUSwhoarefundedbyNSFprojectstocollaboratewiththeircounterpartsinothercountries.PlanthealthmonitoringusingmultispectralimagingandvolatileanalysisforspaceandterrestrialapplicationsAaronI.Velez-Ramirez1,JokeBelza1,JoeriVercammen3,AlexVanDenBossche2,DominiqueVanDerStraeten1

1LaboratoryofFunctionalPlantBiology,FacultyofSciences.GhentUniversity,[email protected]

2DepartmentofElectricalEnergy,SystemsandAutomation,FacultyofEngineeringandArchitecture,GhentUniversity,Belgium

3Interscience,BelgiumPlantphenotypingtechnologyhasthepotentialtoadvancebasicscientificknowledgeandsaveresourcesincropproductionnotonlyonplanetEarth,butalsoontheMoonandMars.Interestingly,developingplantphenotypingtechnologyforsuchseeminglydistantspaceapplicationshasthepotentialtoimproveterrestrialtechnologyevenbeforeanyequipmentisshippedinarocket.Ifhumansaretoexploredeepspace,foodhastobeproducedonsiteusingminimalresources.Currently,however,ourbasicunderstandingofhowplantsandcropswillbehaveunderagravitationalpulldifferentfromtheterrestrialoneisstillverylimited.TheonlywaytogrowplantsundersimulatedLunarorMartiangravityisonboardtheInternationalSpaceStation(ISS)usingwhatisknownastheEuropeanModularCultivationSystem(EMCS).Howeveruseful,theEMCSnowneedsupdatesandimprovements,includingitsplantphenotypingcapabilities.WithintheTimeScaleproject,wearedevelopingaplanthealthmonitoringsystemconsistingofmultispectralimagingandvolatilemonitoringsystems.Theimagingsystemisabletoperformchlorophyllfluorescencekineticsandmonitorvisible,near-infrared(NIR)andlong-waveinfrared(LWIR)spectra.ThevolatileanalysissystemisbasedonSelectedIonFlowTubeMassSpectrometry(SIFT-MS),whichisabletodetectandquantifyinrealtimecomplexmixturesofbiogenicvolatileorganiccompounds(BVOCs).Theuseofthesesystemsshouldallowtheidentificationofnovelstressmarkersformonitoringcrops.Additionally,thelessonslearnedfromthedesign,constructionanduseofthisterrestrialsystemwillguidetheminiaturizationandsimplificationofthetechnologysoitwillfitintoaplantmonitoringsystemprototypetoupdatetheEMCS’plantphenotypingcapacityonboardtheISS.

Page 44: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

32

Posters:AdvancesinPlantPhenotypingTechnologies

High-throughputfield-basedphenotypinginbreedingwithUAVplatformsGuijunYang,ChunjiangZhao,JiangangLiu,HaiyangYu,XiaoqingZhao,BoXuNERCITA,China.Emailyanggj@nercita.org.cnAsfieldmeasurementofmassivegermplasmforcomplextraitsinbreedingischallenging,thereisastrongdemandforreal-time,rapidandnon-destructivephenotypingtoacceleratebreedingefficiency.Remotesensingusingunmannedaerialplatformscanbeappliedtorapidlyandcost‑effectivelyphenotypelargenumbersofplotsandfieldtrials.Inrecentyears,strategiesforhigh-throughputfield-basedphenotypinginbreedingwereinvestigatedbytheNationalEngineeringResearchCenterforInformationTechnologyinAgriculture(coordinatedbyNERCITA),whereproximalremotesensingisperformedbydeployingsensorsusingaerialplatforms.Strategiesincludethefollowing:(1)selectionandspecificationofUAVplatformsforapplyingphenotypinginbreeding;(2)rapidprocessingofmulti-sourceremotesensingdataforhigh-throughputphenotyping;(3)analysisofphenotypicinformationonsoybean,maizeandwheatinbreeding(over10,000plots)byproximalremotesensingatdifferentgrowthperiods;(4)determiningtheoptimalgrowthstage,indicesandalgorithmmodelforcropyieldprediction;(5)validationofthephenotypicinformationresolutionandyieldpredictionusingagriculturalUAVforbreedingplotstoascertainitsstabilityandaccuracy;and(6)genome-wideassociationstudyofmorphologicalindicatorsandmaizegenotypes,andidentificationofcandidategenes.CapabilitiesoftheFieldPhenotypingPlatformFIPdemonstratedbycharacterizationofthetimeseriesofcanopycoverinwheatasrelatedtoGxEinteractionsKangYu,NorbertKirchgessner,FrankLiebisch,AchimWalter,AndreasHundInstituteofAgriculturalSciences,ETHZurich,Switzerland.Email:kang.yu@usys.ethz.chAdvancesinplantphenotypingtechnologiesenableustomeasureplanttraitsandgenotype-by-environment(G×E)interactionsnon-destructivelyathightemporalresolution,whichthusallowsforcontinuouslyquantifyingtraitsanddissectingG×Einteractions.However,underuncontrolledenvironmentalconditions,itishardtoseparateeffectsofmultipleenvironmentalfactorssuchasmultiplebioticstresses.Inthiscase,significantbiasislikelyintroducedwheninterpretingthecause-effectrelationshipsbetweenphenotypic/complextraitsandenvironments.Here,weproposeamodelforcharacterizingthetrait“timeseriesofcanopycover”asaresponsetomultiplefactorsundernaturalenvironments,whichsuggestspromisingpotentialinpredictingG×Einteractionsforfutureclimatechangescenarios,takingadvantageoftheETHFieldPhenotypingPlatform(FIP),a2013-2016fieldexperimentcomprisingmorethan300wheatvarietiesattheETHLindau-Eschikonexperimentalstation,Switzerland.Anintegrated,multi-sensorplatform,FIPallowsautomatedmeasurementofmultipletraits,includingcanopycover(CC),temperature,heightandmultispectralproperties.Toevaluatethemodel,CCwasmeasuredevery3-4daysthroughouttwogrowingseasonsandatime-seriesofCC-basedgrowthratewascalculatedastheresponsetoseasonallyfluctuatingenvironments.Theresponsecouldbevisualizedasaplaneconstructedin3Dbytwoenvironmentalfactors,forinstance,thegrowingdegreedays(GDD)andvaporpressuredeficit(VPD),againstwhichtheCC-basedgrowthratewasplotted.Theresponsewasquantifiedasthreevariables:theslopesonGDDandVPDandtheintercept

Page 45: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

33

Posters:AdvancesinPlantPhenotypingTechnologies

onthegrowthrateaxes.Linearmixedmodelswereemployedforthebestlinearunbiasedpredictions(BLUPs)andresultsshowedthatheritabilitywas0.75,0.40and0.75intermsofthethreevariables,respectively.ResultsconfirmedthatGDDandVPDhavealargeinfluenceoncropgrowthratesinnaturalenvironments.Additionally,thismodelprovidesaplausiblewaytoweighttheeffectsofdifferentenvironmentalfactorsoncropgrowthandthusinterpretG×Einteractions.Preliminaryresultsalsosuggestthatthismulti-dimensionalmodelimprovespredictionofG×Eeffects,whichwillbefurthervalidatedinmultipleyearswiththeFIPaswellascollaborativelyatmultiplesites.Next-generationmaizefieldphenotypingapproachesusinginnovativesensingtechniquesforimprovedbreedingefficiencyMainassaraZaman-Allah1,JillCairns1,CosmosMagorokosho1,AmsalTarekegne1,MikeOlsen2,BoddupalliM.Prasanna21CIMMYTGlobalMaizeProgram,P.O.BoxMP163,Harare,Zimbabwe.Email:[email protected]

2CIMMYTGlobalMaizeProgram,P.O.Box1041,Nairobi15,KenyaGoodphenotypingisoneofthemostcriticalaspectsofasuccessfulbreedingprogram.Phenotypingmethods/platformsarethereforeexpectedtoprovidetheconceptsandtoolsrequiredtoincreaseefficiencyinbreedingforcropimprovement.Unfortunately,phenotypingmethods/toolsforabioticstresseshaverarelybeenimplementedbybreedingprograms.Duetothelimitationsofmanuallyperformedphenotypingmeasurements,recentadvancesinimagingandaerialtechnologiesareexpectedtoenablebetterintegrationofphenotypingapproachesintobreedingprogramsbyhelpingtoextractmorevaluefromeveryresearchplotandimprovetheprecisionandreliabilityofphenotypicdata.Wepresenttheuseofsensortechnologiesthatprovideopportunitiestoadvancetowardnext-generationphenotyping,whichismorecompatiblewithmaizebreeders’needsandwillsignificantlyminimizeselectioncostswhilemaximizingselectionefficiencyandacceleratingtheprocesstodeliverbettergeneticstofarmers.

Page 46: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

34

Posters:AdvancesinPlantPhenotypingTechnologies

PhenotypingleaftraitsinwheatgenotypesbasedonhyperspectraldataMarekZivcak1,MarianBrestic1,KatarinaOlsovska1,MarekKovar1,ViliamBarek1,PavolHauptvogel2,XinghongYang3

1SlovakUniversityofAgriculture,Nitra,Slovakia2NationalAgriculturalandFoodCentre,ResearchInstituteofPlantProduction,Piestany,Slovakia3CollegeofLifeSciences,ShandongAgriculturalUniversity,Taian,ChinaHyperspectralanalysishasbeenintroducedasanalternativetechnologytocharacterizethedifferentpropertiesofcropcanopies,includingapplicationsinfieldphenotypingofgeneticresources.Wheatgermplasmischaracterizedbyhavingbroadphenotypicaldiversity,includingleaftraits.Inthisrespect,theopenquestionishowreliablearehyperspectralindicesforestimatingleafpropertieswhenappliedtoabroadspectraofgenotypesdifferinginplantandleafmorphology,anatomyandchemicalcompositionofleaves.Toanswerthisquestion,hyperspectralfieldrecordsand,subsequently,leafanalyseswereconductedonmorethan100wheatgenotypesfromtheSlovakNationalGenebankcollection.Thetraitsoffullydevelopedflagleaves(chlorophyllandcarotenoidcontentperleafareaandperdrymassunit,chlorophyllatobratio,chlorophylltocarotenoidratio,andleafthicknessmeasuredasspecificleafweight,leafarea,SPADvalue,etc.)werecorrelatedwith132hyperspectralindicesdevelopedtoestimatedifferentpropertiesofabovegroundcropbiomass.Theselectedgenotypesprovidedrelativelyhighdiversityinallobservedtraits(thickvs.thinleaves,highvs.lowchlorophyllconcentration,verysmallvs.verylargeleaves),providinggoodbackgroundforcorrelationanalyses.Theresultsindicatedthatnumerousparametersdesignedforestimatingspecificleaftraits(e.g.,chlorophyllcontent,canopystructure)showedpoorcorrelationwithmeasureddata.Wealsoidentifiedtheparametersthathadrelativelygoodcorrelationacrosstheentirecollectionofwheatgenotypes,whichcanberegardedasmorereliableanduniversal,andusefulforphenotypingwheatgeneticresources.Thestudyrepresentsoneoftheinitialstepsoftheprogramaimedatphenotypingwheatgermplasm,andatdevelopingmethodologicalapproachestoassessthegenotypes,includingtraitsrelatedtoadaptability,plasticityandtolerancetoabioticstressfactors.ThestudywassupportedbynationalgrantsAPVV-15-0721andAPW-15-0562andbilateralprojectwithChinaSK-CN-2015-0005.

Page 47: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

35

Posters:Addingvaluetophenotypicdata

Postersession:Addingvaluetophenotypicdata

Findinganeedleinahaystack–UsingZegamitovisualizephenotypicdatasetsBettinaBerger1,2,GeorgeSainsbury1,2,TrevorGarnett1,2,RogerNoble3

1ThePlantAccelerator,AustralianPlantPhenomicsFacility2SchoolofAgriculture,Food&Wine,UniversityofAdelaide,WaiteCampus,UrrbareSA5064,Australia3ZegamiLimited,Oxford,UKHigh-throughputphenotypingfacilities,suchastheAustralianPlantPhenomicsFacility,generatelargephenotypicdatasets,withthousandsofimages.Thesedatasetsareoftentoolargeandoverwhelmingforplantscientiststoworkwithandmakesenseof.Asaconsequence,dataanalysistakesalotlongerthantheactualexperimentandhasbecomeanewbottleneck.Toreconnectplantscientistswiththeirdata,ThePlantAcceleratorandZegamiLtd(UK)collaboratedtocustomizeZegamisoftwaretothespecificneedsofresearchersinplantphenomics.Zegamiisaneasy-to-useinteractivetoolthatallowsuserstobrowsetheirimagecollections,creategraphsandplotsontheflyandextractsubsetsofimages.Userscanusethefunctionalitiestodetectoutliers,findpatternswithinthedataandexplorenovelphenotypictraits.Importantly,plantscientistscancomeupwithnewresearchquestionstobefurtherexploredincollaborationwithstatisticians.AlldatasetsgeneratedatThePlantAcceleratorwillbeuploadedtoZegamiforprivateuseraccess,inthefirstinstance,andpublicaccess,oncedatasetshavebeenpublished.(https://zegami.plantphenomics.org.au/)Takingthenexthurdle:ManagementofphenotypicdatawithPIPPAStijnDhondt1,2,RaphaelAbbeloos1,2,NathalieWuyts1,2,DirkInzé1,21DepartmentofPlantSystemsBiology,VIB,Technologiepark927,9052Gent,Belgium

2DepartmentofPlantBiotechnologyandBioinformatics,GhentUniversity,Technologiepark927,9052Gent,Belgium,email:[email protected]

Whiledigitalphenotypingplaysacentralroleinmanyplantresearchprojects,phenotypicdataarebeingproducedathighspeedandinhighquantity.High-throughputphenotypingplatformscontinuouslygenerateplantimageswithseveralmodalities.Nowadays,thesamesystemcanacquireRGB,thermalinfrared,fluorescenceandhyperspectralimagesandstoreenvironmental,weighingandirrigationdata.Thenexthurdleistobeabletoproperlymanagethehighamountsofrawandderiveddata.AtVIB,wedevelopedPIPPAasacentraldatabaseandwebinterfacewithimageanddatavisualizationandanalysisfunctions.SeveralautomatedWIWAMphenotypingplatforms,rangingfromanXYtableforcontrolledirrigationandimagingofArabidopsistoaconveyorbeltsystemforfulllife-cycleanalysisofmaizeplants,havebeenintegratedintoPIPPA.Theinterfaceallowsscientiststosetupandanalyzetheirownexperiments,whilekeepingalldatatogetherinastructureddatabasethattakescareofdatamanagementandintegration,linkingimages,metadata,environmentaldata,andimageanalysisand

Page 48: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

36

Posters:Addingvaluetophenotypicdata

measurementresults.Asthesoftwarepackagewasdevelopedasawebinterface,thetoolisavailableoneverycomputerwithinthedepartment.Pre-processingofimages,suchascropping,canbeautomatedandimageanalysisisperformedbystartingataskontheserverorcomputerclusterforfastprocessing.Theanalysisframeworkisdesignedtosupporttheintegrationofexternalimageanalysisscripts.Furthermore,environmentalmeasurements,weighingandirrigationoutput,theexperimentaldesign,andimageanalysisresultscanallbegraphicallyvisualizedwithinPIPPA,bringingtheplantphenotypingresultstoyourfingertips.Currentandfuturedevelopmentsfocusontheinteroperabilityofimageprocessingtoolsandpublicaccessibilityofrawphenotypicdatatoenablecommunity-based'bigdata'analysisinitiatives.OPENSIMROOT:ComputationalfunctionalplantmodelingandsimulationChristianKuppe,JohannesA.Postma

InstituteofBio-andGeosciences,IBG-2:PlantSciences,ForschungszentrumJülich,Germany.Email:[email protected]

WeintroduceOPENSIMROOT,athree-dimensionalfunctionalstructuralplantmodelanduseittointegratedifferentroottraitsintoawholeplantrootarchitecture,andcrop“rootopy”.Wealsoshowthatwecanstudytheimportanceofatraitandintegratedphenotypesundermultipleresourceconstraintswithourrecentlyopen-sourcedsoftwareOPENSIMROOT.Thephenotypingrevolutioninplantsciencesprovideseverincreasingamountsofdatawhichneedtobeinterpretednotonlyinageneticcontextbutalsoinafunctionalcontext.Functionalunderstandingreflectsthestrategyforadaptingtodifferentenvironments.Characterizationofsoil-rootinteractioninafunctionalmodelisonesteptowardsunderstandinghowdifferenttraitsworktogethertoimproveplantgrowthundernaturaloragriculturalconditions.WithmodelingtoolslikeOPENSIMROOT,wehelpsupportthedecisioncycleofplantperformanceanalysiswheredrivingprocessesareidentified.Thatcanhelpdetermineonwhichuncertaininputparametersweshouldspendresourcestogainthebiggestreductioninuncertainty,byclosingtheloopofexperimentsandmodeling.Experimentalandsimulationstudiesshow,forexample,thatsteeperseminalandcrownrootsimprovenitratecaptureincoarsesoilandthatrootproliferationincreasesuptakeoflocallyplacedphosphorusfertilizer.Synergismbetweenlongroothairsandshallowrooting(andothereffects)canbeverifiedbyfunctionalmodeling.Thisisachallengingtaskandweneedtointegratephenotypicinformation,differentenvironmentalfactorsandtheplasticityoftheplanttothosefactors.Modelsmayaidinestablishingdoseresponsecurves,andstudyingtraitorGxEinteractions.

Page 49: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

37

Posters:Addingvaluetophenotypicdata

Determinationofdifferentialpathogensensitivityofbarleycultivarsbymulti-reflectanceand-fluorescenceimagingincombinationwithdeepphysiologicalphenotypingDominikGrosskinsky,JesperSvensgaard,SvendChristensen,ThomasRoitschUniversityofCopenhagen,DepartmentofPlantandEnvironmentalSciences.Email:Roitsch@plen.ku.dkGreatadvanceshavebeenmadeincost-efficientandhigh-throughputanalysisofgeneticinformationandnon-invasivephenotyping,butlarge-scaleanalysisoftheunderlyingphysiologicalmechanismsislagging.Phenotypeisdeterminedbythesumofthecomplexinteractionsbetweenmetabolicpathwaysandintracellularregulatorynetworksreflectedinaninternal,physiologicalandbiochemicalphenotype.Thesevariousscalesofdynamicphysiologicalresponsesneedtobeconsidered,andgenotypingandnon-invasivephenotypingmustbelinkedtophysiologyatthecellularandtissuelevel.Thushigh-dimensionalphysiologicalphenotypingacrossscalesisneededthatintegratestheprecisecharacterizationoftheinternalphenotypeintohigh-throughputphenotypingofwholeplantsandcanopies.Thuscomplextraitscanbebrokendownintoindividualcomponentsofphysiologicaltraits.Sincethehigherresolutionofphysiologicalphenotypingbywetchemistryisinherentlylimitedinthroughput,high-throughputnon-invasivephenotypingneedstobevalidatedandverifiedacrossscalestobeusedasaproxyforunderlyingprocesses.Asacasestudy,weaddressedtheinfectionoffourbarleycultivarsbytwofungalpathogenswithdistinctlydifferentlifestyles,theobligatebiotrophBlumeriagraminisorandthenecrotrophDrechslerateres,usingamultidimensional,holisticphenotypingapproach.Non-invasivephenotypingbymultispectralandfluorescenceimaginginthenovelhigh-throughputphenotypingfacilityPhenoLabwascomplementedbymetabolicfingerprintingviadeterminationofactivitysignaturesofkeyenzymesofcarbohydrateandantioxidativemetabolism,phytohormoneprofilesanddeterminationofspecificdefensemarkergenes.Thedifferentialsensitivityofthetestedbarleygenotypestobothpathogenswasdetectedbysensor-basedimagingtechniquesandfurthervalidatedandverifiedbydistinctphysiologicalresponsesanddefensereactions.Thisstudyprovesthatinsuchaninterdisciplinaryandmulti-dimensionalphenomicsapproach,plantphysiology,non-invasivephenotypingandfunctionalgenomicswillcomplementeachother,ultimatelyenablingthein-silicoassessmentofresponsesindefinedenvironmentswithadvancedcropphysiologymodels.Thiswillallowthegenerationofrobustphysiologicalpredictorsforcomplextraitstobridgetheknowledgegapbetweengenotypesandphenotypesforapplicationsinbreeding,precisionfarmingandbasicresearch.

