AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) [email protected]...

64
AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) [email protected] 734-647-3530 Derek Posselt (Room 2517D, SRB) [email protected] 734-936-0502

Transcript of AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) [email protected]...

Page 1: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

AOSS 401, Fall 2007Lecture 21

October 31, 2007

Richard B. Rood (Room 2525, SRB)[email protected]

734-647-3530Derek Posselt (Room 2517D, SRB)

[email protected]

Page 2: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Class News October 31, 2007

• Homework 5 (Due Friday)– Posted to web– Computing assignment posted to ctools under

the Homework section of Resources

• Next Test November 16

• Thanks for the comments on the Midterms evaluations

Page 5: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Material from Chapter 6

• Quasi-geostrophic theory

• Quasi-geostrophic vorticity– Relation between vorticity and geopotential

Page 6: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Quasi-Geostrophic

• Derive a system of equations that is close to geostrophic and hydrostatic balance, but includes the effects of ageostrophic wind

• Comes from scale analysis of equations of motion in pressure coordinates

• Scale analysis = make assumptions(where do these assumptions break down?)

Page 7: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Equations of motion in pressure coordinates(using Holton’s notation)

written)explicitlynot (often

pressureconstant at sderivative horizontal and time

; )()

re temperatupotential ; velocity horizontal

ln ;

0)(

Dt

Dp

ptDt

D( )

vu

pTS

p

RT

p

c

JST

t

TS

y

Tv

x

Tu

t

T

ppy

v

x

u

fDt

D

pp

p

ppp

p

V

jiV

V

V

VkV

Page 8: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Scale factors for “large-scale” mid-latitude

s 10 /

m 10

m 10

! s cm 1

s m 10

5

4

6

1-

-1

UL

H

L

unitsW

U

1-1-11-

14-0

2

3-

sm10

10

10/

m kg 1

hPa 10

y

f

sf

P

Page 9: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

From the scale analysis we introduced the non-dimensional Rossby number

114

15

00

0

1010

10

Number Rossby

s

s

Lf

U

f

RoLf

U

A measure of planetary vorticity compared to relative vorticity.A measure of the importance of rotation.

Page 10: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Scale analysis of equations in pressure coordinates

• Start:– horizontal flow is approximately geostrophic– vertical velocity much smaller than horizontal

velocity

Page 11: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

We will scale the material derivative

yv

xu

tDt

( )D

Dt

( )D

tDt

D( )

Dt

Dp

ptDt

D( )

ggg

gpgp

pp

)()

; )()

V

V

Ignore // small

This is for use in the advection of temperature and momentum.

ω comes from div(ageostrophic wind)

Page 12: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Variation of Coriolis parameter

• L, length scale, is small compared to the radius of the Earth

• In the calculation of geostrophic wind, assume f is constant; f = f0

• We cannot assume f is constant in the Coriolis terms…

...0 ydy

dfff

Page 13: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Variation of Coriolis parameter

0

0

00

0

at 0

cos2)

...

0

y

ady

df

yfydy

dfff

ydy

dfff

Page 14: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Variation of Coriolis parameter

1sin

cos

0

0

0

00

Roa

L

f

L

yfydy

dfff

Scale of first two terms.

Page 15: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Continuity equation becomes

0

0)(

py

v

x

u

ppy

v

x

u

aa

p

V

Page 16: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Thermodynamic equation

pTS

c

JST

t

TS

y

Tv

x

Tu

t

T

p

ppp

ln

V

geostrophic wind can be used here.

static stability, Sp, is large; ω cannot be ignored

Page 17: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Thermodynamic equation(use the fact that atmosphere is near hydrostatic balance)

p

T

dp

dT

tpyxTpTtpyxT

pTS

c

JST

t

TS

y

Tv

x

Tu

t

T

tot

p

ppgpgg

0

0 ),,,()(),,,(

ln

V

split temperature into basic state plus deviation

Page 18: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Thermodynamic equation(and with the hydrostatic equation)

pg

pg

pg

c

R

p

J

pt

c

J

R

p

ptR

p

dp

d

p

RT

p

RT

p

c

J

R

pT

t

T

;

ln ; 00

V

V

V

note the inverse relation of heating with pressure

Page 19: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

The Momentum Equation

Page 20: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

horizontal flow is approximately geostrophic

• L, length scale, is small compared to the radius of the Earth

• In the calculation of geostrophic wind, assume f is constant; f = f0

windicageostroph

1

0

a

ag

g f

V

VVV

kV

Page 21: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

horizontal flow is approximately geostrophic

110

Rog

a

ag

V

V

VV

Page 22: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Forcing terms in momentum equation

