AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

65
AOSS 321, Winter 2009 Earth System Dynamics Lecture 8 2/3/2009 Christiane Jablonowski Eric Hetland [email protected] [email protected] 734-763-6238 734-615-

description

K

Transcript of AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Page 1: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

AOSS 321, Winter 2009 Earth System Dynamics

Lecture 82/3/2009

Christiane Jablonowski Eric Hetland

[email protected] [email protected]

734-763-6238 734-615-3177

Page 2: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

What are the fundamental forces in the Earth’s system?

• Pressure gradient force• Viscous force• Gravitational force• Apparent forces: Centrifugal and Coriolis• Can you think of other classical forces and

would they be important in the Earth’s system?Electromagnetic force

• Total Force is the sum of all of these forces.

Page 4: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Circle Basics

ω

θ

s = rθ

r (radius)

Arc length ≡ s = rθ

ds

dt= r

dt

ω ≡dθ

dt

v ≡ds

dt

... Magnitude

Page 5: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Centripetal acceleration:towards the axis of rotation

dr v

dt= −

r v

dt

r r

... Magnituder (radius)

centrifugalcentripetal

rv + δ

r v

δθ

rv

δ r

v

rv

δ r

v =r v δθ

Page 6: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Centripetal force: for our purposes

dr v

dt= −

r v

dt

r r

rdθ

dt≡ ω ≡ Ω( )

r v = ωr

dr v

dt= −ω2r

r

Directed toward the axis of rotation

Page 7: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Now we are going to think about the Earth

• The preceding was a schematic to think about the centripetal acceleration problem. Remember Newton’s third law:"For every action, there is an equal and opposite reaction.”

• View from fixed system: uniform centripetal acceleration towards the axis of rotation

• View from rotating system: centrifugal acceleration (directed outward) equal and opposite to the centripetal acceleration (directed inward)

Page 8: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

What direction does the Earth’s centrifugal force point?

Ω

Ω2RR

Earth

this is a vector forcedirected away from the axis of rotation

Ω=7.292 ×10−5 s−1

Earth’s angular speed of rotation:

axis of rotation

Page 9: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Magnitude of R

Ω

R

Earth

Magnitude (length) of vector RR = |R| = a cos()

Φ

a

latitude

Earth’s radius

Page 10: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Ω

R

Earth

Φ

a

Φ: latitude

a: Earth’s radius

Tangential coordinate system

Place a coordinate system on the surface.

x = west-east (longitude)y = south-north (latitude)z = local vertical

x

y z

Page 11: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Ω

R

Earth

Φ

a

Φ: latitude

a: Earth’s radius

Angle between R and axes

x

-y

z Φ

Reversed (negative)y direction

Page 12: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Assume magnitude of vector in direction R

Ω

R

Earth

Φ = latitude

a

B: Vector of magnitude B

Page 13: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Vertical component

Ω

R

Earth

Φ = latitude

a

z component = B cos()

Page 14: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Meridional component

Ω

R

Earth

Φ = latitude

a -y component = -B sin()

Page 15: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

What direction does the Earth’s centrifugal force point?

Ω

Ω2RR

Earth

So there is a component that is in the same coordinate direction as gravity (and local vertical).

And there is a component pointing towards the equator

We are now explicitly considering a coordinate system tangent to the Earth’s surface.

a

Page 16: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

What direction does the Earth’s centrifugal force point?

Ω

Ω2RR

Earth

So there is a component that is in the same coordinate direction as gravitational acceleration: ~ aΩ2cos2()

And there is a component pointing towards the equator ~ - aΩ2cos()sin()

Φ = latitude

Page 17: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

What direction does the gravitational acceleration point?

Ω

R

Earth

a (radius)

F

m= −g0

* a2

(a + z)2

r

r

Page 18: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

So we re-define gravitational acceleration g*

as gravity g

F

m= −g0

* a2

(a + z)2+ aΩ2 cos2(φ)

⎝ ⎜

⎠ ⎟r

r

F

m= −g

r

r

Page 19: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

What direction does the Earth’s centrifugal force point?

Ω

Ω2RR

Earth

And there is a component pointing towards the equator.

The Earth has bulged to compensate for the equatorward component (how much?)

