AP Chemistry - VSEPR

52
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Transcript of AP Chemistry - VSEPR

Page 1: AP Chemistry - VSEPR

Chemical Bonding II:Molecular Geometry and Hybridization of Atomic

Orbitals

Page 2: AP Chemistry - VSEPR

10.1

Page 3: AP Chemistry - VSEPR

Valence shell electron pair repulsion (VSEPR) model:

Predict the geometry of the molecule from the electrostatic repulsions between the electron (bonding and nonbonding) pairs.

AB2 2 0

Class

# of atomsbonded to

central atom

# lonepairs on

central atomArrangement of electron pairs

MolecularGeometry

10.1

linear linear

B B

Page 4: AP Chemistry - VSEPR

Cl ClBe

2 atoms bonded to central atom0 lone pairs on central atom 10.1

Page 5: AP Chemistry - VSEPR

AB2 2 0 linear linear

Class

# of atomsbonded to

central atom

# lonepairs on

central atomArrangement of electron pairs

MolecularGeometry

VSEPR

AB3 3 0trigonal planar

trigonal planar

10.1

Page 6: AP Chemistry - VSEPR

10.1

Page 7: AP Chemistry - VSEPR

AB2 2 0 linear linear

Class

# of atomsbonded to

central atom

# lonepairs on

central atomArrangement of electron pairs

MolecularGeometry

VSEPR

AB3 3 0trigonal planar

trigonal planar

10.1

AB4 4 0 tetrahedral tetrahedral

Page 8: AP Chemistry - VSEPR

10.1

Page 9: AP Chemistry - VSEPR

AB2 2 0 linear linear

Class

# of atomsbonded to

central atom

# lonepairs on

central atomArrangement of electron pairs

MolecularGeometry

VSEPR

AB3 3 0trigonal planar

trigonal planar

10.1

AB4 4 0 tetrahedral tetrahedral

AB5 5 0trigonal

bipyramidaltrigonal

bipyramidal

Page 10: AP Chemistry - VSEPR

10.1

Page 11: AP Chemistry - VSEPR

AB2 2 0 linear linear

Class

# of atomsbonded to

central atom

# lonepairs on

central atomArrangement of electron pairs

MolecularGeometry

VSEPR

AB3 3 0trigonal planar

trigonal planar

10.1

AB4 4 0 tetrahedral tetrahedral

AB5 5 0trigonal

bipyramidaltrigonal

bipyramidal

AB6 6 0 octahedraloctahedral

Page 12: AP Chemistry - VSEPR

10.1

Page 13: AP Chemistry - VSEPR

10.1

Page 14: AP Chemistry - VSEPR

bonding-pair vs. bondingpair repulsion

lone-pair vs. lone pairrepulsion

lone-pair vs. bondingpair repulsion> >

Page 15: AP Chemistry - VSEPR

Class

# of atomsbonded to

central atom

# lonepairs on

central atomArrangement of electron pairs

MolecularGeometry

VSEPR

AB3 3 0trigonal planar

trigonal planar

AB2E 2 1trigonal planar

bent

10.1

Page 16: AP Chemistry - VSEPR

Class

# of atomsbonded to

central atom

# lonepairs on

central atomArrangement of electron pairs

MolecularGeometry

VSEPR

AB3E 3 1

AB4 4 0 tetrahedral tetrahedral

tetrahedraltrigonal

pyramidal

10.1

Page 17: AP Chemistry - VSEPR

Class

# of atomsbonded to

central atom

# lonepairs on

central atomArrangement of electron pairs

MolecularGeometry

VSEPR

AB4 4 0 tetrahedral tetrahedral

10.1

AB3E 3 1 tetrahedraltrigonal

pyramidal

AB2E2 2 2 tetrahedral bent

H

O

H

Page 18: AP Chemistry - VSEPR

Class

# of atomsbonded to

central atom

# lonepairs on

central atomArrangement of electron pairs

MolecularGeometry

VSEPR

10.1

AB5 5 0trigonal

bipyramidaltrigonal

bipyramidal

AB4E 4 1trigonal

bipyramidalSee-Saw

(distorted tetrahedron)