Page 50: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

38

Posters:Addingvaluetophenotypicdata

MaizePhenomap1andPhenomap2datasets:IntegrationwithgenomestofieldsZhikaiLiang,1SrinidhiBashyam,2BhushitAgarwal,2GengBai,3SrutiDasChaudhury,2OscarRodriguez,1YumouQiu,4YufengGe,3AshokSamal,2JamesC.Schnable11DepartmentofAgronomyandHorticulture,UniversityofNebraska-Lincoln,USA2DepartmentofComputerScienceandEngineering,UniversityofNebraska-Lincoln,USA3DepartmentofBiologicalSystemsEngineering,UniversityofNebraska-Lincoln,USA4DepartmentofStatistics,UniversityofNebraska-Lincoln,USAThroughoutmostofthehistoryofplantgenetics,whichphenotypesweremeasureddependedlargelyonwhatcouldbeeasilyscored.Forexample,8ofthe10mostwidelycitedmaizegenesproduceobservable,segregatingphenotypesatthekernelstage.Inprinciple,bothhyperspectralcamerasandcomputervisionalgorithmsmakeitpossibletoquantifyhundredsifnotthousandsofindividualplantphenotypes,aswellassecond-orderandderivedphenotypes(suchasratiosofdifferentmeasurements,ortherateofchangeofagivenmeasurementovertime).However,itisnotcurrentlyknownwhichphenotypes,ifany,measuredinacontrolledenvironmenthavevalueforpredictinghowmaizeandotherpanicoidcropplantswillperformunderfieldconditions.TwodatasetsweregeneratedusingtheautomatedgreenhousephenotypingfacilityattheUniversityofNebraska-Lincoln.Thefirst,MaizePhenoMap1,included31maizeinbredsimagedfromgerminationtolatevegetativedevelopment(39DAP).Thesesameinbredsweregrownandphenotypedunderconventionalagronomicconditionsat19locationsacrosstheUSandCanadain2014and24locationsin2015.Thesecond,MaizePhenoMap2,included140maizehybridsgeneratedusingrecentlyoff-patentinbredparentsgeneratedbymajorseedcompanies,makingtheselinesasclosetothematerialgrownbyNorthAmericanfarmersaslegallypossible.Plantswereagainimagedattheautomatedphenotypinggreenhouse,toaheightofapproximately2.5metersover63days,enablingtheobservationoftheonsetofreproductivedevelopment,aswellasunderfieldconditionsnearMead,NE.Thesedatasetsmakeitpossibletodevelopandtestnewcomputervision-basedalgorithmsforextractingnovelphenotypesfromRGBorhyperspectralimagedataonplants,andtorapidlyassesstheheritabilityofnewlydefinedphenotypes,sothattraitsnotundersignificantlevelsofgeneticcontrolcanbeefficientlytriaged.Futureeffortswillfocusoncomponent-basedphenotypingofreproductivestructures(earsandtassels)aswellasextendingthephenomapconceptfrommaizetosorghum.

Page 51: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

39

Posters:Addingvaluetophenotypicdata

Low-cost3Dimagingsystemsforhigh-throughputfieldphenotypingThangCao,KarimPanjvani,AnhDinh,KhanWahidUniversityofSaskatchewan,Canada,email:anh.dinh@usask.caGiventhehighdemandtosupportandacceleratebreedingfornoveltraits,thecropresearchcommunityfacestheneedtoaccuratelymeasureincreasinglylargenumbersofplantsandplantparameters.Avarietyofimagingmethodologiesisbeingusedtogatherdataforquantitativestudiesofcomplextraits.Thesetechniques(suchasvisibleimaging,imagingspectroscopy,thermalinfraredimagingandfluorescenceimaging)providequantitativemorphologicalmeasurements.Whenappliedtoalargenumberofplants,however,complete3Dimageacquisitionistimeconsumingforhigh-throughputphenotypingwithahugeamountofdata.Insomecontexts,itmaynotbenecessarytofullyrebuildentireplants.Low-costdepthimagingsystemscanbeusefultoproduceasmalleramountofdataperplant.Weproposeusingalow-costdepthcameracalledTime-of-Flight(ToF)tohavevideosandpicturesoftheplantin3D.Asoftwareprogramwaswrittentodisplaytheplantin3Dandestimatecertaintraits.WealsocomparedtheuseofaMicrosoftKinectV2camera,adigitalcameraandtheToFAgrosP100cameratoprovide3Dimagesofwheatandcanola.TheKinectFusionsystemreconstructsasingledensesurfacemodelwithsmoothsurfacesbyintegratingthedepthdatafrommultipleviewpoints.TheKinectV2emitshigh-frequencymodulatedlightandmeasuresthephaseshiftofthereturnsignaltoprovidea3Ddepthimage.However,itsambientlightrejectionisnotstrongenoughforoutdooruseduetothewidedivergenceofilluminationenergybothhorizontallyandvertically.Forthedigitalcamera,2Dimagesweretakenand3Dmodelsoftware(Agisoftphotoscan)wasusedtoconstructthe3Dimages.Althoughthisapproachcanbeusefulinagreenhouse,itisalsohighlyaffectedbytheilluminationlevel.Alow-costdepthcamerawithToFtechnology,Agros3DP100,wasusedinthecomparison.Thissmart3Dcamerasimultaneouslydeliversdepthinformationandgrayvalueimagedataforeachpixel.ByusingactiveIRillumination,thesensorcaptures3Dand2Dinformationataresolutionof160x120pixelswithupto160framespersecondindependentlyofambientlight.Basedonthesecharacteristics,itissuitableforuseinagreenhousesettingorinthefield.Usingthe3Dimagesfromthislow-costToFcamera,theheightofthewheatandcanolawasestimatedusingthedevelopedalgorithm;thenumberofcanolabrancheswasalsocorrectlycounted.Ofthethreecameras,theToFseemssuitableforhigh-throughputphenotypinginthefield.Thedrawbackofthiscameraisitsresolution,whichwasnotsufficienttocountthenumberofseedsincanolaorwheatinourexperiments.Acombinationof2Dand3DimagesisbeinginvestigatedtoimprovetheresolutionofthecurrentToFcamerainordertohaveabetterbiomassestimationandidentifyotherphenotypiccharacteristics.

Page 52: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

40

Posters:Phenotypingforcropimprovement

Wednesday14thDecember(Morning)PHENOPTYPINGFORCROPIMPROVEMENT

Phenotypingforroot-basedgainsincropproductivityMichelleWatt,UlrichSchurrPlantSciences,InstituteofBio-andGeosciences,ForschungszentrumJuelich,Germany.Email:m.watt@fz-juelich.deTheamazingproductionincreasesofthe20thcenturywereachievedwithsoilandsoilinputmanagement(e.g.,phosphorusfertilizer,limeforsoilacidity,rhizobiawithlegumes,nitrogenfertilizer,rotationstocontrolrootdiseases,irrigation,andplowingmanagement).Meanwhile,newvarietieshavebeenselectedbasedonshootphenotypeslargelybyeyeinthefield(e.g.,canopyarchitecture,height,diseaseresistanceandabioticstresstolerancebasedonleaves,andfloweringtime),combinedwithgrainweightandqualitydestructivemeasures.Rootsarenotgenerallytargetedbymanagementorbreedingdespitetheirpotentialtoincreasewaterandfertilizeruptake,harvestindices,andadaptationstolandconservationandsoilamendments,anddespitethefactthatthe21stcenturypopulationwillseereductionsinland,waterandfertilizersavailableforfoodproduction.Wewillpresentnotableexamplesofwhererootphenotypesweredirectlyselectedduringpre-breedingactivitiesandtransferredtobreedingprogramsanddiscusshowphenotypingtechnologiesallowholisticselectionofrootandshoottraitsallowsproductstobedeliveredmorequicklyanddirectlytofarmers.Multi-modalityremotesensinganddataanalysisforhighthroughputphenotypingM.CrawfordPurdueUniversity.Email:[email protected],coupledwithchallengesofclimatechangerequiredevelopmentoftechnologiestosupportincreasedfoodproductionthroughouttheentiresupplychain–fromplantbreedingtodeliveryofagriculturalproducts.Developmentsinremotesensingfromspace-based,airborne,andproximalsensingplatforms,coupledwithadvancesincomputationalcapabilityanddataanalytics,areprovidingnewopportunitiesforcontributingsolutionstoaddressgrandchallengesrelatedtofood,energy,andwater.Space-borneplatformscarryingnewactiveandpassivesensorsaremovingfromcomplex,multi-purposemissionstolowercost,measurementspecificconstellationsofsmallsatellites.Advancesinmaterialsareleadingtominiaturizationandmassproductionofsensorsandsupportinginstrumentation,resultinginadvancedsensingfromaffordableautonomousvehicles.Newalgorithmstoexploitthemassive,multi-modalitydatasetsandprovideactionableinformationforagriculturalapplicationsfromphenotypingtocropmappingandmonitoringarebeingdeveloped.Anoverviewofrecentadvancesinhighresolutionmultiplemodalityremotesensing,aswellopportunitiesandchallengesfordatascienceinanalysisofmulti-temporal,multi-scaleremotely-senseddatafocusedonhigh-throughputphenotypingwillbepresented.

Page 53: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

41

PHENOTYPINGFORCROPIMPROVEMENT

PhenotypingatBayerHyperCarefarmsElisaLiras,GretaDeBoth,StephanieThepot,RandallHess,WalidElfeki,RaphaelDumainBayer,CropSciencedivisionTheCropEfficiencyresearchprogramsofBayerCropSciencearedesignedtoenhancecropproductivitybypreservingandmaximizingyield,withtheprimaryfocusonwheat,butalsopursuingprojectsforsoybean,cornandcanola.Theseprogramsareusingvarioustechnologiestomodulateplantmetabolismorimproveplantnutrition.Throughunderstandingyieldformationinwheat,researchersworkcross-functionallytodeliverintegratedsolutionstofarmerswithyieldincreaseandabioticstresstoleranceasprimetargets.SeveralenablinginnovativetechnologiesaresupportingthedifferentR&Dprograms,andoneofthemistheHyperCareFarmconcept,focusingonin-fieldprecisionphenotypingactivities.TheHyperCareFarmsarefieldstationsthathavebeenupgradedintermsofprecisionphenotypingequipment.Themainpurposeistomeasure,invariousR&Dtrials,inaprecise,automatedandnon-invasivemanner,plantparameters(e.g.spectralreflectance,canopytemperature)asproxiesfordifferentphenotypicaltraits(e.g.biomassandwaterstress)andtoevaluatetheutilityofnewsensorsunderfieldoperatingconditions.SeveralHyperCareFarmshavebeenestablishedaroundtheworld.ExamplesofthehighprecisioncapabilitiesavailableintheHyperCareFarmsarethePhenoTracker,avehicleconceivedasamobilelabequippedwithhighresolutioncameras,scannersandreflectancesensorsandthePhenoTower,acamerasystem,measuringcanopytemperatureofthefieldplots.Viainterpretationofalltheseprecisionphenotypeddata,researcherscandrawconclusionsconcerningtheeffectsoftheappliedtechnologiesoncropdevelopmentandperformance.Reducinglodginginirrigatedwheat:FocusonstemandrootcharacteristicsandHTPmethodsM.FernandaDreccer1,TonyCondon1,M.GabrielaBorgognone2,GregRebetzke1,LynneMcIntyre1

1CSIROAgricultureandFood,Australia2DepartmentofAgricultureandFisheries,Toowoomba,QLD4350,AustraliaInAustralia,wheatbreedingeffortshavefocusedlargelyonimprovingcropyieldsfordrylandenvironments.Butwheatgermplasmwithhighyieldpotentialandreducedlodging,well-suitedtoirrigatedsystemsandhighrainfallenvironments/yearswherelodginglikelihoodcanbehigh,isalsoneeded.Thisstudywasdesignedtoevaluatetraitsandphenotypingmethodsforimprovedlodgingtolerance.Themainobjectiveswereto:(1)evaluatethevariationandrobustnessoftraitsproposedtoimprovelodgingtolerance,(2)establishtherelationshipsoftraitswithlodgingexpressionandwithyield,and(3)developahigh-throughputphenotypingmethodforrootanchoragecharacteristics.Upto50breadwheatgenotypes,identifiedashigh-yieldingandcontrastingforlodginginmulti-environmenttrials,weregrownunderirrigationatGatton,NEregionoftheAustralianwheatbelt,duringtwoconsecutiveyears.Characteristicsofstems(lowerinternodemaximumbreakingforceandlength)andofroots(crownrootplate-spreadanddepth)displayedhighandrepeatablevariation.Lineswithgreaterlodginghadweakerandthinnerstemsandnarrowerrootplates.Highyieldswereassociatedwithgreaterspecificstemweight,strongerstemsandwideranddeepercrownroots.Thecontributionofrootcharacteristicstoanchoragewasfurtherstudiedinthefield,viarootlengthevaluationinthetop

Page 54: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

42

Posters:Phenotypingforcropimprovement

50cm,andinanexperimentundercontrolledconditions.Thelatterwasset-upinanefforttodevelopahigh-throughputphenotypingmethodfornodalrootstosupportgermplasmscreeningandmolecularmarkerdevelopment.Resultsarediscussedinrelationtofieldobservations.LeasyScanre-loaded:3DscanningplusseamlessmonitoringofcropcanopyandwateruseVincentVadez,JanaKholovaICRISAT–CropPhysiologyLaboratory,GreaterHyderabad,Patancheru502324,Telangana,India.Email:[email protected]

Inthispresentation,anupdateisgivenontheuseandupgradeoftheLeasyScanplatform,installedatICRISATin2014.LeasyScanisbasedonanovel3Dscanningtechniquetocaptureleafareadevelopmentcontinuously,andascanner-to-plantconcepttoincreaseimagingthroughput.Theinitialideaforitsdevelopmentwastoassesscanopytraitsaffectingwateruse(leafareaindex,rateofdevelopment),whichcanrevealcropfitnesstospecificwaterstressscenarios.Wedescribehowthetechnologyfunctions,howdataarevisualizedviaaweb-basedinterfaceandshowvalidationdataonthecloserelationshipsbetweenscannedandobservedleafareadataofindividualplantsofdifferentcrops(R2between0.86and0.94),orofscannedandobservedareaofplantscultivatedatdensitiesreflectingfieldconditions(R2between0.80and0.96).Examplesofthefirstapplicationsoftheplatformarepresented:(1)tocomparetheleafareadevelopmentpatternofpearlmilletbreedingmaterialtargetedtodifferentagro-ecologicalzones;(2)forthemappingofQTLsforvigor-relatedtraitsinchickpea,showntoco-mapwitha“droughttolerance”QTLreportedearlier;and(3)forthemappingofleafareadevelopmentinpearlmillet.Recently,thecapacitytomeasuretranspirationseamlesslyandatahighratewasaddedtotheplatformwithasetof1,488analyticalscales.Examplesofthemonitoringofplanttranspirationbytheanalyticalscalesarepresentedaspartoftheassessmentofthetranspirationresponsetohighvaporpressuredeficit(VPD)insorghumandpearlmillet.Thenewlarge-scalesetupusinglargetraysreflectingfieldconditionsispresented.Thisnewplatformhasthepotentialtophenotypeatahighrateandwithprecisionfortraitscontrollingplantwateruse,whichareofcriticalimportancefordroughtadaptationandprovidetheopportunitytoharnesstheirgeneticsforbreedingimprovedvarieties.