Hence we don’t have to consider the horizontal component explicitly.

Sphere

g*g

g: gravity

Page 20: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Centrifugal force of Earth

• Vertical component incorporated into re-definition of gravity.

• Horizontal component does not need to be considered when we consider a coordinate system tangent to the Earth’s surface, because the Earth has bulged to compensate for this force.

• Hence, centrifugal force does not appear EXPLICITLY in the equations.

Page 21: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Our momentum equation so far

dr v

dt= −

1

ρ∇p + ν∇ 2(

r v ) +

r g + other forces

Pressure gradientforce

Viscous force

Gravity force = gravitational force + centrifugal force

rg ≡ −g

r k =

r g * + Ω2

r R

with g = 9.81 m s-2

Material derivative of the velocity vector

rv

Page 22: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Where is the low pressure center?

How and why does the system rotate?

Page 25: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Effects of the Coriolis force on motions on Earth

Page 26: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Angular momentum• Like momentum, angular momentum is conserved in

the absence of torques (forces) which change the angular momentum.

• The absolute angular momentum per unit mass of atmosphere is

• This comes from considering the conservation of momentum of a body in constant body rotation in the polar coordinate system.

• Coriolis force & angular momentum: Check out Unit 6, frames 25-32

L = (Ωacosφ + u)acosφ

http://www.atmos.washington.edu/2005Q1/101/CD/MAIN3.swf

Page 27: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Angular speed(circle)

v = ωrω

ΔθΔvr (radius)

v

v

Page 28: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Earth’s angular momentum (1)

Ω

R

Earth

Φ = latitude

a

What is the speed of this point due only to the rotation of the Earth?

v = ΩR

Page 29: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Earth’s angular momentum (2)

Ω

R

Earth

Φ = latitude

a

Angular momentum is

L = v R

Page 30: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Earth’s angular momentum (3)

Ω

R

Earth

Φ = latitude

a

Angular momentum due only to rotation of Earth is

L = v R

L = ΩR2

Page 31: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Earth’s angular momentum (4)

Ω

R

Earth

Φ = latitude

a

Angular momentum due only to rotation of Earth is

L = ΩR2

L = Ωa2 cos2(φ)

Page 32: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Angular momentum of parcel (1)

Ω

R

Earth

Φ = latitude

a

Assume there is some x velocity, u. Angular momentum associated with this velocity is

uRLu =

Page 33: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Total angular momentum

Ω

R

Earth

Φ

a

Angular momentum due both to rotation of Earth and relative velocity u is

)(

))cos()(cos(

)cos()(cos

2

22

2

R

uRL

uaaL

uaaL

uRRL

+Ω=

+Ω=+Ω=

+Ω=

φφφφ

Page 34: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Displace parcel south (1)(Conservation of angular momentum)

Ω

R

Earth

Φ

a

Let’s imagine we move our parcel of air south (or north). What happens? Δy y

Page 35: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Displace parcel south (2)(Conservation of angular momentum)

Ω

R

Earth

Φ

a

We get some change ΔR (R gets longer)

y

yR −= )(sinφ

For the southward displacement we get

Page 36: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Displace parcel south (3)(Conservation of angular momentum)

Ω

R

Earth

Φ

a

But if angular momentum is conserved, then u must change.

)()(

)(

2

2

RR

uuRR

R

uRL

++

+Ω+=

+Ω=y

ΔR

Page 37: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Displace parcel south (4)(Conservation of angular momentum)

)()()( 22

RR

uuRR

R

uR

++

+Ω+=+Ω

Expand right hand side, ignore second-order difference terms, solve for u (change in eastward velocity after southward displacement):

RR

uRu −Ω−≈ 2

Page 38: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Displace parcel south (5)(Conservation of angular momentum)

yR −= )(sinφ

yR

uyu +Ω≈ )(sin)(sin2 φφ

For our southward displacement

ya

uyu +Ω≈ )(sin

)(cos)(sin2 φ

φφ

Page 39: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Displace parcel south (6)(Conservation of angular momentum)

u

Δt≈ 2Ωsin(φ)

Δy

Δt+

u

acos(φ)sin(φ)

Δy

Δt

Divide by Δt:

Page 40: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Displace parcel south (7)(Conservation of angular momentum)

du

dt= 2Ωsin(φ) +

u

acos(φ)sin(φ)

⎝ ⎜

⎠ ⎟dy

dt

Take the limit Δt0:

du

dt= 2Ωvsin(φ) +

uv

atan(φ)

Coriolis termTotal derivative Metric term

v

Page 41: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Displace parcel south (8)(Conservation of angular momentum)

du

dt= 2Ωvsin(φ) +

uv

atan(φ)

What’s this? “Curvature or metric term.” It takes into account that y curves, it is defined on the surface of the Earth. More later.