Page 19: AP Chemistry - VSEPR

Class

# of atomsbonded to

central atom

# lonepairs on

central atomArrangement of electron pairs

MolecularGeometry

VSEPR

10.1

AB5 5 0trigonal

bipyramidaltrigonal

bipyramidal

AB4E 4 1trigonal

bipyramidalSee-Saw

AB3E2 3 2trigonal

bipyramidalT-shaped

ClF

F

F

Page 20: AP Chemistry - VSEPR

Class

# of atomsbonded to

central atom

# lonepairs on

central atomArrangement of electron pairs

MolecularGeometry

VSEPR

10.1

AB5 5 0trigonal

bipyramidaltrigonal

bipyramidal

AB4E 4 1trigonal

bipyramidalSee-Saw

AB3E2 3 2trigonal

bipyramidalT-shaped

AB2E3 2 3trigonal

bipyramidallinear

I

I

I

Page 21: AP Chemistry - VSEPR

Class

# of atomsbonded to

central atom

# lonepairs on

central atomArrangement of electron pairs

MolecularGeometry

VSEPR

10.1

AB6 6 0 octahedraloctahedral

AB5E 5 1 octahedral square pyramidal

Br

F F

FF

F

Page 22: AP Chemistry - VSEPR

Class

# of atomsbonded to

central atom

# lonepairs on

central atomArrangement of electron pairs

MolecularGeometry

VSEPR

10.1

AB6 6 0 octahedraloctahedral

AB5E 5 1 octahedral square pyramidal

AB4E2 4 2 octahedral square planar

Xe

F F

FF

Page 23: AP Chemistry - VSEPR

10.1

Page 24: AP Chemistry - VSEPR

Predicting Molecular Geometry1. Draw Lewis structure for molecule.

2. Count number of lone pairs on the central atom and number of atoms bonded to the central atom.

3. Use VSEPR to predict the geometry of the molecule.

What are the molecular geometries of SO2 and SF4?(In SF4, S uses an expanded octet of 10.)

AB2E bent

S

F

F

F F

AB4E

See-Saw(distorted

Tetrahedron)

10.1

SO

OS

OO

Page 25: AP Chemistry - VSEPR

Parent shapes for EXn molecules (n = 2-5)

Formula n shape shapes of structures

EX2 2 linear

EX3 3 trigonal planar

EX4 4 tetrahedral

EX5 5 trigonal

bipyramidal

Page 26: AP Chemistry - VSEPR

Parent shapes for EXn molecules (n = 6-8)

Formula n shape shapes of structures

EX6 6 octahedral

EX7 7 pentagonal

bipyramidal

EX8 8 square

antiprismatic

Page 27: AP Chemistry - VSEPR

Final structures for VSEPR theory.

Page 28: AP Chemistry - VSEPR

More final structures for VSEPR.

Page 29: AP Chemistry - VSEPR

Dipole Moments and Polar Molecules

10.2

H F

electron richregion

electron poorregion

Page 30: AP Chemistry - VSEPR

10.2

Page 31: AP Chemistry - VSEPR

10.2

Which of the following molecules have a dipole moment?H2O, CO2, SO2, and CH4

O HH

dipole momentpolar molecule

SO

O

CO O

no dipole momentnonpolar molecule

dipole momentpolar molecule

C

H

H

HH

no dipole momentnonpolar molecule

Page 32: AP Chemistry - VSEPR

10.2

Chemistry In Action: Microwave Ovens

Page 33: AP Chemistry - VSEPR

Bond Dissociation Energy Bond Length

H2

F2

436.4 kJ/mole

150.6 kJ/mole

74 pm

142 pm

Valence bond theory – bonds are formed by sharing of e- from overlapping atomic orbitals.