Page 55: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

43

PHENOTYPINGFORCROPIMPROVEMENT

Extendingthephenotype:IntegrationoffieldandglasshousephenotypingwithcropmodelingScottC.Chapman1,GraemeL.Hammer2,AndriesPotgieter2,DavidJordan2,BangyouZheng1,TaoDuan1,RobertFurbank3,XavierSirault2,JoseJimenez-Berni21CSIRO,AUSTRALIA2TheUniversityofQueensland,Brisbane,Australia3ANU,Canberra,AustraliaCropmodelsapproximateplantprocessesinordertocomputephenotypesofinterest.Someofthesephenotypes(forexample,seasonalwateruse)aredifficulttoobservedirectlyovertheseason.However,proximalsensingofcropcanopyandrootcharacteristicsandtheirresponsetotheenvironmentstartstoprovideinformationto'correct'themodelandallowprediction,oratleastgenotyperanking,forthese'unobservablephenotypes'.Remotedatacapturefromfixed,groundandaerialsensorsprovidesinformationthatcanbeextendedbymodels.Differentlevelsofmodelsmaybedevelopedforshort/longtimeframesandforincorporatinggreaterorlessermechanisticdetail.Akeypointtoconsideristhatmodelsandtheinformingofthemcancomefrommultipletypesofexperiments,includingplantphenotypinginglasshouses,andstillbeusedtocontributeto‘disentangling’thephenotypesofeconomicinterest.PhenotypingandGWASforriceimprovement:Astrategyandpartialresultstowardsmulti-traitideotypeconstructionbygenomeeditingMichaelDingkuhn1,2,ArvindKumar2,TobiasKretzschmar2,ChristophePerin1,UttamKumar2,MariaCamilaRebolledo4,HeiLeung2,JulieMaeCristePasuquin2,PaulQuick2,AnindyaBandyopadhyay3,DelphineLuquet11Cirad,France2IRRI,Philippines3IRRI,India4CIAT,ColombiaTheGRiSPGlobalRicePhenotypingNetworkgeneratedextensivephenomicsdataonsubspeciesdiversitypanels,includingmorpho-physiological,phenologicalandchemicaltraitsconferringyieldpotential,lodgingresistanceandadaptationtoabioticstresses.Genome-wideassociationstudies(GWAS)identifiedmanylociandcandidategenesthatarepotentiallyrelevanttobreeding.Keyexampleswillbepresented.However,usingtheseresourcesinmolecularbreedingrequiresmanytime-consumingQTLvalidation,intogressionandselectionsteps.Wethereforeproposeashortcutstrategythatusesdirect,multi-traitengineeringofimprovedplantsthroughgermlinegenomeediting,suchasimprovedCRISPR/Cas9orsimilartechnologies.Wedevelopedoptimizedriceideotypeblueprintsbyin-silicovirtualbreedingbasedontheSAMARAcropmodel,whichsimulatestrait-traitcompensationsandtrait-environmentinteractions(phenotypicplasticity),andpresenttheresults.Asanextstep,guidedbyanew,higher-yielding,lodgingresistantideotype,majorcausativeDNApolymorphismsdiscoveredbyGWASwillbegenome-editedintoelitegeneticbackgrounds.Ideally,theresultingprototypeplantswill

Page 56: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

44

Posters:Phenotypingforcropimprovement

requireonlyfewfurtherbreedingsteps.TheworkpresentedherewillcontinueinthesuccessorprogramoftheGlobalRiceSciencePartnership(GRiSP),calledRICE-CRP,from2017onwards.Anefforttophenotypethe3,000availablesequencedricegenomesisunderway.Successoftheproposedstrategywillhingepartlyonimprovedmethodologiestoedittargetedbase-pairorgenesubstitutionsintogenomes.Iftheapproachissuccessful,wepredictthatlibrariesofcausative,high-effectSNPswillbecomeamuchsought-afterresourceforcropimprovement.This,inturn,willaffectphenotypingstrategiesinthefuture.Scalablein-fieldphenotypingplatformsfordynamicmeasurementofperformance-relatedtraitsinbreadwheatJiZhou1,2,DanielReynolds1,ThomasLeCornu1,3,ClareLister2,SimonOrford2,StephenLaycock3,MattClark1,MikeBevan2,SimonGriffiths21TheEarlhamInstitute,Norwich,UK,email:[email protected],Norwich,UK,email:[email protected],Norwich,UKAutomatedin-fieldphenotypingcanprovidecontinuousandprecisemeasuresofadaptationandperformancetraitsthatarekeytotoday’sbreedingpipelinesandagriculturalpractices.Inourtalk,wewillintroduceourintegratedfieldphenotypingsystemsatJohnInnesCentreandEarlhamInstitute,includingunmannedaerialvehicles(UAV),a3Dscanningcropphenotypingplatform(Phenospex),cost-effectiveCropQuantworkstationsandothernovelhardware/softwaresolutionsthatfacilitatehigh-resolutionandhigh-frequencycropphenotyping.Inparticular,toempowertheassessmentofgenescontrollingyieldpotentialandenvironmentaladaptation,wewilltalkaboutourCropQuantsystem,acost-effectiveInternetofThings(IoT)inagricultureplatform(http://www.earlham.ac.uk/cropquant-next-generation-phenomics)designedtoenablenext-generationautomatedcropphenotyping.CropQuantincorporatesnetworkedsensors,single-boardcomputers,in-fieldwirelesscommunicationandopenhigh-throughputanalysisalgorithmstoprocessfieldexperimentationdata.Besidescroptraitanalysis,wehaveestablishedmachine-learningbasedmodelstoexploreandpredictthedynamicsbetweengenotype,phenotypeandenvironment(GxPxE).Aproof-of-principleexamplebasedonnear-isogeniclines(NILs)ofwheatsuchasPpd-1(lossoffunction),Ppd-D1a(photoperiodinsensitivity),Rht-D1b(semidwarfing),staygreeninducedmutants,Lr19(hypersensitiveresponsetothepathogen),andParagonwildtypewillbediscussedinourtalk.

Page 57: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

45

PHENOTYPINGFORCROPIMPROVEMENT

Effectivedeliveryofphenomicsincommercialbreedingismoreaquestionofwhatandwhen,nothowG.J.Rebetzke1,J.Jimenez-Berni1,W.D.Bovill1,R.A.James1,D.M.Deery1,A.Rattey2,D.Mullans3,M.Quinn3

1CSIROAgricultureandFood,POBox1700,CanberraACT2601(email:[email protected])2DowAgroSciences,FrenchsForrestNSW20863Intergrain,19AmbitiousLink,BibraLakeWA6163Breedingforimprovedadaptationtowater-limitedenvironmentshasbeensuccessfulbutatratesofgeneticgainbelowthatoffavorableenvironments.Inlessfavorableenvironments,reducedgeneticvariancetogetherwithlargegenotype×environmentinteractionreducesrepeatabilityofgenotypeperformanceand,hence,confidenceinselection.Inpopulationscontainingappropriatetraitsforimprovedwaterproductivity,anopportunityexiststocomplementtraditionalselectionforyieldwithadvancedphenotypingtechnologiestoimproveresponsetoselectioninchallengingenvironments.Newhigh-throughputphenotypingtechnologiespromisemuchbenefittobreedersbutalsoposechallenges.Duetofixedbreedingcapacityconstraints,applicationofadditionalphenomicstoolsrequiresthedisplacementoftriedandtestedassessmentsrelatedtobreedinggoals.Assuch,breedershaverequiredstrongevidenceofthevalueofthesecomplementarytechnologiesindeliveringgeneticgainbeforedeployment.Theevidenceofthevalueofthesenewhigh-throughputtechnologiesisaccumulatingwiththebreedernowfacedwiththequestionofnot‘how’tophenotypebut‘when’.Yieldinlargeplotsisstillthebestpredictorofyield,andcanbereadilyachievedwithaplotheaderandabalance.Enrichingearlygenerationsinabreedingcycleforkeyallelesgeneticallycorrelatedwithperformancesignificantlyincreasesthelikelihoodofidentifyingsuperiorgenotypesinlater,moreexpensivestagesofmulti-environmenttesting.Itisatthisearlystageinthebreedingcycle,wheresmallplotsorspaced-rowsaretypical,thatimplementationofnewphenomicstoolsholdsmostpromise.Cost-reducinghyperspectralimagingandLiDAR(LightDetectionandRanging),coupledwithmoretraditionalRGBandNDVI,allowroutinedatacaptureonportable,self-propelledplatforms.Whencombinedwithtoolssuchasaerialinfraredthermo-imaging,biomass,leafarea,drymattercompositionandwater-use/stomatalconductancecanbereadilyestimated.Todrivegeneticgainsforwater-limitedenvironmentsperunitcost,weproposethatcarefulmultistageselection,beginningwithhigh-throughputphenotypinginearlygenerationsandculminatinginlaterassessmentinmanagedenvironments,bereadilyintegratedwithgenomicpredictionmodelingtotargetselectionunderspecific,high-frequencyenvironmenttypes.Together,repeatabilityandconfidenceshouldincreasetoproducecorrelatedincreasesingeneticgainatreducedcostorcycletimetobreedingprograms.Withbreeder-ledengagementthatincludesclosecollaborationwithphysiologists,geneticistsandmodelers,long-termgeneticprogresswillbeenhancedthroughassessmentandidentificationofnewtraitsandtraitcombinationsineliteanddiversegeneticresources,allowingtargeteddeploymentintoadaptedbreedinggenepools.

Page 58: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

46

Posters:Phenotypingforcropimprovement

Plantdiseasephenomics:IdentificationofquantitativeresistanceincropplantsusingphenomicapproachesStephenRolfe1,SarahSommer1,FokionChatziavgerinos1,EstrellaLuna1,PierrePétriacq1,BruceGrieve2,DiegoCoronaLopez2,CharlesVeys2,JohnDoonan3,KevinWilliams3

1P3CentreforTranslationalPlantandSoilBiology,UniversityofSheffield,Sheffield,S102TN,UK2e-AgriSensorsCentre,UniversityofManchester,Manchester,M139PL,UK3InstituteofBiological,EnvironmentalandRuralSciences(IBERS),AberystwythUniversity,Penglais,Aberystwyth,Ceredigion,SY233DA,UK

Plantpestsanddiseasesaccountforupto40%oftotalagriculturallossesworldwide.Oneroutetoreducingtheselossesistousephenomicmethodstoidentifyquantitativeresistancetoinfectionincropvarieties.Quantitativeresponsesresultfromtheinteractionofmultiplegenesandthusprovideasustainableanddurableroutetocropprotection.Weareusingarangeofphenotypingapproachestoexaminetheimpactofbothfoliarandbelow-grounddiseasesonhostphysiologyanddiseasedevelopmentindiversitypanelsofcropplants.Physical(developmental),physiological(photosynthesis,wateruse)andbiochemical(pigmentationandmetabolicprofiling)methodshavebeenassessedfortheirabilitytoquantifyhostresponsestodisease.Inaddition,weareexploringnovel,low-costapproachessuchasmultispectralimagingandElectricalImpedanceTomography(EIT)toquantifydiseaseresponse.Asanexample,BrassicasfromadiversitypanelwereinoculatedwithPlasmodiophorabrassicae,thecausativeagentofclubrootdisease.Multiplephenotypicparametersweremeasuredtoidentifythosethatenableddiseaseprogressiontobequantifiedinanon-destructivemanner.Whilephotosyntheticmeasurementsobtainedusingquantitativeanalysisofchlorophyllfluorescencequenchingchangedonlyrelativelylateduringtheinfectionprocess,waterrelationshipswerealteredmuchearlier.Bothevapotranspiration(measuredusingthermalimagingofleaves)andwateruse(asdeterminedbyautomatedpotweighing)showedamarkedimpactofinfectiononthehostplant.Above-grounddevelopmentaldifferenceswerealsoobserved,butthesewerehighlydependentuponenvironmentalconditions.TheselectedparametersarecurrentlybeingusedtoexaminealargerpopulationofBrassicavarietiessothatthediseasephenotypescanbecorrelatedwithgeneticmarkers.PreliminarymeasurementsusingEIThavealsoshownpromiseasacost-effectivewaytovisualizebelow-groundresponsesdirectly.Strategiesforcropfield-basedhigh-throughputphenotyping(FB-HTP)inbreedingusingUAVplatformsJiangangLiu1,3*,GuijunYang1,2,3,HaiyangYu1,3,XiaoqingZhao1,BoXu1,31BeijingResearchCenterforInformationTechnologyinAgriculture,BeijingAcademyofAgricultureandForestrySciences,China,Emailliujg@nercita.org.cn2NationalEngineeringResearchCenterforInformationTechnologyinAgriculture(NERCITA),China3KeyLaboratoryofAgri-informatics,MinistryofAgriculture,ChinaRapidandnon-destructivemeasurementsforfield-basedphenotypingplayanimportantroleinacceleratingbreedingefficiency.Unmannedaerialvehicle(UAV)platformshavebeenusedforhigh-

Page 59: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

47

PHENOTYPINGFORCROPIMPROVEMENT

throughputphenotypinginrecentyears,becausetheyrapidlyandcost-effectivelyprovidecropphysiologicaltraitstocropbreeders.Giventhatcomplextraitssuchasplantheight,biomass,lodgingresistanceandyieldarecontrolledbymultipleloci,large-scalemulti-environmentalphenotypicinformationanalysisisnecessaryforlocatingthegeneticlocithatarecloselyrelatedtothesetraits.Theobjectiveofthisstudywastoinvestigateamethodforfieldphenotypingofsoybeaninbreedingplotsbyproximalsensingduringdifferentgrowthperiodsanddeterminethebestmodelforyieldpredictionofmassivegermplasm.Fieldexperimentson100soybeanbreedingmaterialswereconductedin2014and2015.Anunmannedaerialplatformequippedwithadigitalcamera,amultispectralcamera,ahyper-spectrometerandathermalimagerwasusedforfield-basedhigh-throughputphenotypingofsoybeaninbreedingplots.Tenvegetationindicescombiningalgorithmsincludingpartialleast-squaresregression(PLSR),principalcomponentanalysis,multipleregression,exponentialregression,anartificialneuralnetwork,asupportvectormachineandadigitalelevationmodelwereadoptedforestimatingfourfield-basedsoybeanphenotypesinbreedingplots:height,leafareaindex(LAI),biomassandcanopytemperature.Plantheightofsoybeaninbreedingwasestimatedaccurately,withacorrelationcoefficientbetweenobservedandestimatedvaluesof0.92.ThePLSRapproachperformedbestforpredictingsoybeanyieldandestimatingLAIandbiomasswithcorrelationcoefficientsof0.85,0.91and0.84,respectively.ThecorrelationcoefficientbetweencanopytemperaturedetectedbytheUAV-basedInfraredThermalImagerandobservedbyhand-heldInfraredradiometerwas0.91,whichshowedgoodstabilityandconsistency.TheUAV-basedfieldphenotypingplatformisarapidandaffordablemethodforperformingcropphenotypicinformationanalysisinbreeding.AUAVplatformequippedwithmulti-sensorswasabletoidentifythedifferencesinphenotypicestimatesamongsoybeancultivars.Combiningproximalsensingdataandcropphysiologicaltraitscanimprovetheaccuracyofyieldpredictioninsoybeanbreeding.TheUAV-basedproximalsensingplatformprovidednovelinsightsinacceleratingthebreedingefficiency.

Wednesday14thDecember(Afternoon)PHENOPTYPINGFORCROPIMPROVEMENTcont’d

Remotesensingforcropimprovement:FromresearchtoindustrySebastienPraud1,FredericBaret2,AlexisComar3and,DavidGouache41BIOGEMMA,FRANCEFrance.Email:[email protected],FRANCE3HI-PHEN,FRANCE4ARVALIS,FRANCEPlantbreedingiscostlyandtime-consuming,andanytechnologythatcanhelppredicttheperformanceofeachgenotypewhilereducingthecostandamountoftestinggreatlyimprovestheoverallrateofgeneticgain.Inresponsetothisproblem,wedevelopedaprototyperemote-sensing-basedsystemtocharacterizetheresponseofwheatvarietiestonitrogen.Itisunderpinnedbytheknowledgeofhownitrogenaffectswheatcanopycharacteristics,suchasleafareaandangle,andchlorophyllcontent.We

Page 60: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

48

Posters:Phenotypingforcropimprovement

installedRGB(red,green,blue)camerasandmultispectralreflectancespectrometersonatractor,whichenabledustoscreenthedynamicresponseof220wheatvarietiestodifferentnitrogentreatments.Usingthesedata,weshowedthatsuchsystemscanprovideresultsrelevantforidentifyinggenesandtheirfunctions,andforscreeninginplantbreeding.Weidentifiedaspectsofthewheatgenomethataffectcanopyreflectance,chlorophyllcontent,biomassandyield.Weshowedthatthesemeasurementsaresufficientlyrepeatableandwelllinkedtothetoleranceofsomevarietiestonitrogendeficiency.Hence,wewereabletousereflectancetraitsatspecificstagesofthewheatcroptoidentifysuperiorwheatvarietiesfornitrogendeficittolerance.Wewerethenabletoscaleupthesystemfromtrialsofaround100plotsto1000,whichhelpedustospecifynewsystemsdevelopedwithinthescopeofPhenome,aplantphenotypingnetworkbasedinFrance.Weimplementedtheseprototypesonanautonomousgroundvehicle.Morerecently,anairbornesystemwasimplementedandisnowavailabletoplantbreedersandgeneticists.Itisusedtoassessawiderangeofrelevanttraitslinkedtodroughtstresstoleranceinwheatandmaize.Testingtheefficacyoflarge-scalefieldphenotypingingenomicselectiontoacceleratewheatbreedingEricOber1,RobertJackson1,R.ChrisGaynor2,AlisonBentley1,PhilHowell1,JohnHickey2,IanMackay1

1NationalInstituteofAgriculturalBotany(NIAB),HuntingdonRoad,CambridgeCB30LE,UK2TheRoslinInstitute,UniversityofEdinburgh,EasterBush,Midlothian,EH259RGTheprocessofbreedingnewplantvarietiescanbeacceleratedandmadelesscostlybyapplyingnewmethodsofgenomicselection(GS).GSuseshigh-densitymolecularmarkersandrelativelyinexpensivegenotyping,incombinationwithphenotypicandpedigreedata,toincreasetheselectionintensityanddecreasethecycletimebetweeninitialcrossesandfinishedvarieties.Increasedprecisioncomesfrombothexploitinggeneticrelationshipsbetweentraitsandreducingtheeffectofenvironmentalinfluences.However,abottleneckthatoccurswhenapplyingGSisthecostofphenotypingtherequisitetrainingpopulation,whichforcommercialbreedingprogramsmustbelarge(severalthousandindividuals).Robustpredictionalgorithmsdevelopedfromthetrainingpopulationcanbeappliedtoreferencepopulationswithoutneedingtorepeatthephenotypingprocess.Whileyieldisthefundamentalphenotypicvariableofinterest,wetesttheideathatadditionalphysiologicalandmorphologicaltraitscanincreasethepredictivepowerofalgorithms,akintoincreasingthenumberofgeneticmarkers.Thescaleandcostofphenotypingcanbereducedbyusingremotesensingmethods,largelybasedonspectralreflectancefromcropsurfaces,whichhavebeenusedinagricultureresearchfordecades.Inacollaborativeprojectwithfourcommercialbreedingcompanies,wearetestingtheseprinciplesusingaUAVplatformtosupplementground-basedmeasurementstoderivephenotypicvaluesinalargepopulationof3000elitewheatlinesplantedintwofieldlocationsinCambridgeshirein2016.TypicalvegetationindicesbasedonreflectanceinthevisibleandnearinfraredandhighresolutionRBGimageswillbeusedtoestimatecanopygrowthandsenescence,cropheight,etc.HyperspectralandLiDARdata(e.g.,toestimatestemsolublecarbohydrateconcentrationsandbiomass),willsupplementdataderivedfrommultispectralcameras.Furtherprecisioncanbeobtainedbytakingintoaccountenvironmentalcovariatesthatvaryspatiallyacrossthetrialarea,suchasdifferencesinsoiltextureand

Page 61: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

49

PHENOTYPINGFORCROPIMPROVEMENT

moisturecontent,obtainedusingmethodssuchaselectromagneticinduction.Fieldtrialsonthesamematerialswillbeconductedagainin2017.Phenotypingforabioticstresstoleranceincrops:IndianinitiativesJagadishRane1,PrashantKumar,MamruthaMadhusudhan,MaheshKumar,SaiPrasad

1NationalInstituteforAbioticStressManagement,Baramati,Pune,India.Email:[email protected],Karnal,India3IndianInstituteofAgriculturalResearch,RegionalStation,Indore,IndiaTolerancetoabioticstressincropsiscrucialforIndianagricultureasthefoodsecurityofmillionswillcontinuetodependonnewcropcultivarsthatyieldmoregrainandfodderinbothfavorableandunfavorableagro-ecosystems.Water-deficitagriculturalareasarepredictedtoexpandduetoimminentcompetitionbetweendifferentsectorsandtheadverseeffectsofclimatechange.Atpresent,68%ofIndianagricultureisrainfedandhighlypronetodrought.Hightemperatureslimittheproductivityofwintercropslikewheat.Thepredictedriseintemperaturecouldhavemoreimpactoncropproductivityintheabsenceofsufficientsoilmoisture.Increaseddemandforfoodcouldextendcropcultivationtodegradedsoilswithedaphicstressessuchassalinity,waterloggingandnutrientimbalance.Wheatgenotypesselectedbasedonyieldalonemaynotbesufficienttoaddressthesechallenges,asevidentfromthemarginalgeneticgainsincropproductivityintherecentpast.Hencetraitscontributingtoresilienceofcropstoabioticstresseswillbeessentialforfuturefoodproduction.Rapidlyevolvingmolecularapproachesarewideningthescopeforgeneticimprovementandcanbeeffectiveiftheassociationbetweenthegenestobeintrogressedanddroughttolerancetraitsisestablishedwithgreaterprecision.TheseconcernsandemergingopportunitiesforinvestigatingandphenotypingtraitsrecentlypromptedtheIndianCouncilofAgriculturalResearchtoestablishhigh-throughputphenomicsplatformsforcereals,pulsesandothercrops.Effortshavebeenmadetoemployphenomicstoolsforassessingresponsesofdifferentcropstoabioticstressessuchasdrought.Thisincludesassessingtheutilityoftechniquessuchaschlorophyllfluorescenceandthermalimagingsystemsfordifferentiatingstresstolerantandintolerantcropgenotypes;methodsforidentifyingmungbeangenotypesthatproducemorebiomasswithlesswaterrelativetolocallyadaptedcultivars;andphenotypingphotosyntheticefficiencyinspikes.Effortstoassociatestressresiliencetraitsandgenesareexpectedtoaccelerateifthesephenomicstoolsareadoptedalongwithafield-lab-fieldapproachatdifferentexperimentalsites.Thisreviewwillalsobrieflydescribeexistingandemergingopportunitiesforresearchcollaborationtoenhancecropresiliencetoclimateextremesthroughinternationalnetworks.