Remember this is ONLY FOR a NORTH-SOUTH displacement.

Page 42: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Displace parcel up (1)(Conservation of angular momentum)

Ω

R

Earth

Φ

a

Let’s imagine we move our parcel of air up (or down). What happens? Δz

Δz

Page 43: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Displace parcel up (2)(Conservation of angular momentum)

Ω

R

Earth

Φ

a

We get some change ΔR (R gets longer)

zR = )(cosφ

For our upward displacementΔz

Page 44: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Displace parcel up (3)(Conservation of angular momentum)

)()()( 22

RR

uuRR

R

uR

++

+Ω+=+Ω

Expand right hand side, ignore second-order difference terms, solve for u (change in eastward velocity after vertical displacement):

RR

uRu −Ω−≈ 2

Do the same form of derivation (as we did for the southward displacement)

Page 45: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Displace parcel up (4)(Conservation of angular momentum)

Divide by Δt:

Δu ≈ −2ΩΔR −u

RΔR

⇔ Δu ≈ −2ΩcosφΔz −u

acosφcosφΔz

⇔ Δu ≈ −2ΩcosφΔz −u

aΔz

u

Δt≈ −2Ωcosφ

Δz

Δt−

u

a

Δz

Δt

w

Page 46: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Displace parcel up (5)(Conservation of angular momentum)

du

dt= −2Ωw cos(φ) −

uw

a

Remember this is ONLY FOR a VERTICAL displacement.

Take the limit Δt0:

Page 47: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

So far we got(Conservation of angular momentum)

du

dt= 2Ωvsin(φ) +

uv

atan(φ) − 2Ωw cos(φ) −

uw

a

Coriolis

term

Total derivative

Metric

term

Coriolis

term

Metric

term

From N-S displacement

From upwarddisplacement

Page 48: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Displace parcel east (1)(Conservation of angular momentum)

Ω

R

Earth

Φ

a

Let’s imagine we move our parcel of air east (or west). What happens? Δx

Page 49: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Displace parcel east (2)(Conservation of angular momentum)

Ω

R

Earth

Φ

a

Well, there is no change of ΔR.

But the parcel is now rotating faster than the earth:

Centrifugal force on the object will be increased

Page 50: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Displace parcel east (3)(Conservation of angular momentum)

• Remember: Angular momentum

• The east displacement changed u (=dx/dt). Hence again we have a question of conservation of angular momentum.

• We will think about this as an excess (or deficit) of centrifugal force per unit mass relative to that from the Earth alone.

)(2

R

uRL +Ω=

Page 51: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Displace parcel east (4)(Conservation of angular momentum)

Therefore: excess centrifugal force (per unit mass):

Fexcesscentrifugal = (Ω +

u

R)2R − Ω2R

=2Ωu

RR +

u2

R2R

Remember: centrifugal force per unit mass

F centrifugal = Ω2R

This is a vector forcewith two terms!

Coriolis term Metric term

Page 52: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Displace parcel east (5)(Conservation of angular momentum)

Ω

R

Earth

Φ

a

Vector with component in north-south and vertical direction:Split the two directions.