gag

ag

ag

fyf

yf

ff

fDt

D

VkVVk

VVk

VVkVk

VkV

00

0

)()(

)()(

)(

approx of coriolis parameter Use definition of geostrophic wind

in the pressure gradient force

def’n of the full wind

Page 23: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Forcing terms in momentum equation

ga

gag

ag

ag

yf

fyf

yf

ff

VkVk

VkVVk

VVk

VVkVk

0

00

0

)()(

)()(

)(

Page 24: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Approximate horizontal momentum equation

gagg yf

Dt

DVkVk

V 0

This equation states that the time rate of change of the geostrophic wind is related to1. the coriolis force due to the ageostrophic

wind and 2. the part of the coriolis force due to the

variability of the coriolis force with latitude and the geostrophic wind.

Both of these terms are smaller than the geostrophic wind itself.

Page 25: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

A Point

• All of the terms in the equation for the CHANGE in the geostrophic wind, which is really a measure of the difference from geostrophic balance, are order Ro (Rossby number).

– Again, reflects the importance of rotation to the dynamics of the atmosphere and ocean

Page 26: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Scaled equations of motion in pressure coordinates

pg

aa

gagg

g

c

R

p

J

pt

py

v

x

u

yfDt

D

f

;

0

1

0

0

V

VkVkV

kV Definition of geostrophic wind

Momentum equation

Continuity equation

ThermodynamicEnergy equation

Page 27: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

What is the point?

• Set of equations that describes synoptic-scale motions and includes the effects of ageostrophic wind (vertical motion)

Page 28: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Scale Analysis = Make Assumptions

Quasi-geostrophic system is good for:

• Synoptic scales

• Middle latitudes

• Situations in which Va is important

• Flows in approximate geostrophic and hydrostatic balance

• Mid-latitude cyclones

Page 29: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Scale Analysis = Make Assumptions

Quasi-geostrophic system is not good for:

• Very small or very large scales

• Flows with large vertical velocities

• Situations in which Va ≈ Vg• Flows not in approximate geostrophic and

hydrostatic balance

• Thunderstorms/convection, boundary layer, tropics, etc…

Page 30: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

What will we do next?

• Derive a vorticity equation for these scaled equations.– Actually provides a “suitable” prognostic

equation because need to include div(ageostrophic wind) in the prognostics.

– Remember the importance of divergence in vorticity equations.

Page 31: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Derive a vorticity equation

• Going to spend some time with this.

Page 32: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Vorticity

fy

u

x

v

a

Uk

vorticityofcomponent Vertical

relative vorticityvelocity in (x,y) plane

shear of velocity suggests rotation

Page 33: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Vorticity

fy

u

x

v

a

Uk

vorticityofcomponent Vertical

view this as the definition of relative vorticity

Page 34: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

If we want an equation for the conservation of vorticity, then

• We want an equation that represents the time rate of change of vorticity in terms of sources and sinks of vorticity.

Page 35: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Conservation (continuity) principle

• dM/dt = Production – Loss

Page 36: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Newton’s Law of Motion

mdt

d/F

v

Which is the vector form of the momentum equation.(Conservation of momentum)

Where F is the sum of forces acting on a parcel, m mass, v velocity

Page 37: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

What are the forces?

• Total Force is the sum of all of these forces– Pressure gradient force– Gravitational force– Viscous force– Apparent forces

• Derived these forces from first principles

Page 38: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

If we want an equation for the conservation of vorticity, then

• We could approach it the same way as momentum, define the sources and sinks of vorticity from first principles.– But that is hard to do. What are the first

principle sources of vorticity?

• Or we could use the conservation of momentum, and the definition of vorticity to derive the equation.

Page 39: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Newton’s Law of Motion(components)

y

u

x

v

mFdt

dv

mFdt

du

y

x

vorticityof definition and

/

/

Page 40: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Combine definition and conservation principle

y

u

x

v

mFdt

dv

mFdt

du

y

x

vorticityof definition and

/

/

Page 41: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Operate on momentum equation

)/()(

)/()(

mFxdt

dv

x

mFydt

du

y

y

x

Page 42: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Subtract

)/()/()()( mFy

mFxdt

du

ydt

dv

x xy

so a time rate of change of vorticity will come from here.