Page 62: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

50

Posters:Phenotypingforcropimprovement

ImprovingtheprecisionofphenotypicdatausingUAV-basedimageryFranciscoPinto,MatthewReynolds

CIMMYT,GlobalWheatProgram,Mexico.Email:fr.pinto@cgiar.orgPhysiologicalbreedingcomplementsconventionalbreedingapproachesbydesigningstrategiccrossesthataimtofostercomplexandcomplementarytraitsinplantsinawiderangeofenvironments.Effectivescreeningforthesetraitsingeneticresourcesandfurtherscreeningoftheprogenyarekeyelementsofthisapproach.Remotesensingtoolsprovideanexcellentopportunityforhigh-throughputphenotypingunderfieldconditions,enhancingthevalueofphysiologicalbreeding.Inthiscontext,unmannedaerialvehicles(UAVs)havebeenimplementedbytheWheatPhysiologygroupatCIMMYTresultinginasuitableandeffectiveplatformtoremotelymeasuretraits,suchasNDVIandcanopytemperature,inthousandsofwheatlines.Aerialimageryenablesfastcollectionofspatiallyresolveddata,potentiallyimprovingtheprecisionoftraitmeasurementandtheeliminationofconfoundingfactorssuchasenvironmentalfluctuationsornon-vegetationelementswithintheplot.Byselectingpixelswithineachplotusingstatisticaloutlieranalysis,weimprovedthepredictionofbiomassandyieldforvariousgenotypescomparedtoground-basedmeasurements.Thissuggeststhathigher-resolutionimagescouldresultinmoreprecisemeasurementsofremotely-sensedtraits.However,thisalsoimpliesmorecompleximagesshowingahigherdegreeofheterogeneitywhichneedstobeunderstood.Inthispresentation,wedescribeourlatestadvancesintheanalysisofUAV-basedimagingforscreeninggeneticresourceswithinthecontextofphysiologicalbreeding.Phenotypingforbreedingandphysiologicalpre-breedingMatthewReynolds,GemmaMolero,FranciscoPinto,CarolinaRivera,FranciscoPinera,SivakumarSukumaran,MartaLopes,andCarolinaSaintPierreGlobalWheatProgram,CIMMYTPhenotypinghasbeenthecornerstoneofplantbreedingbut,untiltheadventofremotesensing(RS)tools,selectionwaslargelyrestrictedtoheritabletraits—phenology,height,kernelsize,diseaseresistance,andnon-negotiablecomplextraitsincludingend-usequalityandyielditself.RSallowstheevaluationofintegrativetraits—bydefinitiongeneticallycomplex—onascalethatsomewhatovercomesthedisadvantagesoftheirrelativelylowheritability.Inparticularcanopytemperatureisagoodpredictorofyieldandrootfunctionunderabioticstress,andanumberofspectralindices,includingNDVIandwaterindex,alsoshowpredictivepower.Recentresearchhasshownthattheimprovedprecisionofaerialphenotypingplatformsleadstoincreasedheritabilityandthereforegreaterpredictivepower.Additionaltraitsthatlendthemselvestoaerialhigh-throughputscreeningarepigmentsandotherindicesassociatedwithphotosynthesisandphoto-inhibitionandwater-relatedindicesassociatedwithtissuehydrationstatus.Innovationsinthepipelineincludeuseofimageanalysistoestimateagronomictraitsandtheapplicationofvegetativeindicestocorrectforspatialvariationinlargetrials.Byvirtueofbeinghigh-throughput,manyoftheRSindicesmentionedlendthemselvestolarge-scalegeneticresourcescreeningaswellasgeneticanalysis.

Page 63: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

51

PHENOTYPINGFORCROPIMPROVEMENT

Integrativetraitshavelesspowertopredictperformanceunderhighyieldenvironments.There,physiologicalbreedingfocusesonpotentialparents’phenotypestodesigncomplementarycrosses,thoughonasmallerscale.Agoodexampleisspikephotosynthesis(SPS),whichisdifficulttomeasureandhasthusbeenlargelyignored,despitethefactthatspikesinterceptuptohalfofincidentradiationduringgrain-filling.ThreeinnovationshavebeenappliedtobettercharacterizeSPSincludinga360degreeLEDilluminationchamberforgasexchangemeasurement,long-durationspikeshadingtreatmentsanduseofstablecarbonisotopesanalysisofgrain;bothofthelatterhelptoestimatetheintegratedcontributionofSPStoyield.DOCUMENTINGADVANCESandIDEASINPLANTPHENOTYPINGHarmonizingeffortsamongphenotypinginitiatives:BottlenecksandopportunitiesJoséL.ArausUniversityofBarcelona,SectionofPlantPhysiology.Email:jaraus@ub.eduPhenotypingisthemainbottlenecktotheapplicationofnewmoleculartechniquesandbreedingprogressingeneral,raisingtheinterestoftheglobalscientificcommunityincollaborativeinitiatives,suchastheIPPNandtheWheatInitiative,whichreflectthevariedperceptions,priorities,experiencesorsenseofopportunityoftheirpromotors.Insomecases,emphasisisonthedevelopmentoffirst-ratefacilitiestophenotypeforspecialtraits—forexample,rootarchitectureandfunctionality—undercontrolledconditionsorfeaturingpermanentlydeployed“fieldplatforms”.Althoughthesefacilitiesmayhelptoadvancetheresearchfrontierwithinthediscipline,theconsumers—thebreedingcommunity—arestillsceptical.ArecentsurveybytheWheatInitiative’sExpertWorkingGrouponPhenotypingidentifieddatamanagementandannotationasthebiggestimmediateissuesforthe“phenotypingcommunity”toaddress,whereasaccessingreliablephenotypicdata,togetherwithfeedinghigh-throughputphenotypingresultsintobreedingprograms,willbeamongthebiggestissuesinonedecade.Inthatcontext,harmonizingeffortsacrossinternationalinitiatives,togetherwithotherrelevantactors(CGIARcenters,seedcompaniesandnationalagriculturalprograms),withaviewtobreeders’realneeds,maypavethewayforthefutureofcropphenotyping.

Page 64: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

52

Posters:Phenotypingforcropimprovement

Postersession:Phenotypingforcropimprovement

OptimizingwheatrootarchitecturebyexploitingdiversegermplasmJonathanA.Atkinson12,Cai-yunYang2,StellaEdwards2,SurbhiMehra2,JulieKing2,IanKing2,MalcolmBennett1,DarrenM.Wells11SchoolofBiosciences,theUniversityofNottingham,UK.Email:[email protected]/BBSRCWheatResearchCentre,theUniversityofNottingham,UKRootarchitectureiskeyforefficientnutrientuptakeandthushasadirecteffectonyield.However,wheatbreedingandselectionprogramsoftendonotdirectlyconsiderrootarchitectureduetothepracticaldifficultiesofmeasuringit.Preliminaryanalysespointtoareservoirofgeneticvariationinkeyroottraitsamongwheatlandracesandwildrelativesthatcanbeintroducedintomoderncultivarstoincreasethegeneticvariationinmodernbreedingprogramsforkeyagronomictraits.ApopulationofAmbylopyrummuticumdoublehaploidintrogressionlinesproducedbytheNottingham/BBSRCWheatResearchCentrehasbeenphenotypedusinghigh-throughput,low-costpipelinesforbothrootandaerialtraits.Thephenotypingmethodologyandpreliminarydatafromtheselineswillbepresented.WaterstressfieldphenotypingandPHENOMOBILE-LVmonitoringofwheatB.deSolan1,F.Baret2,S.Thomas1,O.Moulin1,G.Meloux1,S.Liu2,S.Madec2,M.Weiss2,K.Beauchene1,A.Comar3,A.Fournier1,D.Gouache1

1ARVALISInstitutduvégétal,France2INRA,UMREMMAH,Avignon,France3HIPHEN,Avignon,FranceThePHENOMOBILE-LVisafullyautomatedrobotdesignedforhigh-precision,high-throughputfieldphenotyping.ItisequippedwithseveralsensorsincludingRGBcameras,spectroradiometersworkinginthevisibleandnearinfrared,andLIDARs.Allthesemeasurementsareperformedfromnadirandinclineddirectionstogathercomplementaryinformationoncanopystructure.Thesensorsruninactivemodeusingsynchronizedflashestoproducemeasurementsthatarefullyindependentfromnaturalilluminationconditions.Theyareautomaticallyfollowingtheacquisitionscenarios.In2016,alargefieldexperimentcomparing220wheatgenotypesunderbothwater-stressedandirrigatedconditionswasconducted.Usingasetofsensors,severalbiophysicalvariableswereestimated:cropheight,greenfraction,thefractionofinterceptedradiation(fIPAR),greenareaindex(GAI)andchlorophyllcontent.Comparedwithdestructivemeasurementstakenonasubsetofmicro-plots,thiswasinagreementwitharelativeprecisionofaround10%forGAIandchlorophyllcontent.Ourmaininterestinthesenon-destructivemeasurementswastoanalyzetheirdynamics.Eachmicro-plotwasphenotypedon10differentdatesduringthegrowingseason.Thetimeandintensityofthestressexperiencedbyeachgenotypewerethereforequantifiedbycomparingthechangesincanopystructureandleafcharacteristicsbetweenbothmodalities.Thepossibleimpactofsoilheterogeneitywasaccountedforin

Page 65: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

53

Posters:Phenotypingforcropimprovement

datainterpretationbyusingamapofavailablesoilwatercontent,previouslyderivedbycombiningasoilelectricalresistivitymapandlocalsoilanalyses.AfterdescribingthemainfunctionsofthePHENOMOBILE-LV,themethodsandperformanceofthealgorithmsdevelopedtoestimatethebiophysicalvariablesarepresented,followedbytheircorrelationswiththetargetvariables(yieldandgrainproteincontent)andtheirheritability.Finally,themostpertinenttraitsderivedfromPHENOMOBILE-LVnon-destructivemonitoringareidentifiedbasedonIndirectSelectionEfficiencyfortolerancetowaterstress,whichcombinesheritabilityandcorrelationwithproductivityandquality.High-throughputphenotypingofearlyvigorinwheat:RapidmeasuresofleafareaasproxyofearlyplantgrowthparametersandyieldAviyaFadida-Myers1,2,AvivTsubary1,2,AiaSulkoviak1,AharonBellalou1,KamalNashef1,YehoshuaSaranga2,DavidJ.Bonfil1,ZviPeleg2,RoiBen-David1

1TheAgricultureResearchOrganization(ARO)-VolcaniCenter,BetDagan,Israel.Email:[email protected]

2TheHebrewUniversityofJerusalem,Rehovot,IsraelInsemi-aridMediterranean-likeenvironments,improvingearlyvigorofwheatvarietiesisanimportantbreedingtarget.Genotypeswithearlyvigorwillestablishbetterandcompletegroundcoverfaster,whichreduceswaterlossviaevaporation.Phenotypicparameterssuchascoleoptilelength,leafareaandrelativeemergenceareassociatedwithearlyvigorandcanbemeasuredonsingle-plants,andafieldSeptometercanbeusedtomonitorleafareaindex(LAI)inlargerexperimentalplotswithcommercialfieldstands.However,thosemethods,aswellasbiomasssampling,aretime-consumingandhavetechnicalconstraintsthatlimitthenumberofplantsthatcanbeefficientlyscreenedinawheatbreedingprogram.EasyLeafAreaisfree,open-sourcesoftwarethatrapidlymeasuresleafareaindigitalimages(ordinaryphotographsorscannerimages).ThissoftwareusestheRGBvalueofeachpixeltoidentifyleafandscaleregionsineachimageandtocalculatepercentageofleafgroundcover.Ourhypothesisisthat%covercouldserveasarapidlow-costmethodtomeasureearlyvigorandbiomassaccumulationinwheat.Inthecurrentstudy,weaimtoassessthecorrelationbetween%coverto:(i)phenotypicparametersofearlyvigor,(ii)biomassaccumulationandagronomictraits.Phenotypingof%cover,earlyvigorandbiomassparameterswererecordedinfiveindependentfieldexperimentsatthreedifferentscales:experiment-(1-2)Rehovot2014-16:near-isogeniclines(NILs)ina1-msinglerow;experiment-(3)Bet-Dagan2015-16:landracesin0.5m2;andexperiment-(4-5)Gilat2014-16:moderncultivarsinmicroplots(40m2).Inallexperiments,highsignificantcorrelationswereobservedbetween%cover,earlyvigorparametersandbiomassaccumulation.Inexperiment-1,%cover21daysafteremergencewaspositivelycorrelatedwithinitialgrainsize(r=0.85,p<.0001)and3rdleafarea(r=0.57,p=0.02).Itwasalsopositivelycorrelatedwithbiomass(r=0.67,p=0.004)andgrainyield(r=0.69,p=0.003).Inexperiment-2,%cover28daysand42daysafteremergencewaspositivelycorrelatedwith3rdleafarea(r=0.72,p<.008)andfastemergencerate.Inaddition,%coveronbothdateswasalsopositivelycorrelatedwithflagleafareaandgrainyield(r=0.6,p<.0038).Inexperiment-4,%coverwaspositivelycorrelatedwithLAImeasurementsboth50and70daysafteremergence(r=0.6-0.65,p<.0001).PCAanalysisofexperiment-4(explaining47.5%oftheexperimentalvariance)showedhighassociationbetween%coverat30and50daysandbiomassaccumulation(onadegree-daybasis),heightandfinalbiomass(mechanicalharvest130daysafteremergence).Theseresultsshowthepotentialof%cover

Page 66: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

54

Posters:Phenotypingforcropimprovement

monitoringasagoodphenotypicindicatorofbothearlyvigorandbiomassaccumulationatthevegetativestageand,insomecases,finaldrymatterandgrainyield.Furtherlargeplotexperimentsareneededtoassesswhether,ortowhatextent,%covercouldserveasapractical,high-throughputalternativetoLAI.AnefficienttooltodescribeolivevarietiesthroughstrictlymathematicallydefinedmorphologicalparametersKonstantinosN.Blazakis1,LucianaBaldoni2,AbdelmajidMoukhli3,MarinaBufacchi4,PanagiotisKalaitzis1

1DepartmentofHorticulturalGenetics&Biotechnology,MediterraneanAgronomicInstituteofChania(MAICh),73100Chania-Crete,Greece,email:[email protected]

2ItalianNationalResearchCouncil,InstituteofBiosciencesandBio-Resources(CNR-IBBR),ViaMadonnaAlta,06128Perugia,Italy

3INRAMarrakech,URAméliorationdesPlantes,Marrakech,Morocco4ItalianNationalResearchCouncil,InstituteforAgricultureandForestSystemsintheMediterranean(CNR-ISAFOM),ViaMadonnaAlta,06128Perugia,Italy

Morphologicalanalysesofolivefruits,leavesandstonesmayrepresentefficienttoolsforcharacterizinganddistinguishingvarietiesandforestablishingphenotypicrelationshipsamongthem.Inthisstudy,wepresentafurthersteptowardsthedevelopmentofintegratedautomatedmethodologiesfordescribingfruit,leafandendocarpmorphologies.Ourapproachdiffersfromthetrendsandtoolscurrentlyusedtodescribethemorphologyofvariousorgans,sincethereisnoneedforpriortime-consumingmanualtechniquesorprerequisitesregardingthecoloroftheimagebackgroundorthepositionofthedescribedorgan.Herewepresentbiologicallymeaningfulmorphologicaltraitsinordertodescribefruit,leaforendocarpmorphologies.Thedevelopedparametershavebeendefinedstrictlymathematically,makingourmethodologymorerobustandefficient.Weexaminedquantitativeandqualitativemorphologicaltraitssuchassize,shape,symmetry,surfaceroughnessandpresenceofadditionalstructures(nipple,petiole,etc.).Somemorphologicalparametersappeartobeslightlyinfluencedbytheenvironmentandtheproposedmethodologycanbeausefulandrapidtoolforidentifyinganddistinguishingolivecultivars.Wehopethatourmethodologyisusefulandwillleadtomorphologicalanalysesofcropspeciessuchastomatoes,pears,grapesand,especially,olives.