Fexcesscentrifugal =

2Ωu

RR +

u2

R2R

Page 53: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Displace parcel east (6)(Conservation of angular momentum)

Ω

R

Earth

Φ

a

For the Coriolis component magnitude is 2Ωu. For the curvature (or metric) term the magnitude is u2/(a cos())

Page 54: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Displace parcel east (7)(Conservation of angular momentum)

Ω

R

Earth

Φ

a

Fexcesscentrifugal

( ) • j = −2Ωu

acosφacosφsinφ

−u2

a2 cos2 φacosφsinφ

= −2Ωusinφ −u2

atanφ

Meridional (N-S) component

Page 55: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Displace parcel east (8)(Conservation of angular momentum)

Ω

R

Earth

Φ

a

Fexcesscentrifugal

( ) • k =2Ωu

acosφacosφcosφ

+u2

a2 cos2 φacosφcosφ

= 2Ωucosφ +u2

a

Vertical component

Page 56: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Displace parcel east (9)(Conservation of angular momentum)

These forces in their appropriate component directions are

a

uu

dt

dw

a

uu

dt

d

2

2

)cos(2

)tan()sin(2v

+Ω=

−Ω−=

φ

φφ

Page 57: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Coriolis force and metric terms in 3-D

So let’s collect together all Coriolis forces and metric terms:

du

dt= 2Ωv sin(φ) +

uv

atan(φ) − 2Ωw cos(φ) −

uw

a

dv

dt= −2Ωusin(φ) −

u2

atan(φ) −

vw

a

⎝ ⎜

⎠ ⎟

dw

dt= 2Ωucos(φ) +

u2

a +

v 2

a

⎝ ⎜

⎠ ⎟

2 additional metric terms (due to more rigorous derivation,Holton 2.2, 2.3)

Page 58: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Coriolis force and metric terms

du

dt= 2Ωv sin(φ) +

uv

atan(φ)

dv

dt= −2Ωusin(φ) −

u2

atan(φ)

If the vertical velocity w is small (w close to 0 m/s), we can make the following approximation:

f ≡ 2Ωsin(φ)Define the Coriolis parameter f:

Page 59: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Coriolis force and metric terms

For synoptic scale (large-scale) motions |u| << ΩR .Then the metric terms (last terms on previous slide) are small in comparison to the Coriolis terms. We discuss this in more detail in our next class (scale analysis).This leads to the approximation of the Coriolis force:

du

dt

⎝ ⎜

⎠ ⎟Co

= 2Ωv sinφ = fv

dv

dt

⎝ ⎜

⎠ ⎟Co

= −2Ωusinφ = − fu

Page 60: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Coriolis force

For synoptic scale (large-scale) motions:

du

dt

⎝ ⎜

⎠ ⎟Co

= fv

dv

dt

⎝ ⎜

⎠ ⎟Co

= − fu

where is the horizontal velocity vectorand is the vertical unit vector.

dr v

dt

⎝ ⎜

⎠ ⎟Co

= − fr k ×

r v ( )

Vector notation:

rv = (u,v,0)

rk = (0,0,1)

Since -k v is a vector rotated 90° to the right of vit shows that the Coriolis force deflects and changes only the direction of motion, not the speed.

Page 61: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Effects of the Coriolis force on motions on Earth

Page 62: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Summary: Coriolis force

• Fictitious force only arising in a rotating frame of reference

• Is directed 90º to the right (left) of the wind in the northern (southern) hemisphere

• Increases in proportion to the wind speed

• Increases with latitude, is zero at the equator.

• Does not change the wind speed, only the wind direction. Why?

Page 63: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Our approximated momentum equation so far

dr v

dt= −

1

ρ∇p + ν∇ 2(

r v ) − g

r k + fv

r i − fu

r j

+ other forces

Pressure gradientforce

Viscous force

Gravity

force

Material derivative of

rv

Coriolis

forces

Page 64: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Highs and Lows

Motion initiated by pressure gradient

Opposed by viscosity

In Northern Hemisphere velocity is deflected to the right by the Coriolis force

Page 65: AOSS321 L08 020309 Centrifugal Gravity Coriolis Force

Class exercise: Coriolis forceSuppose a ballistic missile is fired due eastward at 43° N latitude (assume f ≈10-4 s-1 at 43° N ). If the missile travels 1000 km at a horizontal speed u0 = 1000 m/s, by how much is the missile deflected from its eastward path by the Coriolis force?

du

dt

⎝ ⎜

⎠ ⎟Co

= 2Ωv sin(φ) − 2Ωw cos(φ)

dv

dt

⎝ ⎜

⎠ ⎟Co

= −2Ωusin(φ)

dw

dt

⎝ ⎜

⎠ ⎟Co

= 2Ωucos(φ)

Coriolis forces: