“Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall...

47
One Day Workshop “Reducing Errors in Hydrologic and Hydraulic Modelling of Drainage System”

Transcript of “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall...

Page 1: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

One Day Workshop

“Reducing Errors in

Hydrologic and Hydraulic

Modelling of Drainage

System”

Page 2: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Introduction to Hydrology and Hydraulics

• Ir. Abd Jalil Hassan

Backwater Computation of Prismatic Channel

• Ir. Abd Jalil Hassan & Pn. Marhanis

Multiple Drainage Network Design

• Ir. Abd Jalil Hassan & Ir. Hambali

Pond Design Under Backwater Effect

• Ir Abd Jalil Hassan & En. Afizi

Online and Offline Pond Design and Impact on Low and High ARI’s

• Ir Abd Jalil Hassan & En. Azad

Questions & Discussion

Page 3: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Introduction to

Hydrology and Hydraulics

&

Backwater Computation of

Prismatic Channel

Abd Jalil Hassan Marhanis Zailan

August 2019

3

Page 4: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Introduction to

Hydrology and Hydraulics

Page 5: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Before development

Page 6: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

New development

Page 7: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Flood

Flood downstream

Page 8: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Conventional approach

Page 9: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Pond

MSMA

Page 10: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

The General Concept of the Hydrological Cycle

The hydrological cycle

is a closed system in

that water circulation

in the system always

remains within the

system.

The whole cycle is

driven by the excess

of incoming solar

radiation over outgoing

radiation.

The cycle consists of

these subsystems:

atmospheric, surface

runoff, subsurface

10

Page 11: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Rainfall Runoff Model

Rational Method

Modified Rational (Hydrograph)

Time Area Method

Unit Hydrograph Method

Etc

11

Page 12: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Rational Method

Q = CIA

o C= Runoff coefficient

o I = Rainfall Intensity

o A = Catchment area

MSMA - Only valid for small catchment

< 80 hectares

Hydrological Procedure No 5 –For rural catchments with

areas ranging from

3.9 to 186 km²

12

1.0

Runoff

Coeff

icie

nt,

C

Rainfall Intensity , I (mm/hr)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

190 200

2

1

7

6

5

4

3

8Impervious Roofs, Concrete

City Areas Full and Solidly Built Up

Urban Residential Fully Built Up with Limited Gardens

Surface Clay, Poor Paving, Sandstone Rock

Commercial & City Areas Closely Built Up

Semi Detached Houses on Bare Earth

Bare Earth, Earth with Sandstone Outcrops

Bare Loam, Suburban Residential with Gardens

Widely Detached Houses on Ordinary Loam

Suburban Fully Built Upon Sand Strata

Park Lawns and Meadows

Cultivated Fields with Good Growth

Sand Strata8

7

6

5

4

3

2

1

Page 13: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Time-Area Method

t

(a) Rainfall H istogram (b) C atchment Isochrones

2

t

3 t

4 t

Isochrones

A rea A1

A2

A4

A3

(c) Time-A rea C urv e (d) Runoff Hy drograph

Runoff

(m

3/s

)

T ime t

tq1

q2

q3

q5

q4

Rain

fall

inte

nsi

ty I

T ime t

I1

I2 I

3

0

I4

t 2 t 3 t 4 t

t

Cum

ula

tive A

rea

T ime t

0 t 2 t 3 t 4 t

13

Page 14: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Conceptual Time Area Method

Say a catchment area with 30 minutes Tc Divide it into 6 Isochrone of 5 minutes

1 2

3

4

6

5

Page 15: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Sample calculation

T1 = R1 x A1

T2 = R2 x A1 + R1 x A2

T3 = R3 x A1 + R2 x A2 + R1 x A3

T4 ………

Page 16: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Unit Hydrograph Method

SCS Unit Hydrograph

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

t/Tp

q/qp

5.0

7.08.0

1900

9.0)/1000(100

S

CNLtc

16

Page 17: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Sample of IDF

Page 18: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Temporal Patern

Duration

(min)

No. of

Time

Periods

10 2 0.570 0.430 - - - - - - - - - -

15 3 0.320 0.500 0.180 - - - - - - - - -

30 6 0.160 0.250 0.330 0.090 0.110 0.060 - - - - - -

60 12 0.039 0.070 0.168 0.120 0.232 0.101 0.089 0.057 0.048 0.031 0.028 0.017

120 8 0.030 0.119 0.310 0.208 0.090 0.119 0.094 0.030 - - - -

180 6 0.060 0.220 0.340 0.220 0.120 0.040 - - - - - -

360 6 0.320 0.410 0.110 0.080 0.050 0.030 - - - - - -

Fraction of Rainfall in Each Time Period

30 minute Duration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6

Time Period

15 min Duration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3

Time Period

60 minute Duration

0.0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 10 11 12

Time Period

120 minute Duration

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8

Time Period

180 minute Duration

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6

Time Period

360 minute Duration

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6

Time Period

10 min Duration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1 2

Time Period

18

Page 19: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Concepts and Principles in

Hydraulics

Page 20: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

What is Hydraulics?

Study of how water moves

Deterministic based on mass

conservation and force balance

Uses principles of momentum and energy

transfer

Provides water levels, velocities, flow

rates

20

Page 21: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Open Channel Principles

Energy and Momentum

Type of Flow

States of Flow

Water Surface Profiles

21

Page 22: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Energy and Momentum

Energy is the “capacity” to do “work”

Kinetic energy (from speed)

Potential energy (from position)

Total Energy is conserved

Energy “losses” arise because some

energy types are ignored in analysis

22

Page 23: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Energy and Momentum

Momentum is mass times velocity

Changed by forces and impulses

Use Newton’s second law

Has magnitude and direction

Used to calculate forces on structures

Can be applied where energy “losses” are

large

23

Page 24: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Type of Flow

Uniform flow

depth remain the same along the channel

Non Uniform flow

Depth varies along the channel

Steady flow

Discharge remain constant at all time

Unsteady flow

Discharge varies with time

Page 25: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Uniform flow profile

Distance

Wate

r le

vel

Water surface is approximately parallel to average bed slope

Bed profile

Average bed slope

25

Page 26: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Uniform flow

Central to understanding of open channel

hydraulics

Energy “line”, water surface slope and

channel bed are all parallel

The depth is called “Normal Depth”

Several assumptions in the analysis

Rarely occurs in practice!

26

Page 27: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Calculating Uniform Flow

Assumptions are

steady flow

regular shape of cross-section

no change of velocity, depth or slope with

distance along channel

rate of “loss” of potential energy balances

work done against flow resistance - but ...

What is really happening?

27

Page 28: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Uniform flow equation

28

Manning Formula

Q = 1/ŋ A R2/3 S1/2

ŋ = Surface roughness

A = flow area

R = hydraulic radius ( A/P)

P = Wetted perimeter

S = water gradient / assume channel bed gradient

Page 29: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Hydraulic Radius

Represents the shape of the cross

section

Ratio of Area, A to Wetted Perimeter, P

R = A / P

Area A

P

29

Page 30: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

What affects roughness?

Bed surface material

Channel irregularity

Channel alignment and sinuosity

Depth and discharge velocity

Vegetation and sediments

Altitude or gradient

30

Page 31: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Slope

Measure elevation change between outlet

and head of channel

The steeper the slope, the faster the

velocity of flow.

Page 32: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Sample calculation – Continuity Equation

Q = VA Where,

Q = the volumetric flow rate

A = the cross sectional area of flow

V = the mean velocity

If

V = 1.5m/s

A = 8m

Page 33: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Sample calculation – Manning Formula

b = 2

d

Q= (𝟏

𝒏)A𝑹𝟐/𝟑𝑺𝟏/𝟐

If,

Slope = 1: 1000

n = 0.012 (concrete drain)

A = b x d

P =b + 2d

R =A/P

= (bxd)/(b+2d)

Q = 1 x (bxd) x {(bxd)/(b+2d)}2/3 x S0.5

If Q = 4.5m3/s From trial and error it will be easy to look for the

solution

If Slope = 0

Q = ?

Page 34: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Classification of Flows

Page 35: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Flow States

Sub-critical

Slow and deep - low kinetic energy

Super-critical

Fast and shallow - high kinetic energy

Critical

Special, unique relation between velocity

and “mean” depth, y

Vc = (gy)1/2

35

Page 36: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Flow States

Critical depth yc when

Vc = V = (gyc)1/2

Sub-critical

y > yc

V < (gy)1/2

Super-critical

y < yc

V > (gy)1/2

36

Page 37: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Alternative Classification

Froude number

Fr = V/(g y)1/2

where V is velocity (m/s),

y is depth (m)

g is acceleration due to gravity (m/s2)

Fr < 1 subcritical flow

Fr = 1 critical flow

Fr > 1 supercritical flow

37

Page 38: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Normal and critical depths

Fr<1

Fr>1

Fr=1

Critical depth

Sub critical yn > yc

Supercritical yn < yc

38

Page 39: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Energy Function

Specific Energy E = y + V2/2g

Graph of E for a fixed discharge q

39

Page 40: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Transition - Hydraulic Jump

40

Page 41: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Water profiles

Gradually – Rapidly varied flow

Page 42: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Non-uniform Flow Profiles

42

Page 43: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

43

Page 44: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

St. Venant equation

0

0

fSSgx

yg

x

VV

t

V

t

A

x

Q

--- Continuity equation

--- Momentum equation

Local acceleration

Convective acceleration

Pressure Force

Gravity Force

Friction Force

Kinematic wave

Diffusion wave

Dynamic wave

44

Page 45: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9
Page 46: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Sample Model

Step 1

To build M2 curve

Step 2

To build M1 curve

Page 47: “Reducing Errors inmsowater.org.my/laravel-filemanager/files/2/Slide... · 1.0 C Rainfall Intensity, I (mm/hr) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.9

Thank You

47