Page 67: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

55

Posters:Phenotypingforcropimprovement

High-throughputlaboratoryphenotypingoflettucetoassessdroughttoleranceMarianBrestic1,MarekKovar1,KlaudiaBruckova1,MarekZivcak1,KatarinaOlsovska1,XinghongYang2

1SlovakUniversityofAgriculture,Nitra,Slovakia2CollegeofLifeSciences,ShandongAgriculturalUniversity,Taian,ChinaLettuce(LactucasativaL.)isoneofthemostimportantsaladvegetablesintheworld.Itischaracterizedbyvariablemorphologicalformsandinterestingnutritionalcontentofhealth-promotingsubstances.Manydifferentformsoflettuceposeachallengewhenselectingsuitablegenotypesforcultivation.Theclassicdestructiveanalysisofplantmaterialisslow,time-consumingandoftenexpensive.Currently,modernplantphenotypingapproachesbasedonopticalsignalsfromplantsprovideopportunitiesforfastphenotypingandselectionofappropriatebiologicalmaterial.Theadaptiveresponsesof12differentlettucegenotypestoprogressivedroughtwerestudiedinapotexperimentunderenvironmentallycontrolledconditionsusingthePlantScreenTMphenotypingplatformintheAgroBioTechResearchCenteroftheSlovakUniversityofAgricultureinNitra,Slovakia.Genotypeprofilingwascomplementedbymeasuringwatercontentandbiochemicalcompounds(chlorophylls,carotenoids,anthocyanins,polyphenolsandprolinecontent).Ahigh-throughputphenotypingmethodbasedonautomateddigitalimageanalysisoffluorescence,RGBandhyperspectralsignalswasusedduringtheentirevegetativeperiodtoaccuratelymeasurethegrowthandphysiologicalandnutritionalresponsesoflettucegenotypestowatershortage.Non-invasiveautomaticRGBandVNIRhyperspectralimagingofplantsalloweddividinggenotypesbasedonleafcoloringintothreegroups(lightgreen,darkgreenandredleaves).Morphometricalanalysisshowedwatershortagereducedplantgrowthmeasuredasplanarplantareawithsignificantgenotypicdifferences.Onaphysiologicallevel,plantwaterstresswasaccompaniedbyapronouncedreductioninleafwatercontentandprolineaccumulation.MaximalandactualphotochemicalefficiencyofPSIIwashigherinredlettucegenotypes.Thisobservationwasconfirmedbytheevaluationlevelofthephotochemicalreflectanceindex.Scanningofopticalsignalsfromplantshasthepotentialtodiscriminatelettucecultivarswithdifferentcolorsandphysiologicaltraitsandcanbesuccessfullyusedforbasicautomaticgenotypeselection.ThisstudywassupportedbynationalgrantsAPVV-15-0721andAPW-15-0562andbilateralprojectwithChinaSK-CN-2015-0005.Animage-basedautomatedpipelineformaizeearandsilkdetectioninahigh-throughputphenotypingplatformNicolasBrichet,LlorençCabrera-Bosquet,OlivierTurc,ClaudeWelcker,FrançoisTardieuUMRLEPSE,INRA,MontpellierSupAgro,34060,Montpellier,FranceWaterdeficitstronglyimpactssilkgrowthandsilkemergenceinmaize(ZeamaysL.),whichinturndeterminethefinalnumberofovariesthatdevelopgrains.However,phenotypingsilkgrowthandsilkexpansionisdifficultatthroughputneededforgeneticanalyses.Wedevelopedanimage-basedautomatedpipelineformaizeearandsilkdetectioninahigh-throughputphenotypingplatform.Thefirststepconsistsofselectingthebestwholeplantside-viewimagescontainingmaximuminformationforeachplantandday,asthatcontainingmostleavesandwholestem,basedontop-viewimages.Inasecondstep,thebestsideimagesaresegmentedandskeletonized,andpotentialearpositionsare

Page 68: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

56

Posters:Phenotypingforcropimprovement

determinedbasedonchangesinstemwidths.Thexyzearpositionidentifiedinthiswayservestopilotthemovementofamobilecameraabletotakeadetailedpictureat30cmfromtheear,withthefinalaimofdeterminingsilkemergenceandsilkgrowthduration.ThesemethodsweretestedusingthePhenoArchplantphenotypingplatform(www6.montpellier.inra.fr/lepse/M3P)onapanelof300maizehybrids.Thefirstresultsshowedthatin>80%ofcases,earsweresuccessfullydetectedbeforesilkingandthedurationofsilkexpansionsignificantlycorrelatedwithvisualscores.Theimagepipelinepresentedhereopensthewayforlarge-scalegeneticanalysesofcontrolofreproductivegrowthtochangesinenvironmentalconditionsinreproductivestructures.IdentificationofresistancetoramulosiscausedbyColletotrichumgossypiivar.cephalosporioidesinadvancedcottonbreedinglinesandmonitoringoframulosisdiseasebyRGB-imageanalysisOscarBurbano-Figueroa,MilenaMoreno-Moran,KeyraSalazarPertuz,LorenaOsorioAlmanza,KarenMontesMercado,ElianaReveloGomez,MariadelValleRodriguezThePlantInteractionsLaboratory,C.I.Turipaná,ReddeCultivosTransitoriosyAgroindustriales,CorporaciónColombianadeInvestigaciónAgropecuaria(CORPOICA),Km13víaMontería–Cereté,Cereté,Córdoba,Colombia.Email:[email protected]

CottongrowingregionsinSouthAmericaareaffectedbyramulosis,adiseasecausedbyColletotrichumgossypiivar.cephalosporioides(Cgc).Themostsevereepidemicscauseconsiderableyieldreductionlinkedtomeristemnecrosis,oversprouting,branchingandstunting.TheSinuValley,thebiggestcottonproducerinColombia,isheavilyaffectedbythisdisease.RainfallwasidentifiedasthemaindriveroframulosisdevelopmentintheSinuValleyincropsplantedatthebeginningoftherainyseason.Fifty-fiveadvancedbreedinglines(ABLs)wereassessedforramulosisfieldresistance.NineABLsexhibitedhighlevelsofpartialresistance(<10%ofplantsexhibitedsprouting).Tooptimizetheaccuracyofdiseaseassessmentandbreedingforramulosisresistance,weevaluatedtheuseofRed-Green-Blue(RGB)imagesforautomatedassessmentoframulosissymptoms.IndicesobtainedfromRGBdigitalimageshavebeenproposedasaffordablehigh-throughputphenotypingtoolsforestimatingplantdiseaseresistance,cropgrowthandyield.RGBimagesobtainedfrominoculatedplotswereanalyzedbyBreedpixsoftwareforextractingindices.TheaccuracyofRBGindicesforassessingramulosisincidenceandcropgrowthwascomparedwithvisualassessmentofplantdiseaseseverity,leafareaindexandplantbiomass.RGB-basedindicesareaccuratepredictorsofcottongrowth,yieldandramulosisincidenceandcost-effectivetoolsforcottonphenotypingbasedonautomationofRGB-imageassessmentandaffordableRGBcameras.

Page 69: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

57

Posters:Phenotypingforcropimprovement

PredictingyellowrustandSeptoriatriticiblotchinwheatbyhyperspectralphenotypingandmachinelearningRitaArmoniené1,AlexanderKoc1,SalvatoreCaruso1,TinaHenriksson2,AakashChawade11SwedishUniversityofAgriculturalSciences(SLU),Alnarp,Sweden.Email:[email protected]ännenLantbruk,Svalöv,SwedenVariousfoliardiseasesaffectbreadwheat(TriticumaestivumL.),thussignificantlyreducingitsgrainyields.YellowrustcausedbyPucciniastriiformisf.sptritici(Pst)isoneofthemostdevastatingfungaldiseasesofwheatinmajorpartsoftheworld.InSweden,yellowrusthasbecomeincreasingcommoninsouthernandcentralpartsofthecountryandhasbecomeamajorconcern.Septoriatriticiblotch(STB)causedbyZymoseptoriatriticiisalsoadamagingdiseaseofwheatcausingyieldlosseswhenleftwithoutcontrol.Hence,earlydetectionoftheoutbreakofthesediseasesisneededtoreducetheextentofthedamage.Hyperspectralphenotypingwithproximalsensorsorsensorsmountedonunmannedaerialvehicles(UAVs)canrecordthecanopyreflectancespectraoverawiderangeofvisibleandnear-infraredspectrum.Thehyperspectralreflectancedatacangenerateenormousamountofinformationonthephysiologicalandbiochemicaltraitsoftheplants.Anydeviationsinthesetraitsduringthegrowthcyclesuggestabioticorbioticstressfactorsaffectingtheplant.Thus,hyperspectralphenotypingcanbeextremelyusefulinpredictingfoliardiseaseoutbreakduringvariousstagesoftheplantgrowth.TheaimofthisprojectistoevaluatethepossibilityofpredictingyellowrustandSTBincidenceinwheatbyhyperspectralphenotypingandmachinelearning.Thus,hyperspectralphenotyping(350-1150nm)wasperformedwithahandheldhyperspectralsensorApogeePS-100(ApogeeInstruments,Inc.,USA)atthemilkdevelopmentstage(Zadoks71-77)oftwobi-parentaldoubledhaploidwinterwheatpopulationsinfieldsofsouthernSweden.Thetwopopulationswerescoredforyellowrustatthebooting(Zadoks40-49)anddoughdevelopmentstages(Zadoks80-87)andSTBatthebootingstage.Over80previouslyknownindiceswereestimatedfromtheobtainedhyperspectraldatausingacustomRpackage.Thereafter,randomforest(RF)predictionmodelswerebuiltfromthefirstbi-parentalpopulationasthetrainingpopulationandseparatelyforyellowrustandSTB.Thesecondbi-parentalpopulationwasusedasanindependenttestsettoevaluatetheobtainedpredictionmodel.TheyellowrustRFmodelexplained66%and71%ofthephenotypicvarianceinthetrainingandthetestpopulationrespectively.Thecoefficientforprediction(R2)was0.74inthetestpopulation.Ongoingworkwillincludesecondyearoffieldtrialsandfurtherrefinementofthemodels.Basedonthesepreliminaryresults,hyperspectralphenotypingcombinedwithmachinelearningapproachesseemstobeaverypromisingapproachforpredictingfoliardiseasesincidencelevelsinwheat.

Page 70: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

58

Posters:Phenotypingforcropimprovement

ExploringthepotentialofspectralreflectancefordetectionoforganandcanopypropertiesinwheatM.FernandaDreccer1,JoseJimenez-Berni1,StephenGensemer2,EthanGoan2

1CSIROAgricultureandFood2CSIROManufacturingOurworkaimstoobtainhigh-throughputinformationonkeybiochemicalcomponentsofcroporgans,withoutcostlyandtime-consumingdestructivesamplingofsingleorgansorcropcanopies,withhyperspectralimaging.Inthispaper,weexplorethepotentialofthistoolfordeterminingspike,grainandstempropertiesduringgrain-filling.Totakemeasurementsattheorganlevel,asystemconsistingofartificialillumination,hyperspectralcamerasandamovingflatbedwasdesignedtoscanspikes,grainsandstems.Hyperspectraldataandwetchemistryarecombinedtodevelopandevaluatedifferentpredictivealgorithmsforthedetectionanddiscriminationofconcentrationofcarbohydrates,proteinandwatercontent.Asimilareffortisbeingcarriedoutinfieldexperiments,combiningreflectancewithLiDARinformation.Improvingnitrogenuseefficiency:Canbetterphenomicsmakeadifference?TrevorGarnett1,NicholasSitlington-Hansen1,DarrenPlett2,MalcolmHawkesford3,BettinaBerger1

1ThePlantAccelerator,AustralianPlantPhenomicsFacility.Email:trevor.garnett@adelaide.edu.au2TheAustralianCentreforPlantFunctionalGenomics,UniversityofAdelaide,Australia3RothamstedResearch,Harpenden,UKNitrogen(N)fertilizationisfundamentalforachievingcropyieldsbuttheinefficientuseofnitrogenfertilizerleadstomajoreconomicandenvironmentalcosts.Overthelast20years,therehasbeenmajorpublicandprivateinvestmentinimprovingplants’nitrogenuseefficiency(NUE),butwithlimitedsuccess.ThereasonsbehindtheinabilitytoimproveNUEarebecomingclearerandtechnologicaladvancesarepavingthewayforaddressingtheseissuesandmakingrealprogress.AmajorreasonforthelackofprogressinimprovingNUEisthatwhatdeterminesNUEinacroplikewheatdiffersgreatlydependingonenvironmentandmanagement,bothofwhichvarygreatly.EvenwithinAustralia,improvingwheatNUEmeansverydifferentthingsforwinterrainfallcropsinthedeepsandysoilsofWesternAustraliacomparedwithwheatcropsinthedeepclaysofSouthernQueenslandwhichrelyonstoredsummerrainfall,andaroundtheworldtherearemanydifferentenvironmentandmanagementscenarios.Globalefforts,suchastheWheatInitiative,arecataloguingdifferentwheatNUEscenariostolookforcommontargets,thusenablingbettercoordinationofglobalactivities.Theimpactofenvironmentandmanagementmeansthatgoodphenomics,bothincontrolledenvironmentsandinthefield,isessentialtomakerealprogressinNUE.Advancedfield-basedphenotypingplatformsthatallowdetailedmeasurementofbiomassandnitrogenstatusthroughouttheseasoncanfacilitatetheunravellingofgeneticxenvironmentxmanagementinteractions.Improvedcontrolledenvironment

Page 71: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

59

Posters:Phenotypingforcropimprovement

phenotypingsystemsandnon-destructivemeasurementofgrowthandtissueNofferthepotentialtofurtherdissectthegeneticbasisofNUE.ControlledenvironmentphenotypinghastoberelevanttofieldperformanceandthisbecanhelpedbybettermatchingofcontrolledenvironmentconditionstotheknownenvironmentandmanagementscenariosthatmosteffectNUE.IdentifyingwheatroottraitsandregulatorygenesthatcontrolnitrogenuptakeefficiencyMarcusGriffiths1,JonathanAtkinson1,MalcolmJ.Bennett1,SachaMooney2,DarrenM.Wells11CentreforPlantIntegrativeBiology,SchoolofBiosciences,UniversityofNottingham,UK2DivisionofAgricultural&EnvironmentalSciences,SchoolofBiosciences,UniversityofNottingham,UK,email:[email protected]

Wheat(Triticumspp.)isaparticularlyimportantcropforfoodsecurity,providing20%ofworldwidecalorieintake.Wheatyieldsarenotmeetinganincreasingglobaldemandof2.4%perannum.Improvementofresourcecaptureinwheatcouldhelpmeetthisyielddemand.Nitrogenisanessentialmacronutrientforplantgrowthanddevelopment;however,only50-60%oftheNinfertilizersistakenupbytheplants.Domesticationofmodernvarietiesofwheatmayhavecausedpotentiallybeneficialagronomictraits,particularlyintherootsystem,tobelost.Optimizationofrootsystemarchitecture(RSA)couldthusprofoundlyimprovenitrogenuptakeefficiency(NUpE),whichcouldinturnincreaseyieldpotential.Ancestralwheatgermplasmanddoubledhaploid(DH)mappinglinescanbeusedtoidentifyandbreeddesirabletraitsbackintocommercialwheatvarietiestoincreaseyieldpotential.Usinganewrootphenotypingsystem,X-rayMicroComputedTomography(µCT),athree-dimensionalrepresentationofwheatrootscannowbeimagedinsoil.SeedlingrootQTLhavebeenpreviouslyidentifiedusingaSavannahXRialto(SXR)doubledhaploidmappingpopulationunderrepleteNhydroponicconditions.ThismappingpopulationhasnowbeenscreenedunderlowNconditions,andNtreatmentspecificandnonspecificQTLidentified.AsubsetofSXRlineswasusedfor3DµCTanalysisbasedon2DRSAandfieldNUpEparameterstoidentifypromisingroottraitsinseedlingsandmatureplants.Canhigh-throughputphenotypinghelppredictsoybeanyieldincontrastingenvironments?RaceHiggins,KyleParmley,AsheeshK.SinghDepartmentofAgronomy,IowaStateUniversity,Ames,USA.Email:rhiggin2@iastate.eduImprovingseedyieldisthemostimportantobjectiveinsoybean[GlycinemaxL.(Merr.)]breedingprograms.Theobjectiveofthisstudyistofindthephysio-geneticparametersthatdrivesoybeanyieldthroughacriticalassessmentofphysiologicaltraitsatmultiplecropgrowthstages.Thisstudyincluded32genotypesfromthesoybeannestedassociationmapping(SoyNAM)panelconsistingofmaturitygroupsIIandIIIwithindeterminateandsemi-determinategrowthhabits,andancestriesrangingfromPlantIntroductionaccessionstomodernelitecultivars.Threecontrastingplantingdensities(50K,140K,230Kperacre)weretreatedasfixedfactorstostudythephysio-geneticsofyieldunderdifferentcropmanagementconditions.ExperimentsweregrowninreplicatedplotsinfiveenvironmentsinIowa,USA.

Page 72: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

60

Posters:Phenotypingforcropimprovement

Physiologicalparameterscollectedincludedleafareaindex(LAI),interceptedphotosyntheticallyactiveradiation(iPAR),canopytemperature,SPADchlorophyllcontent,andmultiplehyperspectralremotesensingvegetationindicesthroughspectroradiometerviagroundtruthing.Physiologicaltraitswerecollectedovermultiplegrowthstagesthroughoutthegrowingseasontodetermineplantresponse.Seedyieldwascollectedperyieldplot.Yieldpredictionequationswerebuiltusingstep-wiseregressionequations,andseveralcommonindiceswereidentifiedasbestpredictorsofyieldindifferentenvironmentsand/ordensitytreatmentsatdifferentcropgrowthstages.On-goingresearchisattemptingtodeterminethegeneticfactorsrelatedtospectralindicesusingaSoyNAMmappingpopulationsub-setthroughphenotypingbasedonspectroradiometerandaerialmulti-spectralcameras.High-throughputfieldphenotypingofwheatplantheightandgrowthrateinfieldplottrialsusingUAVremotesensingFennerH.Holman

1*,AndrewB.Riche2,AdamMichalski

2,MarchCastle

2,MartinJ.Wooster

1,3,Malcolm

J.Hawkesford2*

1DepartmentofGeography,King’sCollegeLondon,London,WC2R2LS,UK.Email:[email protected]

2RothamstedResearch,Harpenden,Hertfordshire,AL52JQ,UK.Email:[email protected]

3NationalCentreforEarthObservation(NCEO),Leicester,LE17RH,UKThereisagrowingneedtoincreaseglobalcropyields,whileminimizinguseofresourcessuchasland,fertilizersandwater.Agriculturalresearchersuseground-basedobservationstoidentify,selectanddevelopcropswithfavorablegenotypesandphenotypes;however,theinabilitytocollectrapid,highqualityandhighvolumephenotypicdatainopenfieldsisrestrictingthis.Thisstudydevelopsandassessesamethodforderivingcropheightandgrowthraterapidlyandrepeatedlyusingmulti-temporal,veryhighspatialresolution(1cm/pixel),3DdigitalsurfacemodelsofcropfieldtrialsproducedfromimagerycollectedbyUnmannedAerialVehicle(UAV)flightsviaStructurefromMotion(SfM)photogrammetry.WecomparedUAVSfMmodeledcropheightstothosederivedfromterrestriallaserscanner(TLS)andtothestandardfieldmeasurementofcropheightconductedusinga2-mrule.ThebestUAV-derivedsurfacemodelandtheTLSbothachievedaRootMeanSquaredError(RMSE)of0.03mcomparedtotherule.TheoptimizedUAVmethodwasthenappliedtothegrowingseasonofawinterwheatfieldphenotypingexperimentcontaining25differentvarietiesgrownin27m2plotsandsubjecttofourdifferentnitrogenfertilizertreatments.AccuracyassessmentsatdifferentstagesofcropgrowthproducedconsistentlylowRMSEvalues(0.07,0.00and0.03mforMay,JuneandJulyrespectively),enablingcropgrowthratetobederivedfromthemulti-temporalsurfacemodels.Wefoundgrowthratesrangedfrom-13mm/dayto17mm/day.Ourresultsclearlyshowtheimpactofvariablenitrogenfertilizerratesoncropgrowth.Thedigitalsurfacemodelsproducednovelspatialmappingofcropheightvariationbothatthefieldscaleandwithinindividualplots.ThisstudyprovesUAV-basedSfMhasthepotentialtobecomethenewstandardforhigh-throughputphenotypingofin-fieldcropheight.