Overlap Of

2 1s

2 2p

How does Lewis theory explain the bonds in H2 and F2?

Sharing of two electrons between the two atoms.

10.3

Page 34: AP Chemistry - VSEPR

Stop here

Page 35: AP Chemistry - VSEPR

Hybridization – mixing of two or more atomic orbitals to form a new set of hybrid orbitals.

1. Mix at least 2 nonequivalent atomic orbitals (e.g. s and p). Hybrid orbitals have very different shape from original atomic orbitals.

2. Number of hybrid orbitals is equal to number of pure atomic orbitals used in the hybridization process.

3. Covalent bonds are formed by:

a. Overlap of hybrid orbitals with atomic orbitals

b. Overlap of hybrid orbitals with other hybrid orbitals

10.4

Page 36: AP Chemistry - VSEPR

10.4

Page 37: AP Chemistry - VSEPR

Formation of sp2 Hybrid Orbitals

10.4

Page 38: AP Chemistry - VSEPR

Formation of sp Hybrid Orbitals

10.4

Page 39: AP Chemistry - VSEPR

# of Lone Pairs+

# of Bonded Atoms Hybridization Examples

2

3

4

5

6

sp

sp2

sp3

sp3d

sp3d2

BeCl2

BF3

CH4, NH3, H2O

PCl5

SF6

How do I predict the hybridization of the central atom?

Count the number of lone pairs AND the numberof atoms bonded to the central atom

10.4

Page 40: AP Chemistry - VSEPR

10.4

Page 41: AP Chemistry - VSEPR

Sigma () and Pi Bonds ()

Single bond 1 sigma bond

Double bond 1 sigma bond and 1 pi bond

Triple bond 1 sigma bond and 2 pi bonds

How many and bonds are in the acetic acid(vinegar) molecule CH3COOH?

C

H

H

CH

O

O H bonds = 6 + 1 = 7

bonds = 1

10.5

Page 42: AP Chemistry - VSEPR

Sigma bond () – electron density between the 2 atomsPi bond () – electron density above and below plane of nuclei

of the bonding atoms 10.5

Page 43: AP Chemistry - VSEPR

10.5

Page 44: AP Chemistry - VSEPR

10.5

Page 45: AP Chemistry - VSEPR

Molecular orbital theory – bonds are formed from interaction of atomic orbitals to form molecular orbitals.

O

O

No unpaired e-

Should be diamagnetic

Experiments show O2 is paramagnetic(has UNPAIRED e-)

10.6

MO Theory is NOT in the AP Chemistry Curriculum and will NOT be on the AP exam! This is just a quick overview!

Page 46: AP Chemistry - VSEPR

Energy levels of bonding and antibonding molecular orbitals in hydrogen (H2).

A bonding molecular orbital has lower energy and greater stability than the atomic orbitals from which it was formed.

An antibonding molecular orbital has higher energy and lower stability than the atomic orbitals from which it was formed. 10.6

Page 47: AP Chemistry - VSEPR

10.6

Page 48: AP Chemistry - VSEPR
Page 49: AP Chemistry - VSEPR

1. The number of molecular orbitals (MOs) formed is always equal to the number of atomic orbitals combined.

2. The more stable the bonding MO, the less stable the corresponding antibonding MO.

3. The filling of MOs proceeds from low to high energies.

4. Each MO can accommodate up to two electrons.

5. Use Hund’s rule when adding electrons to MOs of the same energy.

6. The number of electrons in the MOs is equal to the sum of all the electrons on the bonding atoms.

10.7

Molecular Orbital (MO) Configurations

Page 50: AP Chemistry - VSEPR

bond order = 12

Number of electrons in bonding MOs

Number of electrons in antibonding MOs

( - )

10.7

bond order

½ 1 0½

Page 51: AP Chemistry - VSEPR

Delocalized molecular orbitals are not confined between two adjacent bonding atoms, but actually extend over three or more atoms.

10.8

Page 52: AP Chemistry - VSEPR

10.6