Page 43: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Subtract

)/()/()()( mFy

mFxdt

du

ydt

dv

x xy

so details will depend on d( )/dt.For an Eulerian fluid d( )/dt = D( )Dt, material derivative.

For a Lagrangian description could write immediately.

Page 44: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Expand derivative

)/()/(

)()(

)/()/()()(

)/()/()()(

mFy

mFx

uyt

u

yv

xt

v

x

mFy

mFx

ut

u

yv

t

v

x

mFy

mFxDt

Du

yDt

Dv

x

xy

xy

xy

vv

vv

Page 45: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Expand derivative

)/()/(

)/()/(

)()(

mFy

mFx

uy

uyt

u

y

vx

vxt

v

x

mFy

mFx

uyt

u

yv

xt

v

x

xy

xy

vv

vv

vv

Page 46: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Expand derivative

)/()/(

mFy

mFx

uy

uyt

u

y

vx

vxt

v

x

xy

vv

vv

Dζ/Dt comes from here.

Page 47: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Expand derivative

)/()/(

mFy

mFx

uy

uyt

u

y

vx

vxt

v

x

xy

vv

vv

Other things comes from here.

Page 48: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Collect terms

)/()/( mFy

mFx

uy

vxDt

Dxy

vv

Page 49: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Let’s return to our quasi-geostrophic formulation

Page 50: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Scaled horizontal momentum in pressure coordinates

0

0

0

0

0

gagg

gagg

gagg

yuufDt

vD

yvvfDt

uD

yfDt

D

VkVkV

Page 51: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Use definition of vorticity vorticity equation

gaagg

gagg

gagg

vy

v

x

uf

Dt

D

yuufDt

vD

x

yvvfDt

uD

y

)(

0)(

0)(

0

0

0

Page 52: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

An equation for geopotential tendency

gg

gaag

ggg

gaagg

vfp

fDt

D

vfy

v

x

uf

Dt

D

fy

u

x

v

vy

v

x

uf

Dt

D

02

02

02

02

2

0

0

)(

1

)(

Page 53: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Barotropic fluid

gg

gg

vfDt

D

vfp

fDt

D

02

02

02

barotropic

Page 54: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Perturbation equation

xxu

t

vvuuu

vfDt

D

g

ggggg

gg

2

02

)(

equation of formon perturbati

;

Page 55: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Wave like solutions

0))((

)Re(

)(

22

)(0

2

klkuk

e

xxu

t

g

tlykxi

g

Dispersion relation. Relates frequency and wave number to flow. Must be true for waves.

Page 56: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Stationary wave

g

g

tlykxi

ulk

klkuk

e

22

22

)(0

0))((

0

)Re(

Wind must be positive, from the west, for a wave.

Page 57: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Study Questions

Page 58: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Study question 1Thermodynamic equation

pg

pg

pg

c

R

p

J

pt

c

J

R

p

ptR

p

p

RT

p

c

J

R

pT

t

T

; V

V

V

Why can we pull this p outside of the derivative operators?

Page 59: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Study Question 2Forcing terms in momentum equation

ga

gag

ag

ag

yf

fyf

yf

ff

VkVk

VkVVk

VVk

VVkVk

0

00

0

)()(

)()(

)(

Do the derivation of this approximation.

Page 60: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Study Question 3An estimate of the July mean zonal wind

northsummer

southwinter

Compare this figure to the similar figure for January. What is similar and different between the tropospheric jets? (magnitude, position). Without referring to the plots of temperature, what can you say about the temperature structure?

Page 61: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Study question 4

y

fv

Dt

Df

f

thatShow parameter. Coriolis theis

Page 62: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Study question 5

What is the scale of the horizontal divergence of the wind to the total vorticity in middle latitudes. Would you expect the same in the tropics?

What are the units of potential vorticity?

Page 63: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Study question 6

Use definition of vorticity vorticity equation

gaagg

gagg

gagg

vy

v

x

uf

Dt

D

yuufDt

vD

x

yvvfDt

uD

y

)(

0)(

0)(

0

0

0

Carry out this derivation.

Page 64: AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu.

Scaled equations of motion in pressure coordinates

pg

aa

g

gagg

c

R

p

J

pt

py

v

x

u

f

yfDt

D

;

0

1

0

0

V

kV

VkVkV

Set up and start the derivation for the time rate of change of divergence of the horizontal divergence. Show how to extract D(div(uhorizontal)/Dt= ….