Page 73: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

61

Posters:Phenotypingforcropimprovement

PhenotypingtraitstoimprovedroughttoleranceinwheatYin-GangHu1,2,LiangChen11StateKeyLabofCropStressBiologyforAridAreasandCollegeofAgronomy,NorthwestA&FUniversity,Yangling,Shaanxi,712100,P.R.China

2InstituteofWaterSavingAgricultureinAridRegionsofChina,Yangling,Shaanxi,712100,China.Email:[email protected]

Sincewheatisgrownmainlyinrainfedandlowirrigationregions,droughtisoneofthemostimportantstressesworldwide.Asdroughtmayoccurateverygrowthstagetovariousdegrees,differenttraitsareinvolvedindroughttoleranceatdifferentstages.Droughttoleranceisthusacomplexquantitativetrait.Toimprovedroughttolerance,weusedvarioustraits,suchascoleoptilelengthforseedlingemergence,earlyvigorforquickseedlingpopulationestablishment,highertranspirationefficiency(CID)forleafstructureandcanopytemperaturefortherootsystem.WealsoevaluatedtheeffectsofGA-responsivedwarfinggenes,Rht4,Rht12,Rht13andRht18ondroughtrelatedandagronomictraitsandfoundthatthosegenescouldimprovecoleoptilelength,earlyseedlingvigorandtherootsystemingeneral,whilereducingplantheighttosomeextent,comparedwiththeGA-insensitivedwarfinggenesRhtB1bandRhtD1b;however,theireffectsvariedgreatlywiththedifferentgeneticbackgrounds.HyperspectraldiseasesignaturesfordetectingcharcoalrotinsoybeanSarahJones,AsheeshK.Singh,SoumikSarkar,BaskarGanapathysubramanian,DarenMueller,ArtiSinghIowaStateUniversity,USA.Email:[email protected][Glycinemax(L.)Merr]yieldisunderconstantthreatbybioticfactors,especiallydiseasesincludingcharcoalrotcausedbyMacrophominaphaseolina,whichisanimportantfungalpathogenthataffectssoybeansinwarm,dryenvironments,andismovingnorthwardintotheprimarysoybeangrowingregionsoftheUnitedStates.Asthisdiseasecancauseupto30%yieldloss,breedingprogramsstrivetoproducenewsoybeanvarietiesthatincludediseaseresistancetraitstocombatyieldlosses.However,currentphenotypingmethodsusedtojudgediseaseseverityoftenincludetime-andlabor-intensivevisualratingsthataresubjecttohumanerrorandbias.Hyperspectralimaging(HSI)technologyoffersanalternativesolutiontothephenotypingbottleneckasithastheabilitytocollectpreciseandaccuratephenotypesandcandetectminordifferencesindiseaseexpression.Inaddition,HSIcapturesspectralreflectancefromregionsoftheelectromagneticspectrumbeyondhumanvisionandthereforehasthepotentialfordetectingsymptomsnotyetvisibletothehumaneye.ThepurposeofthisresearchistodeterminethespectralreflectancesignaturesofcharcoalrotusingHSIforfutureimplementationinhigh-throughputphenotypingplatforms.Thestudyutilizedhyperspectralimagingtoexaminethespectralreflectancepatternsoftworesistantandtwosusceptiblesoybeangenotypesthatweremock-inoculatedandinoculatedwithcharcoalrotusingacut-steminoculationprotocolinagrowthchamber.PreliminaryresultsindicatethatHSIsuccessfullydifferentiatedsymptomsonplantpartsthatwerenotdistinguishablethroughvisualassessment.

Page 74: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

62

Posters:Phenotypingforcropimprovement

IdentificationofwaterusestrategiesatearlygrowthstagesindurumwheatusingmodernshootimagephenotypingNiklasKörber1,AlirezaNakhforoosh2,ThomasBodewein1,KerstinA.Nagel,FabioFiorani1,GernotBodner21InstituteforBio-andGeosciences,ForschungszentrumJülich,Germany2DepartmentofCropSciences,UniversityofNaturalResourcesandLifeSciences,Vienna,AustriaModernimagingtechnologyprovidesnewapproachestoplantphenotypingfortraitsrelevanttocropyieldandresourceefficiency.ThescreenhousephenotypingfacilityattheJülichResearchCenterwasusedtoinvestigatewaterusestrategiesatearlygrowthstagesindurumwheatgeneticresourcescombinedwithphysiologicalmeasurements.12durumlandracesfromdifferentpedo-climaticoriginwerecomparedtothreemoderncheckcultivarsinagreenhousepotexperimentunderwell-watered(75%plantavailablewater)anddrought(25%plantavailablewater)conditionstoidentifydifferentwater-usestrategiesatearlyvegetativestages.Duringearlygrowth,genotypeswithlargeleafareahadhighdry-matteraccumulationunderbothwell-wateredanddroughtconditionscomparedtogenotypeswithcompactstature(Nakhforooshetal.2016).However,highstomataconductancewasthebasistoachievehighdrymatterperunitleafarea,indicatinghighassimilationcapacityasakeyforproductivityinmoderncultivars.Inindependentexperimentsweanalyzedrootarchitecturechangesinthesamecontrastingpaneltorevealbelow-groundresponses.Weconcludethattheidentifiedwaterusestrategiesbasedonearlygrowthshootandrootphenotypingcombinedwithdetailedgasexchangeanalysisprovideaframeworkforidentifyingwater-usestrategiesanddevelopingtargetedselectionofdistinctpre-breedingmaterialputativelyadaptedtodifferentscenariosofwater-limitedenvironments.TacklingamajorepidemicofmaizelethalnecrosisineasternAfricaL.M.Suresh1,YosephBeyene1,ManjeGowda1,JumboMacDonaldBright1,MichaelOlsen1,BiswanathDas1,DanMakumbi1,B.M.Prasanna11InternationalMaizeandWheatImprovementCenter(CIMMYT),ICRAFCampus,UNAvenue,Gigiri,POBox1041-00621,Nairobi,Kenya.Email:[email protected](MLN)in2011inKenya,followedbyconfirmedreportsofMLNinD.R.Congo,Ethiopia,Rwanda,TanzaniaandUganda,iscausingseriousconcerntostakeholdersinSSA.IneasternAfrica,MLNiscausedmainlybysynergisticinteractionbetweentwoviruses,maizechloroticmottlevirus(MCMV)andsugarcanemosaicvirus(SCMV).InKenya,fieldobservationssuggestedthatthediseasewasaffectingalmostallcommercialmaizevarieties,causingestimatedyieldlossesof30-100%dependingonthestageofdiseaseonsetandseverity.RespondingrapidlytotheMLNepidemic,CIMMYT,inpartnershipwiththeKenyaAgriculturalandLivestockResearchOrganization(KALRO),establishedacentralizedMLNScreeningFacilityatNaivashainSeptember2013.WehaveoptimizedtheprotocolsforartificialinoculationofmaizegermplasmagainstMLN,aswellasfortheindividualviruses.ThefacilityalsooffersMLNphenotypingservicetonationalagriculturalresearchinstitutions(freeofcharge)andseedcompanies(onacostrecoverybasis).SincetheestablishmentoftheMLNScreeningFacilityin2013,morethan60,000germplasmentries(morethan100,000rows)

Page 75: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

63

Posters:Phenotypingforcropimprovement

havebeenscreenedforMLN.Germplasmentriesincludedinbreds,open-pollinatedvarieties,pre-commercialhybrids,commercialhybrids,mappingpopulationsandlandraces.Fivefirst-generationMLN-tolerant(CIMMYT-derived)hybridshavebeenidentifiedandreleasedinKenya(H12MLandH13ML),Tanzania(HB607)andUganda(UH5354andUH5358),andarebeingscaledupbyseedcompanypartnersforcommercializationin2016-17.Wearenowtesting15second-generationMLN-tolerant/resistanthybridsinNationalPerformanceTrialsinKenya,TanzaniaandUganda.SeveralmorepromisingMLNresistanthybridsareinthepipeline.TheMLNScreeningFacilityalsoservesasaplatformtounderstandthegeneticbasisofMLNresistance,aswellastoundertakeresearchonseedtransmissionofMLN-causingviruses.TheMaizeGenomestoFields(G2F)initiative:DatamanagementandavailabilityNaserAlKhalifah1,DarwinA.Campbell1,ReneeWalton1,CintaRomay2,Cheng-TingYeh1,RamonaWalls3,GenomestoFieldsCollaborators4,PatrickS.Schnable1,DavidErtl5,NataliadeLeon5,JodeEdwards1,6,CarolynJ.Lawrence-Dill11IowaStateUniversity2CornellUniversity3UniversityofArizonaandCyVerse4http://www.genomes2fields.org/5IowaCornPromotionBoard6UniversityofWisconsinThemulti-institutionalGenotypebyEnvironment(GXE)subprojectofthemaizeGenomestoFields(G2F)Initiativeaimstoassesstheimpactsofgenotypeandenvironmentaleffectsontheperformanceofalargecollectionofmaizehybrids.Towardthataim,wehavecollectedandanalyzedgenotypic,phenotypic,andenvironmentaldatafrommorethan30NorthAmericanfieldlocationsacross3years(atotalof86environments).Thesedatacomprise14corephenotypictraitsandweathermeasurementscombinedwithgenotypicdata,andforasubsetoflocations,imagedata(atscalesfromindividualplanttoindividualfield).Toassistinthemanagementofthesediversedatatypes,wehavedevelopedanddeployedarobustyetflexibledatamanagementandanalysispipelinethatmeetstheproject’sneedsbutisalsoextensibletothebroadplantbreedingcommunity.Inthisposter,wepresentprogressmadeoverthepastyearworkingwithpartnersatCyVerseanddescribemethodsforG2Fdataaccessandanalysis.Formoreinformation,visithttp://www.genomes2fields.org/.

Page 76: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

64

Posters:Phenotypingforcropimprovement

NSFresearchtraineeship–P3,predictiveplantphenomicsJulieDickerson,ThedoreHeindel,CarolynJ.Lawrence-Dill,PatrickSchnableIowaStateUniversityNewmethodstoincreasecropproductivityarerequiredtomeetanticipateddemandsforfood,feed,fiberandfuel.Usingmodernsensorsanddataanalysistechniques,itisnowfeasibletodevelopmethodstopredictplantgrowthandproductivitybasedoninformationabouttheirgenomeandenvironment.However,doingsorequiresexpertiseinplantsciencesaswellascomputationalsciencesandengineering.ThroughP3,webringtogetherstudentswithdiversebackgrounds,includingplantsciences,statistics,andengineering,andprovidethemwithdata-enabledscienceandengineeringtraining.Thecollaborativespiritrequiredforstudentstothriveinthisuniqueintellectualenvironmentwillbestrengthenedthroughtheestablishmentofacommunityofpracticetosupportcollectivelearning.Thistraineeshipanticipatespreparing48doctoralstudents,including28NRTfundeddoctoralstudents,withtheunderstandingandtoolstodesignandconstructcropswithdesiredtraitsthatcanthriveinachangingenvironment.AnalysisofwaterlimitationeffectsonthephenomeandionomeofArabidopsisatthePlantImagingConsortiumLuciaMAcosta-Gamboa1,SuxingLiu1,ErinLangley1,ZacharyCampbell1,NormaCastro-Guerrero2,DavidMendoza-Cozatl2,ArgeliaLorence1,31ArkansasBiosciencesInstitute,ArkansasStateUniversity,JonesboroAR,[email protected]

2ChristopherS.BondLifeSciencesCenter,UniversityofMissouri,Columbia,MO,USA3DepartmentofChemistryandPhysics,ArkansasStateUniversity,JonesboroAR,USAUnderstandingplantresponsesandadaptationstolimitedwateravailabilityiskeytomaintainingorimprovingcropyield;thisisevenmorecriticalconsideringthedifferentprojectionsofclimatechange.ThisisanNSF-fundedcollaborativeeffortbetweentheMendozaandLorencegroupsaspartoftheactivitiesofthePlantImagingConsortium(http://plantimaging.cast.uark.edu/).Inthiswork,wecombinedtwohigh-throughput-omicplatforms(phenomicsandionomics)tobegindissectingtime-dependenteffectsofwaterlimitationinArabidopsisleavesand,ultimately,seedyield.Asproofofconcept,weacquiredhigh-resolutionimageswithvisible,fluorescenceandnear-infraredcamerasandusedcommercialandopen-sourcealgorithmstoextracttheinformationcontainedinthoseimages.Atadefinedpoint,sampleswerealsotakenforelementalprofiling.Ourresultsshowthatgrowth,biomassandphotosyntheticefficiencyweremostaffectedunderseverewaterlimitationregimes,andthesedifferenceswereexacerbatedatlaterdevelopmentalstages.Theelementalcompositionandseedyield,however,changedacrossthedifferentwaterregimestestedandthesechangesincludedunder-andover-accumulationofelementscomparedtowell-wateredplants.Ourresultsdemonstratethatthiscombinationofphenotypingtechniquescanbesuccessfullyusedtoidentifyspecificbottlenecksduringplantdevelopmentthatcouldcompromisebiomass,yieldandthenutritionalqualityofplants.

Page 77: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

65

Posters:Phenotypingforcropimprovement

High-throughputphenotypicexplorationofgeneticvariationfromwildrelativesforbreedinghighbiomassandyieldinwheatLornaMcAusland1,LauraBriers1,StellaEdwards2,Cai-yungYang2,JulieKing2,IanKing2,ErikMurchie1

1SchoolofBiosciences,UniversityofNottingham,SuttonBoningtonCampus,Leicestershire,LE125RD.Email:[email protected]

2BBSRCWheatResearchCentre,UniversityofNottingham,SuttonBoningtonCampus,Leicestershire,LE125RD

Withtheglobalpopulationsettoreachninebillionby2050,thereisanurgentneedtoincreasefoodproductionbyatleast60%.Wheatproductionhasplateauedinmanyareasoftheworldduetoalackofnovelgeneticvariationforagronomicallyimportanttraits,compoundedbytheeffectsofclimatechange.Distantrelativesandlandracesofferavaluablesourceofphenotypictraitslostintheevolutionofmodernvarietiesastheresultofseveregeneticbottlenecks.Recentadvancesintheabilitytodetectandcharacterizegeneticmaterialfromcrossesbetweendistantrelativesandelitelines(introgressions)providepowerfultoolstorapidlyintroducegreatergenome-widevariation.Rapidphenotypingoftheseintrogressedlinesisavitalstepinidentifyingvariationinrelevanttraitsthatcanbeusedforbreedingandpre-breedingintoelitevarietiesforimprovedbiomassandyield.Thereisnowrecognitionthatimprovedgrainyieldsofmajorcropsrequireenhancedtotaldryweightproductionwhichmustarisemostlyfromanimprovementofradiation-useefficiency(RUE).RaisingRUErequiresahigherleafandcanopyphotosynthesisrateandthisremainsanimportanttargettounderpinfutureyieldprogress.WorkingwiththecurrentWheatImprovementStrategicProgramme(WISP),theobjectiveofthiscollaborationistodeveloparapidphenotypingscreentoidentifyimprovedphotosynthetictraitsinnewaccessionsofdistantrelativesofwheat(e.g.,Ae.muticaandT.urartuaccessions)andintrogressedpopulationsfromWISP,withtheaimofbackcrossingthesetraitsintomodernwheatvarietiesforimprovedbiomassandyieldinthefield.High-throughputphenotypingofcanopydevelopmentinsoybeanFabianaFreitasMoreira1,AnthonyA.Hearst2,KeithCherkauer2,KatyMRainey11DepartmentofAgronomy,PurdueUniversity,USA.Email:[email protected]&BiologicalEngineering,PurdueUniversity,USA.TheSoybeanBreedingprogramatPurdueUniversitypreviouslyshowedthathigh-throughputUAS-basedphenotypingofcanopydevelopmentcanpredicttheyieldpotentialofsoybeanlines,andearly-seasoncanopydevelopmenthasastronggeneticassociationtoyield.Severalaspectsofcanopydevelopmentwereevaluatedandaveragecanopycoverage(ACC)hadthehighestcorrelationwithyield.Theoverallgoalofourprojectistoselecthighyieldpotentialsoybeanlinesusingyieldperformancedatasupplementedbydrone-basedcanopydevelopmentdata,todemonstratewhethernewsourcesofdataandanalyticalapproachescanimproveselectionefficiency.AspecificobjectiveistoevaluatetheresponseofACCafterselection.Weeklymeasurementsofcanopyandyieldwereacquiredfor4,640progenyrowsand13checksand673linesand6checksinthe2015preliminaryyieldtrial(PYT).ThecanopytraitwasmeasuredbypercentageofcanopycoverageusingUASwithRGBcameras.Breeding

Page 78: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

66

Posters:Phenotypingforcropimprovement

valueswereestimatedandlineswereselectedusingthreeselectioncriteria:yield,ACCandyieldgivenACC.Theselectedlinesweregrownin2016andcanopymeasurementswereperformedasdescribedabove,butwithoneadditionalflightaweek.Fortheprogenyrowderivedlines,theresponsetoselectionofACCwas21.6%andthecorrelatedresponseofACCwithselectionbasedonyieldandyieldgivenACCwere21.6%and20.4%,respectively.ForPYTderivedlinestheresponsetoselectionofACCwas16.8%andthecorrelatedresponseofACCwithselectionbasedonyieldandyieldgivenACCwere17.7%and17.7%,respectively.MechanismofheattoleranceevaluationinwheatthroughphenotypicparametersRenuMunjalandS.S.DhandaDepartmentofGeneticsandPlantBreeding,CCSHaryanaAgriculturalUniversity,HisarHaryana,India.Email:[email protected](TriticumaestivumL.,)differingintheirperformanceunderheatstresswasevaluatedundernormalandlatesownconditions.Dataondaystoheading(DH),yield,daystomaturity(DM),thetetrazoliumtriphenylechloridetest,leafmembranestability(%)andgrainyieldwererecorded.Heatstresshadasignificantimpactondaystoheading,asthemeanheadingdatewasabout11daysearlierunderheatstress(90.48±0.83days)thanundernormal(102.86±0.74days)conditions.GenotypesWH283andHD2329escapedheatstressbecauseoftheirearlyheadinginbothenvironments.ButgenotypesPBW343(87),WH730(87)andUP2425(85)escapedheatstressbyacceleratingtheirlifecycle.HeatstresshadcomparativelylittleinfluenceondaystoheadingingenotypesKanchan,PBW373,NIAW34,Pastor,GW173andKauz,whichalsoexcelledingrainyieldand/orheattoleranceparametersunderheatstress.Thismaybeattributedtotheirabilityeithertoavoidheatstressbyabsorbingmorewaterfromthesoilforcoolingthroughtranspirationorbyotherheat-protectivemechanisms.SignificantHeatSusceptibilityIndex(HSI)valuesandHeatResponseIndex(HRI)valuesforgenotypesWH730,WH533,Nesser,Raj3765andKauzsuggestedthattheheatstressperformanceofthesevarietiesmaynotonlyresultfromheattolerance,butalsofromheatescapeandhighyieldpotential.Similarly,highgrainyieldsofSeriandHUW234underheatstressmaybeattributedonlytoHRI,whilehighgrainyieldofPBW373mayonlybeduetohighyieldpotential,becausethisvarietydidnotmanifestanyescapemechanism.IdentificationofroottraitsthatcanserveassuitableselectiontargetstoenhancewinterwheatproductionintheSouthernGreatPlainsoftheUSAAnaPaez-Garcia1,JoshAnderson2,FrankMaulana2,XuefengMa2,andElisonB.Blancaflor11TheSamuelRobertsNobleFoundation.PlantBiologyDivisionand2ForageImprovementDivisionAgricultureintheSouthernGreatPlainsoftheUSAconsistspredominantlyofbeefcattleproductionsystems,supportedbyavarietyofforagesspeciesand,duringfalltoearlyspring,limitedgrazingsupplementedbyhay.Themajorgoalofplantbreedersistodevelopforagecultivarsthataretoleranttodifferentbiotic/abioticstressesthatallowincreasedgrazingtime.Weinitiatedastudytodetermineroot

Page 79: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

67

Posters:Phenotypingforcropimprovement

traitsthatcontributetoenhancedforageproductivityunderthelow-inputagriculturalsystemsoftheSouthernGreatPlains.Oneapproachhasbeentocomparerootarchitecturaltraitsbetweencommonlyusedwinterwheatcultivars(e.g.Duster)andthosethatperformpoorly(e.g.Cheyenne).RootstudiesinthelaboratoryandgreenhouseshowedthatDusterhadlowertotalrootbiomassduetoslowerseminalandprimaryrootgrowthrates.DusteralsohadmoreshallowseminalandcrownrootanglesthanCheyenne,whoserootsgrewmoresteeply.Ourresultsindicatethatwheatcultivarswithreducedrootbiomass,shallowseminalandcrownrootanglesandslowseminalrootgrowthmeritconsiderationasselectiontargets.ThelowerrootbiomassobservedinDusterisconsistentwithprevioushypothesesthatplantsthatreducethemetaboliccostofsoilexplorationimprovetheirabilitytoacquirelimitedsoilresources.Theshallowseminalandcrownrootanglealsocouldenableplantstouseavailablesurfacewaterandimmobilephosphatepoolsmoreefficientlyduringearlyseedlingestablishment.Wearecurrentlyverifyingourresultsusingarangeofrootphenotypingsystemsinthelab,greenhouseandfield,andhaveexpandedourstudiesto200hardwinterwheatcultivarsfromtheTriticeaeCoordinatedAgriculturalProject(TCAP)plus47linesfromotherbreedingprograms.Ourpreliminaryresultsshowlargevariabilityinseedlingrootgrowthratesandanglesamongthewheatcultivars.Usingcultivarswithextremerootphenotypes,ourfuturestudieswillaimtocorrelateseedlingrootgrowthrateandanglewithfieldperformancetodetermineiftheseroottraitscanserveassurrogateselectiontargetsforsmallgrainsbreedingeffortsintheSouthernGreatPlains.High-throughputscreeningtoolsforidentificationoftraitscontributingtosalinitytoleranceKláraPanzarová1,MariamAwlia2,ArianaNigro3,JiříFajkus1,ZuzanaBenedikty1,MarkTester2,MartinTrtílek1

1PSI(PhotonSystemsInstruments),Drásov,CzechRepublic2CenterforDesertAgriculture,KAUST,SaudiArabia3InstituteofPlantBiology,UniversityofZürich,SwitzerlandSoilsalinityisakeystressaffectingtheworld’sagriculturallandsandplantssufferrapidgrowthreductionincludingslowerleafemergencewhentheirrootsareexposedtosaltstressinearlygrowthphases.Ourworkprovidesquantitativeinsightsintotheearlyphaseofsalinityresponseandarobustprotocolforhigh-throughput,image-basedanalysisofphenotypictraitsassociatedwiththeearlyphaseofsalinityresponse.Wetestedanon-invasiveprotocolbasedontechnologyfromPhotonSystemsInstruments(PSI,CzechRepublic)andautomatedintegrativeanalysisofphotosyntheticperformance,growthandcolorindexattheonsetandearlyphaseofsalinitystressresponseinsoil-grownArabidopsisthalianaecotypes.SalinitystressrapidlyandsignificantlyaffectedphotosystemIIefficiencyandimpactedthegrowthandgreeningindexofArabidopsisplants.ThePlantScreenTMplatformprovidesapowerfultooltodetectandselectmorphological,physiologicalandbiochemicalparameterstoidentifycomponentsthatunderlieearlyplantresponsestodiverseenvironmentalconditions.

Page 80: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

68

Posters:Phenotypingforcropimprovement

CustomizingsoybeancultivardevelopmentthroughaerialandgroundphenotypingKyleParmley1,VikasChawla,AkintayoAdedotun,RaceHiggins,TalukdarJubery2,SayedVahidMirnezami2,NigelLee2,BaskarGanapathysubramanian2,*,SoumikSarkar2,*,AsheeshK.Singh1,*

1DepartmentofAgronomy,IowaStateUniversity,Ames,USA2DepartmentofMechanicalEngineering,IowaStateUniversity,Ames,USA*Correspondingauthor:KyleParmley([email protected])Asagronomicpracticescontinuetoevolve,physio-geneticparameters(i.e.,lightinterception,energyconversion,andbiomasspartitioning)mustbecustomizedintandemtoimprovetherateofyieldgain.Theobjectiveofthisresearchwastoidentifythe“drivers”ofyieldinmultipleenvironmentsandgenotypesusingaerialandground-basedhigh-throughputphenotypingforphysiologicaltraits(LAI,iPAR,canopytemperatureandhyperspectralindices).Thirty-twodiversesoybeangenotypeswereplantedintworow-to-rowspacingtreatmentsof15”and30”.Genotypesvariedinorigin(plantintroductions,diverseandelitegenotypes),growthhabit(indeterminateandsemi-determinate)andmaturitygroups(IIandIII).Threetypesofoptimalyieldresponseswereobserved:fitfor15”,fitfor30”andfitfor15”and30”rowspacing;thesedifferencescouldbeattributedtothephysiologicaltraits.Unliketraditional‘BlackBox’statisticalapproaches,wedeployedaProbabilisticGraphicalModelingmethodologytolinkexplanatoryvariableswithyield.Suchanapproachnaturallycapturesconditionalandcausaldependenciesacrossspatialandtemporalscales,whilealsoprovidingthecriticalabilitytoseamlesslyincorporatedomainknowledgeintothemodel.Weexploredhowtheinferenceprocesscanbeusedforpredictingandidentifyingdriversofyieldinamoremeaningfulmannersothatitcanbeappliedinselectionregimesofcultivardevelopmentprograms.Theseapproachesenableasystematicandrigorousmethodologytocustomizecultivardevelopment.Phenotypingandgeneticanalysisoflodging-relatedtraitsFranciscoJ.Piñera-Chavez1,2*,PeterM.Berry3,MichaelJ.Foulkes1,GemmaMolero2,SivakumarSukumaran2,MatthewP.Reynolds2

1DivisionofPlantandCropSciences,TheUniversityofNottingham,SuttonBoningtonCampus,Loughborough,LeicestershireLE125RD,UK

2InternationalMaizeandWheatImprovementCenter(CIMMYTInt.),Apdo.Postal6-641,06600MexicoDF,Mexico

3ADASHighMowthorpe,Malton,NorthYorkshireYO178BP,UKLodgingisanimportantproblemaffectinggrainqualityandgrainyieldinwheat.Theriskoflodginginwheatwillincreasewiththecurrentstrategyofseveralmultinationalinitiativesaimedatimprovingwheatproductivitybyraisingyieldpotential.Inthiscontext,increasingresistanceofplantsupportstructuressuchasstems(stembase)androots(plantanchorage)willbecrucial.Standardmethodstomeasurebiophysicalpropertiesofthestembaseandplantanchorage(stemandanchoragestrength)aretoolaborioustobeincorporatedinbreedingprograms.Theimplementationofrapidmethodologiesthatenableplantbreederstoselectforgreaterlodgingresistanceinwheatwillbeamajorbreakthroughthatwillhelpguaranteefuturegrainyieldincreases.Tosetascaleofworkthathastobedoneto

Page 81: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

69

Posters:Phenotypingforcropimprovement

evaluatelodgingresistance,itisnecessarytomentionthat,intotal,standardmethodshavetomeasure14variableson10-15plantsperplot.Inaddition,eachplanthastobeextractedfromthefieldandwashedinthelaboratorytoremovesoilfromroots(crownroots),whichmeansthat100-120minutesareneededtoassessasingleplot.Optimizingstandardmethodsbyreducingthenumberofvariablesandplantsmeasuredperplothasreducedtheassessmenttimeto20-30minutesperplot.Thiscanbefurtherreducedifrootvariablesaremeasureddirectlyinthefieldwithoutremovingthesoil.However,themostpromissorystrategytobreedforlodgingresistanceisperhapstodevelopreliablemolecularmarkersthatcanbeusedinmarker-assistedselection(MAS).Inthisregard,progresshasbeenmadebyidentifyingQTLsassociatedwithstemandanchoragestrengthinUKreferencewheatpopulationAvalonxCadenza.PhenotypicscreeningofthispopulationusingoptimizedstandardprotocolsindicatedwidegeneticvariationandsignificantG×Einteractionsforlodging-relatedtraits.However,stemstrengthtraitscanbedescribedashighlyheritable,whilerootorrootanchoragestrengthtraitsarelessheritable.GeneticanalysishasidentifiedtwoQTLsforstemstrengthonchromosome3B(explaining44%ofphenotypicvariation)andtwoQTLsforanchoragestrengthonchromosome5B(explaining32%ofphenotypicvariation).Accordingtotheliteratureandthesefindings,itseemsthatregionsofchromosomes3Band5Bhavemajoreffectsonstemandanchoragestrength,respectively.However,furthervalidationand/orfinemappingwillbenecessarytodevelopmolecularmarkers.Phenotypingshowsassociationofhighseedyieldwithstemwatersolublecarbohydratesandchlorophyllcontentduringanthesisorgrain-fillinginwheatcultivarsunderheatstressHafeezurRehman1,AbsaarTARIQ1,MakhdoomHussain3,MatthewP.Reynolds21DepartmentofAgronomy,UniversityofAgriculture,Faisalabad,38040,Pakistan.Email:[email protected]

3WheatResearchInstitute,AyubAgricultureResearchInstitute,Punjab-Pakistan2CIMMYT,Int.,Apdo.Postal6-641,06600México,DF,MexicoNewwheatplanttypesadaptedtoheatordroughtrequirecoolercanopiesforremobilizingassimilatesefficientlyandtranslatingaccumulatedabove-groundbiomassintoachievableyield.Phenotypingpromisestohelpdissectgenotype-by-environmentinteractionofgeneticresourcesforthesetraits.Thepresentstudyevaluatedsevendifferentwheatcultivarsfortillering,numberofgrainsperspike,thousand-grainweight,spikedensity,biomassandgrainyield,harvestindexandphysiologicalmaturity.Phenotypingforcanopytemperature,stemwatersolublecarbohydratesandstay-greentraitswasperformedatanthesisorgrain-fillingtodeterminetheirpotentialassociationwithyieldtraits.CultivarsSehar-2006,Faisalabad-2008,AARI-2011,Inqilab-91,Pasban-90,Lasani-2008andShafaq-2006withrestrictedmaturityandheattolerancewerecomparedwithatemperatesowncrop.Heatstressreducedthenumberoftillersperplant,thousand-grainweightanddaystomaturityinthetestcultivarsbuttheyexpressedhighseedyield,harvestindex,spikeindexandwatersolublecarbohydratesatanthesisascomparedtothetemperatesowncrop.However,nodifferencesinbiomassyield,numberofgrainsperspikeandchlorophyllcontentduringgrain-fillingwerefoundinbothenvironmenttypes.Underheatstress,cultivarsSehar-2006,Inqilab-91andShafaq-2006hadthehighestincreaseinseedyield(20%),harvestindex(31%)andspikeindex(133%)comparedtothetemperatesowncrop.Stemwatersolublecarbohydratesatanthesisandflagleafchlorophyllcontentatgrain-filling

Page 82: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

70

Posters:Phenotypingforcropimprovement

increasedby24%and20%,respectively.Thesecultivarsalsomaturedearlier(15-17days)andhadlowercanopytemperatureduringgrain-fillingunderhighheatstressthanthetemperatesowncrop.Nonetheless,thehighseedyieldobservedincvs.Sehar-2006,Inqilab-91andShafaq-2006wasassociatedwithhighchlorophyllcontent(R2=0.41)duringgrain-fillingandstemwatersolublecarbohydrates(R2=0.54)atanthesis.Likely,associationofwatersolublecarbohydratesatanthesiswaspositive(R2=0.30)withchlorophyllcontentatgrain-filling.Insummary,wheatcultivars(Sehar-2006,Inqilab-91andShafaq-2006)withearliermaturity,highseedyield,stemwatersolublecarbohydratesandstaygreentraitscanbepromisingonestobetestedforheatadaptationandstabilityacrossdifferentheatenvironmentsandutilizationinphysiologicalbreedingforfutureclimatechange.Phenotypingtoolsandphysiologicalbreeding:OptimizingbiomassdistributionwithintheplanttoincreaseharvestindexinwheatcultivarsCarolinaRivera-Amado1,2,GemmaMolero1,EliseoTrujilloNegrellos2,JohnFoulkes2,MatthewReynolds1

1CIMMYT,GlobalWheatProgram,México,email:[email protected],UniversityofNottingham,LE125RD,UKConversionofinterceptedradiationintobiomassisakeymajorphysiologicalprocessdeterminingproductivityinyieldpotentialenvironments.Currentstrategiesforyieldgeneticimprovementhaveastrongbasisonimprovingphotosyntheticcapacityandefficiencyforincreasedbiomassproduction.Whileallocationofcarbontothedevelopingwheatspikedeterminesgrainsinkstrength,concurrentgrowthofotherplantorganscompetesforcarbon.Therefore,itiscrucialtoidentify‘useful’biomasstraitsthatenablebreederstomaximizeassimilatepartitioningtothegrainsfromexistentandfurthergainsinbiomass.Geneticvariationforstructuralandnon-structuraldrymatter(DM)partitioningtothestem,sheathandspikesevendaysafterfloweringwasobservedin26CIMMYTspringwheatcultivarsandadvancedlinesunderhighradiation,irrigatedconditionsinnorthwesternMexicoduring2011-12and2012-13.Furthermore,DMpartitioningwasassessedinthesteminternodesandamongthenon-grainspikeDM(rachis,glume,palea,lemma,awn)atharvest.ResultsshowedthatlowerstructuralDMpartitionedtothestemwasassociatedwithgreaterspikepartitioningindex(SPI;spikeDM/abovegroundDMatanthesis+7days)atsevendaysafteranthesis,potentiallyincreasinggrainnumberperunitareaatharvest.ResultsalsoshowedatrendtowardsapositiveassociationbetweenSPIandharvestindex(R2=0.16,P<0.05).Moreover,strongnegativeassociationsbetweenSPIandspikeDMperunitareaandsteminternode2(peduncle-1)and3(peduncle-2)DMpartitioningwerefound(P<0.05),buttherewerenoassociationswithotherinternodes.Resultsindicatedassociationsbetweenspikemorphologicalcharacteristicsatharvestandfruitingefficiency(FE;grainspergofspikeDMatflowering).Accordingtoourresults,avalueofHI>0.6couldbeachievedinCIMMYTspringwheatbycombiningthebiggestexpressionfor‘useful’biomasstraits.

Page 83: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

71

Posters:Phenotypingforcropimprovement

PhenotypingtoolstodissectmorphologicaldiversityinsweetpotatoAmparoRosero1,LeiterGranda2,José-LuisPérez1,DeisyRosero3,WilliamBurgos-Paz1,RembertoMartínez1,IvánPastrana11ColombianAgriculturalResearchInstituteCORPOICA-Turipana,Colombia.Email:[email protected]

2DepartmentofCropScience,BreedingandPlantMedicine,MendelUniversityinBrno,CzechRepublic3FacultyofAgriculturalScience,NationalUniversityofColombia-Palmira,ColombiaThegeneticdiversityofsweetpotato(Ipomoeabatatas(L.)Lam)anditswildrelativeshasbeencollectedandconservedingermoplasmcollectionsworldwideandexploredbyseveraltools.Characterizationofcropandwild-relateddiversitythroughmorphologicalandmoleculartoolsproducesusefulinformationforidentifyinggenotypeswithdesirabletraitsforuseinbreeding.However,characterizationusingmorphologicaldescriptionpresentslowlevelsofpolymorphismaffectingtheestimationofdiversity.Newphenomicapproacheswereusedtoincreaseefficiencywhendeterminingpolymorphismsnotdetectedbymorphologicaldescriptors.SeventyaccessionsofsweetpotatocollectedonthenortherncoastofColombiawerecharacterizedusing49parametersfromsweetpotatodescriptors(Huamán1991)anddataobtainedbyRGBimagingandcolorimetryanalysis.Fielddescription,RGBimaging,colorimetryandtheircombineddatabaseswereanalyzedusingGower’sgeneralsimilaritycoefficientforclusteringinR.EstimationofgenotypesimilaritywassignificantlyimprovedwhenquantitativedataobtainedbyRGBimagingandcolorimetryanalysiswereincluded.Variationsintraitssuchasfleshandperidermcolorinroots,leafveincolorandleafshape,whichwerenotdetectedbyfielddescriptors,wereefficientlydiscriminatedbymeasuringpixelvaluesfromimages,estimatedshapedescriptors(circularity,solidity,area)andcolorimetrydata.Asexpected,highcorrelationswerefoundforfieldparameters(numberoflobes,lobetype,centrallobeshape)andimagedata(circularityandsolidity).However,visualcolorparametersshowedlowcorrelationwithpixelvaluesandcolorspaceparameters,confirmingtheirlimitationswhenusedsolelyformorphologicalcharacterization.CombiningRGBimagingandcolorimetrybenefitsthequalityofmorphologicalcharacterizationduetotheuseofquantitativeinsteadofsubjectivequalitativemeasurements,resultinginacost-effectiveprocessabletoidentifypolymorphismsandtargettraitsfordiversityestimationandbreeding.

Page 84: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

72

Posters:Phenotypingforcropimprovement

NDVIvaluesandgrainmineralcontentpredictthepotentialofsyntheticspringwheatandwildrelativesA.I.Abugaliyeva1,A.I.Morgounov2,K.Kozhakhmetov1,T.V.Savin1,A.S.Massimgaziyeva1,A.Rsymbetov1,3

1KazakhResearchInstituteofAgricultureandPlantGrowing,Almaty,Kazakhstan2CIMMYT,Ankara,Turkey3KazakhNationalAgrarianUniversity,Almaty,KazakhstanThedynamicsofbiomassaccumulationasreflectedbyNormalizedDifferenceVegetationIndex(NDVI)valuesdemonstratethereactionofgenotypestostressconditions(hightemperature,moisturestress,etc.).OurdatashowthatwheatwildrelativesdonotsharplyreduceNDVIunderstressandarecharacterizedbylesssharpcurveduringvegetativegrowth.ModernspringwheatvarietiesshowmuchhighervariabilityofNDVIvaluesduringvegetativegrowth.Syntheticspringwheatgenotypesreactmorespecificallytoabioticstressesthanvarietiesandwildrelatives.ThecriterionforselectionusingphysiologicaltraitswouldbeahighNDVIcurvewithslowreductionafterheading.NDVIvaluesrangedfrom0.19to0.77forvarieties,wildrelativesandsynthetics.HighNDVIvaluescorrelatedwithgrainyieldexceeding5t/hainthebestsyntheticlines.Evaluationofgrainmineralcontentrevealedgenerallyhighervaluesinwildrelatives,especiallyAe.ovataandAe.triuncialcomparedtomodernvarieties.ThemaximumvalueswererecordedforT.kiharae(N,Mg,Mn,Fe,Zn),T.militinae(N,P,S);T.compactum(K,Zn)andT.petropavlovskye(Mn,Fe,Zn).Amongsynthetics,thefollowinglineshadthehighestmineralcontent:Kazakhstanskaya10xT.dicoccum(K,P,Ca,Mg);Kazakhstanskaya10хT.timopheevi(N,S,Fe,Zn,Mg,Mn);andKazakhstanskayarannespelayaхT.timopheevi(Fe,S).ScontentinsyntheticsdoesnotexceedScontentinvarietiesbutlineZhetisuxT.militinaehadthehighestvalueincludingforCa,Fe,ZnandMn.Top-crosstestsindicatedthesetraitsweretransferredtothreebreedinglines:KazakhstanskayarannespelayaхTr.timopheevi;6625xT.timopheeviand6583хT.timopheevi.Globalnetworkforprecisionfield-basedwheatphenotypingCarolinaSaintPierre1,AmorYahyaoui1,PawanSingh1,MatthewReynolds1,MichaelBaum2,HansBraun11CIMMYT,GlobalWheatProgram,Mexico.Email:[email protected],MoroccoTheCGIARResearchProgramonWHEATenvisionsanetworkofprecisionfield-basedwheatphenotypingplatformsdevelopedwithco-investingnationalagriculturalresearchsystems.Themaingoalofthisnetworkistogeneratehigh-qualitydatatoassistplantbreedersindevelopingresistant,highyieldingwheatvarietieswithabroadgeneticbase,bymaximizingthepotentialofnewgenotypingtechnologies.Toinitiatethisnetwork,fiveagreementsweresignedwithnationalpartnerstosetupfacilitiesandprotocolsforevaluatingheatstressinSudan,multiplediseasesinUruguay,SeptoriatriticiblotchindurumwheatinTunisia,wheatblastinBoliviaandyellowrustinTurkey.AdditionalplatformsareplannedtophenotypeforSeptoriatriticiblotchinbreadwheat(Ethiopia),wheatrusts(Ethiopia),Helminthosporiumleafblight(Bangladesh/Nepal),Fusariumheadblight(China),heatanddrought

Page 85: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

73

Posters:Phenotypingforcropimprovement

toleranceinspringwheat(Morocco,India,Pakistan,Bangladesh,Nepal),heatanddroughttoleranceinfacultative/winterwheat(Turkey)andyieldpotential(China,India,Pakistan,Egypt,Zimbabwe).AllplatformswilloperateinclosecollaborationwithcurrentlyfunctioningplatformsinKenyaandMexico.Interdisciplinaryteamswillpromotetheuseofprecisephenotypingapproaches,standardizedprotocolsandnoveltoolstoacceleratesuperiorgermplasmdevelopmentanddissemination.RootcorticalsenescenceinfluencesmetaboliccostsandradialwaterandnutrienttransportinbarleyHannahM.Schneider1,TobiasWojciechowski1,JohannesA.Postma1,DagmarvanDusschoten1,JonathanP.Lynch2

1ForschungszentrumJülich,IBG-2,Jülich,Germany.Email:[email protected],UniversityPark,PA,USARootcorticalsenescence(RCS)isatypeofprogrammedcelldeathincorticalcellsofmanyPoaceaespecies.ThefunctionalimplicationsofRCSformationarepoorlyunderstood,butstudiessuggestthatRCSformationconfersbothbenefitsandcosts.Theobjectivesofthisresearchweretotestthehypothesesthat:(1)thereisgeneticvariationforRCS;(2)RCSreducesthemetaboliccostofroottissue;(3)RCSdecreasesradialwaterandnutrienttransport.UsingaPitmanchamber,radialwaterandnutrienttransportweremeasuredonexcisedrootsofbarleyusingstableandradioactiveisotopes.LandraceshadgreaterRCSformationthanmoderngenotypes.Nitrogen-andphosphorus-deficientconditionsincreasedtherateofRCSdevelopmentinalllines.RCSdecreasesthemetaboliccostofroottissue:RCSreducedrootnitrogencontentby66%,phosphoruscontentby63%,andrespirationby87%comparedtorootsegmentswithnoRCSofthesamelength.OlderrootsegmentswithcompleteRCShad90%lessradialwatertransport,92%lessradialnitratetransport,and84%lessradialphosphorustransportcomparedtoyoungerrootsegmentswithnoRCS.RCSwasassociatedwith30%greateraliphaticsuberincontentintheendodermis.RCSmaybeausefuladaptationtodroughtbyreducingthemetaboliccostsofsoilexploration.AsRCSprogresses,fewermetabolicresourcesneedtobeinvestedincorticalmaintenance,whichwouldpermitgreaterresourceallocationtothegrowthofshoots,otherroots,andreproduction.ReducedhydraulicconductivityinducedbyRCSmayalsobeadvantageousunderdroughtconditionsbecauseitpreventsdesiccationoftheroottipandsurroundingsoil.TheseproposedmeritsofRCSunderedaphicstressneedfurtherinvestigationunderfieldconditions.

Page 86: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

74

Posters:Phenotypingforcropimprovement

Nutrient-relatedtraitsforimprovedgrowthandgrainqualityinIndianwheatJaswantSingh1,LolitaWilson1,ScottD.Young1,SindhuSareen2,BhudevaS.Tyagi2,IanP.King1,MartinR.Broadley1

1SchoolofBiosciences,UniversityofNottingham,SuttonBonington,Loughborough,LE125RD,UK.Email:[email protected]

2IndianInstituteofWheat&BarleyResearch,POBox158,Karnal-132001,IndiaWheatgrainmicronutrientcontent(e.g.,ironandzinc)needstobeofsufficientqualityforhumanhealth,especiallyindevelopingcountries.Itisnotcleariffurtheryieldandqualityimprovementscanbeachievedduetothenarrowgeneticpotentialofmodernwheatcultivars,andtolimitedlandavailability(e.g.,manysoilsaremarginalduetosalinity,pH,andmineralnutrientimbalances).Thisstudyquantifiedyield,yieldcomponentandmineralqualitytraitsindiversewheatgenotypes,includingIndianvarieties,wildrelativesandlinescontainingwildwheatintrogressions.FieldexperimentswereconductedatsixdiversesitesinIndiaonhostilesoilswithcontrastingmineralstresses(pH4.5-9.5)overtwoyears(2013/14and2014/15).Traitsmeasuredincludedyieldandyieldcomponents,andgrainmineralcompositiondeterminedusinginductivelycoupledplasma-massspectrometry(ICP-MS).Meangrainyieldrangedfrom1.0to5.5tha-1onhostileandnon-hostilesoils,respectively.ThemeangrainFeconcentrationrangedfrom25-39mgkg-1andgrainZnconcentrationrangedfrom25-37mgkg-1acrossthesixsites.Site(E)hadthelargesteffectonyieldandgrainmineralcompositiontraits;however,thereweresignificantgenotype(G)andgenotype×environment(G×E)interactions,whichimpliesthereisscopeforgenericselectionwithinandbetweenmajoragro-ecologicalzones,ascurrentlypracticed,andalsoforsite-specificselectionifthephenotypingpipelinesaresufficientlycost-effective.Large-scalephenotypingfornext-generationwheatvarietalimprovementSukhwinderSingh1,PrashantVikram1,CarolinaSaintPierre1,JuanAndersBurgueño1,HuihuiLi1,CarolinaSansaloni1, Deepmala Sehgal1, Sergio Cortez2, G. Estrada Campuzano3, N. Espinosa4, Pedro Figueroa4,Guillermo Fuentes4, C.G.Martínez3, Ernesto Solís Moya4, H.E. Villaseñor4, Victor Zamora5, Ivan Ortiz-Monasterio1, Carlos Guzmán1, Cesar Petroli1, Gilberto Salinas1, Thomas Payne1, Kate Dreher1, RaviPrakashSingh1,VelluGovindan1,MathewReynolds1,PawanSingh1,JoseCrossa1andKevinPixley11CIMMYT,Mexico;GeneticResourceProgram.Email:[email protected]écnicadeFranciscoI.Madero,México3UniversidadAutónomadelEstadodeMéxico,México4InstitutoNacionaldeInvestigacionesForestales,AgrícolasyPecuarias,INIFAP,México5UniversidadAutónomaAgrariaAntonioNarro,MéxicoOn-farmandgenebankwheatdiversityrepresentanimportantresourcetospeedadvancesinyieldpotential,addressclimatechangeeffectsthroughbreeding,meetexpectedfooddemandincreasesandbroadenbreedinggermplasmpool.ThroughtheCIMMYT-led“SeedsofDiscovery”(SeeD)project,wehavewehaveconductedphenotypingandgenotypiccharacterizationofthecenter’smorethan140,000wheatgenebankaccessions:70,000forheatand/ordrought,20,000forgrainquality,10,000fordisease

Page 87: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

75

Posters:Phenotypingforcropimprovement

resistance,2,000forPUEand900syntheticwheatsforyieldpotential.Usefultraitdonorsidentifiedarebeingincorporatedintopre-breedingprograms,followingatwo-tierstrategy:(1)incorporatinggeneralgeneticdiversityand(2)mobilizingtheidentifiedtraitdonoraccessions.Morethan1,000exoticwheatlineshavebeenmobilizedinthebreedingpipeline.Advancedpre-breedingsetsarebeingevaluatedinMexicoandtargetenvironmentsinIndia,Iran,andPakistan.Wheatlandracecoresubsetshavebeenformulatedusinglarge-scalephenotype-genotypedataandleveragedwithnationalresearchprogramsinAfrica,SouthAsiaandtheUSA.UsingshovelomicstoidentifyrootingtraitsforimprovedwateruptakeunderdroughtinawinterwheatdoubledhaploidpopulationShaunaghSlack1,LarryM.York1,2,MalcolmBennett1,JohnFoulkes11CentreforPlantIntegrativeBiology,SchoolofBiosciences,UniversityofNottingham,SuttonBonington,UnitedKingdom.Email:[email protected]

2DivisionofPlantSciences,UniversityofMissouri,Columbia,MOWatercaptureinwheatunderdroughtdependsonrootsystemarchitecture(RSA)traitsthatfacilitaterootforaginginsoil.RootphenotypingisbeingusedtostudygeneticvariationforRSAandlinkthisvariationtofunctionalutility.Herewedescribetherootcrownphenotypingofawheatmappingpopulationusingahigh-throughputshovelomics-basedapproach.FieldexperimentswerecarriedoutoverthreeyearsonadroughtproneloamysandsoilattheUniversityofNottinghamfarmon94linesoftheSavannahxRialtodoubled-haploidwinterwheatpopulationunderirrigatedandrainfedconditions.Rootcrownswereexcavatedfromthefieldandwashedfreeofsoil.Thewholerootcrownwasimaged,thensplitintothemainshootandtillerrootsystemswhichwereimagedseparately.Customsoftwarewasusedtomeasurepropertiessuchascrownrootnumber,angle,diameterandrootsystemwidthforallrootsystems.Soilcoringof16DHlinesvalidatedthatrootcrownphenotypespartiallydeterminerootlengthdensityatdepth.SignificantgeneticvariationwasfoundforRSAunderbothirrigatedandrainfedconditionsandQTLwereidentified.ShootandrootphenotypingofspringwheatunderwaterloggedconditionsinfieldandrhizotronexperimentsT.Sundgren1,A.K.Uhlen1,T.Wojciechowski2,W.Waalen3,M.Lillemo11NorwegianUniversityofLifeSciences,Norway.Email:[email protected]ülich,Germany3NorwegianInstituteofBioeconomyResearch,NorwayImprovingthewaterloggingtoleranceofwheatvarietiescouldalleviateyieldconstraintscausedbyexcessiverainandpoorsoildrainage.Reliablescreeningmethodsandaccuratephenotypingprotocolsarefundamentalforachievinggeneticimprovement.In2013-2014,177wheatgenotypeswerephenotypedforwaterloggingtoleranceinNorwegianhillplotfieldtrialswithcontrolledwaterlogging

Page 88: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

76

Posters:Phenotypingforcropimprovement

treatments.Tolerancepropertiesweredeterminedusingtraditionalphenotypingmethodssuchastraitscoringandcountscombinedwithprincipalcomponentanalysis.In2015and2016,12and16genotypeswithcontrastingtolerance,respectively,wereselectedforlargerscaleexperiments.Estimatesofphenotypictraitsfrom2015wereanalyzedinsingle,multipleandprincipalcomponentregressionanalyseswithyieldastheresponsevariable.Bestmodelfitwasobtainedbythepercentageofchlorosis(R2=0.87).Imageanalysis(RGBandNDVI)fortolerancecharacterizationiscurrentlyunderinvestigation.Resultsofthefieldexperimentsindicateddifferentadaptationstrategies.Forfurtherinvestigation,arandomizedsplit-plotrhizotronexperimentincluding6contrastinggenotypeswasconducted.Imagesofrootsandshootsweretakeneveryseconddaytostudythestressresponseofwaterloggedandcontrolplantspriorto,duringandaftera7-daywaterloggingtreatment.Resultsshowedthattolerantgenotypeshadsignificantlyhigherseminalrootelongationratepriortothetreatment.Nodalrootsofthesegenotypesalsoelongatedatasignificantlyhigherrateduringthetreatment.Allgenotypesresumedseminalrootgrowthpost-treatment.Thepresenceofaerenchymainrootsamplesiscurrentlybeingexamined.EffortstoidentifyQTLassociatedwithwaterloggingtoleranceunderfieldconditionsareongoing.Predictingsorghumbiomassusingaerialandground-basedphenotypesAddieThompson1,KarthikeyanRamamurthy2,ZhouZhang3,FangningHe3,MelbaMCrawford3,AymanHabib3,CliffordWeil1,MitchellR.Tuinstra11Agronomy,PurdueUniversity,WestLafayette,IN2IBMResearch,YorktownHeights,NY3Engineering,PurdueUniversity,WestLafayette,INInacropsuchasbioenergyorforagesorghum,above-groundplantbiomassisconsideredthemeasureofyield.However,determiningbiomassbywaitinguntiltheendoftheyeartodestructivelyharvestplotswithabiomassharvesterdoesnotallowselectioninabreedingprogrambeforefloweringandcrossing,therebydelayingbreedingcycles.Early-seasondestructivesamplingisoneoptionthatallowsselectionbeforethesorghumflowers;however,removingasubsetofplantsdecreasestheaccuracyofthebiomassestimateaswellasthenumberofplantsavailableforbreeding(orincreasesthetotalexperimentsizeneededtoaccountfortheselosses),andeliminatestheoptionoflaterphenotypingontheremovedmaterial.Lessdirectmeasurementsofplantbiomasscanbecalculatednon-destructively,suchastheapproximationofstemvolumederivedfromplantheightwithtopandbottomstemdiameters.Thisapproachcanprovidefairlyaccurateprediction,demonstratedhereacrossmultipletimepointsinthegrowingseason.Thesemeasurementscanbetime-consumingandlabor-intensivetotakebyhand,butadvancesinremotesensingtechnologiesallowalargenumberofvarietiestobescreenedfromaerialplatforms.Wecompareandcombineresultsforestimatingend-of-seasonbiomassusingremotelysensedplantheight(derivedfromRGBpointclouds)andhyperspectralfeatures(includingExtendedMulti-AttributeProfiles,orEMAPs),pairedwithextensiveground-basedphenotypingtoprovideabenchmarkforourresults.Overall,thisstudyhighlightstheusefulnessofacombinationofplatformsforpredictingend-of-seasonbiomassinforageorbioenergycrops.

Page 89: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

77

Posters:Phenotypingforcropimprovement

Alterationsinrootproteomeofsalt-sensitiveandsalt-tolerantbarleylinesundersaltstressconditionsStanisławWeidner1,AgnieszkaMostekA.1,AndreasBörner2,AnnaBadowiec1

1FacultyofBiologyandBiotechnology,UniversityofWarmiaandMazury,Olsztyn,Poland.Email:[email protected]

2LeibnizInstituteofPlantGeneticsandCropPlantResearch,GermanySalinityisoneofthemostimportantabioticstressesthatcausesignificantreductionsofcropyields.Togainabetterunderstandingofsalinitytolerancemechanismsinbarley(Hordeumvulgare),weinvestigatedthechangesinrootproteomeofsalt-sensitive(DH14)andsalt-tolerant(DH187)linesinresponsetosaltstress.Theseedsofbothbarleylinesweregerminatedinwaterorin100mMNaClforsixdays.Therootproteinswereseparatedbytwo-dimensionalgelelectrophoresis.Toidentifyproteinsregulatedinresponsetosaltstress,MALDI-TOF/TOFmassspectrometrywasapplied.Itshowedthatsensitiveandtolerantbarleylinesresponddifferentlytosaltstress.Themostsignificantdifferencesconcernedproteinsinvolvedinsignaltransduction(annexin,translationally-controlledtumorproteinhomolog,lipoxygenases),detoxificationandproteinfoldingprocesses(osmotin,vacuolarATP-ase,proteindisulfideisomerase)whichwereup-regulatedonlyinthetolerantlineundersaltstress.TheresultssuggestthattheenhancedsalinitytoleranceoflineDH187resultsmainlyfromincreasedactivityofsignaltransductionmechanisms,whicheventuallyleadstotheaccumulationofstressprotectiveproteins.

Page 90: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

Notes

Page 91: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping
Page 92: Apdo. Postal 6-641 CDMX, Mexico 06600 Email: … · Kang Yu, Achim Walter, Andreas Hund 7 ... Malosetti, Martin P. Boer, Willem Kruijer, Karine Chenu, Scott C. Chapman 8 Phenotyping

Apdo. Postal 6-641 CDMX, Mexico 06600Email: [email protected]

www.cimmyt.org